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GLOBAL WELL-POSEDNESS OF THE THREE-DIMENSIONAL
VISCOUS AND INVISCID SIMPLIFIED BARDINA TURBULENCE
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Abstract. In this paper we present analytical studies of three-dimensional viscous and inviscid
simplified Bardina turbulence models with periodic boundary conditions. The global existence and
uniqueness of weak solutions to the viscous model has already been established by Layton and
Lewandowski. However, we prove here the global well-posedness of this model for weaker initial
conditions. We also establish an upper bound to the dimension of its global attractor and identify
this dimension with the number of degrees of freedom for this model. We show that the number of
degrees of freedom of the long-time dynamics of the solution is of the order of (L/ld)12/5, where L
is the size of the periodic box and ld is the dissipation length scale – believed and defined to be the
smallest length scale actively participating in the dynamics of the flow. This upper bound estimate is
smaller than those established for Navier-Stokes-α, Clark-α and Modified-Leray-α turbulence models
which are of the order (L/ld)3. Finally, we establish the global existence and uniqueness of weak
solutions to the inviscid model. This result has an important application in computational fluid
dynamics when the inviscid simplified Bardina model is considered as a regularizing model of the
three-dimensional Euler equations.
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1. Introduction
Let us denote by v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) the velocity field of an in-

compressible fluid and p(x, t) its pressure. The three-dimensional (3D) Navier-Stokes
equations (NSE)

∂tv − ν∆v +∇ · (v ⊗ v) = −∇p + f,

∇ · v = 0,

v(x, 0) = vin(x), (1.1)

governs the dynamics of homogeneous incompressible fluid flows, where f(x) = (f1(x),
f2(x), f3(x)) is the body force assumed, for simplicity, to be time independent. The
existing mathematical theory and techniques are not yet sufficient to prove the global
well-posedness of the 3D NSE. Researchers who are investigating this question have
incorporated the use of computers to analyze the dynamics of turbulent flows by
studying the direct numerical simulation (DNS) of these equations. However, this
is still a prohibitively expensive task to perform even with the most technologically
advanced state-of-the-art computing resources. Tracking the pointwise flow values
by numerical simulation for large Reynolds number is not only difficult but also, in
some cases, disputable due to sensitivity of numerical solutions to perturbation errors
in the data and the limitations of reliable numerical resolution. In many practical
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applications, knowing the mean characteristics of the flow by averaging techniques
is sufficient. However, averaging the nonlinear term in NSE leads to the well-known
closure problem. To be more precise, if v̄ denotes the filtered/averaged velocity field
then the Reynolds averaged NSE (RANS)

∂tv̄ − ν∆v̄ +∇ · (v ⊗ v) = −∇p̄ + f̄ ,

∇ · v̄ = 0, (1.2)

where

∇ · (v ⊗ v) = ∇ · (v̄ ⊗ v̄) +∇ · R(v, v),
R(v, v) = v ⊗ v − v̄ ⊗ v̄ (1.3)

is not closed. The quantityR(v, v) is known as the Reynolds stress tensor. The RANS
system of equations contains the unknown quantity ṽ = v − v̄, which represents the
fluctuation around the filtered velocity v̄. The equation in (1.2) is not closed because
we cannot write it in terms of v̄ alone. The main essence of turbulence modeling is
to derive simplified, reliable and computationally realizable closure models.

In 1980, Bardina et al. [3] suggested a particular closure model by approximating
the Reynolds stress tensor by

R(v, v) ≈ v̄ ⊗ v̄ − ¯̄v ⊗ ¯̄v. (1.4)

In [31], Layton and Lewandowski considered a simpler approximation of the Reynolds
stress tensor, given by

R(v, v) ≈ v̄ ⊗ v̄ − v̄ ⊗ v̄. (1.5)

This is equivalent form to the approximation

∇ · (v ⊗ v) ≈ ∇ · (v̄ ⊗ v̄). (1.6)

Hence, Layton and Lewandowski studied the following sub-grid scale turbulence
model:

wt − ν∆w +∇ · (w ⊗ w) = −∇q + f̄ ,

∇ · w = 0,

w(x, 0) = v̄0(x), (1.7)

where they denoted (w, q), the approximation to (v̄, p̄). In this paper we will call
this particular model the simplified Bardina model. Similar to the alpha models
[6, 7, 8, 16, 10, 26], Layton and Lewandowski [31] used the smoothing (filtering) kernel
associated with the Helmholtz operator (I−α2∆)−1, that is ϕ̄ = (I−α2∆)−1ϕ. That
is, if v denotes the unfiltered velocity and u denotes the smoothed filtered velocity,
then we have the relationship v = u − α2∆u. For abstract mathematical study,
one can define a more general smoothing kernels, which gives a different relationship
between u and v (see, e.g., [4], [36]). In this paper, we will keep the same exact
smoothing operator. There is a very important reason behind the choice of this
particular smoothing kernel in our mathematical studies. The reason can be traced
back from the early study of 3D Navier-Stokes-α (NS-α) turbulence model (also known
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as the viscous Camassa-Holm equations (VCHE) and Lagrangian averaged Navier-
Stokes-α (LANS-α) model ). The explicit analytical steady state solutions to the NS-
α model were found to compare successfully with empirical data for mean velocity
and Reynolds stresses for turbulent flows in channels and pipes for wide range of
Reynolds numbers (see, e.g., [6, 7, 8]). It was, in fact, this important finding, which
led the authors of [6, 7, 8] to suggest that the 3D NS-α model be used as closure
model for the Reynolds averaged equations (RANS). Under this particular relationship
v = u − α2∆u, between u and v, the other alpha models reduced under the channel
and pipe symmetry yield exactly the same equations, up to a modified pressure, to
the system of equations for the NS-α model restricted to this symmetry. Hence, the
explicit steady state solution to these equations will match the experimental data as
well. This is one important property shared by all the alpha models. In particular,
the simplified Bardina model enjoys this important property as well. A more detailed
discussion of this will be presented in section 3. With this at hand, let us set u = w,
v = (I − α2∆)u = (I − α2∆)w and p = (I − α2∆)q; then by applying the operator
(I − α2∆) to equation (1.7), and using the fact that (I − α2∆)ϕ̄ = ϕ, the simplified
Bardina model (1.7) becomes:

∂tv − ν∆v + (u · ∇)u = −∇p + f,

∇ · u = ∇ · v = 0,

v = u− α2∆u,

u(x, 0) = uin(x),
u and v are periodic, with periodic box Ω = [0, 2πL]3. (1.8)

Notice that consistent with all the other alpha models, the above system is the Navier-
Stokes system of equations when α = 0, i.e. u = v. We have rewritten equation (1.7)
in the particular form (1.8) in order to coordinate its similarity with the family of
alpha models [6, 7, 8, 10, 11, 16, 23, 26]. In this form, when compared to the other
alpha sub-grid scale turbulence models, the main difference, namely in the nonlinear
term, can be distinguished easily.

Moreover, we note that, in addition to the remarkable match, in the channels
and pipes, of explicit analytical steady state solutions of the alpha models to the
experimental data, the validity of the first alpha model, the NS-α model, as a subgrid
scale turbulence model was also tested numerically in [9] and [35]. In the numerical
simulation of the 3D NS-α model, the authors of [9], [19], [20] and [35] showed that
the large scale (to be more specific, those scales of motion bigger than the length scale
α) features of a turbulent flow is captured. Then, for scales of motion smaller than
the length scale α, the energy spectra decays faster in comparison to that of NSE.
This numerical observation has been justified analytically in [17]. In direct numerical
simulation, the fast decay of the energy spectra for scales of motion smaller than the
supplied filter length represents reduced grid requirements in simulating a flow. The
numerical study of [9] gives the same results. The same results hold as well in the
study of the Leray-α model in [10] and [19].

