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FROM TIMESERIES∗
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Abstract. A numerical technique for the reconstruction of diffusion processes (diffusions, in
short) from data is presented. The drift and diffusion coefficients of the generator of the diffusion are
found by minimizing an object function which measures the difference between the eigenspectrum of
the operator and a reference eigenspectrum. The reference spectrum can be obtained, in discretized
form, from time-series through the construction of a discrete-time Markov chain. Discretization of
the Fokker-Planck operator turns minimization of the object function into a quadratic programming
problem on a convex domain, for which well-established solution methods exist. The technique is a
generalization of a reconstruction procedure for continuous-time Markov chain generators, recently
developed by the authors. The technique also allows us to derive the coefficients in the homogenized
diffusion for the slow variables in systems with multiple timescales.
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1. Introduction
The reconstruction of diffusions (that is, stochastic differential equations) from

data is a topic of practical importance in many fields, including molecular dynamics,
atmosphere-ocean sciences, and econophysics. A popular way to tackle this problem
[19, 6, 9, 20, 2, 3] is to employ a method based on the statistical definitions of drift
and diffusion: if b(x)∈Rn and a(x)∈Rn×Rn are, respectively the drift vector and
the diffusion tensor of a diffusion with sample path Xt∈Ω⊆Rn, then

b(x)= lim
∆t→0

Ex(X∆t−x), a(x)= lim
∆t→0

Ex(X∆t−x)⊗(X∆t−x) (1.1)

where Ex denotes an expectation conditional on X0 =x. The advantage of these
definitions is that they offer a very simple and direct way to determine b(x) and
a(x) locally from the time-series. However, in practical applications, the use of these
definitions may be problematic, for several reasons: the temporal resolution of the
available time-series can be rather coarse (i.e., far from the ∆t→0 limit); the implicit
assumption that the data has an underlying diffusion is often not justified in the limit
∆t→0; the conditional expectation on X0 =x may be difficult to enforce since the
process Xt must be binned and the binning may be coarse; and, finally, the definitions
above are very rigid and do not allow inclusion of some a priori information on b(x)
and a(x) one may have.

Other approaches to reconstruction of drift and diffusion include methods based
on maximum likelihood estimators [12, 1, 11]. These are well suited for the paramet-
ric reconstruction of the drift and the diffusion (i.e. when their functional form is
known up to some parameters that need to be determined) from time-series that are
sampled continuously (in contrast to being sampled at discrete lags). However, these
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approaches are not so well-suited for non-parametric estimation. Problems also arise
when the temporal resolution of the available time-series is coarse or the data has no
exact underlying diffusion.

In this paper we propose an alternative method of reconstructing the drift vector
and diffusion tensor from data, one that makes use of information about the eigen-
spectrum of the generator of the diffusion. Recall that the generator L of the diffusion
with drift vector b(x) and diffusion tensor a(x) is the elliptic operator

L= b(x) ·∇+ 1
2a(x) :∇∇. (1.2)

A reconstruction procedure can be considered successful if it results in a generator L
whose eigenspectrum sufficiently resembles a reference eigenspectrum. The main con-
tribution of the present paper is to show how to perform this reconstruction via the
minimization of a quadratic, convex object function. The reference spectrum used in
this object function can be obtained in different ways from the data in a preliminary
step which is independent from the reconstruction itself: for instance (and this is the
approach that we will follow here) one can construct a time-discrete Markov chain
from the given time-series after suitable discretization (or binning) of the state-space
and calculate the spectrum of the resulting transition probability matrix P . Since P
can be calculated at many different timelags ∆t, we can avoid taking the limit ∆t→0.
The (spatially discrete) spectrum of P can then be used to estimate the spectrum of
the generator L for instance by interpolation, as explained below.

