
COMMUN. MATH. SCI. c© 2007 International Press

Vol. 5, No. 2, pp. 391–430

WELL-POSEDNESS OF 3D VORTEX SHEETS WITH SURFACE
TENSION∗

DAVID M. AMBROSE† AND NADER MASMOUDI‡

Abstract. We prove well-posedness for the initial value problem for a vortex sheet in 3D fluids,
in the presence of surface tension. We first reformulate the problem by making a favorable choice
of variables and parameterizations. We then perform energy estimates for the evolution equations.
It is important to note that the Kelvin-Helmholtz instability is present for the vortex sheet in the
absence of surface tension. Accordingly, we must construct the energy functional carefully with an
eye toward the regularization of this instability. Well-posedness follows from the estimates.
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1. Introduction
The vortex sheet is the interface between two inviscid, incompressible fluids. The

fluids we consider in this paper are taken to be three-dimensional and of equal densi-
ties. The fluids satisfy the Euler equations in the interior of the fluid region; at the
interface, the normal component of velocity is continuous while there is a jump in the
tangential velocity. We further assume that the fluids are irrotational in the interior
of the fluid region. The assumption of irrotationality allows us to use a boundary
integral formulation, analyzing only quantities defined on the interface. Because of
the discontinuity in the velocity at the interface, there is a measure-valued vorticity
supported on the interface.

In the absence of surface tension, the pressure is also continuous across the in-
terface, and the problem exhibits the well-known Kelvin-Helmholtz instability. The
problem is then ill-posed in Sobolev spaces, but well-posed in analytic function spaces
[39, 7, 18], with global (analytic) solutions for small data [12]. Recently, further
studies have been made of the unregularized vortex sheet and its solution in analytic
function spaces; see [25] and [42]. Wu’s results also imply something about singularity
formation in two-dimensional vortex sheets: if the vortex sheet loses analyticity, then
the vortex sheet must leave a certain class of chord-arc curves. Surface tension has
been believed to remove the Kelvin-Helmholtz instability, and this has been verified
in the case of two-dimensional fluids in [2] and earlier in [21] (in the case of small
initial data and single-valued height of the interface).

The method used in this paper is a natural generalization of that used in [2].
There, the interface (a one-dimensional curve) was parameterized by arclength and
described by its tangent angle. These choices allowed the evolution equations to
be written as a semilinear system, and the energy method was used to prove well-
posedness. Special care had to be taken in defining the energy functional because
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of the presence of a term in the evolution equations which can be seen as respon-
sible for the Kelvin-Helmholtz instability. In the present case, the interface is a
two-dimensional surface, and there is thus no direct analog of arclength. We still
choose suitable coordinates which simplify the evolution equations. We describe the
surface by its mean curvature; this is a natural analog of the tangent angle in the
one-dimensional case, as the curvature is a derivative of the tangent angle. The sys-
tem of evolution equations in the present work is quasilinear rather than semilinear,
so additional care must be taken in constructing the energy functional.

Let us first describe some of the earlier works on the subject. In 1974, V. I.
Nalimov [30] proved well-posedness for two-dimensional deep water waves without
surface tension. The initial surface displacement and the initial velocity are taken
small in some Sobolev space. This result was improved by H. Yosihara [43, 44]. We
also mention the important work of Craig [10] where some asymptotic problems are
treated (see also Schneider and Wayne [33]). There are some other works dealing with
analytic initial data by M. Shinbrot [38] and T. Kano and T. Nishida [23] (see also
[39] which deals with the Kelvin-Helmholtz instability).

The well-posedness for water waves in Sobolev spaces for arbitrary, regular enough
initial data was proved first by S. Wu. She considers the deep water case without
surface tension (see [40] for the two dimensional case and [41] for the three dimensional
case). The water wave is the problem in which a single fluid has a free surface, with a
vacuum present on the other side of the free surface. Her work involved proving that
the Generalized Taylor condition holds as long as the free surface does not intersect
itself, and was an important advance for the field. We also mention the work of Lannes
[24] where existence in the irrotational case for non-flat bottom is proved.

In the last two years, there have been many works published about the local
well-posedness for water waves. We can mention the work of Lindblad [26] following
the estimates of Christodoulou and Lindblad [8]. In [26], existence in the zero surface
tension case is proved by using Nash-Moser iteration. One of the reasons behind using
Nash-Moser is that it was not clear how to approximate the system while keeping the
nonlinear estimates of [8]. Also, Schweizer [35] proved existence for water waves for
non-zero surface tension when the vorticity vanishes on the boundary initially. This
is because he uses a vanishing-viscosity limit. Another proof of well-posedness of
2D irrotational water waves was given in [3], and there it was proven that the limit
of water waves with surface tension, as surface tension vanishes, is the water wave
without surface tension. We also mention the recent work of Coutand and Shkoller
[9], Zhang and Zhang [45] and Shatah and Zeng [37, 36] where local existence for
water waves is proved without using the Nash-Moser theorem by means of a clever
approximation of the system.

Of the above works, only [37] addresses the two-fluid case, which is treated in
the present work. It is important to mention that in the case of a single fluid, the
Kelvin-Helmholtz instability does not appear, and thus does not need to be regular-
ized. Instead, in the single-fluid case, the possible instability is the Rayleigh-Taylor
instability.

In two dimensions, there has still been quite a bit of work on the vortex sheet
without surface tension, despite being ill-posed in Sobolev spaces. The most cele-
brated result in this line of work is that of Delort [11], proving existence for all time
of weak solutions to the Euler equations with vortex sheet initial data if the vortex
sheet strength has a fixed sign. Delort’s result is discussed further in [13], [28], [34]. It
has also been extended to the case of vorticity of both signs in the presence of certain
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symmetries [27].
Because the work in [2] was influenced by the development of efficient numerical

methods for the same problem by Hou, Lowengrub, and Shelley [16, 17], we comment
upon numerical work for vortex sheets in 3D fluids. In [15], Haroldsen and Meiron
use the point vortex method to calculate the motion of 3D water waves. They make a
special choice of velocity of particles on the free surface, constraining those particles to
have no horizontal velocity. In [22], Ishihara and Kaneda use a purely Lagrangian for-
mulation to study singularity formation in a 3D vortex sheet without surface tension,
treating a model problem (ie, generalizing the analysis of Moore [29]). More recently,
Hou, Hu, and Zhang [19] have studied the full 3D vortex sheet problem without sur-
face tension. Axisymmetric vortex sheets have also been studied by several authors
[31, 6]. Of all of these numerical works, only [31] includes the effect of surface tension,
and this was only in the reduced case of axisymmetric flow.

The plan of the paper is as follows. In Section 2, we discuss the evolution of any
two-dimensional surface in 3D. There we describe our tangential velocities, parame-
terization, and dependent variables for the surface. In Section 3, we specialize to the
case of the vortex sheet, with an extended discussion of the Birkhoff-Rott integral.
In Section 4, we find a good representation for the system of evolution equations. In
Section 5, we state and prove the main theorem of the paper. This includes proving
the main energy estimate, setting up a regularized problem, and proving existence
of solutions to the regularized and original problems. In Section 6, we prove some
lemmas and auxiliary estimates.

Regarding the choice of coordinates, we remark that a similar choice was made
in [20] by Hou and Zhang. With the choice of isothermal coordinates used in the
present work, we are able to use the classical Riesz transforms to approximate singular
integrals. In [20], modified versions of these operators were used.

The authors would like to extend thanks to Jalal Shatah for many helpful discus-
sions. In particular, the choice of the isothermal coordinates (2.4) was made at his
suggestion; we also thank him for discussions on the gain of regularity of E.

2. Evolution of the surface
We will begin with a discussion of the evolution of any surface; later, we will

specialize to the case in which the surface is a vortex sheet.
Let X(α,β)=(x(α,β),y(α,β),z(α,β)) define a surface in R3. We define unit tan-

gent and normal vectors to the surface by

t̂1 =
Xα

|Xα| , t̂2 =
Xβ

|Xβ | , n̂=
Xα×Xβ

|Xα×Xβ | . (2.1)

The first and second fundamental forms of the surface are defined by their coefficients.
The first fundamental coefficients are

E =Xα ·Xα, F =Xα ·Xβ , G=Xβ ·Xβ . (2.2)

The second fundamental coefficients are

L=−Xα · n̂α, M =−Xα · n̂β =−Xβ · n̂α, N =−Xβ · n̂β . (2.3)

We can express the mean curvature and the surface area element easily in terms of
the coefficients of the fundamental forms. Mean curvature, κ, is given by

κ=
EN +GL−2FM

2(EG−F 2)
.
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The (square of the) surface area element is given by the formula

EG−F 2 = |Xα×Xβ |2.
2.1. Evolution of the first fundamental coefficients. We want to find

evolution equations for the fundamental coefficients when X evolves as

Xt =U n̂+V1t̂1 +V2t̂2.

Here, U is the normal velocity and V1 and V2 are the tangential velocities. The
tangential velocities only serve to reparameterize the surface, so we can choose them
to satisfy certain conditions. In particular, we choose them so that

E =G and F =0 (2.4)

here, E =E(α,β,t).
It is not true in general that any surface can be globally parameterized such that

E =G and F =0. In the present work, we consider the case in which such coordinates
can be found globally for the initial surface. We make some remarks about the general
case in Section 2.5.

We begin now assuming that E(α,β,0)=G(α,β,0), and F (α,β,0)=0. We will
find equations for the tangential velocities by insisting that Et =Gt and Ft =0. To do
this, we first calculate Xαt and Xβt. We have

Xαt =(Uα +V1t̂1
α · n̂+V2t̂2

α · n̂)n̂+(V1α +U n̂α · t̂1 +V2t̂2
α · t̂1)̂t1

+(V2α +U n̂α · t̂2 +V1t̂1
α · t̂2)̂t2, (2.5)

Xβt =(Uβ +V1t̂1
β · n̂+V2t̂2

β · n̂)n̂+(V1β +U n̂β · t̂1 +V2t̂2
β · t̂1)̂t1

+(V2β +U n̂β · t̂2 +V1t̂1
β · t̂2)̂t2. (2.6)

These simplify using the following identities:

n̂α · t̂1 =−t̂1
α · n̂=

Xα

|Xα| · n̂α =− L√
E

, (2.7)

n̂α · t̂2 =−t̂2
α · n̂=

Xβ

|Xβ | · n̂α =− M√
E

, (2.8)

t̂2
α · t̂1 =−t̂1

α · t̂2 =
(

Xβ

|Xβ |
)

α

· Xα

|Xα| =
Xαβ ·Xα

E
=

Eβ

2E
, (2.9)

n̂β · t̂1 =−t̂1
β · n̂=

Xα

|Xα| · n̂β =− M√
E

, (2.10)

n̂β · t̂2 =−t̂2
β · n̂=

Xβ

|Xβ | · n̂β =− N√
E

, (2.11)

t̂1
β · t̂2 =−t̂2

β · t̂1 =
(

Xα

|Xα|
)

β

· Xβ

|Xβ | =
Xαβ ·Xβ

E
=

Eα

2E
. (2.12)

The above relations will also be used as

Xαα =Ln̂+
Eα

2
√

E
t̂1− Eβ

2
√

E
t̂2, (2.13)

Xββ =N n̂− Eα

2
√

E
t̂1 +

Eβ

2
√

E
t̂2, (2.14)

Xαβ =M n̂+
Eβ

2
√

E
t̂1 +

Eα

2
√

E
t̂2. (2.15)
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We use the above identities to find two further important identities: formulas for
Mα and Mβ . The point is that Mα is essentially the same as Lβ , and Mβ is essentially
the same as Nα. We have

Mα =−(
√

E(̂t1 · n̂β))α

=−
√

E(̂t1
α · n̂β)− (̂t1 · n̂αβ)

√
E− Eα

2
√

E
(̂t1 · n̂β)

=−
√

E(̂t1
α · t̂2)(̂t2 · n̂β)− (̂t1 · n̂αβ)

√
E− Eα

2
√

E
(̂t1 · n̂β). (2.16)

The first and third of these terms can be simplified by using the above identities. For
the second term, we use

−(̂t1 · n̂αβ)
√

E =−Xα · n̂αβ =Lβ +Xαβ · n̂α

=Lβ +
√

E(̂t1
β · n̂α)+

Eβ

2
√

E
(̂t1 · n̂α)

=Lβ +
√

E(̂t1
β · t̂2)(̂t2 · n̂α)+

Eβ

2
√

E
(̂t1 · n̂α). (2.17)

Finally, we have

Mα =Lβ−Eβκ.

Similarly, we find that

Mβ =Nα−Eακ.