This paper is arranged as follows. In section 2 we fix some notations and define
the functional setting. In section 3 we discuss in further details why we chose the
particular smoothing kernel and justify the use of the simplified Bardina model as a
closure model to the RANS. In section 4 we will re-establish the global existence and
uniqueness of weak solutions of equation (1.8) subject to periodic boundary conditions.
We will re-establish this result requiring a weaker initial condition than that required
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in [31]. In section 5 we also provide an upper bound to the dimension of its global
attractor. We then relate this upper bound to the number of degrees of freedom of the
long-time dynamics of the solutions to this model. Our results show that the number
of degrees of freedom for this model is proportional to (L/ld)12/5. This estimate
is much smaller compared to those established for the 3D Clark-α [11], 3D NS-α
model [16] and the 3D Modified-Leray-α model [26] which are of the order (L/ld)3.
The smaller estimate on the number of degrees of freedom for the simplified Bardina
model is expected since it has a milder nonlinear term than the 3D Clark-α model,
3D NS-α model and the 3D Modified-Leray-α model. Notice, however, that we have
excluded the Leray-α model in our comparison above. For the Leray-α model, the
estimate for its number of degrees of freedom is of the order (L/ld)12/7 as shown
in [10]. The power (12/7) is smaller than the power (12/5) of our estimate on the
simplified Bardina model even though we have here a smoother nonlinear term u ·∇u
compared to nonlinear term u · ∇v of the Leray-α. One reason for this is that the
energy dissipation length scale ld for the Leray-α model is different from the ld of the
simplified Bardina, 3D NS-α, Clark-α and Modified Leray-α model. For the Leray-α
model, the dissipation length scale ld is based on the time average of the H3− norm of
u. On the other hand, the ld of the simplified Bardina, 3D NS-α, Clark-α and Modified
Leray-α model is based on the time average of the H2− norm of u. Recently, Holm
and Gibbon [21] produced an interpretation of the dimension of the global attractor
in terms of the Reynolds number. This global interpretation can assist in making a
broad comparison between the various alpha models. In particular, by following their
work one would be able to show that the dimension of the global attractor for the
simplified Bardina model is much smaller than that of the NS-α model, but larger
than that of the Leray-α.

For completeness, in section 6 we also include in our study the energy spectra of
the simplified Bardina model. Although the dimension of the global attractor for the
simplified Bardina model is smaller in comparison to those established for the 3D NS-
α model and the 3D Modified-Leray-α model, we found that the spectral slopes for
the energy spectra for the simplified Bardina model is the same to that of 3D Clark-α,
3D NS-α model and the 3D Modified-Leray-α established in [11, 16, 26] respectively.

In the last section we prove the global existence and uniqueness of the inviscid
simplified Bardina model. This result has important consequences in computational
fluid dynamics when the inviscid simplified Bardina model is considered as a regular-
izing model of the 3D Euler equations. This is because the inviscid simplified Bardina
is a globally well-posed model that approximates the 3D Euler equations without
adding any hyperviscous regularizing terms. In particular, we propose the inviscid
simplified Bardina model as a tool for testing claims about the formation of a finite
time singularity in the 3D Euler equations (see, e.g., [25], [28] and references therein).

2. Functional setting and preliminaries
Let Ω = [0, 2πL]3. The simplified Bardina turbulence model (1.8) of viscous

incompressible flows, subject to periodic boundary condition, with basic domain Ω,
is written in expanded form:

∂t(u− α2∆u)− ν∆(u− α2∆u) + (u · ∇)u = −∇p + f,

∇ · u = 0,

u(x, 0) = uin(x), (2.1)

where, u represents the unknown “filtered” fluid velocity vector, and p is the unknown
“filtered” pressure scalar; ν > 0 is the constant kinematic viscosity, α > 0 is a length
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scale parameter which represents the width of the filter. The function f is a given
body forcing assumed, for the simplicity of our presentation, to be time independent
and with mean zero, that is

∫
Ω

f(x)dx = 0. uin is the given initial velocity also
assumed to have zero mean and hence the solutions u and v as well.

Next, we introduce some preliminary background material following the usual
notation used in the context of the mathematical theory of Navier-Stokes equations
(NSE) (see, e.g., [13, 44, 45]).

(i) We denote by Lp and Hm the usual Lebesgue and Sobolev spaces, respec-
tively. And we denote by | · | and (·, ·) the L2−norm and L2−inner product,
respectively.

(ii) Let F be the set of all vector trigonometric polynomials with periodic domain
Ω. We then set

V =
{

φ ∈ F : ∇ · φ = 0 and
∫

Ω

φ(x) dx = 0
}

.

We set H and V to be the closures of V in L2 and H1, respectively. We
also note that by Rellich lemma (see, e.g., [1]) we have the V is compactly
embedded in H.

(iii) We denote by Pσ : L2 → H the Helmholtz-Leray orthogonal projection op-
erator, and by A = −Pσ∆ the Stokes operator subject to periodic boundary
condition with domain D(A) = (H2(Ω))3 ∩ V . We note that in the space-
periodic case,

Au = −Pσ∆u = −∆u, for all u ∈ D(A).

The operator A−1 is a self-adjoint positive definite compact operator from
H into H. (cf. [13, 44]). We denote by 0 < L−2 = λ1 ≤ λ2 ≤ . . . . . . the
eigenvalues of A, repeated according to their multiplicities. It is well known
that in three dimensions , the eigenvalues of the operator A satisfy the Weyl’s
type formula (see, e.g., [2, 13, 40, 45]) namely, there exists a dimensionless
constant c0 > 0 such that

j2/3

c0
≤ λj

λ1
≤ c0j

2/3, for j = 1, 2, . . . , . (2.2)

We also observe that, D(An/2) = (Hn(Ω))3 ∩ V .
(iv) We recall the following three-dimensional interpolation and Sobolev inequal-

ities (see, e.g., [1] and [13]):

‖φ‖L3 ≤ c‖φ‖1/2
L2 ‖φ‖1/2

H1 , and

‖φ‖L6 ≤ c‖φ‖H1 , for every φ ∈ H1(Ω).
(2.3)

Also, recall the Agmon’s inequality (see, e.g., [2, 13]):

‖φ‖L∞ ≤ c‖φ‖1/2
H1 ‖φ‖1/2

H2 , for every φ ∈ H2(Ω). (2.4)

Hereafter c will denote a generic dimensionless constant.
(v) For w1, w2 ∈ V, we define the bilinear form

B(w1, w2) = Pσ((w1 · ∇)w2). (2.5)
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In the following lemma, we will list certain relevant inequalities and properties of B
(see [13, 44]).

Lemma 2.1. The bilinear form B defined in (2.5) satisfies the following:
(i) B can be extended as a continuous map B : V × V → V ′, where V ′ is the

dual space of V . In particular, for every w1, w2, w3 ∈ V , the bilinear form B
satisfies the following inequalities:

| 〈B(w1, w2), w3〉V ′ | ≤ c|w1|1/2‖w1‖1/2‖w2‖‖w3‖, (2.6)

| 〈B(w1, w2), w3〉V ′ | ≤ c‖w1‖‖w2‖|w3|1/2‖w3‖1/2. (2.7)

Moreover, for every w1, w2, w3 ∈ V , we have

〈B(w1, w2), w3〉V ′ = −〈B(w1, w3), w2〉V ′ . (2.8)

And in particular,

〈B(w1, w2), w2〉V ′ = 0. (2.9)

(ii) For w1 ∈ V and w3 ∈ D(A), we have

| 〈(B(w1, w1), w3)V ′〉 | = | 〈(B(w1, w1), w3)D(A)′
〉 | ≤ λ

−1/4
1 |Aw3||w1|‖w1‖,

(2.10)
where D(A)′ is the dual space of D(A).

Using the bilinear form B and the linear operator A, the sytems in (1.8) and (2.1)
is equivalent to the functional differential equation

dv

dt
+ νAv + B(u, u) = f,

v = u + α2Au,

v(0) = vin = uin + α2Auin. (2.11)

Definition 2.2. (Weak Solution) Let f ∈ H, u(0) = uin ∈ V, and T > 0. A

function u ∈ C([0, T ];V ) ∩ L2([0, T ];D(A)) with
du

dt
∈ L2([0, T ];H) is said to be a

weak solution to (2.11) in the interval [0, T ] if it satisfies the following:

〈
dv

dt
, w

〉

D(A)′
+ ν 〈Av, w〉D(A)′ + (B(u, u), w) = (f, w), (2.12)

for every w ∈ D(A). Here, the equation (2.12) is understood in the following sense:
For almost everywhere t0, t ∈ [0, T ] we have

〈v(t), w〉V ′ − 〈v(t0), w〉V ′ + ν

∫ t

t0

(v, Aw)ds +
∫ t

t0

(B(u(s), u(s)), w) ds =
∫ t

t0

(f, w)ds.