The use of spectral information for the identification of diffusion processes has
been considered before, for example by [10]. The more general issue of reconstruct-
ing coefficient functions of differential equations from spectral data is a well-known
problem in the field of inverse problems, see for example [7, 16]. New in our study is
the proposal of a numerical scheme for the approximation of drift and diffusion coeffi-
cients from spectral data, thereby going beyond purely analytical methods. Moreover,
the scheme has several desirable properties: it is very versatile as it allows for non-
parametric estimation but any a priori information on b(x) and a(x) can be incorpo-
rated straightforwardly; it can handle data that does not have an exact underlying
diffusion process (e.g. being non-Markov on short time intervals); it is not limited
to scalar diffusions, but can also deal with higher-dimensional diffusions; and, finally,
the central element in the algorithm is the minimization of a quadratic, convex object
function, a problem usually referred to as quadratic programmming for which efficient
numerical methods exist.

In [4], a numerical scheme is proposed to find optimal continuous-time Markov
chain generators using spectral information obtained from time-series. The scheme
discussed in this paper is a generalization of the algorithm in [4] to diffusions. The
possibility of diffusion reconstruction was mentioned briefly in [4]; the present study
focuses entirely on diffusion processes. Some subtle, but important, differences with
the procedure in [4] are a) the Markov chain generator constraints are replaced by the
constraint of positive semi-definite diffusion matrices, and b) spatial discretization of
the problem is necessary for numerical implementation of the scheme for diffusions, but
is not an issue for the Markov chain generator reconstruction. It is far from obvious
that an approach to reconstruction that was shown to work well for continuous-time
Markov chains [4] will also work for diffusion reconstruction. In this paper we will
show that the approach gives good results for diffusions as well.

In section 2 the object function that is central to our approach is presented. In
section 3 we discuss practical implementation issues, in particular how to estimate the
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reference spectrum from the data and then how to carry out the reconstruction step
by minimization of the object function. Numerical examples in 1 and 2 dimensions
are presented in section 4. In section 5 we discuss a generalization to systems with
multiple timescales, in which the data is generated by a diffusion with fast and slow
components but what is really sought are the effective drift and diffusion coefficients
appearing in the homogenized equation for the slow component alone. We show that
our method can be straightforwardly generalized to handle this case in a very suitable
way. Finally some conclusions are given in section 6.

2. Variational formulation of the reconstruction problem
Consider a diffusion with generator L over the state-space Ω⊆Rn. Assume that

the process is ergodic and, for simplicity, assume also that the spectrum of L is
discrete. Denote by {ψk(x),φk(x),λk}k∈N the set of (left and right) eigenfunctions
and eigenvalues,

L∗ψk =λkψk, Lφk =λkφk, (2.1)

where L∗ denotes the adjoint of L in L2(Ω,dx). It is always possible to properly
normalize the eigenfunctions (here ψ̄k is the complex conjugate of ψk)

∫

Ω

ψ̄k(x)φl(x)dx=

{
1 if k = l

0 otherwise
(2.2)

and order them according to decreasing Re λk (notice that λk, ψk, φk can be com-
plex). The first mode, k =1, contains the equilibrium probability density m(x) of the
process: ψ1(x)=m(x), φ1(x)=1, λ1 =0; all subsequent eigenvalues have Re λk <0 by
ergodicity.

From (1.2), the operator L is determined by b(x) and a(x), i.e. one can write
L=L(b,a). The question that we address next is the following: how should one
choose b(x) and a(x) so that the corresponding operator L(b,a) has an eigenspec-
trum {ψk(x),φk(x),λk} that resembles a given reference spectrum {ψ̃k(x),φ̃k(x),λ̃k}
as closely as possible? Since there is no guarantee that there exist b and a such that
L(b,a) has exactly the set {ψ̃k(x),φ̃k(x),λ̃k} as its spectrum, an approximation pro-
cedure is needed. Our approach is to minimize an object function that measures how
close L(b,a) is to having {ψ̃k(x),φ̃k(x),λ̃k} as its spectrum.

We propose the following object function:

E =
K∑

k=1

(
αk‖L∗ψ̃k− λ̃kψ̃k‖2 +βk‖Lφ̃k− λ̃kφ̃k‖2 +γk|〈ψ̃k,Lφ̃k〉− λ̃k

∣∣2
)

(2.3)

where ‖·‖2 denotes the L2 norm on Ω, ‖f‖2 =
∫
Ω
|f(x)|2dx, and 〈·,·〉 is the associated

inner product, 〈f(x),g(x)〉=∫
Ω

f̄(x)g(x)dx. In (2.3), K ∈N is a parameter determined
by the highest mode one is able to estimate reliably. The parameters αk,βk,γk ∈ (0,∞)
are weights which permit us to put emphasis on certain modes which we may find
more important than others like e.g. the equilibrium probability density function,
m(x)=ψ1(x).