We can now calculate Et :

Et =(Xα ·Xα)t =2Xαt ·Xα =2
√

E(Xαt · t̂1)

=2
√

E

(
V1α− UL√

E
+

V2Eβ

2E

)
. (2.18)

Similarly, we have for Gt

Gt =2
√

E

(
V2β− UN√

E
+

V1Eα

2E

)
. (2.19)

We calculate Ft using Ft =
√

E
(
Xβt · t̂1 +Xαt · t̂2

)
. We get

Ft =
√

E

(
V1β +V2α−2

UM√
E
− V2Eα

2E
− V1Eβ

2E

)
. (2.20)

These calculations let us write down our tangential velocity equations

V1α−V2β− V1Eα

2E
+

V2Eβ

2E
=

U(L−N)√
E

,

V1β +V2α− V1Eβ

2E
− V2Eα

2E
=

2UM√
E

.
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which can also be rewritten




(
V1√
E

)
α
−

(
V2√
E

)
β

= U(L−N)
E ,

(
V1√
E

)
β
+

(
V2√
E

)
α

= 2UM
E .

(2.21)

Hence, V1 and V2 can be recovered from U(L−N)
E and 2UM

E by solving the above elliptic
system.

Indeed, we can write

V√
E

=
(

∂αφ
−∂βφ

)
+

(
∂βψ
∂αψ

)
(2.22)

where φ and ψ solve the following Poisson equations




∆φ= U(L−N)
E

∆ψ = 2UM
E .

(2.23)

We will prove that U is in Hs−1/2, that L,N,M are in Hs−1 and that E−1
is in Hs+1 and is bounded from below. Hence, we deduce that ∆φ and ∆ψ are in
Hs−1∩L1. We point out here that since we are in 2 dimensions for the operator ∆,
we infer that ∇φ∈L2,∞ and that ∇∇φ∈Hs−1. Hence, ∇V ∈Hs−1. In the sequel, we
will say that V ∈Hs, meaning that V ∈L2,∞ and ∇V ∈Hs−1, since this has no effect
on the energy estimates.

2.2. Evolution of the second fundamental coefficients. Before calculat-
ing Lt or Nt, we calculate n̂t :

n̂t =
Xαt×Xβ

E
+

Xα×Xβt

E
− Et

E
n̂. (2.24)

We first calculate

Xαt×Xβ

E
=− 1

E

(
Uα +

V1L√
E

+
V2M√

E

)
Xα +

1√
E

(
V1α− UL√

E
+

V2Eβ

2E

)
n̂. (2.25)

Similarly, we have

Xα×Xβt

E
=− 1

E

(
Uβ +

V1M√
E

+
V2N√

E

)
Xβ +

1√
E

(
V2β− UN√

E
+

V1Eα

2E

)
n̂. (2.26)

Hence,

n̂t =−
(

Uα√
E

+
V1L

E
+

V2M

E

)
t̂1−

(
Uβ√
E

+
V1M

E
+

V2N

E

)
t̂2. (2.27)

2.2.1. Calculation of Lt. We take the time derivative of L :

Lt =−(Xα · n̂α)t =−Xαt · n̂α−Xα · n̂αt

=−(
Xαt · t̂1

)
(n̂α · t̂1)−(

Xαt · t̂2
)
(n̂α · t̂2)−

√
E(̂t1 · n̂αt). (2.28)
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To begin trying to understand this, we notice that

t̂1 · n̂αt =(̂t1 · n̂t)α− t̂1
α · n̂t.

We can write the first term on the right-hand side of this equation as

(̂t1 · n̂t)α =−
(

Uα√
E

+
V1L

E
+

V2M

E

)

α

.

We have found that (2.28) implies

Lt =
√

E

(
Uα√
E

+
V1L

E
+

V2M

E

)

α

−(Xαt · t̂1)(n̂α · t̂1)−(Xαt · t̂2)(n̂α · t̂2)+
√

E(n̂t · t̂1
α).

(2.29)

We can use (2.5) and (2.6) to simplify the second and third terms on the right-
hand side. We also use (2.7), (2.8), etc.... For the last term on the right-hand side,
notice that

n̂t · t̂1
α =(n̂t · t̂2)(̂t2 · t̂1

α), (2.30)

since n̂t · n̂=0 and t̂1
α · t̂1 =0. Using (2.9) and (2.26), we see that (2.30) implies

n̂t · t̂1
α =

(
Eβ

2E

)(
Uβ√
E

+
V1M

E
+

V2N

E

)
.

Finally, we have for Lt :

Lt =
√

E

(
Uα√
E

+
V1L

E
+

V2M

E

)

α

+
L√
E

(
V1α− UL√

E
+

V2Eβ

2E

)

+
M√
E

(
V2α− UM√

E
− V1Eβ

2E

)
+

Eβ

2
√

E

(
Uβ√
E

+
V1M

E
+

V2N

E

)
, (2.31)

which can be rewritten as

Lt =
√

E

(
Uα√
E

+
V1L

E
+

V2M

E

)

α

+
L

2E
Et

+
M√
E

(
V2α− UM√

E
− V1Eβ

2E

)
+

Eβ

2
√

E

(
Uβ√
E

+
V1M

E
+

V2N

E

)
. (2.32)

2.2.2. Calculation of Nt. We can make similar calculations for Nt. To start,
we have

Nt =−(Xβ · n̂β)t =−Xβt · n̂β−Xβ · n̂βt

=−(Xβt · t̂1)(̂t1 · n̂β)−(Xβt · t̂2)(̂t2 · n̂β)−
√

E(̂t2 · n̂t)β +
√

E(̂t2
β · n̂t)

=−(Xβt · t̂1)(̂t1 · n̂β)−(Xβt · t̂2)(̂t2 · n̂β)

−
√

E(̂t2 · n̂t)β +
√

E(̂t2
β · t̂1)(̂t1 · n̂t). (2.33)
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Using our various identities and previous calculations, this is

Nt =
√

E

(
Uβ√
E

+
V1M

E
+

V2N

E

)

β

+
N√
E

(
V2β− UN√

E
+

V1Eα

2E

)

+
M√
E

(
V1β− UM√

E
− V2Eα

2E

)
+

Eα

2
√

E

(
Uα√
E

+
V1L

E
+

V2M

E

)
, (2.34)

which can be rewritten as

Nt =
√

E

(
Uβ√
E

+
V1M

E
+

V2N

E

)

β

+
N

2E
Et

+
M√
E

(
V1β− UM√

E
− V2Eα

2E

)
+

Eα

2
√

E

(
Uα√
E

+
V1L

E
+

V2M

E

)
. (2.35)

2.2.3. Calculation of Lt +Nt. Adding the above two calculations and using
(2.21) leads to

(L+N)t =
(

Uα +
V1L√

E
+

V2M√
E

)

α

+
(

Uβ +
V1M√

E
+

V2N√
E

)

β

+κEt. (2.36)

2.3. Curvature evolution. Using this kind of parameterization, the mean
curvature κ is

κ=
L+N

2E
. (2.37)

So, we get from (2.36)

(
√

Eκ)t =
1

2
√

E

(
Uα +

V1L√
E

+
V2M√

E

)

α

+
1

2
√

E

(
Uβ +

V1M√
E

+
V2N√

E

)

β

. (2.38)

We want to understand this equation more fully, so we apply some of the derivatives
on the right-hand side. We get

(
V1L√

E
+

V2M√
E

)

α

=V1

(
L√
E

)

α

+
L√
E

V1α +M

(
V2√
E

)

α

+
V2√
E

Mα. (2.39)

Then, we use that

V2√
E

Mα =
V2√
E

(Lβ−Eβκ)=V2

(
L√
E

)

β

− V2EβN

2E3/2
. (2.40)

In the same way, we have
(

V2N√
E

+
V1M√

E

)

β

=V2

(
N√
E

)

β

+
N√
E

V2β +M

(
V1√
E

)

β

+
V1√
E

Mβ , (2.41)

and

V1√
E

Mβ =V1

(
N√
E

)

α

− V1EαL

2E3/2
. (2.42)
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Finally, we get

(
√

Eκ)t =
1

2
√

E
∆U +

V1√
E

(
√

Eκ)α +
V2√
E

(
√

Eκ)β

+
L

2
√

E

(
V1√
E

)

α

+
N

2
√

E

(
V2√
E

)

β

+
2UM2

2
√

E
, (2.43)

where we have used that

M

(
V1√
E

)

β

+M

(
V2√
E

)

α

=
2UM2

E
.

2.4. Gain of regularity for E. It would appear at first that if X is in Hs+1,
then E is only in Hs. This turns out to be better then expected. We are able to find
a gain of one derivative for E. To see this, we calculate ∆E. Recall that E =Xα ·Xα,
and also E =Xβ ·Xβ .

∆E =Eαα +Eββ =(Xβ ·Xβ)αα +(Xα ·Xα)ββ .

Applying some of the derivatives, we have

∆E =2(Xαβ ·Xβ)α +2(Xαβ ·Xα)β =4(Xαβ ·Xαβ)+2(Xααβ ·Xβ)+2(Xββα ·Xα).

This can be written

∆E =4(Xαβ ·Xαβ)+2((
√

Et̂1)αβ ·(
√

Et̂2))+2((
√

Et̂2)αβ ·(
√

Et̂1)).

Noting the similarity between the second and third terms on the right-hand side, we
rewrite this as

∆E =4(Xαβ ·Xαβ)+2E(̂t1 · t̂2)αβ−2E(̂t1
α · t̂2

β + t̂1
β · t̂2

α).

Since the second term on the right-hand side is clearly zero, this is

∆E =4(Xαβ ·Xαβ)−2E(̂t1
α · t̂2

β + t̂1
β · t̂2

α). (2.44)

So, if X∈Hs+1, then the right-hand side of (2.44) is in Hs−1∩L1. We conclude that
E−1 is also in Hs+1. (This is related to the Gauss equation and Gauss’s Theorema
egregium).

We remark that there is a similar gain of regularity for Et.

2.5. Conditions on the data. We will need two conditions to be satisfied
by the initial surface. The first has to do with the parameterization:

E(α,β,0)>c̄1 >0, for all α,β. (2.45)

We must have this since we will frequently be estimating factors of E which appear
in the denominator.

As we have mentioned earlier, we are making the assumption that the initial
surface can be globally parameterized such that (2.4) holds. This assumption is made
for simplicity of exposition. The method of proof is valid also in the case in which we
can find such coordinates using finitely many overlapping coordinate patches. Under
mild regularity assumptions on the surface, it is well known that the coordinates
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can be found locally. If we were considering different geometries (i.e., the horizontally
periodic case or the case of a finite volume of fluid), compactness would then guarantee
that a finite number of patches are sufficient. In the whole-plane case currently being
considered, decay at infinity of the surface and its derivatives should ensure that a
finite number of patches (including only one unbounded patch) suffice in many cases,
giving the method of this paper wide applicability.

The second condition, which is of more fundamental importance, is that the initial
surface not be nearly intersecting itself. We require

|X(α,β)−X(α′,β′)|2
(α−α′)2 +(β−β′)2

>c̄2 >0, for all α,β s.t. α 6=β. (2.46)

This requirement will allow us to estimate terms related to the kernel of the Birkhoff-
Rott integral.

Since we are proving the existence of smooth solutions, these conditions will
continue to be satisfied for a positive amount of time.

3. The Birkhoff-Rott integral and its consequences
Thus far, we have only been discussing the motion of a surface which evolves

with normal velocity U without specifying U. For the vortex sheet problem, the normal
velocity must be given by the fluid dynamics; in particular, it is the normal component
of the Birkhoff-Rott integral.

Recall that we are considering the case of two irrotational fluids. In the bulk
of each fluid, then, there is a velocity potential. We denote by µ the jump in the
potential across the interface. As we have remarked previously, the vorticity is not
identically zero, but instead, the vorticity is given by an amplitude times the Dirac
mass of the interface. This amplitude is given by 1

E (µαXβ−µβXα). A discussion of
this formula for the vorticity can be found in [5].

As usual, we can recover the fluid velocity from the Biot-Savart law. Given the
form of the vorticity in this case, the Biot-Savart law yields an integral over the free
surface. Evaluating this integral at points on the free surface, we get the Birkhoff-
Rott integral. The normal velocity U of the interface must be given by the normal
component of the Birkhoff-Rott integral. Further discussion of the Birkhoff-Rott
integral can be found in [32].

The Birkhoff-Rott integral in this case is then given by

W(α,β)=− 1
4π

PV
∫ ∫

(µα(α′,β′)Xβ(α′,β′)−µβ(α′,β′)Xα(α′,β′))

× X(α,β)−X(α′,β′)
|X(α,β)−X(α′,β′)|3 dα′dβ′. (3.1)

We want to understand the Birkhoff-Rott integral in terms of Riesz transforms.
We will use the notation ~α=(α,β) and ~α′=(α′,β′). We recall the definitions of the
Riesz transforms H1 and H2 :

H1f(α,β)=
1
2π

PV
∫ ∫

f(α′,β′)(α−α′)

|~α− ~α′|3
dα′dβ′,

H2f(α,β)=
1
2π

PV
∫ ∫

f(α′,β′)(β−β′)

|~α− ~α′|3
dα′dβ′.