(2.13)
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3. The simplified Bardina model as a turbulence closure model
As we mentioned earlier, one important characteristic shared by all the alpha

models is the particular kernel used to give the relation between the smoothed velocity
u and unsmoothed velocity v. This particular choice of smoothing kernel gives the
important result that under the pipe and channel symmetry, the reduced equation
of all the other alpha models takes the form of the reduced of NS-α under the same
symmetry, up to modified pressure. As a result, the explicit analytical steady state
solutions to these equations will resemble the explicit analytical steady state solutions
of the NS-α. In this way, the excellent match of explicit analytical steady state
solutions of NS-α to experimental data in the channel and pipe symmetry for wide
range of Reynolds number ([6, 7, 8]) is also inherited by these models. In this section,
we consider the stationary simplified Bardina model as a closure to the stationary
Reynolds averaged Navier-Stokes (RANS) equations. We will show that the reduction
of the system of equations in (2.1) or (1.8) in the infinite channels and pipes are the
same (up to modified pressure) as the system of equations obtained in the case of
NS-α (or the viscous Camassa-Holm equations (VCHE)), [6, 7, 8].
Let us begin by recalling the stationary RANS equations in channels and pipes (see,
e.g., [38, 46]). We establish some notations: for a given function φ(x, t) we denote by

〈φ〉 (x) = φ̄(x) = lim
T→∞

1
T

∫ T

0

φ(x, t)dt (3.1)

assuming that such a limit exists (see, e.g., [18] for the generalization of the notion of
limit to make sense of infinite time averages.) The long (infinite) time average of the
NSE, i.e. the stationary RANS equations, are given by

(ū · ∇)ū = ν∆ū−∇p̄− (u− ū) · ∇(u− ū),
∇ · ū = 0. (3.2)

This averaging process yields the well known closure problem. The system above is
not closed since we cannot express it solely in terms of ū alone. The main idea behind
turbulence modeling is to produce an approximate closed form for (1.2) in terms of ū
alone.

3.1. The RANS equations for turbulent channel flows. As might
be expected from the visual appearance of the flow in experimental observations of
turbulent Poiseuille flows in infinite channel (see, e.g., [38, 46]), the mean velocity
in (1.2) for turbulent channel flows takes the form ū =

[
Ū(z), 0, 0

]T , where Ū(z) =
Ū(−z), with mean pressure p̄ = P̄ (x, y, z). Using this classical observation, the RANS
system (1.2) under such symmetry reduces to:

−νŪ ′′ + ∂z 〈wu〉 = −∂xP̄ ,

∂z 〈wv〉 = −∂yP̄ ,

∂z

〈
w2

〉
= −∂zP̄ , (3.3)

where the prime (′) denotes the derivative in the z-direction, and (u, v, w)T = u− ū
is the fluctuation of the velocity in the infinite channel {(x, y, z) ∈ R,−d ≤ z ≤ d}. It
is also observed from the experiments (see, e.g. [38, 46]), that the Reynolds stresses
〈wu〉 , 〈wv〉 and

〈
w2

〉
are functions of the variable z alone. At the boundary, it is

natural to impose the conditions Ū(±d) = 0 (no-slip) and νŪ ′(±d) = ∓τ0, where τ0

is the boundary shear stress. Using the boundary conditions 〈wu〉 (±d) = 〈wv〉 (±d) =
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0, the Reynolds equations imply that 〈wv〉 = 0 and P̄ = P0 − τ0x/d− 〈
w2

〉
(z), with

integration constant P0.

3.2. The reduced simplified Bardinal model for channel flows. For any
turbulence model if an explicit analytical solution is available, then one can match this
solution with the available physical experimental data to test its validity. Here we will
show that the reduced simplified Bardina model under the channel symmetry admits
the same exact equation as the reduced NS-α model. This is enough to show that the
numerical solution of the reduced simplified Bardina model in the channel will match
the experimental data for wide range of Reynolds number. For the simplified Bardina
system of equations, under the channel symmetry, we denote by U the velocity u in
(2.1) and we seek its steady state solutions in the form U = [U(z), 0, 0]T , with even
reflection symmetry condition U(z) = U(−z), and boundary condition U(±d) = 0.
Under these conditions, the steady simplified Bardina equations reduces to:

−νV ′′ = −νU ′′ + να2U ′′′′ = −∂xp,

0 = −∂yp,

0 = −∂zp, (3.4)

where V = U−α2U ′′ and p is a pressure function. Notice here that we need additional
boundary conditions to determine V . Such boundary conditions are not yet available
based on physical considerations. However, in this case, and under the symmetry of
the channel, the missing boundary conditions come as free parameters that will be
determined through a tuning process with empirical data.

3.3. Identifying the simplified Bardina model with RANS - the channel
case. Following the idea of [6, 7, 8] we identify the systems (3.3) and (3.4) with
each other, which is the essence of our closure assumption. We compare (3.3) and
(3.4), and as a result, we identify the various counterparts as

Ū = U,

∂z 〈wu〉 = να2U ′′′′ + p1,

∂z 〈wv〉 = 0,

∇(P̄ +
〈
w2

〉
) = ∇(p− p1x),

(3.5)

for some constant p1. This identification gives

〈wv〉 = 0,

−〈wu〉 (z) = −p1z − να2U ′′′, (3.6)

and leaves
〈
w2

〉
undetermined up to an arbitrary function of z. The identification in

(3.5) is exactly the same (up to modified pressure and possibly
〈
w2

〉
) identification

that was derived when identifying the NS-α model (VCHE) with the RANS equations
in the channel symmetry in [6, 7, 8]. The same identification holds true in the case of
the Leray-α model [10], the Clark-α model in [11] and the ML-α model in [26]. There-
fore, similar to the earlier alpha models, the general solution of simplified Bardina
and NS-α will be identical (up to a modified pressure) and in particular, the mean
flows in both cases are the same functions. A similar result applies to turbulent pipe
flows following the same argument and we will not include it here. For further details
regarding the identification of the equations under the pipe symmetry, see [6, 7, 8, 26].
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4. Existence and uniqueness
In this section we will prove the global existence and continuous dependence on

initial data, (in particular, the uniqueness of weak solution) of the system in (2.11).
We will establish the estimates first for the finite dimensional Galerkin approximation
scheme and then using the appropriate Aubin compactness theorems (see for, e.g.,
[13, 44, 45]) we can pass to the limit. In this section, we fix T > 0 to be arbitrarily
large.

The finite dimensional Galerkin approximation, based on the eigenfunctions of
the operator A, to (2.11) is:

d

dt
(um + α2Aum) + νA(um + α2Aum) + PmB(um, um) = Pmf,

um(0) = Pmuin. (4.1)

4.1. H1 estimates. We take the inner product of the Galerkin approximation
(4.1) with um and use (2.9) to obtain

1
2

d

dt
(|um|2 + α2‖um‖2) + ν(‖um‖2 + α2|Aum|2) = (Pmf, um) = (f, Pmum) = (f, um).

(4.2)

Notice that by the Cauchy-Schwarz inequality, we have

|(f, um)| ≤
{ |A−1f ||Aum|,
|A−1/2f |‖um‖, (4.3)

and by Young’s inequality we have

|(f, um)| ≤





|A−1f |2
2να2

+
ν

2
α2|Aum|2,

|A−1/2f |2
2ν

+
ν

2
‖um‖2.

(4.4)

We let K1 = min
{ |A−1/2f |2

ν
,
|A−1f |2

να2

}
, from the above inequalities we get

d

dt
(|um|2 + α2‖um‖2) + ν(‖um‖2 + α2|Aum|2) ≤ K1. (4.5)

Applying Poincaré inequality we get

d

dt
(|um|2 + α2‖um‖2) + νλ1(|um|2 + α2‖um‖2) ≤ K1. (4.6)

We then apply Gronwall’s inequality to obtain

|um(t)|2 + α2‖um(t)‖2 ≤ e−νλ1t(|um(0)|2 + α2‖um(0)‖2) +
K1

νλ1
(1− e−νλ1t). (4.7)

That is,

|um(t)|2 + α2‖um(t)‖2 ≤ k1 := |uin|2 + α2‖uin‖2 +
K1

νλ1
. (4.8)

Thus, for t ∈ [0, T ], where T > 0 arbitrary but finite, we get um ∈ L∞([0, T ], V ),
where the bound is uniform in m, provided uin ∈ V .
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4.2. H2 estimates. Integrating (4.5) over the interval (t, t + r) for r > 0, we
obtain

ν

∫ t+r

t

(‖um(s)‖2 + α2|Aum(s)|2)ds ≤ rK1 + |um(t)|2 + α2‖um(t)‖2

≤ rK1 + k1. (4.9)

Now, take the inner product of the Galerkin approximation (4.1) with Aum to obtain

1
2

d

dt
(‖um‖2 +α2|Aum|2)+ν(|Aum|2 +α2|A3/2um|2)+(B(um, um), Aum) = (f,Aum).