It is possible to do the reconstruction using only the generator and not its ad-
joint (set αk =γk =0 for all k) or only the adjoint and not L itself (set βk =γk =0
for all k), provided one supplies enough reference eigenfunctions. For example, for
reconstruction of a 2-dimensional diffusion one needs in principle a set of 5 reference
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eigenfunctions, which can be ψ1,ψ2,ψ3,φ2,φ3 but also ψ1,.. .,ψ5. Since estimates of
the leading eigenmodes from data are the most reliable, the former set is preferable
over the latter. Therefore both the operator and its adjoint are used in (2.3).

The object function (2.3) is to be minimized under variation of L, i.e. under
variation of b(x) and a(x), under the following additional constraint that a(x) is a
non-negative definite tensor: for any x∈Ω and v∈Rn, we must have

a(x) :vv≥0. (2.4)

Thus (2.3) is positive semi-definite and convex (at least if K is large enough), as
well as quadratic in b and a, and it must be minimized on a convex domain con-
sistent with (2.4). This is an advantage since it guarantees that the minimum
of (2.3) is unique and it can be found by well-established solution methods (see sec-
tion 3). In principle, instead of L2(Ω,dx) other norms can be used in (2.3), like
e.g. L2(Ω,m(x)dx); as long as they are quadratic norms they will result in object
functions that are still quadratic in b and a. Similarly, if some a priori information
is known about b(x) and a(x), for instance say, b(x)= b1f1(x)+ ···+bNfN (x) and
a(x)=a1g1(x)+ ···+aNgN (x) where f1,.. .,gN are known functions, (2.3) reduces to
a quadratic object function in (b1,... ,aN ). Many other variations are possible, and
lead to numerical problems which can be tackled by straightforward generalization
of the method used in section 3, but here we will stick to (2.3) with L2(Ω,dx) and
non-parametric estimation of b(x) and a(x).

3. Numerical implementation
To minimize (2.3) in practice, one is faced with two preliminary tasks. First, we

must represent the functions b(x) and a(x) by a finite number of quantities to be min-
imized over, which, in effect, amounts to discretizing (2.3). Second, we must estimate
the eigenfunctions ψ̃k and φ̃k and the eigenvalues λ̃k for k =1,... ,K. Even though
the estimation of ψ̃k, φ̃k and λ̃k must obviously be consistent with the discretization
of (2.3), it is important to realize that these two tasks are separate ones.

Let us consider the discretization of (2.3) first, assuming that ψ̃k, φ̃k and λ̃k for
k =1,... ,K are known. In essence, this amounts to representing b(x) and a(x) on some
appropriate basis of functions, then truncating the series at some order. This can be
done using the Fourier representation, wavelets of various sorts, etc. or, as will be done
here, by representation on a predefined grid (notwithstanding this representation, we
maintain that the reconstruction remains nonparametric, since we do not impose a
specific functional form such as expansion in a few Fourier modes). For simplicity, let
us consider the one dimensional case when Ω∈ [0,1]. Given N ∈N, let ∆x =1/N , and
define

bi = b(i∆x), ai =a(i∆x), i=1,...N. (3.1)

Within this representation of b(x) and a(x) it is then natural to discretize ψk(x) and
φk(x) accordingly, and therefore approximate (2.3) by

Ẽ =
K∑

k=1

(
αk

N∑

i=1

∣∣∣−Di(bψ̃k)+ 1
2D2

i (aψ̃k)− λ̃kψ̃k,i

∣∣∣
2

+βk

∑

i

∣∣∣biDiφ̃k + 1
2aiD

2
i φ̃k− λ̃kφ̃k,i

∣∣∣
2

+γk

∣∣∣
∑

i

ψ̃k,i

(
biDiφ̃k + 1

2aiD
2
i φ̃k

)
− λ̃k

∣∣∣
2)

.

