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THE DYNAMICS OF EQUATORIAL LONG WAVES: A SINGULAR
LIMIT WITH FAST VARIABLE COEFFICIENTS∗

ALEXANDRE DUTRIFOY† AND ANDREW MAJDA‡

Abstract. At the equator, the Coriolis force from rotation vanishes identically so that multiple
time scale dynamics for the equatorial shallow water equation naturally leads to singular limits of
symmetric hyperbolic systems with fast variable coefficients. The classical strategy of using energy
estimates for higher spatial derivatives has a fundamental difficulty since formally the commutator
terms explode in the limit. Here this fundamental difficulty is circumvented by exploiting the special
structure of the equatorial shallow water equations in suitable new variables involving the raising
and lowering operators for the quantum harmonic oscillator, and obtaining uniform higher derivative
estimates in a new function space based on the Hermite operator. The result is a completely new
theorem characterizing the singular limit of the equatorial shallow water equations in the long wave
regime, even with general unbalanced initial data, as a solution of the equatorial long wave equation.
The results presented below point the way for rigorous PDE analysis of both the equatorial shallow
water equations and the equatorial primitive equations in other physically relevant singular limit
regimes.
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1. Introduction
Geophysical flows are a rich source of novel problems for applied mathematics

and the contemporary theory of partial differential equations (PDE) ([16] and ref-
erences therein). The reason for this is that many physically important geophysical
flows involve complex nonlinear interaction over multi-scales in both time and space
so developing simplified reduced models which are simpler yet capture key physical
phenomena is of central importance [8, 23, 24, 16, 18]. In mid-latitudes, the fact that
the rotational Coriolis terms are bounded away from zero leads to a strict temporal
frequency scale separation between slow potential vorticity dynamics and fast gravity
waves; this physical fact leads to new theorems justifying the quasi-geostrophic mid-
latitude dynamics even with general unbalanced initial data for both rapidly rotating
shallow water equations and completely stratified flows [3, 5, 6, 17, 16]. The strategy
in the above proofs is to adapt the classical framework of Klainerman and Majda for
singular limits [12, 15, 16] together with the important generalizations by Schochet
[25, 26], which allow for fast wave averaging, to the dispersive systems of geophysical
flows; it is well known that these theories require constant symmetric hyperbolic co-
efficients for the fast wave dynamics in order to obtain higher derivative estimates on
the solution.

At the equator, the tangential projection of the Coriolis force from rotation van-
ishes identically so that there is no longer a time scale separation between potential
vortical flows and gravity waves. This has profound consequences physically that allow
the tropics to behave as a waveguide with extremely warm surface temperatures. The
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resulting behavior profoundly influences longer term mid-latitude weather prediction
and climate change through hurricanes, monsoons, El Niño, and global teleconnections
with the mid-latitude atmosphere. How this happens through detailed physical mech-
anisms is one of the most important contemporary problems in the atmosphere-ocean
science community with a central role played by nonlinear interactive heating involv-
ing the interaction of clouds, moisture, and convection [24, 28, 20, 2, 19, 1, 7, 21]. The
variable coefficient degeneracy of the Coriolis term at the equator alluded to earlier
leads to both important new physical effects as well as fascinating new mathematical
phenomena and PDE’s [18, 20, 2, 19, 1, 7, 21]. Chapter 9 of ref. [16] provides an
introduction to these topics for mathematicians while ref. [7] introduces and studies
the simplest physical equatorial models with moisture. In this equatorial context, the
new multi-scale reduced dynamical PDE models are even relatively recent in origin
[18]. Thus, the need for additional PDE theory is very important for these disciplinary
problems and this is the main topic of the present paper.

Formulation, theorems and strategy of proof
The simplest model for tropical dynamics is the shallow water equations for the

equatorial region,

∂t~v+~v ·∇~v+ε−1(y~v⊥+∇h)=(Su
ε ,Sv

ε )

∂th+~v ·∇h+hdiv~v+ε−1div~v =Sh
ε

(1.1)

in which ~v =(u,v)(t,x,y) is the horizontal velocity, h=h(t,x,y) the height, x the
longitude, y the distance to the equator, ~v⊥=(−v,u), and Su