We also define the Fourier transform by

f̂(ξ)=
∫ ∫

e−i(ξ1α+ξ2β)f(α,β)dαdβ. (3.2)



D. M. AMBROSE AND N. MASMOUDI 401

Hence, the symbols of the Riesz transforms are

Ĥ1(ξ1,ξ2)=
−iξ1

|ξ| , Ĥ2(ξ1,ξ2)=
−iξ2

|ξ| .

We define the first-order derivative operator Λ by

Λ=H1Dα +H2Dβ , Λ̂= |ξ|.
Important properties of Riesz transforms are that (H2

1 +H2
2 )f =−f, if f̂(0) is zero, and

that H1Dβf =H2Dαf. The operators Dα and Dβ are the partial derivative operators
with respect to α and β, respectively.

We need to introduce two kernels, J and K, which will be used in approximating
the Birkhoff-Rott integral. First we introduce

4πJ =
X−X′

|X−X′|3 −
X′

α(α−α′)
E′3/2|~α−~α′|3 −

X′
β(β−β′)

E′3/2|~α−~α′|3 , (3.3)

We will also use the following approximation. Assuming that X is regular enough,
we have

X(α,β)=X(α′,β′)+Xα(α′,β′)(α−α′)+Xβ(α′,β′)(β−β′)

+
1
2
Xαα(α′,β′)(α−α′)2 +

1
2
Xββ(α′,β′)(β−β′)2

+Xαβ(α′,β′)(α−α′)(β−β′)+O(|~α−~α′|3). (3.4)

In the sequel all functions will be evaluated at (α′,β′) unless otherwise specified. For
instance Eα denotes Eα(α′,β′). Similar to (3.4), we have

|X(α,β)−X(α′,β′)|2 =
(

E +
1
2
Eα(α−α′)+

1
2
Eβ(β−β′)

)
|~α−~α′|2

+O(|~α−~α′|4). (3.5)

We also need the following kernel

4πK =
X(α,β)−X(α′,β′)
|X(α,β)−X(α′,β′)|3 −

Xα(α−α′)+Xβ(β−β′)
E3/2|~α−~α′|3 +

−
1
2Xαα(α−α′)2 + 1

2Xββ(β−β′)2 +Xαβ(α−α′)(β−β′)
E3/2|~α−~α′|3

+
3
4

(Eα(α−α′)+Eβ(β−β′))(Xα(α−α′)+Xβ(β−β′))
E5/2|~α−~α′|3 . (3.6)

We define Gij , the operator whose symbol is given by Ĝij(ξ)=− ξiξj

2|ξ|3 . Note that
each of the Gij is a smoothing operator of degree −1. It is also given by

G11f(α,β)=
1
4π

PV
∫ ∫

f(α′,β′)(α−α′)2

|~α− ~α′|3
dα′dβ′,

G12f(α,β)=
1
4π

PV
∫ ∫

f(α′,β′)(α−α′)(β−β′)

|~α− ~α′|3
dα′dβ′,

G22f(α,β)=
1
4π

PV
∫ ∫

f(α′,β′)(β−β′)2

|~α− ~α′|3
dα′dβ′.
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Notation. Here and below, OX,µ,E(Hm) will denote any function whose norm
in Hm is bounded by ‖X‖Hs+1 +‖µ‖Hs+1/2 +‖E‖Hs+1 and such that

‖OX,µ,E(Hm)−OY,ν,H(Hm)‖Hm ≤‖X−Y‖Hs+1 +‖µ−ν‖Hs+1/2 +‖E−H‖Hs+1 .
(3.7)

This function can vary from one line to the other. When, there is no ambiguity, we
will denote O(Hm)=OX,µ,E(Hm). In particular X∈O(Hs+1) and µ∈O(Hs+1/2).
We already saw that if X is parameterized by conformal coordinates, then ‖E‖Hs+1

is controlled by X in Hs+1 which is a one-derivative gain. However, we keep E in the
definition of O(Hm) since we will deal with surfaces which are not parameterized by
conformal coordinates in the approximation process. Moreover, E will not be given
by Xα ·Xα but from an elliptic system to keep it in the space Hs+1. Furthermore, it
is implicit when we discuss Sobolev norms of X and related quantities that we mean
instead the norm of X−(α,β,0), as this is the quantity that decays. Moreover, when
dealing with E in Sobolev spaces, we mean instead E−1.

Proposition 3.1. We have the following formulas for ∇W.

Wα · t̂1 =−H1

(
µαL

2E

)
−H2

(
µβL

2E

)
+O(Hs−1/2). (3.8)

Wβ · t̂1 =−H1

(
µαM

2E

)
−H2

(
µβM

2E

)
+O(Hs−1/2). (3.9)

Wα · t̂2 =−H1

(
µαM

2E

)
−H2

(
µβM

2E

)
+O(Hs−1/2). (3.10)

Wβ · t̂2 =−H1

(
µαN

2E

)
−H2

(
µβN

2E

)
+O(Hs−1/2). (3.11)

Proof. We use the notation g =µβXα−µαXβ . If we denote by J [X] the integral
operator with kernel J, then we have

W=H1

(
g×Xα

2E3/2

)
+H2

(
g×Xβ

2E3/2

)
+J [X]g.

Substituting in for g, we see that this is

W=H1

( µα

2E1/2
n̂
)

+H2

( µβ

2E1/2
n̂
)

+J [X]g.

We take an α-derivative of this.

Wα =H1

( µαα

2E1/2
n̂
)

+H2

( µαβ

2E1/2
n̂
)
−H1

(
µαEα

4E3/2
n̂
)

−H2

(
µβEα

4E3/2
n̂
)

+H1

( µα

2E1/2
n̂α

)
+H2

( µβ

2E1/2
n̂α

)
+DαJ [X]g. (3.12)
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We can now move the vectors outside the Riesz transforms, incurring an O(Hs−1/2)
commutator (see Theorem 6.6). We also use the formula

n̂α =− L

E1/2
t̂1− M

E1/2
t̂2.

This leads us to

Wα =H1

( µαα

2E1/2

)
n̂+H2

( µαβ

2E1/2

)
n̂−H1

(
µαEα

4E3/2

)
n̂

−H2

(
µβEα

4E3/2

)
n̂−H1

(
µαL

2E

)
t̂1−H1

(
µαM

2E

)
t̂2−H2

(
µβL

2E

)
t̂1

−H2

(
µβM

2E

)
t̂2 +DαJ [X]g+O(Hs−1/2). (3.13)

We now calculate DαJ [X]g. The justification of the following computation is
given in the proof of Theorem 6.5. (In particular, what is justified is the passing of a
derivative under the integrals and the integration by parts.)

DαJ [X]g =PV
∫ ∫

g′×DαJ d~α′

=−PV
∫ ∫

g′×Dα′J d~α′+PV
∫ ∫

g′×(Dα +Dα′)J d~α′=A1 +A2.

(3.14)

The term A1 can be integrated by parts:

A1 =PV
∫ ∫

Dα′g
′×J d~α′.

For A2, we introduce the operator J1[X], which is the operator with kernel (Dα +
Dα′)J. Thus, A2 =J1[X]g. We show in Theorem 6.5 that A2 =O(Hs). For A1, we add
and subtract some additional terms. Recall that

4πJ =4πK +
1
2Xαα(α−α′)2 + 1

2Xββ(β−β′)2 +Xαβ(α−α′)(β−β′)
E3/2|~α−~α′|3

− 3
4

(Eα(α−α′)+Eβ(β−β′))(Xα(α−α′)+Xβ(β−β′))
E5/2|~α−~α′|3 . (3.15)

We make the following computations with a remainder term in Hs, since we are going
to use them for the normal component (see the next Proposition):

A1 =K[X](Dαg)+G11

(
gα×Xαα

2E3/2
− 3(gα×Xα)Eα

4E5/2

)

+G12

(
gα×Xαβ

E3/2
− 3(gα×Xα)Eβ +3(gα×Xβ)Eα

4E5/2

)

+G22

(
gα×Xββ

2E3/2
− 3(gα×Xβ)Eβ

4E5/2

)
. (3.16)

We show in Theorem 6.3 that K[X](Dαg)=O(Hs). We have

gα =µαβXα−µααXβ +µβXαα−µαXαβ . (3.17)
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The terms in (3.17) which have one derivative on µ and two derivatives on X will
make only O(Hs) contributions to Wα, since Gij is smoothing. So, we have

A1 =G11

(
µαβ(Xα×Xαα)

2E3/2
− µαα(Xβ×Xαα)

2E3/2
− 3µααEα

4E3/2
n̂
)

+G12

(
µαβ(Xα×Xαβ)

E3/2
− µαα(Xβ×Xαβ)

E3/2
− 3(µααEβ +µαβEα)

4E3/2
n̂
)

+G22

(
µαβ(Xα×Xββ)

2E3/2
− µαα(Xβ×Xββ)

2E3/2
− 3µαβEβ

4E3/2
n̂
)

+O(Hs). (3.18)

Hence, A1 =O(Hs−1/2) and (3.8) is proved. Similarly, we can prove the three other
equations. This ends the proof of the proposition.

Now, we look at the case of the normal component. We have

Proposition 3.2.

(Wα · n̂)α +(Wβ · n̂)β =
1
2
Λ

[√
E

(µα

E

)
α

+
√

E
(µβ

E

)
β

]
+O(Hs−1). (3.19)

Proof.
We start by the following simple relations

(Xα×Xβ)(Xβ ·Xαα)=−1
2
EβEn̂,

(Xα×Xβ)(Xβ ·Xαβ)=
1
2
EαEn̂,

(Xα×Xβ)(Xβ ·Xββ)=
1
2
EβEn̂,

(Xβ×Xα)(Xα ·Xαα)=−1
2
EαEn̂,

(Xβ×Xα)(Xα ·Xαβ)=−1
2
EβEn̂,

(Xβ×Xα)(Xα ·Xββ)=
1
2
EαEn̂.

So, we get using theorem 6.7

Wα · n̂=H1

( µαα

2E1/2

)
+H2

( µαβ

2E1/2

)
−H1

(
µαEα

4E3/2

)

−H2

(
µβEα

4E3/2

)
−G11

( 1
2µααEα + 1

4µαβEβ

E3/2

)
−G12

( 1
4µαβEα + 1

4µααEβ

E3/2

)

−G22

( 1
4µααEα + 1

2µαβEβ

E3/2

)
+O(Hs). (3.20)

Hence,

Wα.n̂=
1
2
H1

( µαα

E1/2

)
+

1
2
H2

( µαβ

E1/2

)
− 1

4
H1

(
µαEα

E3/2

)
− 1

4
H2

(
µβEα

E3/2

)
+

−∂αG11

( 1
2µαEα + 1

4µβEβ

E3/2

)
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−∂αG22

( 1
4µαEα + 1

2µβEβ

E3/2

)
−∂αG12

( 1
4µαEβ + 1

4µβEα

E3/2

)
+O(Hs).

(3.21)

This can be rewritten as

Wα · n̂=
1
2
H1

( µα

E1/2

)
α

+
1
2
H2

( µα

E1/2

)
β
+

1
4
H2

(
µαEβ−µβEα

E3/2

)

−∂αG11

( 1
2µαEα + 1

4µβEβ

E3/2

)

−∂αG22

( 1
4µαEα + 1

2µβEβ

E3/2

)
−∂αG12

( 1
4µαEβ + 1

4µβEα

E3/2

)
+O(Hs).

(3.22)

Hence,

(Wα · n̂)α +(Wβ · n̂)β

=
1
2
Λ

[( µα

E1/2

)
α

+
( µβ

E1/2

)
β

]

−∂ααG11

( 1
2µαEα + 1

4µβEβ

E3/2

)
−∂ααG22

( 1
4µαEα + 1

2µβEβ

E3/2

)

−∂ααG12

( 1
4µαEβ + 1

4µβEα

E3/2

)
+

−∂ββG11

( 1
2µαEα + 1

4µβEβ

E3/2

)
−∂ββG22

( 1
4µαEα + 1

2µβEβ

E3/2

)
+

−∂ββG12

( 1
4µαEβ + 1

4µβEα

E3/2

)
+O(Hs−1). (3.23)

Then, using that ∂ααGij +∂ββGij = 1
2∂iHj , we get

(Wα · n̂)α +(Wβ · n̂)β

=
1
2
Λ

[( µα

E1/2

)
α

+
( µβ

E1/2

)
β

]
+

−1
2

[
∂αH1

( 1
2µαEα + 1

4µβEβ

E3/2

)
+∂αH2

( 1
4µαEβ + 1

4µβEα

E3/2

)
+

+ ∂βH2

( 1
4µαEα + 1

2µβEβ

E3/2

)]
+O(Hs−1). (3.24)

Using that ∂αH1 +∂βH2 =Λ, we deduce that

∂αH1

( 1
2µαEα + 1

4µβEβ

E3/2

)
+∂βH2

( 1
4µαEα + 1

2µβEβ

E3/2

)

=
1
4
Λ

(
µαEα +µβEβ

E3/2

)
+

1
4
∂αH1

(
µαEα

E3/2

)
+

1
4
∂βH2

(
µβEβ

E3/2

)
. (3.25)
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Then, using that

∂αH2

(
µαEβ

E3/2

)
=∂αH1

(
µβEβ

E3/2

)
+O(Hs−1) (3.26)

∂αH2

(
µβEα

E3/2

)
=∂βH2

(
µαEα

E3/2

)
+O(Hs−1), (3.27)

we infer that

(Wα · n̂)α +(Wβ · n̂)β

=
1
2
Λ

[( µα

E1/2

)
α

+
( µβ

E1/2

)
β
− 1

2
µαEα +µβEβ

E3/2

]
+O(Hs−1)

=
1
2
Λ

[√
E

(µα

E

)
α

+
√

E
(µβ

E

)
β

]
+O(Hs−1). (3.28)

This ends the proof of the proposition.