(3.2)
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where φ̃k,i = φ̃k(i∆x ), ψ̃k,i = ψ̃k(i∆x ), and Di and D2
i denote respectively the first

and second finite difference operators:

Dif =
fi+1−fi−1

2∆x
, D2

i f =
fi+1 +fi−1−2fi

∆x2
. (3.3)

Assuming periodic boundary conditions the index i=N +1 is to be identified with i=
1 and i=0 with i=N . (3.2) is to be minimized subject to the following N inequality
constraints (corresponding to (2.4)):

ai≥0 ∀i=1,... ,N. (3.4)

Notice that (3.2) can be rewritten as

E = 〈v,Hv〉+〈v,F 〉+E0 (3.5)

where E0 is a constant, H is a positive definite symmetric matrix and v is the 2N -
dimensional vector containing drift and diffusion: v =(b1,.. .,bN ,a1,... ,aN ). This for-
mulation shows explicitly that minimization of the object function (3.2) is a 2N -
dimensional quadratic programming problem with the constraint in (3.4).

The generalization of (3.1), (3.2), (3.3) and (3.4) to situations in higher dimen-
sion possibly with different boundary conditions is straightforward so we shall omit
writing it down explicitly. The only point worth mentioning is the equivalent of the
constraint (3.4). In 2 dimensions, if ai,j =a(i∆x ,j∆y), it becomes

detai,j≥0 trace ai,j≥0, ∀i,j =1,.. .,N, (3.6)

and similarly in higher dimension. Constraints like (3.6) complicate matters slightly
because they are nonlinear (although they still define a convex domain). They can be
simplified if one assumes that a(x) is diagonal, in which case it simply reduces to the
requirement that each diagonal entry of ai,j be non-negative.

Once we have decided to use (3.2), the next task is to estimate φ̃k,i = φ̃k(i∆x ),
ψ̃k,i = ψ̃k(i∆x ) and λ̃k for k =1,... ,K. Here too, several strategies are possible and
we will focus on the simplest for illustration. The idea is to use the strategy developed
in [4] in the context of reconstruction of generators of continuous-time Markov chains
on a discrete state space. Suppose that we bin Ω into M ∈N non-overlapping bins,
Bm, m=1,.. .,M , such that ∪mBm =Ω. For instance, in the example above where
Ω=[0,1], we may take Bm =[(m−1)/M,m/M ]. Notice that the number of bins may
be different from the number of discretization points in (3.1), i.e. we may have M 6=N
(and typically, M <N because efficient sampling is costly if the bins are small; as will
become clear shortly, we should however take M >K). Once the bins have been
defined, the sampling path of the process can be discretized accordingly, by taking

Zt =index m of the bin such that Xt∈Bm. (3.7)

Associated with the discrete variable Zt, we can then define an M×M transition
probability matrix P as

Pmm′ =

∑Nt

j=11(Zj∆t =m)1(Z(j+1)∆t =m′)
∑Nt

j=11(Zj∆t =m)
(3.8)

where 1(z =m)=1 if z =m and 0 otherwise, T =Nt∆t is the length of the observed
time-series, and ∆t is the discrete lag at which this time-series is sampled. (3.8)
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exactly is the estimator for e∆tL that is used in [4]. Of course, in [4], the generator
L itself is an M×M matrix, whereas here L is an operator. Nevertheless, the first
K eigenvectors φ̂k,m and ψ̂k,m and eigenvalues Λk, k =1,... ,K, of P can be used to
estimate the ones needed in (3.2). From Λk, we obtain

λ̃k =∆t−1 logΛk (3.9)

From φ̂k,m and ψ̂k,m, we take

φ̃k(xm)= φ̂k,m, ψ̃k(xm)= ψ̂k,m (3.10)

where xm∈Bm, m=1,.. .,M are representative points in each bin. From (3.10), φ̃k,i,
ψ̃k,i can then be obtained by suitable interpolation. In the example below, we actually
take a slightly more sophisticated approach to interpolate φ̃k,i and ψ̃k,i from φ̂k,m and
ψ̂k,m to eliminate spurious oscillations in the φ̃k,i and ψ̃k,i caused by sampling errors.