(4.10)
Notice that

|(f,Aum)| ≤
{ |A−1/2f ||A3/2um|,
|f ||Aum|. (4.11)

Again by Young’s inequality we have

|(f,Aum)| ≤





|A−1/2f |2
να2

+
ν

4
α2|A3/2um|2,

|f |2
ν

+
ν

4
|Aum|2.

(4.12)

We denote by K2 = min
{ |A−1/2f |2

να2
,
|f |2
ν

}
. Then we have

1
2

d

dt
(‖um‖2 + α2|Aum|2) +

3ν

4
(|Aum|2 + α2|A3/2um|2) ≤ K2 + |(B(um, um), Aum)|.

(4.13)

Using Hölder inequality, (2.3) and Young’s inequality

|(B(um, um), Aum)| ≤ c‖um‖‖um‖1/2|Aum|1/2|Aum|
= c‖um‖3/2|Aum|3/2

≤ ν

4
|Aum|2 + c‖um‖6. (4.14)

Using the above estimates and (4.13) we obtain

d

dt
(‖um‖2 + α2|Aum|2) + ν(|Aum|2 + α2|A3/2um|2) ≤ 2K2 + c‖um‖6. (4.15)

We integrate the above equation over the interval (s, t) and use (4.8) and (4.9) to
obtain:

‖um(t)‖2 + α2|Aum(t)|2 ≤ ‖um(s)‖2 + α2|Aum(s)|2 + 2(t− s)K2 + c

(
k1

α2

)3

(t− s).

(4.16)

Now, we integrate with respect to s over the interval (0, t) and use (4.9)

t(‖um(t)‖2 + α2|Aum(t)|2) ≤ 1
ν

(tK1 + k1) + t2K2 + c

(
k1

α2

)3
t2

2
(4.17)
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for all t ≥ 0.
For t ≥ 1

νλ1
we integrate (4.16) with respect to s over the interval (t− 1

νλ1
, t)

1
νλ1

(‖um(t)‖2 + α2|Aum(t)|2)

≤ 1
ν

(
1

νλ1
K1 + k1

)
+ 2K2

(
1

2νλ1

)2

+ c

(
k1

α2

)3( 1
2νλ1

)2

. (4.18)

Thus, from (4.17) and (4.18) we conclude:

‖um(t)‖2 + α2|Aum(t)|2 ≤ k2(t) (4.19)

for all t > 0. We note that, k2(t) enjoys the following properties:
(i) k2(t) is finite for all t > 0.
(ii) If uin ∈ V , but uin /∈ D(A), then the limt→0+ k2(t) = ∞.
(iii) lim supt→∞ k2(t) < ∞.

Remark 4.1. From (4.16), one can observe that if uin ∈ D(A), then um(·) is bounded
uniformly in the L∞([0, T ];D(A)) norm, independently of m. On the other hand, if
uin ∈ V , but uin 6∈ D(A), we conclude from the above that um ∈ L∞loc((0, T ], D(A)) ∩
L2([0, T ], D(A)).

In order to extract convergent subsequence by using Aubin’s lemma (see [13, 34,

44]), we need to establish estimates for
dvm

dt
,
dum

dt
.

dvm

dt
= −νAvm −B(um, um) + Pmf. (4.20)

Take the D(A)′ (the dual of the space D(A)) action of the equation above with
w ∈ D(A), we observe that

|(Pmf, w)| = |(f, Pmw)| ≤ |A−1f ||Aw| ≤ λ−1
1 |f ||Aw| = L2|f ||Aw|, (4.21)

and using (2.6), we have

|(PmB(um, um), w)| ≤ c|um|1/2‖um‖1/2‖um‖‖w‖
= c|um|1/2‖um‖3/2‖w‖
≤ cλ

−1/2
1 |um|1/2‖um‖3/2|Aw|. (4.22)

By (4.8), ‖um‖L∞([0,T ];V ) is bounded uniformly with respect to m. Thus by (4.22),
we can deduce that ‖PmB(um, um)‖L2([0,T ];D(A)′) is also bounded uniformly with re-
spect to m. Now, the uniform in m, L2([0, T ];D(A)) bound for um implies that
‖vm‖L2([0,T ];H) is uniformly bounded, which in turn implies that ‖Avm‖L2([0,T ];D(A)′)

is uniformly bounded, as well. Thus, we conclude, ‖dvm

dt
‖L2([0,T ];D(A)′), and in partic-

ular, ‖dum

dt
‖L2([0,T ];H), are uniformly bounded with respect to m. By Aubin compact-

ness theorem (see, e.g., [13, 34, 44]) we conclude that there is a subsequence um′(t)
and a function u(t) such that

um′(t) → u(t) weakly in L2([0, T ];D(A)),
um′(t) → u(t) strongly in L2([0, T ];V ),
um′→ u in C([0, T ];H), (4.23)
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or equivalently,

vm′(t) → v(t) weakly in L2([0, T ];H),
vm′(t) → v(t) strongly in L2([0, T ];V ′),
vm′→ v in C([0, T ];D(A)′). (4.24)

We relabel um′ and vm′ with um and vm respectively. Let w ∈ D(A), then we have

(vm(t), w) + ν

∫ t

t0

(vm(s), Aw)ds +
∫ t

t0

(B(um(s), um(s)), Pmw)ds

= (vm(t0), w) + (f, Pmw)(t− t0) (4.25)

for all t0, t ∈ [0, T ]. The sequence vm(t) converges weakly in L2([0, T ];H) and thus,

lim
m→∞

∫ t

t0

(vm(s), Aw)ds =
∫ t

t0

(v(s), Aw)ds. (4.26)

Also, by (4.24), vm(t) converging weakly in L2([0, T ];H) implies that there is a sub-
sequence of vm, which we relabel as vm, which converges a.e. t ∈ [0, T ] to v(t) in
H ′ ' H. Thus, we conclude that

(vm(t), w) → (v(t), w), and
(vm(t0), w) → (v(t0), w) (4.27)

for a.e. t, t0 ∈ [0, T ]. On the other hand,

∣∣∣
∫ t

t0

(B(um(s), um(s)), Pmw)− (B(u(s), u(s)), w) ds
∣∣∣ ≤ I(1)

m + I(2)
m + I(3)

m . (4.28)

Using (2.10) and Agmon’s inequality (2.4), we get

I(1)
m =

∣∣∣
∫ t

t0

(B(um(s), um(s)), Pmw − w) ds
∣∣∣

≤ c

∫ t

t0

|um(s)|‖um(s)‖‖Pmw − w‖L∞(Ω)ds

≤ c

(∫ t

t0

|um(s)|2ds

)1/2(∫ t

t0

‖um(s)‖2ds

)1/2

|Pmw − w|1/4|A(Pmw − w)|3/4.

(4.29)

Since um is bounded uniformly in L∞([0, T ];V ) independent of m, and thus is bounded
uniformly in L∞([0, T ];H) thanks to Poincaré inequality, we get limm→∞ I

(1)
m = 0.

Again, using (2.10), Agmon’s inequality (2.4), and Poincaré inequality, we get

I(2)
m =

∣∣∣
∫ t

t0

(B(um(s)− u(s), um(s)), w) ds
∣∣∣

≤ c

∫ t

t0

|um(s)− um(s)|‖um(s)‖‖w‖L∞(Ω)ds

≤ c

(∫ t

t0

|um(s)− u(s)|2ds

)1/2(∫ t

t0

‖um(s)‖2ds

)1/2

λ−1/4|Aw|. (4.30)
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Now since um → u strongly in L2([0, T ];V ) (thus in L2([0, T ];H) ) and um is bounded
uniformly independent of m in L∞([0, T ];V ) , we get that limm→∞ I

(2)
m = 0.

I(3)
m =

∣∣∣
∫ t

t0

(B(u(s), um(s)− u(s)), w) ds
∣∣∣

≤ c

∫ t

t0

|u(s)|‖um(s)− u(s)‖‖w‖L∞(Ω)ds

≤ c

(∫ t

t0

|u(s)|2ds

)1/2(∫ t

t0

‖um(s)− u(s)‖2ds

)1/2

λ
−1/4
1 |Aw| (4.31)

where we applied (2.6) and (2.10) in the second and third inequality, respectively.
Now, um → u strongly in L2([0, T ];V ) implies that limm→∞ I

(3)
m = 0.