4. The leading-order system
In this section, we write the system of evolution equations in our preferred form

for performing energy estimates. The equations are a quasilinear hyperbolic system,
so we will symmetrize before performing estimates. We will finally arrive at the system
(4.29) below.

4.1. The κ equation. From (2.43), we get

κt =
1

2E
∆U +

V1√
E

κα +
V2√
E

κβ +O(Hs−1). (4.1)

Then, using that U =W · n̂ we get

∆U =(Wα · n̂)α +(Wβ · n̂)β−
(

L√
E

W · t̂1

)

α

−
(

M√
E

W · t̂2

)

α

−
(

M√
E

W · t̂1

)

β

−
(

N√
E

W · t̂2

)

β

, (4.2)

and we deduce that

κt =
1

2E
[(Wα · n̂)α +(Wβ · n̂)β ]+

V1−W.̂t1

√
E

κα +
V2−W.̂t2

√
E

κβ

+O(Hs−1). (4.3)

Then, using (3.28), we infer that

κt =
1

4E
Λ

[√
E

(µα

E

)
α

+
√

E
(µβ

E

)
β

]
+

V1−W · t̂1

√
E

κα +
V2−W · t̂2

√
E

κβ

+O(Hs−1). (4.4)
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We would like to rewrite this in a way which is more suitable for a symmetrization.

1
2E

Λ
[√

E
(µα

E

)
α

+
√

E
(µβ

E

)
β

]
(4.5)

=
1

2E

[
∂αΛ

( µα

E1/2

)
+∂βΛ

( µβ

E1/2

)]
− 1

4E
Λ

[
µαEα +µβEβ

E3/2

]
(4.6)

=
1

2
√

E

[
∂α

(
1√
E

Λ
µα

E1/2

)
+∂β

(
1√
E

Λ
µβ

E1/2

)]

+
1

2
√

E

[
Eα

2E3/2
Λ

µα

E1/2
+

Eβ

2E3/2
Λ

µβ

E1/2

]
− 1

4E
Λ

[
µαEα +µβEβ

E3/2

]
(4.7)

=
1

2
√

E

[
∂α

1√
E

Λ
1√
E

∂αµ+∂β
1√
E

Λ
1√
E

∂βµ

]
+O(Hs−1). (4.8)

Above, that (4.5), (4.6), and (4.7) are equal is simply a matter of rearranging the
derivatives; there are no approximations. To get (4.8), the second and third terms
of (4.7) are combined, and there is an approximate cancellation. In particular, those
terms which have two derivatives of µ combine to form a smooth commutator. The
remaining terms have at most two derivatives of E and one derivative of µ, and are
thus in Hs−1. That the commutator is smooth is a consequence of (6.16). In fact, the
estimate required is simpler that (6.16), as only one-half of a derivative of smoothing
is required. Hence, we get

κt =
1

4
√

E

[
∂α

1√
E

Λ
1√
E

∂αµ+∂β
1√
E

Λ
1√
E

∂βµ

]
+

V1−W · t̂1

√
E

κα +
V2−W · t̂2

√
E

κβ

+O(Hs−1). (4.9)

4.2. The µ equation. We have the following evolution equation for µ

µt = τκ+
(V1−W · t̂1)√

E
µα +

(V2−W · t̂2)√
E

µβ . (4.10)

The corresponding equation for two-dimensional vortex sheets was derived in [4],
and a version of the derivation is given in [1, 3]. The above equation can be found by
the same derivation.

The regularity of (V1−W · t̂1,V2−W · t̂1) now becomes important. We can see
from (2.21) and (3.8)-(3.11) that each of the Vi−W · t̂i is in Hs when X∈Hs+1 and
µ∈Hs+1/2. We thus cannot propagate the regularity of µ using (4.10). Instead of
the equation for µ, we will write an equation for Λ(µt). (This has the benefit of very
clearly identifying which terms in the evolution equations contribute to the Kelvin-
Helmholtz instability. This will be explained more below.) We have the following
Proposition:

Proposition 4.1. Λ(µt) satisfies the following equation

Λ(µt)= τΛ(κ)+
(V1−W · t̂1)√

E
Λ(µα)+

(V2−W · t̂2)√
E

Λ(µβ)

+
1√
E

[
(µαH1 +µβH2)2(κ)

]
+O(Hs−1/2). (4.11)
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Let us prove the Proposition. Applying Λ and using our commutator estimate
(6.16), we get

Λµt = τΛκ+
(V1−W · t̂1)√

E
Λµα +

(V2−W · t̂2)√
E

Λµβ+

+
Λ(V1−W · t̂1)µα√

E
+

Λ(V2−W · t̂2)µβ√
E

+O(Hs−1/2). (4.12)

Thus, the most important part of the calculation will be finding useful formulas
for Λ(V1−W · t̂1) and Λ(V2−W · t̂2).

We begin the calculation of Λ(V1−W · t̂1). To this end, we recall that Λ=H1Dα +
H2Dβ . We have

H1Dα(V1−W · t̂1)=−H1(Wα · t̂1)

+H1(V1α−(W · t̂2)(̂t1
α · t̂2)−(W · n̂)(̂t1

α · n̂))

=−H1(Wα · t̂1)+H1(V1α−(W · t̂2)
Eβ

2E
− UL√

E
). (4.13)

Using (2.21), the second term on the right-hand side can be rewritten as

H1

(
V2β +

V1Eα

2E
+(W · t̂2−V2)

Eβ

2E
− UN√

E

)
. (4.14)

Now, we turn to H2Dβ . We have

H2Dβ(V1−W · t̂1)=−H2(Wβ · t̂1)

+H2(V1β−(W · t̂2)(̂t1
β · t̂2)−(W · n̂)(̂t1

β · n̂))

=−H2(Wβ · t̂1)+H2(V1β−(W · t̂2)
Eα

2E
− UM√

E
). (4.15)

Combining (4.13), (4.14), (4.15) and the fact that H2Dα =H1Dβ , we have

Λ(V1−W · t̂1)=−H1(Wα · t̂1)−H2(Wβ · t̂1)

+H2(V1β +V2α)−H1

(
UN√

E

)
−H2

(
UM√

E

)

+H1

(
V1Eα

2E
+(W · t̂2−V2)

Eβ

2E

)
−H2

(
(W · t̂2)

Eα

2E

)
. (4.16)

From equations (3.8) and (3.9), we have

−H1(Wα · t̂1)=H2
1

(
µαL

2E

)
+H1H2

(
µβL

2E

)
+O(Hs−1/2) (4.17)

and

−H2(Wβ · t̂1)=H1H2

(
µαM

2E

)
+H2

2

(
µβM

2E

)
+O(Hs−1/2). (4.18)
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Next, we use that

H1H2

(
µαM

2E

)
=H2

2

(
µαL

2E

)
+O(Hs−1/2),

H1H2

(
µβL

2E

)
=H2

2

(
µβM

2E

)
+O(Hs−1/2)

and −H1∂α =Λ−1∂αα; hence

−H1(Wα · t̂1)−H2(Wβ · t̂1)=−µαL

2E
− µβM

2E
+O(Hs−1/2), (4.19)

which simplifies to

−H1(Wα · t̂1)−H2(Wβ · t̂1)=−µαL

2E
− µβM

2E
+O(Hs−1/2). (4.20)

Moreover, H1(N)=H2(M)+O(Hs−1/2) (or even O(Hs) but this has no impor-
tance here). Hence

H2(V1β +V2α)−H1

(
UN√

E

)
−H2

(
UM√

E

)

=H2

(
V1β +V2α− 2UM√

E

)
+O(Hs−1/2)

=
V1Eβ

2E
+

V2Eα

2E
+O(Hs−1/2)=O(Hs−1/2). (4.21)

Hence, we get

Λ(V1−W · t̂1)=−µαL

2E
− µβM

2E
+O(Hs−1/2),

which can also be written

Λ(V1−W · t̂1)=µαH2
1 (κ)+µβH1H2(κ)+O(Hs−1/2).

In a similar way, we get that

Λ(V2−W · t̂2)=−µβN

2E
− µαM

2E
− µβκ

2
+O(Hs−1/2).

Finally, we have the equation

Λ(µt)= τΛ(κ)+
(V1−W · t̂1)√

E
Λµα +

Λ(V2−W · t̂2)√
E

Λµβ

+
1√
E

[
µ2

αH2
1 (κ)+µ2

βH2
2 (κ)+2µαµβH1H2(κ)

]
+O(Hs−1/2), (4.22)

where we have used that
L

2E
=−H2

1 (κ)+O(Hs−1/2),

N

2E
=−H2

2 (κ)+O(Hs−1/2),

M

2E
=−H1H2(κ)+O(Hs−1/2). (4.23)
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[We will briefly prove (4.23). We write

H2
1 (κ)=

H2
1 (L)
2E

+
H2

1 (N)
2E

+O(Hs−1/2)=
H2

1 (L)
2E

+
H2

1 (Xββ) · n̂
2E

+O(Hs−1/2)

=
H2

1 (L)
2E

+
H2

2 (Xαα) · n̂
2E

+O(Hs−1/2)=
(H2

1 +H2
2 )(L)

2E
+O(Hs−1/2)

=− L

2E
+O(Hs−1/2). (4.24)

Here, we have used the definition κ= L+N
2E , the definition N =Xββ · n̂, the identity

H1Dβ =H2Dα, and we have repeatedly used the commutator estimates of Theorem
6.6 and Theorem 6.7.]

The equation (4.22) can be rewritten as

Λ(µt)= τΛ(κ)+
(V1−W · t̂1)√

E
Λµα +

(V2−W · t̂2)√
E

Λµβ

+
1√
E

[
(µαH1 +µβH2)2(κ)

]
+O(Hs−1/2), (4.25)

and the proposition is proved.
This equation will be used in the following form

Λ(µt)= τΛ(κ)+
(V1−W · t̂1)√

E
Λµα +

(V2−W · t̂2)√
E

Λµβ

− 1√
E
GG∗(κ)+O(Hs−1/2), (4.26)

where G=µaH1 +µβH2.

Remark 4.2. It is important to note that the term involving G on the right-hand
side of (4.26) can be viewed as contributing to the Kelvin-Helmholtz instability. We
have seen already that the evolution of κ is like −Λ3µ. In the case τ =0, (4.26) tells
us that the evolution of Λµ is like −κ. Putting these together, we would see (in the
case without surface tension) κtt∼Λ2κ=−∆κ. This can be made precise: in the case
without surface tension, the evolution is ill-posed, as the evolution equations form a
quasilinear elliptic system. In the case with surface tension (τ >0), the presence of
the higher-order term τΛκ on the right-hand side of (4.26) allows us to control the
destabilizing term. This will be made clear in the following sections.

4.3. The system. Let us recall the system we want to solve,

(S)





Xt =U n̂+V1t̂1 +V2t̂2

µt = τκ+ (V1−W·̂t1)√
E

µα + (V2−W·̂t2)√
E

µβ

X(t=0)=X0

µ(t=0)=µ0,

(4.27)

where n̂, t̂1 and t̂2 are given by (2.1), U =W · n̂ and W is given by the Birkhoff-Rott
integral (3.1), V1 and V2 solve the elliptic system (2.21), and L,M and N are given
by (2.3), E =Xα ·Xα =Xβ ·Xβ and κ is given by (2.37).