Once φ̃k,i, ψ̃k,i and λ̃k have been determined, the minimization of (3.2) subject
to (3.4) can be done straightforwardly using a standard quadratic programming pack-
age. Here, we simply used the internal quadratic programming routine from Matlab.

To conclude this section, we discuss briefly the possible sources of error in the
algorithm we propose. The most important is the estimation of the reference eigen-
modes from the time-series. Clearly, the quality of the estimates depends on the
amount of available data. In [4], error estimates are discussed for the eigenmodes
of a Markov chain constructed from data. However, other methods to estimate the
reference eigenmodes from data are possible as well (see for example [10] for ideas on
this). Another source is the discretization of the object function, for which various
strategies can be chosen (finite differences on a uniform grid, as used here, is just one
of those strategies). We intend to explore some of the alternative strategies to both
eigenmode estimation and discretization in future work. A third possible source of
error is the minimization algorithm. However, since the minimization problem that
results from our approach falls within the category of quadratic programming (with
a convex object function, on a convex domain), for which well-established solution
methods exist, we consider this to be the least important source of error. Finally,
it must be noted that in situations with distinctly non-Markov data, it may be sim-
ply impossible to find a diffusion process that does justice to most aspects of the
data. This is then not a shortcoming of the reconstruction approach, but an inherent
limitation to any attempt to fit a diffusion process to the data.

4. Numerical examples

4.1. One dimension. As a 1-dimensional example, we consider a diffusion
process on the domain [−π,π] with periodic boundary conditions with drift and dif-
fusion

b(x)=1+cos(x) a(x)=1+ 1
2 sin(x). (4.1)

Using a time-series generated by numerical integration of this diffusion, we recon-
structed the drift and diffusion coefficients, following the algorithm presented in this
paper. The integration was carried out with an Euler scheme with timestep 10−4,
resulting in a time-series of 106 datapoints with a time-interval h=0.1 between con-
secutive points.

For the reconstruction we used the object function in the form (3.2), with weights
αk = |λ̃kψ̃k|−2, βk = |λ̃kφ̃k|−2 and γk = |λ̃k|−2 (i.e. all eigenmodes had equal relative
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weight). Also, α1 =α2 and β1 =γ1 =0, since the errors on φ1 and λ1 are zero by
construction. Only the leading three eigenmodes were used in the object function
(i.e, K =3). In principle, two eigenmodes (K =2) are enough for the reconstruction
of a 1-dimensional drift and diffusion; however, since in this example the k =2 mode
is complex, we also included its complex conjugate (k =3).

The reference eigenmodes needed in the object function were obtained from the
time-series according to the simple strategy described in the previous section: we con-
structed the M×M stochastic matrix P using (3.8), at timelag ∆t=h, and calculated
its spectrum {ψ̂k,φ̂k,Λk}. The number of bins M and the number of discretization
points N were taken to be the same: M =N =60.

The reference eigenvalues λ̃k were calculated according to (3.9). For the reference
eigenvectors, rather than using the unfiltered ψ̂k and φ̂k (whose small-scale errors,
due to finite sample size, unnecessarily distort the outcome), we Fourier-filtered the
ψ̂k and φ̂k by discarding the Fourier modes with wavenumbers higher than 6. The
thus obtained vectors were used as reference vectors ψ̃k and φ̃k.
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Fig. 4.1. Reconstructed drift b(x)=1+cos(x) and diffusion a(x)=1+ 1
2
sin(x) from data.

Figure 4.1 shows the resulting, reconstructed drift and diffusion, together with
the actual ones in (4.1). Both drift and diffusion are well recovered. Also shown in
figure 4.2 are the leading eigenvectors as obtained from the data (ψ̂1,ψ̂2), their filtered
versions (ψ̃1,ψ̃2) used as reference modes, and the eigenvectors of the reconstructed
diffusion process (ψ1,ψ2) (calculated by discretizing the Fokker-Planck operator using
the reconstructed b and a). Note that the third eigenvector in this example, ψ3, is
simply the complex conjugate of ψ2. As can be seen, the eigenvectors of the recon-
structed process are indistinguishable by eye from the reference vectors ψ̃k (which
are again hardly distinguishable from the unfiltered eigenvectors). The match be-
tween the other observed, filtered and reproduced eigenvectors (φ̂k,φ̃k,φk) is equally
good (not shown). Finally, the leading eigenvalues λ2,3 resemble the reference values
λ̃2,3 very closely: λ2,3 =−0.6508±0.9086i for the reconstructed process, whereas the
reference values are λ̃2,3 =−0.6512±0.9086i.