From the above calculations, we have that for a.e. t0, t ∈ [0, T ],

(v(t), w)−(v(t0), w)+ν

∫ t

t0

(v, Aw)ds+
∫ t

t0

(B(u(s), u(s)), w) ds =
∫ t

t0

(f, w)ds. (4.32)

for every w ∈ D(A). To show that v ∈ C([0, T ];V ′), and hence, u ∈ C([0, T ];V ),
we want to show that the viscous term ν

∫ t

t0
(v(s), Aw)ds and the nonlinear term∫ t

t0
〈B(u, u), w〉D(A)′ ds → 0 as t → t0.

∣∣∣ν
∫ t

t0

(v(s), Aw)ds
∣∣∣ ≤ ν

(∫ t

t0

|v(s)|2ds

)1/2 (∫ t

t0

|Aw|2ds

)1/2

→ 0 as t → t0,

(4.33)

since v ∈ L2([0, T ];H) and w ∈ D(A).

∣∣∣
∫ t

t0

((B(u(s), u(s)), w)ds)
∣∣∣ ≤

|w|L∞(Ω)

(∫ t

t0

|u(s)|2ds

)1/2 (∫ t

t0

‖u(s)‖2ds

)1/2

→ 0 as t → t0, (4.34)

since u ∈ L∞([0, T ];V ). Thus, this implies that for a.e. t ∈ [0, T ], (v(t), w) →
(v(t0), w) as t → t0, for every w ∈ D(A). In particular, v(t) ∈ H ⊂ V ′ and w ∈
D(A) ⊂ V , implies that for a.e. t ∈ [0, T ], 〈v(t), w〉V ′ → 〈v(t0), w〉V ′ as t → t0,
for every w ∈ D(A). Since D(A) is dense in V , for any test function φ ∈ V and
for every ε > 0, there exists a w ∈ D(A) such that ‖w − φ‖ < ε/(M + 1), where
M = 2 supt∈[0,T ] ‖v(t)‖V ′ . Thus for every φ ∈ V

| 〈v(t)− v(t0), φ〉V ′ | ≤ | 〈v(t)− v(t0), w〉V ′ |+ | 〈v(t)− v(t0), w − φ〉V ′ |. (4.35)

The first term goes to zero as t → t0 since w ∈ D(A). For the second term, we have

| 〈v(t)− v(t0), w − φ〉V ′ | ≤ ‖v(t)− v(t0)‖V ′‖w − φ‖ ≤ M‖w − φ‖ < ε. (4.36)

Since ε > 0 is arbitrary, we conclude that 〈v(t)− v(t0), φ〉V ′ → 0, as t → t0, for all
φ ∈ V . Hence, v ∈ C([0, T ];V ′) and in particular, u ∈ C([0, T ];V ).

To summarize: we have established above the global existence of weak solution
of the simplified Bardina system by the standard Galerkin approximation scheme
together with some useful a priori estimates.
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Theorem 4.1. (Global existence and uniqueness) Let f ∈ H and uin ∈ V .
Then for any T > 0, (2.11) has a unique weak solution u in [0, T ].

To complete the proof of the theorem above, we are left to prove the uniqueness
of weak solutions.

Uniqueness of Weak Solution. Next we will show the continuous dependence
of the weak solutions in the appropriate norm specified below, on the initial data, and
in particular, the uniqueness of weak solutions.

Let u and ū be any two weak solutions of (2.11) on the interval [0, T ], with
initial values u(0) = uin ∈ V and ū(0) = ūin ∈ V , respectively. Let us denote by
v = (u + α2Au), v̄ = (ū + α2Aū), δu = u − ū, and by δv = v − v̄. Then from (2.11)
we get:

d

dt
δv + νAδv + B(δu, u) + B(ū, δu) = 0. (4.37)

By taking the D(A)′ action of (4.37) with δu,
〈

d

dt
δv, δu

〉

D(A)′
+ ν 〈Aδv, δu〉D(A)′ + (B(δu, u), δu) + (B(ū, δu), δu) = 0 (4.38)

and by applying a Lemma of Lions-Magenes concerning the derivative of functions
with values in Banach space, (cf. Chap. III-p.169-[44]) and by the property of the
bilinear form B, (2.9), we get:

1
2

d

dt
(|δu|2 + α2‖δu‖2) + ν(‖δu‖2 + α2|Aδu|2) + (B(δu, u), δu) = 0. (4.39)

Dropping the nonnegative viscous term, and by using property (2.6), we get

1
2

d

dt
(|δu|2 + α2‖δu‖2) ≤ c ‖δu‖2|u|1/2‖u‖1/2

≤ cλ
−1/4
1 ‖δu‖2‖u‖ (4.40)

By Gronwall inequality, we obtain:

(|δu(t)|2 + α2‖δu(t)‖2) ≤ (|δu(0)|2 + α2‖δu(0)‖2) exp
(∫ t

0

C‖u(s)‖
α2

ds

)
. (4.41)

In (4.41), since u ∈ L∞([0, T ];V ), we have shown the continuous dependence of the
weak solutions on the initial data in the L∞([0, T ];V ) norm. In particular, in the
case we have the same initial data, we have ‖δu(t)‖2 = 0, which implies that we have
u(t) = ū(t), for all t ∈ [0, T ].

5. Global attractors, their dimensions and connection to dissipation
length scales

Now that we have established the global well-posedness to the simplified Bardina
model, in this section we will show the existence of global attractor A ⊂ V for the
system (2.11), its finite Hausdorff and fractal dimensions, and the physical relevance
of this finite dimension of global attractor to the concept of “finite dimensionality” of
turbulent flows.

Following standard techniques, the method that we will use to estimate the di-
mension of the global attractor stems from the following lemmas (see [13, 32, 45] and
[16], respectively):
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Lemma 5.1. (The Lieb-Thirring inequality). Let {ψj}N
j=1 be an orthonormal

set of functions in (H)k = H ⊕H · · · ⊕H︸ ︷︷ ︸
k-times

. Then there exists a constant CLT , which

depends on k, but is independent of N , such that

∫

Ω




N∑

j=1

ψj(x) · ψj(x)




5/3

dx ≤ CLT

N∑

j=1

∫

Ω

(∇ψj(x) : ∇ψj(x))dx. (5.1)

Lemma 5.2. Let {φj}N
j=1 ∈ V be an orthonormal set of functions with respect to the

inner product [·, ·]:
[φi, φj ] = (φi, φj) + α2((φi, φj)) = δij .

Let ψj(x) = (φj(x), α∂φj(x)
∂x1

, α
∂φj(x)

∂x2
, α

∂φj(x)
∂x3

), and φ2(x) =
∑N

j=1(φj(x) · φj(x)).
Then there exists a constant CF , which is independent of N , such that

‖φ‖2L∞ ≤ CF

α2




N∑

j=1

∫

Ω

(∇ψj(x) : ∇ψj(x))dx




1/2

. (5.2)

To start the study of the finite dimensionality of the Hausdorff and fractal di-
mensions of the global attractor, first we recall that, from the existence and unique-
ness properties of the solutions to (2.11), we get a semi-group of solution operators,
denoted as {S(t)}t≥0, which associates, to each uin ∈ V , the semi-flow for time
t ≥ 0 : S(t)uin = u(t). We are now ready to state and prove the following theorem:

Theorem 5.3. There is a compact global attractor A ⊂ V , in terms of the solution
u, for the system (2.11). Moreover, we have an upper bound for the Hausdorff and
fractal dimension of the attractor A

dH(A) ≤ dF (A) ≤ c G6/5

(
1

λ
9/5
1 α18/5

)
= c G6/5

(
L

α

)18/5

(5.3)

where G =
|f |

ν2λ
3/4
1

is the Grashoff number.

Proof. The first requirement to show the existence of the nonempty compact
attractor is to show that we have an absorbing ball in V and D(A) and that the
semigroup {S(t)}t≥0 defined above is compact (see, e.g., [13, 22, 39, 42, 45]). This
can be established from the previous a priori estimates. First, let us show that there
is an absorbing ball in V and D(A). By (4.7),(4.23), and the fact that |um(0)| ≤ |u(0)|
and ‖um(0)‖ ≤ ‖u(0)‖ we have, by passing to the limit with m →∞,

|u(t)|2 + α2‖u(t)‖2 ≤ e−νλ1t(|u(0)|2 + α2‖u(0)‖2) +
K1

νλ1
(1− e−νλ1t). (5.4)

Choose t large enough such that e−νλ1t(|u(0)|2 + α2‖u(0)‖2) ≤ K1

νλ1
, then we have

|u(t)|2 + α2‖u(t)‖2 ≤ 2
K1

νλ1
, (5.5)
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where we recall K1 = min
{ |A−1f |2

να2
,
|A−1/2f |2

ν

}
. In particular,

lim sup
t→∞

(|u(t)|2 + α2‖u(t)‖2) ≤ 2
K1

νλ1
=: R2

V . (5.6)

Therefore, the system (2.1) has the ball BV (0) in V of radius RV as an absorbing ball
in V.
Proving the existence of absorbing ball BD(A)(0) in D(A) is similar. By (4.18) and
(4.19) we conclude that

lim sup
t→∞

(‖u(t)‖2 + α2|Au(t)|2) ≤ lim sup
t→∞

k2(t) =: R2
D(A) < ∞, (5.7)

and therefore we have the ball BD(A)(0) in D(A) with radius RD(A) as an absorbing
ball in D(A).