Now, we are ready to transform (4.27) into a system on which we are going
to perform the energy estimates. To make the system symmetric we will further
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transform the equation for Λµ by writting (A1,A2)=(Λ1/2 µα√
E

,Λ1/2 µβ√
E

). We define

the operator L by LA=∂α
1√
E

Λ1/2A1 +∂β
1√
E

Λ1/2A2. L∗ is given by

L∗κ=−
(

Λ1/2 1√
E

∂ακ

Λ1/2 1√
E

∂βκ

)
. (4.28)

Hence, we get





κt = 1
4
√

E
LA+ (V1−W·̂t1)√

E
κα + (V2−W·̂t2)√

E
κβ +f(X,µ,E)

At =−τL∗κ+Rκ+ (V1−W·̂t1)√
E

Aα + (V2−W·̂t2)√
E

Aβ +g(X,µ,E)

∆X=2Eκn̂

(4.29)

where

Rκ=

(
Λ1/2 1√

E
H1

1√
E

Λ1/2 1√
E

H2
1√
E

)
GG∗κ. (4.30)

For the above, recall that the operator G is defined as G=µαH1 +µβH2, and also
we have f(X,µ,E)=OX,µ,E(Hs−1) and g(X,µ,E)=OX,µ,E(Hs−1). We also denote
Z1 = 1√

E
(V1−W · t̂1) and Z2 = 1√

E
(V2−W · t̂2).

We have stated before that we will seek energy estimates with κ∈Hs−1 and
µ∈Hs+1/2. Now that we have performed the symmetrization, these estimates will be
for each of κ and A in Hs−1.

5. Statement and proof of the main theorem
In this section we state and prove the main theorem. We will detail the proof of

the energy estimate and only sketch the approximation procedure.
We take s big enough. We consider an initial surface X0(α,β) which is globally

parametrized by harmonic coordinates (namely (2.4) holds) and such that X0∈Hs+1.
Moreover, we assume that (2.45) and (2.46) hold. We also consider an initial potential
velocity field which is completely determined by µ0(α,β), the jump in the potential
across the interface. We assume that µ0∈Hs−1/2. From X0 and µ0, we can compute
κ0 and A0, the initial data for the system (4.29). We have the following existence
result.

Theorem 5.1. There exists a time T which only depends on c̄1, c̄2 and ‖X0‖Hs+1 +
‖µ0‖Hs+1/2 and a unique solution (X,µ)∈C([0,T );Hs+1×Hs+1/2) to (4.27) on the
time interval (0,T ) satisfying

‖X‖C([0,T );Hs+1) +‖µ‖C([0,T );Hs+1/2)≤C(c̄1, c̄2,‖X0‖Hs−1 +‖µ0‖Hs−1/2). (5.1)

Moreover, for all i such that 3
2 i≤s−1, we have (X,µ)∈Ci([0,T );Hs+1− 3

2 i×
Hs+ 1

2− 3
2 i).

In the next two subsections, we give the proof of this theorem. We only detail
the a priori energy estimate. Instead of (5.1), we will estimate κ and A in Hs−1.



412 3D VORTEX SHEETS WITH SURFACE TENSION

5.1. Energy estimate. We denote a= 1√
E

. To do the estimates, we need
some commutator estimates for L and R. These are estimates which can be easily
deduced from estimates for Hi or Λ (see Theorem 6.6). To deal with the operator R,
we use the following lemma.

Lemma 5.2. If a∈Hs+1 and κ,A∈Hs−1, then

LRκ=GaΛaΛaG∗κ+O(Hs−5/2) (5.2)
L∗R∗A=GaΛaΛaG∗A+O(Hs−5/2), and (5.3)

RLA=GaΛaΛaG∗A+O(Hs−5/2). (5.4)

We also need

Lemma 5.3. If a∈Hs+1, then for r≤s

‖[L,h]f‖Hr−1/2 ≤C‖h‖Hr+1‖f‖Hr , (5.5)

‖[L,Hi]f‖Hr−1/2 ≤C‖f‖Hr , (5.6)

‖[L,Λ1/2]f‖Hr−1 ≤C‖f‖Hr . (5.7)

The proof of these two lemmas is left to the reader (see also the proof of Theorem
6.6).

Proposition 5.4. Take s−1= 3
2n where n is an interger.

If n is odd, n=2k+1, we define the energy at the level s by

E=
∫

a

4
|L(L∗aL)kA|2 +τ

∫
|L∗(aLL∗)kκ|2

+
1
4τ

∫
|aΛaG∗(L∗aL)kA|2. (5.8)

If n is even, n=2k, k≥1, we define the energy at the level s by

E=
∫

1
4
|(L∗aL)kA|2 +τ

∫
1
a
|(aLL∗)kκ|2

+
1
4τ

∫
a|ΛaG∗aL(L∗aL)k−1A|2. (5.9)

Define the energy E∗ by

E∗=‖X‖s−1/2 +‖µ‖s−1 +‖E‖s−1/2 +E . (5.10)

Then, if (κ,A,X) solves (4.29), then we have a priori estimate,

dE∗
dt

≤C(E∗), (5.11)

where C(E∗) is a continuous function of E∗.
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Proof. We present the computation when n is odd.
The low norms of X and µ are included for merely technical reasons. We first

remark that the time derivative of ‖X‖s−1/2 and of ‖µ‖s−1/2 can trivially be bounded
in terms of the energy, since these norms do not involve the highest regularity. Indeed,
Xt is in Hs−1/2 if µ∈Hs+1/2 and κ∈Hs−1. As we prove in Lemma 6.8 below, having
X∈Hs−1/2 and κ∈Hs−1 yields the desired higher regularity of X, so that X∈Hs+1

is bounded in terms of E∗. The same holds for µ and E.
Let us now compute

dE
dt

=
∫ (a

4
L(L∗aL)kA ,L(L∗aL)k[−τL∗κ+Rκ]

)

+τ

∫ (
L∗(aLL∗)kκ ,L∗(aLL∗)k[

a

4
LA]

)

+
1
4τ

∫ (
aΛaG∗(L∗aL)kA ,aΛaG∗(L∗aL)k[−τL∗κ+Rκ]

)
+T +R, (5.12)

where T comes from the transport terms and R stands for the rest coming from
O(Hs−1) and from the time derivative operating on a.

In (5.12), there are two cancellations. The first one is

∫ (a

4
L(L∗aL)kA ,L(L∗aL)k[−τL∗κ]

)

+τ

∫ (
L∗(aLL∗)kκ ,L∗(aLL∗)k[

a

4
LA]

)
=0, (5.13)

by integration by parts. The second one is

∫ (a

4
L(L∗aL)kA ,L(L∗aL)k[Rκ]

)

+
1
4τ

∫ (
aΛaG∗(L∗aL)kA ,aΛaG∗(L∗aL)k[−τL∗κ]

)
=C(E), (5.14)

where C(E) is some polynomial function in E . Indeed,

1
4τ

∫ (
aΛaG∗(L∗aL)kA ,aΛaG∗(L∗aL)k[−τL∗κ]

)
(5.15)

=
1
4

∫ (
(L∗aL)kA ,GaΛa2ΛaG∗(L∗aL)k[−L∗κ]

)
(5.16)

=
1
4

∫ (
(L∗aL)kA ,aLR(L∗aL)k[−L∗κ]

)
+C(E) (5.17)

=
1
4

∫ (
(L∗aL)kA ,(L∗aL)k[−L∗aLRκ]

)
+C(E) (5.18)

=−
∫ (a

4
L(L∗aL)kA ,L(L∗aL)k[Rκ]

)
+C(E). (5.19)

Finally, the control of T and R is obvious and this ends the proof of the proposi-
tion.

5.2. Existence. In this subsection and the next one, we explain how we prove
existence and uniqueness for (4.27). It is classical to have local existence of solutions
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if we have a priori estimates as those of the previous subsection. It only remains to
find a good approximation of the original system and prove the same type of a priori
estimates on the approximate system and then pass to the limit. Notice that this may
be a difficult question [8]. In our case, we do not have the difficulties of [8] and we
will only sketch the approximation procedure. In the sequel, we assume that s is big
enough and that 2

3 (s−1) is an integer. The case where 2
3 (s−1) is not an integer can

be deduced by interpolation.
In our iteration process, the conditions Xα ·Xα =Xβ ·Xβ and Xα ·Xβ =0 will not

be satisfied and κn will not be exactly the curvature of Xn. Also, An+1 will not be
given by −Ln∗µn+1. This is the reason we make an iteration on (Xn,κn,En,µn,An).

Remark 5.5 (notation.). Here, and in what follows, any superscript depending
on n (that is, superscripts of n, n+1, or other quantities related to n) indicate not an
exponent but instead that the quantity (for example, Ln) is dependent on the solution
of the iterated problem at level n, namely (Xn,κn,En,µn,An).

5.2.1. Iteration procedure. We construct (Xn,κn,En,µn,An) by iteration.
We take (X0,κ0,E0,µ0,A0)(t)=(X0,κ0,E0,µ0,A0). Then, we construct W0 and U0

from (3.1) and we construct V 0
1 and V 0

2 by solving (2.23).
We assume that (Xn,κn,En,µn,An) are constructed and that for i=0 and 1, we

have

‖κn‖
Ci([0,T );Hs−1− 3

2 i)
+‖An‖

Ci([0,T );Hs−1− 3
2 i)
≤C(En) (5.20)

‖µn‖C([0,T );Hs+1/2)≤C(En) (5.21)

‖Xn‖
Ci([0,T );Hs+1− 3

2 i)
+‖En‖

Ci([0,T );Hs+1− 3
2 i)
≤C(En) (5.22)

on some fixed time interval [0,T ) where En is defined by (5.8) or (5.9). Actually, we
need to add the following term

En
add =

∫
|Λs−3/2(∂β

1
an

Λ−1/2A1−∂α
1
an

Λ−1/2A2)|2, (5.23)

to (5.8) or (5.9). Besides, C(E) is an increasing function of E which also depends on
c̄1, c̄2 and E∗0 =E∗(t=0) (see (5.10) for the definition). In the sequel Ci(E), i=1,2,...
will denote any function having the same properties as those of C(E) listed above.
Moreover, we assume that

‖En‖
C([0,T );Hs− 1

2 )
+‖Xn‖

C([0,T );Hs− 1
2 )
≤2E∗0. (5.24)

Our last assumption is that (2.45) and (2.46) hold for En and Xn with c̄1, c̄2 replaced
by c̄1/2, c̄2/2. We point out that the extra term En

add in the definition of En is due
to the fact that we relax the condition between An and µn. Hence, to control the
Hs−1 norm of An, we also need a control on a sort of curl of A. Also, notice that
En

add(t=0)=0.
Then, we construct V n

1 and V n
2 by solving (2.23). We denote Zn

1 = 1√
En

(V n
1 −

Wn · (̂t1)n) and Zn
2 = 1√

En
(V n

2 −Wn · (̂t2)n). It is clear from elliptic estimates that
we also have ‖∇Zn‖L∞(0,T ;Hs−1)≤C1(En).
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We construct (κn+1,An+1) by solving the following linear system:

(SLn)





κn+1
t = 1

4
√

E
nLnAn+1 +Zn ·∇κn+1 +f(Xn,µn,En)

An+1
t =−τLn∗κn+1 +Rnκn+1 +Zn ·∇An+1 +g(Xn,µn,En)

(κn+1,An+1)(t=0)=(κ0,Ln∗µ0),

(5.25)

where Ln∗ and Rn are defined in (4.28) and (4.30) with E replaced by En. From
subsection 5.2.2, we know that (5.25) has a unique solution which satisfies in addition
(5.35), namely

dEn+1

dt
≤C2(En)(1+En+1). (5.26)

Hence, we can choose T small enough such that all the En are uniformly bounded on
some fixed time interval (0,T ) by some constant Ē .

Now, we want to construct (Xn+1,En+1,µn+1) and check that the hypotheses
made at the order n are satisfied at the order n+1. Using the bound of En in
C([0,T );Hs−1/2), we deduce that ‖(κn+1,An+1)‖C([0,T );Hs−1)≤C3(En+1

∗ ); we also get
from the system (5.25) that ‖(κn+1

t ,An+1
t )‖

C([0,T );Hs− 5
2 )
≤C4(En+1

∗ ).

Now, we would like to recover Xn+1 and µn+1 from κn+1 and An+1. To avoid
problems coming from low frequency, we relax the relation between these quantitites.

First, we construct µ̃n+1 by solving the linear problem

µ̃n+1
t = τκn+1 +Zn ·∇µ̃n+1 (5.27)

with µ̃n+1(t=0)=µ0. Hence, taking T even smaller (but depending only on Ē), we
can assume that ‖µ̃n+1‖C([0,T );Hs−1)≤2E∗0. Notice that we lose 3/2 derivative by
using (5.27). To gain these derivatives, we recover µn+1 from An+1 and µ̃n+1 by
solving

LnLn∗µn+1 +µn+1 =LnAn+1 + µ̃n+1. (5.28)

This is an elliptic equation with the operator LnLn∗+1, which has a gain of 3 deriva-
tives. To prove the existence for (5.28), we use a standard variational method. Hence,
we deduce that ‖µn+1‖C([0,T );Hs+1/2)≤C5(En+1). Notice that we only need regular-
ity estimates for En in C([0,T );Hs−1/2); this norm of En is controlled by the fixed
constant 2E∗0. We notice also that µn+1(t=0)=µ0.