It must be stressed that the (small) errors in the reconstructed drift and diffusion
are almost exclusively due to errors in the estimates of the eigenmodes. The match
between the reference eigenmodes and the eigenmodes of the reconstructed diffusion
process is extremely close. Obviously, the technique described in this paper is mostly
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of interest in situations where the drift and diffusion are not known a priori. In that
case, the main criterion for the success of the reconstruction procedure is the similarity
between the measured eigenmodes and the eigenmodes of the reconstructed diffusion
process.
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Fig. 4.2. Invariant distribution (ψ1) and real and imaginary part of next leading eigenmode
(ψ2) for the diffusion process characterized by the reconstructed drift and diffusion shown in figure
4.1. Also shown are ψ1 and ψ2 (both raw and Fourier-filtered) as obtained from the data.
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4.2. Two dimension. As a 2-dimensional example we consider the system
with drift and diffusion

bx(x,y)=1

by(x,y)=
3+cosy

2

axx(x,y)=
(

3+sinx

4

)2

ayy(x,y)=1

(4.2)
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“

3+sinx
4

”2
, from data.

defined on the domain (x,y)∈ [0,2π]× [0,2π] with periodic boundary conditions. As
in the 1-dimensional example, we generated a timeseries of 106 datapoints with time
interval h=0.1 between points. The weights in the object function were set the
same as in the 1-d example. We used the leading 5 eigenmodes (K =5), obtained by
constructing a Markov chain using 35 bins in both x- and y-direction (i.e. 1225 bins
in total), and diagonalising the stochastic matrix P . The eigenvectors were Fourier-
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Fig. 4.5. Errors in the drift vector b reconstructed from data.

filtered (only wavenumbers up to 3 retained).
The resulting reconstructed drift and diffusion are shown in figures 4.3–4.6. Fig-

ures 4.3 and 4.4 show by(x,y) and axx(x,y), both the reconstructed and the exact
fields. The other elements, bx and ayy, are not shown since they are (nearly) constant.
The (absolute) errors in all fields (bx,by,axx,ayy) are shown in figures 4.5 and 4.6, and
can be seen to be roughly an order of magnitude smaller than the values of the fields
themselves. Finally, in figure 4.7 the invariant distribution (ψ1) is shown, both the ref-
erence distribution (ψ̃1) which was obtained from the data and subsequently Fourier-
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Fig. 4.6. Errors in the diffusion matrix a reconstructed from data.

filtered, and the invariant distribution of the diffusion process with the reconstructed
drift and diffusion coefficients. The match is very good. The next leading eigenvectors
of the reconstructed process match equally well with the reference vectors (not shown);
the same holds for the eigenvalues (reference: 0,−0.3074±1.0224i,−0.5697±1.4692i,
reconstructed: 0,−0.3065±1.0219i,−0.5695±1.4690i).
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5. Generalization to systems with multiple time-scales
Consider a diffusion with two time-scales such as





ẋ= bx(x,y)+σx(x,y)Ẇx

ẏ =
1
ε
by(x,y)+

1√
ε
σy(x,y)Ẇy

(5.1)
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where (x,y)∈Rn×Rm, Wx and Wy are independent Brownian motions and ε¿1 is
a parameter measuring the time-scale ratio between the fast variables y and the slow
variables x. It is well known that if the fast process y is ergodic for each fixed value
of x with respect to the equilibrium distribution µx(y), then in the limit as ε→0, the
statistics of the slow process x(t) can be approximated by the solution of the limiting
diffusion [13, 14, 15, 17, 18, 5, 21] (see also [8] for an overview of related problems)