Now applying Rellich lemma [1] we have that S(t) : V → D(A) ⊂⊂ V , for t > 0,
is a compact semigroup from V to itself. What is left is to show that indeed we have a
nonempty compact attractor. Since S(t)BV (0) ⊂ BV (0), it follows that for each s > 0

the set Cs := ∪t≥sS(t)BV (0)
V

is nonempty and compact in V . By monotonicity of
Cs for s > 0, and by the finite intersection property of compact sets, we see that

A =
⋂
s>0

⋃

t≥s

S(t)BV (0)
V

⊂ V (5.8)

is a nonempty compact set in V and indeed is the unique global attractor in V .
We are now ready to give an upper bound estimate to the Hausdorff and fractal

dimensions of the global attractor. As mentioned above, we will use the trace formula
(see, e.g., [12, 13, 45]) to establish this estimate.

The first step in this estimation is to do linearization about a solution. We note
that in order to apply the techniques in [12, 13, 16, 45], we need that the mapping
S(t) : V → V is differentiable with respect to initial data. Following similar ideas of
energy estimates in the proof of uniqueness of weak solutions in the previous section,
one can show that S(t)uin is differentiable with respect to uin, when uin ∈ A. Thus
said, we linearize the viscous simplified Bardina model (2.11) about a solution u(t)
(or v(t) = u(t) + α2Au(t))

d

dt
δv + νAδv + B(δu, u) + B(u, δu) = 0,

δv(0) = δvin = δuin + α2Aδuin (5.9)

where δv is a perturbation satisfying (5.9) and is given by δv = δu + α2Aδu. With
this relationship, δu evolves according to the equation

d

dt
δu + νAδu + (I + α2A)−1[B(δu, u) + B(u, δu)] = 0,

δu(0) = δuin, (5.10)

which we write symbolically as

d

dt
δu + T (t)δu = 0,

δu(0) = δuin,
(5.11)
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where T (t)ψ = νAψ + (I + α2A)−1[B(ψ, u(t)) + B(u(t), ψ)]. Let δui(0), j = 1, . . . , N
be a set of linearly independent vectors in V and let δuj(t) be the corresponding
solutions of (5.10) with initial value δuj(0) for j = 1, . . . , N . Let

TN (t) = Trace(PN (t) ◦ T (t) ◦ PN (t)) (5.12)

where PN (t) is the orthogonal projection of V onto the span {δv1(t), δv2(t), . . . ,
δvN (t)}. We shall denote by {φj(t)}j=1,...,N , an orthonormal basis, with respect to
inner product [·, ·] = (·, ·) + α2((·, ·)) of the space PNV = span{δv1(t), . . . , δv2(t)}.
From (5.12) we have

TN (t) =
N∑

j=1

[T (t)φj(·, t), φj(·, t)]

=
N∑

j=1

ν[Aφj , φj ] + [(I + α2A)−1B((φj , u), φj ] + [(I + α2A)−1B(u, φj), φj ]

= ν
N∑

j=1

[Aφj , φj ] +
N∑

j=1

(B(φj , u), φj) +
N∑

j=1

(B(u, φj), φj)

= ν
N∑

j=1

[Aφj , φj ] +
N∑

j=1

(B(φj , u), φj). (5.13)

By the definition of the inner product [·, ·], we have

N∑

j=1

[Aφj , φj ] =
N∑

j=1

(Aφj , φj) + α2
N∑

j=1

(Aφj , Aφj) =

N∑

j=1

∫

Ω

(∇ψj(x, t) : ∇ψj(x, t))dx =: QN (t), (5.14)

where,

ψj =
(

φj , α
∂

∂x1
φj , α

∂

∂x2
φj , α

∂

∂x3
φj

)T

. (5.15)

Note also that

(ψj , ψk) = δjk. (5.16)

Setting

RN (t) =
N∑

j=1

(B(φj , u), φj),

we have

TN (t) = νQN (t) +RN (t). (5.17)
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We denote by ψ2 :=
∑N

j=1 ψj · ψj . For RN (t) we have

|RN (t)| ≤
N∑

j=1

|(B(φj , u), φj)| ≤
∫

Ω

N∑

j=1

|(φj · ∇)u φj |dx ≤
∫

Ω

N∑

j=1

φ2
j |∇u|dx

≤ CF

α2
Q

1/2
N

(∫

Ω

|∇u|2dx

)1/2(∫

Ω

1dx

)1/2

=
CF |Ω|1/2

α2
Q

1/2
N ‖u(t)‖ ≤ ν

2
QN +

C2
F |Ω|

2να4
‖u(t)‖2 (5.18)

By the estimates so obtained above we finally find

TN (t) ≥ ν

2
QN (t)− C2

F |Ω|
2να4

‖u(t)‖2. (5.19)

By the asymptotic behavior of the eigenvalues of the operator A (see (2.2)) and
(5.16) we get

QN (t) =
N∑

j=1

‖ψj‖2 ≥
N∑

j=1

λj ≥ c0λ1N
5/3. (5.20)

Now, by the trace formula (see, e.g., [12, 13, 45] and the references therein) if N is
large enough so that

lim inf
T→∞

1
T

∫ T

0

TN (t) dt > 0, (5.21)

then N is an upper bound for the Hausdorff and fractal dimensions [13, 45], (see also
[5]), of the global attractor.
Thus, by (5.19) and (5.20) it is sufficient to require N to be large enough such that

νλ1N
5/3 > sup

uin∈A
lim sup
T→∞

1
T

∫ T

0

C2
F |Ω|

2να4
‖u(t)‖2dt. (5.22)

On the other hand, using Hölder inequality we get from (4.9)

lim sup
T→∞

1
T

∫ T

0

C2
F |Ω|

2να2
‖u(t)‖2dt ≤ C2

F |Ω|
2να4

· |f |2
α2ν2λ1

, (5.23)

which implies

N5/3 ≥ C|Ω||f |2
ν4λ3

1α
6

=
|f |2

ν4λ
3/2
1

· C|Ω|
λ

3/2
1 α6

≥ G2 · C|Ω|
λ

3/2
1 α6

, (5.24)

and we recall that |Ω| = (2πL)3 and that λ1 = L−2, thus,

N ≥ G6/5 C

λ
9/5
1 α18/5

. (5.25)

From this we deduce that

dH(A) ≤ dF (A) ≤ G6/5 C

λ
9/5
1 α18/5

. (5.26)



Y. CAO, E. LUNASIN AND E. S. TITI 841

The interpretation of the upper bound estimate that we get for the Hausdorff
and fractal dimension of the global attractor in terms of small scales is important in
showing the finite dimensionality of flows and in particular in showing the numerical
computability of the turbulence model. To do this, we interpret the estimate for the
attractor dimension in terms of the mean rate of energy dissipation of the simplified
Bardina model. Following [16] we define the corresponding mean rate of dissipation
of “energy” for the simplified Bardina model (see (4.2)) as

ε̄ = L−3ν sup
uin∈A

lim sup
T→∞

1
T

∫ T

0

(‖u(s)‖2 + α2|Au(s)|2)ds. (5.27)

Thus, and in analogy with the Kolmogorov dissipation length in the classical theory
of turbulence, we set the dissipation length scale for the simplified Bardina model as

ld =
(

ν3

ε̄

)1/4

. (5.28)

Identifying the dimension of global attractor with the number of degrees of freedom,
we will show that the number of degrees of freedom for the simplified Bardina model
is bounded from above by a quantity which scales like (L/α)12/5(L/ld)12/5.

In fact, in view of (5.27) we can write (5.23) as follows

lim sup
T→∞

1
T

∫ T

0

C2
F |Ω|

2να2
‖u(t)‖2dt ≤ lim sup

T→∞

1
T

∫ T

0

C2
F |Ω|

2να2

(‖u(t)‖2 + α2|Au(t)|2) dt

=
C2

F L6

2ν2α2
ε̄ =

cL6ε̄

ν2α4
. (5.29)

Using this in (5.22) and recalling (5.28) we obtain the following estimate for the
dimension of the global attractor and hence the upper bound on the number of degrees
of freedom in the simplified Bardina model is:

dH(A) ≤ dF (A) ≤ c

(
L

α

)12/5 (
L

ld

)12/5

. (5.30)

We remark that following the recent work of [21] one can also interpret this bound in
terms of the Reynolds number.