We reconstruct the surface Xn+1(α,β) in a similar way. First, we solve

X̃n+1
t =Un(n̂)n +V n

1 (̂t1)n +V n
2 (̂t2)n

with X̃n+1(t=0)=X0. Hence, taking T even smaller (but depending only on Ē),
we get ‖X̃n+1‖C1([0,T );Hs−1/2)≤2E∗0. Xn+1 is then given by the following elliptic
equation

−∆Xn+1 +Xn+1 =−2Eκn+1
(X̃n+1

α ×X̃n+1
β )

|X̃n
α×X̃n

β |
+X̃n+1. (5.29)

This yields that ‖Xn+1‖C([0,T );Hs+1)≤C6(En+1). Moreover, taking a time deriva-
tive of (5.29), we deduce that ‖Xn+1‖C1([0,T );Hs−1/2)≤C7(En+1). Notice that here
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Xn+1(α,β) is not parametrized by conformal coordinates and hence to gain one deriva-
tive on E, we have to use (2.44). We define En+1 by solving

∆En+1−2En+1

=4(Xn+1
αβ ·Xn+1

αβ )

−(Xn+1
α ·Xn+1

α +Xn+1
β ·Xn+1

β )(1+(̂t1
α)n · (̂t2

β)n +(̂t1
β)n · (̂t2

α)n). (5.30)

Hence, we deduce that ‖En+1‖C([0,T );Hs+1)≤C8(En+1). Moreover, applying a time
derivative to (5.30), we deduce that ‖En+1‖C1([0,T );Hs−1/2)≤C9(En+1). We can as-
sume that T was chosen small enough such that

‖Xn+1‖C([0,T );Hs−1/2) +‖En+1‖C([0,T );Hs−1/2)≤2E∗0

and that (2.45) and (2.46) hold for En+1 and Xn+1 with c̄1, c̄2 replaced by c̄1/2, c̄2/2.
If the function C(E) it is taken to be C =C3 + ···+C9, then all the assumptions are
satisfied at the level n+1.

To conclude, we have to prove that we have a Cauchy sequence, which would
imply the convergence of the iterative procedure. We denote (κ,A,X,E,µ)=(κn+1−
κn,An+1−An,Xn+1−Xn,En+1−En,µn+1−µn) and µ̃= µ̃n+1− µ̃n. We have:





κt = an

4 LnA+Zn ·∇κ+(an

4 Ln− an−1

4 Ln−1)An

+(Zn−Zn−1) ·∇κn +f(Xn,µn,En)−f(Xn−1,µn−1,En−1),

At =(−τLn∗+Rn)κ+(−τ(Ln∗−Ln−1∗)+(Rn−Rn−1))κn

+Zn ·∇A+(Zn−Zn−1) ·∇An +g(Xn,µn,En)−g(Xn−1,µn−1,En−1),

(κ,A)(t=0)=(0,0).

(5.31)

We denote

Dn =
∫

an

4
|LnA|2 +τ

∫
|Ln∗κ|2 +

1
4τ
|anΛanGn∗A|2 +‖X̃‖2 +‖µ̃‖H3/2 . (5.32)

Using that

‖E‖7/2≤C‖X‖7/2≤C(‖κ‖3/2 +‖X̃‖2)

and that

‖µ‖3≤C(‖µ̃‖3/2 +‖LnA‖L2 +‖En−En−1‖7/2),

we deduce that ‖f(Xn,µn,En)−f(Xn−1,µn−1,En−1)‖H3/2 ≤C(Dn +Dn−1). Hence,

∂t

∫
an

4
|LnA|2 +τ

∫
|Ln∗κ|2 +

1
4τ
|anΛanGn∗A|2

≤C(Dn +Dn−1 +‖Zn−Zn−1‖5/2 +‖En−En−1‖7/2). (5.33)

Moreover,

‖Zn−Zn−1‖5/2≤C(‖Xn−Xn−1‖7/2 +‖µn−µn−1‖3)≤CDn−1.
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Besides,

∂t‖µ̃n+1− µ̃n‖3/2≤C(‖κ‖3/2 +‖Zn−Zn−1‖3/2 +‖µ̃n+1− µ̃n‖3/2)

and

∂t‖X̃n+1−X̃n‖2≤C(‖Un−Un−1‖2 +‖V n−V n−1‖2 +‖Xn−Xn−1‖2).

Then, we can use elliptic estimate to deduce that

‖Un−Un−1‖2 +‖V n−V n−1‖2≤CDn−1.

Putting all these estimates together, we infer that ∂tDn≤C(Dn +Dn−1). Moreover,
Dn(0)=0. Hence, we deduce for n≥2 that Dn(t)≤eCt (Ct)n−1

(n−1)! . This implies that
the iteration procedure converges. This proves existence of a solution in a low norm.
Regularity of the solution now follows, primarily using the uniform bound in the high
norm. This proves the existence part of the main theorem 5.1. It only remains to
prove the existence for the linear problem and that (5.26) holds.

Remark 5.6. There are many possible ways to construct an iterative scheme for this
problem which preserve the structure needed to make energy estimates. The particular
choice of an iterative scheme presented in this section was chosen for its convenience.

5.2.2. The linear problem. In this subsection, we prove that the linear
system (5.25) has a solution and that (5.26) holds. For the purposes of this section,
we take E and Z to be given, and assume that E is in C(0,T ;Hs+1)∩C1(0,T ;Hs−1/2)
and is bounded from below by c and that Z ∈L∞(0,T ;Hs). The operators L and R
are defined as in (4.28) and (4.30). The functions f and g are given elements of
L∞(0,T ;Hs−1) and the initial data κ0 and A0 are in Hs−1.

Proposition 5.7. The system

(SL)





κt = 1
4
√

E
LA+Z ·∇κ+f

At =−τL∗κ+Rκ+Z ·∇A+g

(κ,A)(t=0)=(κ0,A0)

(5.34)

has a unique solution (κ,A)∈C([0,T );Hs−1). Moreover, if E is defined as in (5.8) or
(5.9) to which we add the additional term (5.23), then

dE
dt
≤C(E,Z)E+‖(f,g)‖Hs−1 , (5.35)

where C(E,Z) only depends on ‖E‖C(0,T ;Hs+1)∩C1(0,T ;Hs−1/2) and ‖Z‖L∞(0,T ;Hs).

Proof. The uniqueness can be deduced from the energy estimate (5.35). To
prove existence, we use a duality method. First, we solve (5.34) when f and g are
in L1((0,T );L2(R2)); we will deal with the higher regularity later. We define an
operator A with domain the Banach space X ′=L∞((0,T );L2(R2))3, such that A
acts on regular enough vectors of the form

(
κ
A

)
by

A
(

κ

A

)
=−∂t

(
κ

A

)
+

( a
4LA+Z ·∇κ

−τL∗κ+Rκ+Z ·∇A

)
(5.36)
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and the adjoint operator is given by

A∗
(

γ

B

)
=∂t

(
γ

B

)
+

(−τLB+R∗B
L∗(a

4γ)

)
−div

(
Z

(
γ

B

))
. (5.37)

Hence, (κ,A) solves (5.34) if and only if for all (γ,B)∈C∞([0,T )×R2)3 and (γ,B)(t=
T )=0, we have

∫ T

0

((
f

g

)
,

(
γ

B

))
+

((
κ0

A0

)
,

(
γ(t=0)
B(t=0)

))
=

∫ T

0

((
κ

A

)
,A∗

(
γ

B

))
(5.38)

Let us denote by X1 the subspace of X consisting of all A∗(γ
B

)
where (γ,B)∈

C∞([0,T )×R2)3 and (γ,B)(t=T )=0. For
(
h
l

)∈X1, there exists
(

γ
B

)
such that





∂t

(
γ
B

)
+

(−τLB+R∗B
L∗(aγ)

)−(div(Zγ)

div(ZB)

)
=

(
h
l

)

(γ,B)(t=T )=(0,0)
. (5.39)

We can prove energy estimates for this system which are similar to those proved in
subsection 5.1 for system (4.29) or for (5.34). Indeed, for n=2k, k≥1, we define the
energy by

E=
∫

a

4
|(LL∗a)kγ|2 +τ

∫
|(L∗aL)kB|2 +

∫
|aΛaG∗aL(L∗aL)k−1B|2

+
∫
|Λ3k−1/2(∂β

1
a
Λ−1/2B1−∂α

1
a
Λ−1/2B2)|2dx. (5.40)

Arguing as in the proof of proposition 5.4, we deduce that

−∂tE ≤CE+C‖(h,l)‖H3k .

Hence, ‖(γ,B)‖C(0,T ;H3k)≤C‖(h,l)‖L1(0,T ;H3k). We also notice that in (5.40), the
third term can also be replaced by

1
4τ

∫
a|ΛaG∗aL∗(aLL∗)k−1γ|2. (5.41)

For our duality argument, we need this estimate at the L2 level; however, the operator
(L∗aL)k−1 yields some difficulties. To overcome them, we use the energy

E=
∫

a

4
|γ|2 +τ |B|2 +a3|G∗Λ−1/2γ|2 (5.42)

when dealing with the right hand side
(
h
0

)
and the modified energy, namely

E=
∫

a

4
|γ|2 +τ |B|2 +a2|G∗Λ−1/2B|2, (5.43)

when dealing with the right hand side
(
0
l

)
. Hence, we deduce that

‖(γ,B)‖C(0,T ;L2)≤C‖(h,l)‖L1(0,T ;L2). (5.44)
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In particular, for all
(
h
l

)∈ X̄1 (the closure of X1 in X =L1((0,T );L2(R2))3), there
exists a unique solution (γ,B) to (5.39) which satisfies in addition (5.44). We define
the bounded operator J on X by the following. For

(
h
l

)∈ X̄1,

J
(

h

l

)
=

∫ T

0

((
f

g

)
,

(
γ

B

))
+

((
κ0

A0

)
,

(
γ(t=0)
B(t=0)

))
, (5.45)

where (γ,B) is the unique solution to (5.39). Then, we extend J to X by using the
Hahn-Banach theorem. Notice that the norm of J on X is the same as the norm of J
on X1 and is controlled by ‖(f,g)‖L1(L2) +‖(κ0,A0)‖L2 . Using that J is an element

of the dual of X, we get the existence of
(

κ
A

)∈X ′ such that J (
h
l

)
=

∫ T

0

((
κ
A

)
,
(
h
l

))
.

Moreover,

‖(κ,A)‖L∞(0,T ;L2)≤C‖(f,g)‖L1(0,T ;L2). (5.46)

It is then easy to see that (κ,A) is a solution of (5.34). Moreover, the initial data
makes sense since ∂t(κ,A)∈L∞(H−3/2)+L1(L2).

We also notice that (κ,A) is the unique solution to (5.34) in L∞(0,T ;L2). To see
this, we can change the role of A and A∗ and notice that (5.39) has a solution for any
(h,l)∈X =L1((0,T );L2(R2))3, namely that X̄1 =X. This implies the uniqueness for
(5.34).

Now, we assume that f and g are more regular, namely f,g∈L1(0,T ;Hm) for
some m=3k >0. To prove that u is more regular, we apply the operator aLL∗+1 to
the κ equation and L∗aL+1 and U to the A equation. We denote κ̃=(aLL∗+1)κ,
Ã=(L∗aL+1)A and F̃ =UA=Λ5/2(∂β

1
aΛ−1/2A1−∂α

1
aΛ−1/2A2). Hence





κ̃t = a
4LÃ+Z ·∇κ̃+ f̃

Ãt =−τL∗κ̃+Rκ̃+Z ·∇Ã+ g̃

Ft =Z ·∇F + g̃1

(κ̃,Ã)(t=0)=((aLL∗+1)κ0,(aLL∗+1)A0)

(5.47)

where




f̃ =(aLL∗+1)f +[(aLL∗+1),Z ·∇]κ+[(aLL∗+1),∂t]κ,
g̃ =(L∗aL+1)g+[(L∗aL+1),Z ·∇]A+[(L∗aL+1),R]κ

+[(L∗aL+1),∂t]A,
g̃1 =Ug+[U ,Z ·∇]A+[U ,∂t]A.