˙̄x= b̄(x̄)+ σ̄(x̄)Ẇx, (5.2)

where

b̄(x)=
∫

Rm

bx(x,y)dµx(y) (5.3)

and σ̄(x) is the square-root of the diffusion tensor

ā(x)=
∫

Rm

σx(x,y)σT
x (x,y)dµx(y). (5.4)

Suppose that we observe the time-series of the original x(t) but what we are
really interested in are the effective drift (5.3) and diffusion (5.4) of the homogenized
process x̄(t). Our method is very-well suited to handle this case. Indeed, it can be
shown that the spectrum of the original process solution of (5.1) can be split into two
groups: one group which contains eigenfunctions with eigenvalues that are O(ε−1) and
another which contains eigenfunctions with eigenvalues that are O(1). In addition,
the eigenfunctions in the second group are approximately independent of y and each
of them is close to an eigenfunction of the homogenized process x̄(t), i.e.

φk(x,y)= φ̄k(x)+O(ε) (5.5)

and a similar result holds for the right eigenfunctions ψk(x,y) (for the readers con-
venience (5.5) is established by formal asymptotics in the Appendix to this paper).
From these results, it follows that if one computes the spectrum of the time-series
associated with x(t) by the method explained in section 3, keeps only those eigen-
function with O(1) eigenvalues, and uses those in the reconstruction procedure, what
it will give is an approximation of the effective drift (5.3) and diffusion (5.4) of the
homogenized process. Note that this approximation will be O(ε) accurate (since ε is
small but finite in the time-series for x(t) generated from (5.1)), but there will be no
time-discretization error, i.e. the sampling can be done at an arbitrary lag ∆t. This
is a big advantage on methods based on the direct reconstruction using the formulas
in (1.1), since with those some subsampling must be used in the present situation to
capture the homogenized coefficients (i.e. one must have ∆tÀε) but this introduces
an additional O(∆t) error.

As an illustration, we consider the two-timescale system




ẋ=siny+
√

1+ 1
2 sinyẆx

ẏ =
1
ε

(y−sinx)+
1√
ε

Ẇy

(5.6)

where the slow variable x takes values in [0,2π] with periodic boundary conditions
and the fast variable y in R.
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When x is fixed, y is an Ornstein-Uhlenbeck process with mean sinx and variance
1
2 . Therefore the effective drift and diffusion coefficients in the homogenized equation
for x̄ are

b̄(x)=
∫

R
siny

e−(y−sinx)2

√
π

dy =e−1/4 sin(sinx) (5.7)

and

ā(x)=
∫

R

(
1+ 1

2 siny
) e−(y−sinx)2

√
π

dy =1+ 1
2e−1/4 sin(sinx). (5.8)
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Fig. 5.1. Homogenized drift and diffusion for the slow variable x of the two timescale sys-
tem (5.6), obtained using the reconstruction procedure. Also shown are the exact homogenized
coefficients given in (5.7) and (5.8).
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obtained from a timeseries generated using (5.6); the reconstructed distribution is the ψ1 associated
with the reconstructed drift and diffusion shown in figure 5.1.

A time-series of 106 points (time interval 0.1) was generated by integrating the
system (5.6) with ε=10−3. Using only the data for x, we reconstructed the drift
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and diffusion in the exact same way as in the 1-dimensional example in section 4
(including equal settings for the number of bins, Fourier filtering and object function
weights). The resulting b and a, together with the exact homogenized coefficients b̄
and ā from (5.7) and (5.8), are shown in figure 5.1. The reconstructed and the exact
coefficients match very well. The invariant distributions for x, both for the recon-
structed process and as observed from the time-series (fourier-filtered and unfiltered),
are shown in figure 5.2, and are indistinguishable by eye.

6. Conclusion

We have proposed a new algorithm for the reconstruction of drifts and diffusions
from time-series. Our approach is based on the use of (leading) eigenmodes of the
diffusion process that is to be reconstructed. Estimates of these eigenmodes can be
obtained easily by constructing a Markov chain from the time-series. The algorithm
centers on the minimization of the convex, quadratic, positive semi-definite object
function (2.3). The minimization can be carried out numerically using well-established
techniques for quadratic programming problems. The result of the minimization is
drift and diffusion coefficients which are such that the corresponding diffusion gener-
ator L has an eigenspectrum that resembles the reference eigenspectrum (estimated
from the available data) as closely as possible.