6. Energy spectra
Turbulent flows are characterized by the presence of wide range of eddy sizes

starting from the size of the flow domain, say 2πL in our case, to much smaller
scales, which become progressively smaller relative to 2πL as we increase the Reynolds
number. It is important to examine how the energy in a turbulent flow is distributed
among these different size eddies by considering the energy spectrum. Following
similar arguments to those presented in [15] and [17] (see also [10, 11, 18, 26]) we
will study in this section the energy spectra of the simplified Bardina model. We will
obtain our results about the decay of the energy spectrum for the filtered velocity u
following similar techniques as those in the NS-α [17]. In particular, we observe that
there are two different power laws for the energy cascade. For wave numbers k ¿ 1/α,
we obtain the usual k−5/3 Kolmogorov power law. This implies that the large scale
statistics of the flow, in particular for those eddies of size greater than the length scale
α, are computed consistent with the Kolmogorov theory for 3D turbulent flows. On
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the other hand, for k À 1/α, that is for eddies smaller than the length scale α, we
obtain a steeper power law. The steeper spectral slope for wave numbers k À 1/α
implies a faster decay of energy in comparison to DNS, which suggests, in terms of
numerical simulation, a smaller resolution requirement in computing turbulent flows.
For this reason, we suggest that the simplified Bardina model is a good candidate for
a subgrid scale model of large eddy simulation of turbulence. To start, we define some
notations:

b(u, v, w) = (B(u, v), w),

ûk =
1

(2πL)3

∫

Ω

u(x)e−ik·x dx,

v̂k =
1

(2πL)3

∫

Ω

v(x)e−ik·x dx,

uk =
∑

k≤|j|<2k

ûje
ij·x,

vk =
∑

k≤|j|<2k

v̂je
ij·x,

u<
k =

∑

j<k

uj , v<
k =

∑

j<k

vj ,

u>
k =

∑

2k≤j

uj , v>
k =

∑

2k≤j

vj .

There are three flow regimes that we need to consider to analyze the energy spec-
tra. These are the flow regimes where energy is produced, where energy cascades
(i.e. inertial range) and, where energy dissipates and decays exponentially fast (i.e.
dissipation range). We split the flow into three parts according to the three length
scale ranges. Assume kf < k, where kf is the largest wavenumber involved in the
forcing term. Thus,

u = u<
k + uk + u>

k ,

v = v<
k + vk + v>

k .

The energy balance equation for the simplified Bardina model for an eddy of size k−1

is given by

1
2

d

dt
(vk, uk) + ν(−∆vk, uk) = Tk − T2k, (6.1)

where,

Tk := −b(u<
k , u<

k , uk) + b(uk + u>
k , uk + u>

k , u<
k ). (6.2)

We can interpret Tk as representing the net amount of energy per unit time that is
transferred into wavenumbers larger than or equal to k. Similarly, T2k represents the
net amount of energy per unit time that is transferred into wavenumbers larger than
or equal to 2k. From these definitions Tk − T2k represents the net amount of energy
per unit time that is transferred into wavenumbers between [k, 2k).
Taking an ensemble average (long time average) of (6.1) we get:

ν 〈(−∆vk, uk)〉 = 〈Tk〉 − 〈T2k〉 . (6.3)
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We define the energy of eddy of size 1/k as

Eα(k) = (1 + α2|k|2)
∑

|j|=k

|ûj |2.

This definition arose from the fact that we consider |u|2+α2‖u‖2 as the “energy”, since
this is the conserved quantity in the simplified Bardina model equation (see section 7).
Using this definition, we can now rewrite the time-averaged energy transfer equation
(6.3) as

νk3Eα(k) ∼ ν

∫ 2k

k

k2Eα(k)dk ∼ 〈Tk〉 − 〈T2k〉 .

Thus as long as νk3Eα(k) << 〈Tk〉 (that is, 〈T2k〉 ≈ 〈Tk〉, there is no leakage of energy
due to dissipation), the wavenumber k belongs to the inertial range. Similar to the
other alpha subgrid scale models, it is not known what is the correct averaged velocity
of an eddy of length size k−1. That is, we do not know a priori in these models the
exact eddy turn over time of an eddy of size k−1. As we will see below, we have a few
candidates for such an averaged velocity. Namely,

U0
k =

〈
1
L3

∫

Ω

|vk|2dx

〉1/2

∼
(∫ 2k

k

(1 + α2k2)Eα(k)

)1/2

∼ (
k(1 + α2k2)Eα(k)

)1/2
,

U1
k =

〈
1
L3

∫

Ω

uk · vkdx

〉1/2

∼
(∫ 2k

k

Eα(k)

)1/2

∼ (kEα(k))1/2
,

U2
k =

〈
1
L3

∫

Ω

|uk|2dx

〉1/2

∼
(∫ 2k

k

Eα(k)
(1 + α2k2)

)1/2

∼
(

kEα(k)
1 + α2k2

)1/2

,

that is,

Un
k =

(kEα(k))1/2

(1 + α2k2)(n−1)/2
(n = 0, 1, 2). (6.4)

In the inertial range, the Kraichnan energy cascade mechanism states that the cor-
responding turn over time of eddies of spatial size 1/k with given average velocity as
above is about

τn
k :=

1
kUn

k

=
(1 + α2k2)(n−1)/2

k3/2(Eα(k))1/2
(n = 0, 1, 2).

Therefore the energy dissipation rate ε is

ε ∼ 1
τn
k

∫ 2k

k

Eα(k)dk ∼ k5/2 (Eα(k))3/2

(1 + α2k2)(n−1)/2
, (6.5)

and hence

Eα(k) ∼ ε2/3(1 + α2k2)(n−1)/3

k5/3
.
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Note that the kinetic energy spectrum of the variable u is given by

Eu(k) ≡ Eα(k)
1 + α2k2

∼





ε
2/3
α

k5/3
, when kα ¿ 1 ,

ε
2/3
α

α2(4−n)/3k(13−2n)/3
, when kα À 1 .

Therefore, depending on the appropriate average velocity on an eddy of size k−1 for
the simplified Bardina model, we would get the corresponding energy spectra which
has a much faster decaying power law k(2n−13)/3, (n = 0, 1, 2) than the usual Kol-
mogorov k−5/3 power law, in the subrange kα À 1. This signifies that the simplified
Bardina model, like the other alpha models, is a good candidate subgrid scale model
of turbulence.

7. Global existence and uniqueness of the Inviscid simplified Bardina
model

In this section, we will established the global existence and uniqueness of the
inviscid simplified Bardina model using the classical Picard iteration method. The
inviscid simplified Bardina model is equivalent to the functional differential equation

dv

dt
+ B(u, u) = f,

v = u + α2Au,

v(0) = vin = uin + α2Auin, (7.1)

where, for simplicity, we assumed f to be time independent.

Theorem 7.1. (Short time existence and uniqueness). Let vin ∈ V ′, and f ∈
V ′. There exists a short time T∗(‖vin‖V ′) such that the equation (7.1) has a unique
solution v ∈ C1 ([−T∗, T∗], V ′), that is, u ∈ C1 ([−T∗, T∗], V ).