(5.48)

We can then prove that κ̃,Ã and F are in L∞(0,T ;L2) by writing (κ̃,Ã,F )=∑∞
i=1(κ̃

i,Ãi,F i), where (κ̃1,Ã1,F 1) solves (5.47) with f̃ replaced by (aLL∗+1)f , g̃ re-
placed by (L∗aL+1)g and g̃1 replaced by Ug. Then, for i≥2, (κ̃i,Ãi,F i) solves (5.47)
with zero initial data and f̃ replaced by [(aLL∗+1),Z ·∇]κi−1 +[(aLL∗+1),∂t]κi−1, g̃
replaced by [(L∗aL+1),Z ·∇]Ai−1 +[(L∗aL+1),R]κi−1 +[(L∗aL+1),∂t]Ai−1, g̃1 re-
placed by [U ,Z ·∇]Ai +[U ,∂t]Ai and (κi,Ai) solves the elliptic system (aLL∗+1)κi =
κ̃i, (L∗aL+1)Ai = Ãi and UAi =F i. Hence,

‖(κ1,A1)‖L∞(H3)≤C‖(κ̃1,Ã1,F 1)‖L∞(L2)≤C‖(f,g)‖L1(H3), (5.49)
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and for i≥2, we have

‖(κi,Ai)‖L∞(H3)≤C‖(κ̃i,Ãi,F i)‖L∞(L2)

≤CT‖(κi−1,Ai−1)‖L∞(L2)≤ (CT )i−1‖(f,g)‖L1(H3). (5.50)

Hence, if T is chosen small enough, then the series (κ,A)=
∑∞

i=1(κ
i,Ai) converges and

we get ‖(κ,A)‖L∞(H3)≤C‖(f,g)‖L1(H3). Arguing by induction, we prove the result
for m=3k. Hence, Proposition 5.7 follows in the case s−1=3k. If s−1=3k+ 3

2 ,
then we can apply the above argument to L∗κ and LA.

The above argument only gives an L∞ estimate in Hs−1. To get continuity, we
use a standard approximation argument. We regularize a,Z,f,g, and the initial data
(κ0,A0) by convolution. Then we use the previous computations to prove that the
regularized system has more regular solutions; in particular, the solution is continuous
in Hs−1. Then we pass to the limit.

5.3. Uniqueness. Assume that we have two solutions (X1,µ1) and (X2,µ2)
to the system (4.27) in C([0,T ];Hs+1×Hs+1/2). To get uniqueness, we argue as in
the proof that Xn,µn is Cauchy. We denote (κ,A,X,E,µ)=(κ2−κ1,A2−A1,X2−
X1,E2−E1,µ2−µ1). Hence,





κt = a2

4 L2A+Z2 ·∇κ+(a2

4 L2− a1

4 L1)A1+
+(Z2−Z1) ·∇κ1 +f(X2,µ2,E2)−f(X1,µ1,E1)

At =(−τL2∗+R2)κ+(−τ(L2∗−L1∗)+(R2−R1))κ1+
+Z2 ·∇A+(Z2−Z1) ·∇A1 +g(X2,µ2,E2)−g(X1,µ1,E1)

(κ,A)(t=0)=(0,0)

. (5.51)

Then we denote

D =
∫

a2
4
|L2A|2 +τ

∫
|L2∗κ|2 +

1
4τ
|a2Λa2G2∗A|2 +‖X‖2 +‖µ‖H3/2 , (5.52)

and we can prove easily that ∂tD≤CD, which yields uniqueness for (4.27). This ends
the proof of the main theorem 5.1.

5.4. Remark about the general case. The main theorem (Theorem 5.1)
gives the existence and uniqueness of a solution in case the initial surface is flat at
infinity and can be globally parametrized by conformal coordinates. We can easily
extend our analysis to the case that the surface is parametrized by a finite number of
conformal coordinate patches. This is the case for any surface which is flat at infinity.
This is also the case for a bounded closed surface, such as the sphere. We would
like to sketch the idea here. Assume that we need N local charts to parametrize the
initial surface: S0 =∪N

i=1S
i
0 where each Si

0 is open and is parametrized by conformal
coordinates. That is, we assume we have Xi

0 :Ωi→Si
0, Xi

0 =Xi
0(α,β), and |∂αXi

0|=
|∂βXi

0|, ∂αXi
0 ·∂βXi

0 =0. Then, we can define µi
0 on each open set Ωi. To evolve the

system it is enough to write an evolution equation for Xi and µi. Of course there are
compatibility conditions at the intersections. Then, we replace the system (4.27) by
N systems of the form





Xi
t =U in̂i +V i

1 t̂1
i +V i

2 t̂2
i

µi
t = τκi + (V i

1−Wi ·̂t1i )√
Ei

µi
α + (V i

2−Wi ·̂t2i )√
Ei

µi
β

Xi(t=0)=Xi
0

µi(t=0)=µi
0

. (5.53)
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For each i, V i is the solution of (2.21) with zero boundary condition on ∂Ωi. No-
tice that the boundary condition does not matter here since V does not change the
evolution of the surface but only the way it is parameterized. These N systems are
of course coupled. This comes from the definition of W and U . At t=0, we make
a partition of unity, 1S0 =

∑N
i=1ψi where ψi≥0 is supported in Si

0. We then get a
function φi which is supported in Ωi by φi(α,β)=ψi(Xi

0(α,β)). We define Wj by

Wj(α,β)=
1
4π

N∑

i=1

PV
∫ ∫

Ωi

φ̃i(t,α′,β′)
(
µi

β(α′,β′)Xi
α(α′,β′)−µi

α(α′,β′)Xi
β(α′,β′)

)

× Xj(α,β)−Xi(α′,β′)
|Xj(α,β)−Xi(α′,β′)|3 dα′dβ′. (5.54)

where φ̃i(t,α′,β′) is a partition of unity which can be deduced from φi and Xi(t) by
taking ψi(t,X)=φi((Xi(t))−1) and

φ̃i(t,α,β)=
φi(α,β)∑

j ψj(t,Xi(t,α,β))
.

We notice here that W does not depend on the parametrization and is the physical
velocity of the sheet given by the Birkhoff-Rott integral. Finally, we can argue exactly
as above to prove the existence and uniqueness. Details are left to the reader.

6. Remainder operators and commutators
In 2D [2], the operator

K[z](f)(α)=
∫

f(α′)
z(α)−z(α′)

− f(α)
zα(α′)(α−α′)

dα′

is a bounded operator from H0 to Hs−2 if z is in Hs. It is also bounded from H1 to
Hs−1. Notice that this uses very little regularity of the function f.

In 3D, the corresponding operator is not as smooth, but it is still smoothing,
and it is smooth enough for our purposes. In particular, the operator will gain 3/2
derivative over the function being acted upon.

We are interested in the operator K given by

K[F ](α,β)=PV
∫ ∫

F(α′,β′)×K(α,β,α′,β′) dα′dβ′,

where (cf. (3.6)) K is given by

4πK(α,β,α′,β′)=
X(α,β)−X(α′,β′)
|X(α,β)−X(α′,β′)|3 −

Xα(α−α′)+Xβ(β−β′)
E3/2|~α−~α′|3

−
1
2Xαα(α−α′)2 + 1

2Xββ(β−β′)2 +Xαβ(α−α′)(β−β′)
E3/2|~α−~α′|3

+
3
4

(Eα(α−α′)+Eβ(β−β′))(Xα(α−α′)+Xβ(β−β′))
E5/2|~α−~α′|3 . (6.1)

We first need our basic lemma:

Lemma 6.1. Let F be in H0. Then K[X]F(α,β) is in H3/2, with

‖K[X]F‖3/2≤C(1+‖X‖9/2)2‖F‖0.



422 3D VORTEX SHEETS WITH SURFACE TENSION

Proof. We begin by taking one derivative of K[X]F . We denote the derivative
operator simply by D. We get a singular integral with the kernel DK. Since K is
bounded, we see that DK has a kernel of order (~α−~α′)−1

. We conclude that DK
is in the Lorentz space L2,∞. Second derivatives of K are in L1,∞. Interpolating, we
have that derivatives of order 3/2 are in L1, uniformly in either variable. By the
Generalized Young’s Inequality [14], we get the indicated estimate.

We need 9/2 derivatives on X since K is like a third derivative of X (it comes
from a second-order Taylor expansion, so the error is like the third derivative), and
we are taking 3/2 of a derivative. The constant C, of course, depends on the non-self-
intersection constant c̄2 of (2.46) and on the constant c̄1 of (2.45).

Lemma 6.2. K[X] is also bounded between H−1/2 and H1. Similarly, J1[X] is a
bounded operator between H−1/2 and H0. In each of these results, we have not taken
full advantage of the smoothing properties of these operators (as there is no need
to). We have viewed K[X] as an operator which gains 3/2 derivatives, when it could
actually be shown that it gains two derivatives. Similarly, J1 could be shown to gain
one derivative rather than the 1/2 derivative we noted above. We do not need the full
smoothing effect of these operators, however.

We are now able to conclude that K[X] is in fact bounded between Hs−3/2 and
Hs. This involves integrating by parts s−1 times and applying the previous lemma
(and the proof of the lemma).

Theorem 6.3. If X ∈Hs+1 and F ∈Hs−3/2, then K[X]F is in Hs, with the estimate

‖K[X]F‖s≤C(1+‖X‖s+1)2‖F‖s−3/2.

Proof. First, we treat the case where we assume that X is C∞ and prove estimates
which only depend on ‖X‖Hs+1 . Then, we use a regularization to conclude the general
case.

Lemma 6.4. Assume that X is C∞; then there exists a function L[X](~α′,~p) such that
for all integers k1 and k2, k =(k1,k2), we have

‖∂k
~α′L‖L∞ ≤Ck and ‖∂k

~α′∂~pL‖L∞ ≤ Ck

|~p| (6.2)

and

K[X](~α,~α′)=L[X](~α′,~α−~α′). (6.3)

The proof of this lemma is a straightforward application of the Taylor expansion
of X and is left to the reader.

Now we resume the proof of theorem 6.3. Without loss of generality, when we
apply derivatives, we will apply only α derivatives. To begin, we apply one derivative
to K[X]F .

DαK[X]F(α,β)=PV
∫ ∫

F(α′,β′)×DαK dα′dβ′.

Notice that, here, the principle value is not necessary since K is bounded. In order
to integrate by parts, we need the derivative to be with respect to α′ rather than
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with respect to α. There are two ways to achieve this change: by multiplication or
by addition. In the lower-dimensional case (as in [2]), this was done multiplicatively.
Instead, we will now add and subtract. Keeping in mind the symmetry K(~α,~α′)=
−K(~α′,~α), we write

DαK[X]F(α,β)=PV
∫ ∫

F(α′,β′)×(−Dα′K)dα′dβ′

+PV
∫ ∫

F(α′,β′)×(DαK +Dα′K)dα′dβ′.

The first term on the right-hand side can be integrated by parts. Notice indeed
that |Dα′K|≤C/|~α−~α′|. The second term is smoother than the first; we write K1 =
DαK +Dα′K. (We will also refer to the integral operator with kernel K1 as K1.) We
have

DαK[X]F(α,β)=PV
∫ ∫

Dα′F(α′,β′)×Kdα′dβ′

+PV
∫ ∫

F(α′,β′)×K1dα′dβ′. (6.4)

We can write this as

DαK[X]F(α,β)=K[X](DαF)+K1[X]F .

Applying another derivative, we have

D2
αK[X]F(α,β)=K[X](D2

αF)+2K1[X](DαF)+K2[X]F ,

where K2 is defined analagously to K1. That is, K2[X] is the operator with ker-
nel K2 =(Dα +Dα′)2K. The operators Kj and kernels Kj for j >2 are defined
similarly. Using Lemma 6.4, we can estimate the kernels Kj . Indeed, ∂αK =
∂α′L(~α′,~α−~α′)−∂α′ [L(~α′,~α−~α′)]=K1−∂α′K. Hence K1(~α,~α′)=∂α′L(~α′,~α−~α′).
Then, by induction, we have Kj(~α,~α′)=(∂j

α′L)(~α′,~α′−~α). Hence, we deduce that
Kj is bounded and that |∂α′Kj |≤C/|~α′−~α|. This justifies passing all of the deriva-
tives under the integrals and justifies all the integrations by parts made to get (6.5)
below.

Since we are proving that K[X]F is in Hs, we must eventually apply s derivatives.
To that end, we write the formula for s−1 derivatives:

Ds−1
α K[X]F =K[X](Ds−1

α F)+(s−1)K1[X](Ds−2
α F)+ ···+Ks−1[X]F . (6.5)

We now must show that each of the terms on the right-hand side of (6.5) is in H1.
Notice that we need smoothing only for the first and second terms; Lemma 6.1 proves
that K[X] is smoothing, and the same argument shows that K1[X] is also smoothing.
We concern ourselves mainly with the first term and the last term; the ones in between
are simpler. That the first term is in H1 follows immediately from (the remark after)
Lemma 6.1.

That the last term on the right-hand side of (6.5) is in H1 is simply the statement
that Ks−1[X] is a bounded operator between Hs−3/2 and H1. That this is the case is
easy to see; much of the regularity of F is not needed; also, no smoothing property
of the kernel is needed. One only needs to check that X has sufficient regularity.



424 3D VORTEX SHEETS WITH SURFACE TENSION

Recalling (6.1), we see that in the kernel Ks−1, there are terms with s+1 derivatives
of X. In particular, Ks−1 includes terms like

Ds+1
α X(α′,β′)

(α−α′)2

|~α− ~α′|3
.