The validity of our method has been illustrated with concrete examples of the
reconstruction of 1-dimensional and 2-dimensional diffusion processes, which were
presented in section 4, and show that the algorithm is numerically feasible and gives
good results. As shown in section 5 the algorithm can also be straightforwardly gener-
alized to situations with multiple time-scales in which one is interested in constructing
the effective drift and diffusion coefficients of the homogenized equation for the slow
component of the process.

Our approach is very flexible and many generalizations/modifications are possi-
ble: for instance we have focused in this study on non-parametric estimation of drift
and diffusion, but the algorithm can be easily adapted to allow for parametric estima-
tion (as briefly explained in sections 2 and 3). We have shown numerical examples in
1 and 2 dimensions; for reconstruction of processes in dim> 2, the representation of
eigenfunctions, drift and diffusion on a uniform grid will become quite costly. Para-
metric estimation will then be a useful alternative, which can reduce the size of the
minimization problem significantly. In general, for reconstruction of a d-dimensional
diffusion process, one needs to reconstruct the d-dim. vector b(x) and the d×d matrix
a(x), giving (d2 +3d)/2 functions to reconstruct (if a(x) is assumed to be symmet-
ric). If each of them is spatially represented on n gridpoints or with n basis functions
(e.g. polynomials, fourier modes, etc.), one gets a minimization problem of dimension
n(d2 +3d)/2. Since the number of points on a uniform grid scales as n=md with m
points along each coordinate axis, representation using a low number of basis func-
tions will be particularly attractive in higher dimensions. We shall focus on these
issues in future work.

Appendix A. Spectral analysis of (5.1). Let L be the generator associated
with the diffusion process in (5.1). We can decompose L as follows:

L=
1
ε
L1 +L0 (A1)
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with




L1 = by
∂

∂y
+

1
2
σyσT

y

∂2

∂y2
,

L0 = bx
∂

∂x
+

1
2
σxσT

x

∂2

∂x2
.

(A2)

In principle, the coefficient functions bx, by, σx, σy all depend on both x and y. For
the asymptotic analysis of the eigenvalue problem

(
1
ε
L1 +L0

)
φk(x,y)=λkφk(x,y) (A3)

we expand φk as φk =φ
(0)
k +εφ

(1)
k + ..., and consider a Laurent expansion for λk:

λk =
1
ε

λ
(−1)
k +λ

(0)
k +ελ

(1)
k + ... . (A4)

At leading order, O(ε−1), we find the equation

L1φ
(0)
k =λ

(−1)
k φ

(0)
k , (A5)

i.e. another eigenvalue problem. The solutions to this problem with λ
(−1)
k 6=0 form

the first group of solutions to (A3): eigenfunctions with eigenvalues that are O(ε−1).
The second group of solutions to (A5) has λ

(−1)
k =0 (i.e. they are solutions to (A3)

with O(1) eigenvalues). Considering the equations at O(ε−1) as well as O(1) for this
second group, we find

{
L1φ

(0)
k =0,

L1φ
(1)
k =λ

(0)
k φ

(0)
k −L0φ

(0)
k .

(A6)

The first equation implies that φ
(0)
k lies in the null-space of L1, i.e. Pφ

(0)
k =φ

(0)
k where

P denotes the expectation with respect to ρx(y), the equilibrium distribution for y
with x fixed (for the process (5.1)): given any suitable function f(x,y),

Pf(x,y)=
∫

Rm

ρx(y)f(x,y)dy. (A7)

Equivalently, ρx(y) is the solution to L∗1ρx(y)=0 with L∗1 the adjoint of L1 in
L2(Rm,dy) and Pφ

(0)
k =φ

(0)
k implies that φ

(0)
k may depend on x but is independent of

y. Solvability of the second equation in (A6) requires

PL0Pφ
(0)
k =λ

(0)
k φ

(0)
k . (A8)

The operator PL0P is the generator of the homogenized process (5.2). Moreover,
from (A8) follows (5.5): each eigenmode of the homogenized process approximates to
O(1) in ε an eigenmode of the original process with an O(1) eigenvalue.
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