Proof. We will use the classical Picard iteration principle (see, e.g., [41]) to prove
the short time existence and uniqueness theorem. Namely, it is enough to show that
the vector field N(v) = f − B(u, u) is locally Lipschitz in the Hilbert space V ′.
From the classical theory of ordinary differential equations we consider the equivalent
equation for (7.1)

v(t) = vin −
∫ t

0

B(u(s), u(s))ds + ft. (7.2)

Notice that v ∈ V ′ implies that u ∈ V and thus by Lemma 2.1 B(u, u) ∈ V ′. As a re-
sult the equation above makes sense in the space V ′. Let v1, v2 ∈ V ′, and consequently
u1, u2 ∈ V . By (2.6) and Poincaré inequality, we have

‖N(v1)−N(v2)‖V ′ = ‖B(u1, u1)−B(u2, u2)‖V ′

= sup
{w∈V,‖w‖=1}

| 〈B(u1 − u2, u2) + B(u1, u1 − u2), w〉V ′ |

≤ 2c

λ
1/4
1

‖u1 − u2‖ (‖u1‖+ ‖u2‖) . (7.3)

For any large enough R such that ‖u1‖, ‖u2‖ ≤ R, we have

‖N(v1)−N(v2)‖V ′ ≤ 4cR

λ
1/4
1

‖u1 − u2‖ ≤ cR

λ1
‖v1 − v2‖V ′ . (7.4)
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Here we used the fact that ‖v‖V ′ is equivalent to ‖u‖. Equation (7.4) implies that
N(v) is locally Lipschitz continuous function in the Hilbert space V ′. By the classical
theory of ordinary differential equations, the equation (7.2) has a unique fixed point in
a small interval [−T∗, T∗] and v ∈ C([−T∗, T∗], V ′) (see, e.g., [41]). In particular, since
B(u(s), u(s)) is a continuous function with values in V ′ and the forcing f assumed to
be time independent, equation (7.2) implies that the left hand side v(t) is differentiable
and

dv

dt
= −B(u, u) + f

v(0) = vin. (7.5)

This implies the local-in-time existence and uniqueness of solution
v ∈ C1 ([−T∗, T∗], V ′), and hence, u ∈ C1 ([−T∗, T∗], V ), to the inviscid simplified
Bardina model (7.1) or (7.5). We will next show that, in fact, we have global existence.
To show global existence to (7.1) or (7.5) it is enough to show that on the maximal
interval of existence, ‖v(t)‖V ′ remains finite. Let [0, Tmax) be the maximal interval of
existence. If Tmax = +∞, then there is nothing to prove. Suppose, for the purpose
of contradiction, that

Tmax < ∞. (7.6)

This implies that lim supt→T−max
‖v(t)‖V ′ = ∞. By the equivalence of the norms

‖v(t)‖V ′ and ‖u(t)‖, we conclude that also

lim sup
t→T−max

‖u(t)‖ = ∞. (7.7)

We will derive a contradiction to the conclusion in (7.7).

Notice that on [0, Tmax), u ∈ C([0, Tmax), V ), hence we can take the action of (7.1)
or (7.5) on u(t). We get, by (2.9)

〈
dv

dt
, u

〉

V ′
= −〈B(u, u), u〉V ′ + 〈f, u〉V ′ = 〈f, u〉V ′ (7.8)

Thus, we have

1
2

d

dt

(|u|2 + α2‖u‖2) ≤ ‖f‖V ′‖u‖. (7.9)

Let e0 be a positive constant which has the same units as |u|2. From (7.9) we have

1
2

d

dt

(|u|2 + α2‖u‖2 + e0

) ≤ ‖f‖V ′‖u‖

≤ ‖f‖V ′

α
(|u|2 + α2‖u‖2 + e0)1/2. (7.10)

Denote by z2 := |u|2 + α2‖u‖2 + e0. Then we can rewrite (7.10) as

dz

dt
≤ ‖f‖V ′

α
. (7.11)

Consequently,

z(t) ≤ z(0) +
‖f‖V ′

α
t, (7.12)
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for all t < Tmax. Therefore, by letting e0 → 0 we obtain

|u(t)|2 + α2‖u(t)‖2 ≤ |u(0)|2 + α2‖u(0)‖+
‖f‖V ′

α
t, (7.13)

and in particular,

|u(t)|2 + α2‖u(t)‖2 ≤ |u(0)|2 + α2‖u(0)‖+
‖f‖V ′

α
Tmax =: K. (7.14)

This implies that

lim sup
t→T−max

|u(t)|2 + α2‖u(t)‖2 ≤ K. (7.15)

This is a contradiction to the conclusion (7.7).

To summarize, we have established the proof to the following theorem:

Theorem 7.2. (Global existence and uniqueness) Let f ∈ V ′ and vin ∈ V ′.
Then the system in (7.1) has a unique solution v ∈ C1((−∞,∞), V ′) ( or equivalently,
u ∈ C1((−∞,∞), V )).

We observe that the inviscid Bardina model, (7.1), is equivalent to the following
modification of the 3D Euler equations

−α2∆
∂u

∂t
+

∂u

∂t
+ (u · ∇)u +∇p = f,

∇ · u = 0,

u(x, 0) = uin. (7.16)

In particular, it is equal to the Euler equations when α = 0. Therefore, we propose
the inviscid simplified Bardina model as regularization of the 3D Euler equations
that could be implemented in numerical computations of three dimensional inviscid
flows. The analytical study of the regularity of the solutions of the inviscid simplified
Bardina model, and in particular the limit of its solutions, as α → 0, to the solutions
of the Euler equations will be reported in a forthcoming paper.

Inspired by the above model, (see also [27, 37]), we propose the following regu-
larization of the 3D Navier-Stokes equations

−α2∆
∂u

∂t
+

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f,

∇ · u = 0,

u(x, 0) = uin, (7.17)

subject to either periodic boundary condition or the no-slip Dirichlet boundary condi-
tion u|∂Ω = 0. In the presence of physical boundaries the above regularization (7.17)
of the Navier-Stokes equations is different in nature from the hyperviscosity regular-
ization of Lions [33], or any of the other alpha regularization models, because it does
not require any additional boundary conditions. It is also simpler than the nonlinear
viscosity model of Ladyzhenskaya [29, 30] and Smagorinsky [43]. We will study the
analytical and long-term properties of (7.17) in a forthcoming paper.
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- Paris for the kind hospitality where this work was completed. This work was sup-
ported in part by the NSF, grants no. DMS-0204794 and DMS-0504619, the BSF
grant no. 2004271, the ISF grant no. 120/06, and the US Civilian Research and
Development Foundation, grant no. RUM1-2654-MO-05.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965.
[3] J. Bardina, J. Ferziger and W. Reynolds, Improved subgrid scale models for large eddy simula-

tion, American Institute of Aeronautics and Astronautics Paper, 80, 80-1357, 1980.
[4] L. C. Berselli, T. Iliescu and W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent

Flows, Springer, Scientific Computation, New York, 2006.
[5] V. V. Chepyzhov and A. A. Ilyin, On the fractal dimension of invariant set; applications to

Navier-Stokes equations, Discrete Continuous Dynamical Systems, 10, 117-135, 2004.
[6] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa–Holm

equations and turbulence, Physica D, 133(1-4), 49-65, 1999.
[7] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the

Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11(8),
2343-2353, 1999.

[8] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as
a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81(24), 5338-5341,
1998.

[9] S. Chen, D. D. Holm, L. G. Margolin and R. Zhang, Direct numerical simulations of the
Navier–Stokes alpha model, Physica D, 133(1-4), 66-83, 1999.

[10] A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi, On a Leray-α model of turbulence, Royal
Soc. A, Mathematical, Physical and Engineering Sciences, 461, 629-649, 2005.

[11] C. Cao, D. Holm and E. S. Titi, On the Clark-α model of turbulence: global regularity and
long-time dynamics, Journal of Turbulence, 6(20), 1-11, 2005.

[12] P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the di-
mension of the attractors for 2D Navier-Stokes equations, Comm. Pure Apl. Math., 38(1),
1-27, 1985.

[13] P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press, 1988.
[14] P. Constantin, C. Foias and R. Temam, Attractors representing turbulent flows, Mem. Amer.

Math. Soc., vii+67, 53, 314, 1985.
[15] C. Foias, What do the Navier–Stokes equations tell us about turbulence? Harmonic Analysis

and Nonlinear Differential Equations Riverside, CA, 151-180, 1995, Contemp. Math., Amer.
Math. Soc., Providence, RI, 208, 1997.

[16] C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa–Holm equa-
tions, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam.
Differential Equations, 14, 1-35, 2002.

[17] C. Foias, D. D. Holm and E. S. Titi, The Navier–Stokes–alpha model of fluid turbulence.
Advances in nonlinear mathematics and science, Physica D, 152/153, 505-519, 2001.

[18] C. Foias, O. Manley, R. Rosa and R. Temam, Navier–Stokes Equations and Turbulence, Cam-
bridge University Press, Cambridge, 2001.

[19] B. Geurts and D. Holm, Fluctuation effect on 3D-Lagrangian mean and Eulerian mean fluid
motion, Physica D, 133, 215-269, 1999.

[20] B. Geurts and D. Holm, Regularization modeling for large eddy simulation, Physics of Fluids,
15, L13-L16, 2003.

[21] J. Gibbon and D. Holm, Length-scale estimates for the LANS-α equations in terms of the
Reynolds number, Physica D, 220, 69-78, 2006.

[22] J. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs,
Amer. Math. Soc. Providence, RI, 25, 1988.
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