That Ks−1[X] is in H1 then follows from the fact that kernels singular of degree −1
like (α−α′)2

|~α− ~α′|3 are smoothing. That is, the kernel (α−α′)2

|~α− ~α′|3 can absorb the last of the s

derivatives, so that the highest number of derivatives of X we need is s+1.
The theorem is proved in case X is regular. We remark that the constant in the

estimate depends on c̄1 and c̄2 of (2.45) and (2.46) and on ‖X‖Hs+1 .
In the case where we only assume that X ∈Hs+1, we regularize X with a sequence

Xn which is regular, we then see that (6.5) holds with X replaced by Xn. Then, we
pass to the limit in (6.5). We notice that all the terms make sense.

Theorem 6.5. If X ∈Hs+1 and F ∈Hs−1/2, then J1[X]F is in Hs, with the estimate

‖J1[X]F‖s≤C(1+‖X‖s+1)2‖F‖s−1/2.

Proof. As was the case with the K operators, we will assume (without loss of
generality) that the derivatives we apply are all α derivatives. Then, as before, we
can write

DαJ [X](F)=J [X](DαF)+J1[X](F). (6.6)

Then applying s derivatives to the second term, we get

Ds
αJ1[X](F)=J1[X](Ds

αF)+ ···+sJs[X](DαF)+Js+1[X](F), (6.7)

where the operator J` has kernel (Dα +Dα′)`J. Let us justify (6.6) and (6.7). As in
the previous lemma, we can first assume that X is C∞. Then, it is enough to justify
(6.6) and then conclude by induction. To prove (6.6), we use (3.3) and (3.6) to write
that

DαJ [X](F)=DαK[X](F)+DαG11

(
g×Xαα

2E3/2
− 3(g×Xα)Eα

4E5/2

)

+DαG12

(
g×Xαβ

E3/2
− 3(g×Xα)Eβ +3(g×Xβ)Eα

4E5/2

)

+DαG22

(
g×Xββ

2E3/2
− 3(g×Xβ)Eβ

4E5/2

)
. (6.8)

We compute the α derivative on K[X](F):

DαK[X](F)=K[X](DαF)+K1[X](F).

Hence, we get (6.6) since all the terms involving Gij cancel.
Now, let us prove that the different terms appearing in (6.7) are in L2. Of all the

operators J`, the only ones which must be discussed are J1 and Js+1; it is elementary
to bound the others in H0. For J1, we see that it is being applied to a function in
H−1/2. As we remarked after Lemma 6.1, J1 is smoothing of order 1/2; thus, this
term can be bounded in H0.
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We now look closely at Js+1[X](F). We have

Js+1[X](F)=PV
∫ ∫

F ′×

(Dα +Dα′)s+1

(
X−X′

|X−X′|3 −
X′

α(α−α′)+X′
β(β−β′)

E′3/2|~α−~α′|3
)

d~α′. (6.9)

We write this as Js+1[X]=J 1,1
s+1[X]+J 1,2

s+1[X]+J 2
s+1[X], where

J 1,1
s+1[X](F)=PV

∫ ∫
F ′×(Dα +Dα′)s+1

(
X−X′

E′3/2|~α−~α′|3
)

d~α′,

J 1,2
s+1[X](F)=PV

∫ ∫
F ′×(Dα +Dα′)s+1

(
X−X′

|X−X′|3 −
X−X′

E′3/2|~α−~α′|3
)

d~α′,

J 2
s+1(F)=−PV

∫ ∫
F ′×(Dα +Dα′)s+1

(
X′

α(α−α′)+X′
β(β−β′)

E′3/2|~α−~α′|3
)

d~α′.

We will now show that there is a cancelation between J 1,1
s+1[X] and J 2

s+1[X], so
that their sum is O(H0). We will then show that J 1,2

s+1[X] is O(H0).
To begin, we see that

J 1,1
s+1[X](F)=PV

∫ ∫
F ′×

(
Ds+1

α X−Ds+1
α′ X′

E′3/2|~α−~α′|3
)

d~α′+O(H0).

Next, we observe that

1
|~α−~α′|3 =Dα′

(
α−α′

|~α−~α′|3
)

+Dβ′

(
β−β′

|~α−~α′|3
)

. (6.10)

Integrating by parts, we see that

J 1,1
s+1[X](F)=PV

∫ ∫
F ′×

(
Ds+1

α′ X′
α(α−α′)

E′3/2|~α−~α′|3
)

d~α′

+PV
∫ ∫

F ′×
(

Ds+1
α′ X′

β(β−β′)
E′3/2|~α−~α′|3

)
d~α′+O(H0). (6.11)

Observe here that there is no boundary term coming from the principal value. Along
the same lines, we have

J 2
s+1(F)=−PV

∫ ∫
F ′×

(
Ds+1

α′ X′
α(α−α′)+Ds+1

α′ X′
β(β−β′)

E′3/2|~α−~α′|3
)

d~α′+O(H0).

Thus, we see that the sum of these is O(H0). All that remains is to show that J 1,2
s+1[X]

is O(H0).
We can write J 1,2

s+1[X]F as

J 1,2
s+1[X]F

=PV
∫ ∫

F ′×(Ds+1
α X−Ds+1

α′ X′)
(

1
|X−X′|3 −

1
E′3/2|~α−~α′|3

)
d~α′

+PV
∫ ∫

F ′×(X−X′)(Dα +Dα′)s+1

(
1

|X−X′|3
)

d~α′ +O(H0). (6.12)
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In (6.12), the terms in O(H0) include terms in which fewer than s+1 derivatives fell
on X and terms in which derivatives fell on E. Furthermore, we see directly that the
first term on the right-hand side of (6.12) is actually also of the form O(H0). So, we
only need to look closely at the second term on the right-hand side of (6.12). Recall
that we sometimes write X=(x,y,z). For the second term on the right-hand side, we
apply the derivatives; the most singular term which results includes

(X−X′)

[
(x−x′)(Ds+1

α x−Ds+1
α′ x′)

|X−X′|5 +
(y−y′)(Ds+1

α y−Ds+1
α′ y′)

|X−X′|5

+
(z−z′)(Ds+1

α z−Ds+1
α′ z′)

|X−X′|5
]
. (6.13)

We partially expand this; that is, we do a denominator expansion, and we also
expand part of the numerator. The error is O(H0). We have

(X−X′)

[[
x′α(α−α′)+x′β(β−β′)

]
(Ds+1

α x−Ds+1
α′ x′)

E′5/2|~α− ~α′|5

+

[
y′α(α−α′)+y′β(β−β′)

]
(Ds+1

α y−Ds+1
α′ y′)

E′5/2|~α− ~α′|5[
z′α(α−α′)+z′β(β−β′)

]
(Ds+1

α z−Ds+1
α′ z′)

E′5/2|~α− ~α′|5

]
. (6.14)

We use the formula

Dα′

(
1

|~α−~α′|3
)

=
3(α−α′)
|~α−~α′|5 ,

and the corresponding formula with β. We integrate by parts, and we get two kinds of
terms. Again, here there is no boundary term coming from the principle value. One
of these terms is

(X−X′)

[
x′αDs+2

α′ x+x′βDs+1
α′ Dβ′x

E′3/2|~α−~α′|3 +
y′αDs+2

α′ y+y′βDs+1
α′ Dβ′y

E′3/2|~α−~α′|3

+
z′αDs+2

α′ z+z′βDs+1
α′ Dβ′z

E′3/2|~α−~α′|3
]
. (6.15)

The other kind of term occurs when the derivative falls elsewhere, such as on (X−X′).
In this case, we can use (6.10), and we integrate by parts again. In any case, we get
terms which are like s+1 derivatives of E. This can now be bounded by ‖E‖s+1,
and thus by ‖X‖s+1. That is, in (6.15), we get terms such as x′αDs+2

α′ x+y′αDs+2
α′ y+

z′αDs+2
α′ z; this equals Ds+1

α′ E +O(H0)=O(H0). Thus, we see that J 1,2
s+1[X]F is indeed

O(H0).

Theorem 6.6. If f ∈Hs+1 and g∈Hs, then [f,Hi]g is in Hs+1, with the estimate

‖[f,Hi]g‖Hs+1 ≤‖f‖Hs+1‖g‖Hs . (6.16)
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Moreover if f ∈Hs+1 and g∈Hs−1, then [Gij ,f ]g is in Hs+1, with the estimate

‖[Gij ,f ]g‖Hs+1 ≤‖f‖Hs+1‖g‖Hs−1 .

Proof. In this proof, we use x and y instead of ~α,~α′. For the first estimate, we
have

D[f,Hi]g =[Df,Hi]g+[f,Hi]Dg.

The first term is clearly in Hs, so we have only to treat the second one. We can apply
s−1 more derivatives and the only term which should be treated is [f,Hi]Dsg. We
write

[f,Hi]Dsg =
∫

xi−yi

|x−y|3 [f(x)−f(y)]Dsg(y)dy.

Using the Taylor formula f(y)=f(x)+
∫ 1

0
(y−x) ·Df(x+s(y−x))ds, we deduce that

[f,Hi]Dsg =
∫ 1

0

ds

∫
xi−yi

|x−y|3 (x−y) ·Df(x+s(y−x))Dsg(y)dy.

Since Dsg∈L2 and Df ∈L∞, s>2, and the kernel (xi−yi)(x−y)
|x−y|3 gains one derivative,

we deduce easily that [f,Hi]Dsg∈H1.
For the second estimate, the proof is similar. We apply Ds−1 to [Gij ,f ]g; the only

term which requires a proof is when all the derivatives hit on g, namely [Gij ,f ]Ds−1g.
Arguing as above, we get

[f,Gij ]Dsg =
∫ 1

0

ds

∫
(xi−yi)(xj−yj)

|x−y|3 (x−y) ·Df(x+s(y−x))Dsg(y)dy,

and we can conclude the proof by using the fact that the kernel (xi−yi)(xj−yj)(x−y)
|x−y|3

gains us two derivatives.

Actually, the above theorem is not enough to estimate some of the commutators
in case f = n̂, where we need to gain at least 3/2 derivatives for the the normal
component. We have the following theorem.

Theorem 6.7. If f = n̂∈Hs and g∈Hs−2, then [n̂,Hi]g · n̂ is in Hs, with the estimate

‖[n̂,Hi]g · n̂‖Hs ≤‖n̂‖Hs‖g‖Hs−2 .

Proof. We argue as above. We only need to estimate

[n̂,Hi]Ds−2g · n̂=
∫

xi−yi

|x−y|3 [n̂(x)− n̂(y)] · n̂(x)Ds−2g(y)dy.

To understand this better, we use the Taylor formula f(y)=f(x)+
∫ 1

0
(y−x) ·Df(x+

s(y−x))ds. (Notice that when we apply this with n̂ as f, we will have a matrix for
Dn̂.) We use this Taylor formula once for n̂(x)− n̂(y), and we use it again when we
write n̂(x)=(n̂(x)− n̂(x+s(y−x)))+ n̂(x+s(y−x)). We will also use the fact that
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Dn̂ · n̂=0; in particular, we will use this when each of Dn̂ and n̂ are evaluated at
x+s(y−x). We deduce that

[n̂,Hi]Ds−2g · n̂=−
∫ 1

0

ds

∫
dy

∫ 1

0

du
xi−yi

|x−y|3
((x−y) ·D)n̂(x+s(y−x)) ·s((x−y) ·D)n̂(x+us(y−x))Ds−2g(y).

Since Ds−2g∈L2 and Dn̂∈L∞, s>3, and the kernel (x−y)(xi−yi)(x−y)
|x−y|3 gains two

derivatives, we deduce easily that [n̂,Hi]Ds−2g · n̂∈H2. This ends the proof of the
theorem.

Lemma 6.8. If X∈Hs−1/2, with X parameterized according to (2.4), and κ∈Hs−1,
then X∈Hs+1.

Proof. Recall that we have E∈Hs−1/2. We begin with some calculations of deriva-
tives of the normal vector. We have

∆n̂ · t̂1 = n̂αα · t̂1 + n̂ββ · t̂1

=(n̂α · t̂1)α +(n̂β · t̂2)α−
(
(n̂α · t̂2)β−(n̂β · t̂1)β

)
+O(Hs−5/2)

=−
(

L√
E

)

α

−
(

N√
E

)

α

+

((
M√
E

)

β

−
(

M√
E

)

β

)
+O(Hs−5/2)

=−(2
√

Eκ)α +O(Hs−5/2). (6.17)

Similar calculations for the other components of ∆n̂ indicate that ∆n̂ is in Hs−5/2.
Thus, n̂∈Hs−1/2. This is a gain of one derivative. This in turn implies a gain of one
derivative in each of L, M, and N (so that they are in Hs−3/2). Taking derivatives
of t̂1 and t̂2, in view of (2.7) – (2.12), and using Xα =

√
Et̂1 and Xβ =

√
Et̂2, we also

see a gain of one derivative for Xα and Xβ . Integrating, we find that X is in Hs+1/2.
Repeating these arguments, we get a further gain of a half derivative, proving the
lemma.
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