ε , Sv
ε , Sh

ε forcing terms
which we regard as known in the present paper. In (1.1), the equatorial shallow water
equations have been written in natural equatorial units of space and time under the
non-dimensional assumptions that the typical fluid velocity magnitude ratio to the
gravity wave speed, the Froude number, is of order ε and also the height fluctuations
are order ε (see[18], pp. 394–395). As discussed in [18] and [16] (see pp. 220–221), it is
also interesting to study long wave solutions of (1.1) in the x-direction, i.e. solutions
(~v,h)(εx,y,t). Rescaling (1.1) in the horizontal variable (x′= εx) and dropping the
primes gives the scaled equatorial shallow water equations

∂tu+εu∂xu+v∂yu+∂xh−ε−1yv =Su
ε

∂tv+εu∂xv+v∂yv+ε−1(yu+∂yh)=Sv
ε

∂th+εu∂xh+v∂yh+(1+εh)∂xu+h∂yv+ε−1∂yv =Sh
ε .

(SWε)

We study these equations for (x,y)∈T×R and ε>0 tending to 0, supplementing them
with initial conditions

u|t=0 =u0ε, v|t=0 =v0ε, h|t=0 =h0ε. (ICε)

This is a singular limit of a symmetric hyperbolic system with a fast variable co-
efficient created by the degenerate Coriolis terms involving y in (SWε). Few other
systems with fast variable coefficients have been treated previously (one example is
Section 4 in [10]). In rough outline, the proof below follows the classical strategy for
singular limits [11, 12, 15, 25, 26] which immediately presents a fundamental difficulty;
straightforwardly differentiating (SWε) with respect to y and doing energy estimates
leads to terms with magnitude O(ε−1) from the commutators which formally can blow
up as ε↓0. The key new ideas in the paper involve how to circumvent this difficulty
through a different route using the physical structure of (SWε). Next, the main results
and the strategy of the proof are summarized briefly.
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We first show that the family of initial value problems (SWε, ICε) has strong
solutions defined on a time-interval independent of ε if the data are bounded in a
suitably modified Sobolev space.

Definition 1.1. For s∈N, we denote by W̃ s the space of functions f ∈L2(T×R)
such that ∑

α+β+γ≤s

‖∂α
x yβ∂γ

y f‖L2 <∞.

Theorem 1.2. If ‖(u0ε,v0ε,h0ε)‖W̃ 4 ≤C and ‖~Sε‖C(R;W̃ 4)≤C for some constant C

independent of ε, there is a time T >0 such that solutions (uε,vε,hε) of (SWε, ICε)
exist (and are unique) in C([0,T ];W̃ 4)∩C1([0,T ];W̃ 3) for all ε.

Next, using Schochet’s method of fast averaging [25], we will decompose these
solutions into two parts: a fast oscillating part tending weakly to zero, and a slow
part, involving only uε and hε, converging strongly to the solution (u,h) of the Linear
Equatorial Long-Wave System:





∂tu+∂xh−yv = S̃u

∂th+∂xu+∂yv = S̃h

yu+∂yh=0
u|t=0 =u0, h|t=0 =h0,

(LW)

provided that the initial data and forcing terms converge accordingly. In (LW), the
variable v plays the role of a Lagrange multiplier which can be eliminated from the
equations using the condition yu+∂yh=0, in the same way as the pressure can be
eliminated from the incompressible Euler equations using the condition of free diver-
gence [16]. The linear equatorial long wave equation (LW) has central importance
both for theories and prediction of El Niño in the equatorial ocean [24] and for atmo-
spheric wave dynamics in the tropics [18, 20, 2, 19].

Let P̃0 denote the orthogonal projector, in (L2(T×R))3, onto vector fields (u,v,h)
such that yu+∂yh=0 and v =0. Here is the main theorem.

Theorem 1.3. Assume that the hypotheses of Theorem 1.2 are satisfied and let
(uε,vε,hε) be the solutions of (SWε, ICε) this theorem provides on [0,T ].

Assume, in addition, that (u0ε,v0ε,h0ε) and the forcing terms ~Sε(t) converge re-
spectively to (u0,v0,h0) and ~S(t) in L2, uniformly in t, and that ‖~Sε‖Lip([0,T ];L2)≤C.

Then there is weak convergence (uε,vε,hε)⇀ (u,0,h), and even strong convergence
P̃0(uε,vε,hε)→ (u,0,h) in C([0,T ];W̃ s) for all s<4, where (u,h) is the solution of
(LW) with S̃u =(P̃0

~S)u and S̃h =(P̃0
~S)h.

These results rely mainly on a key a priori estimate in W̃ 4, presented in Section 3,
uniform with respect to ε, for the solutions of (SWε, ICε). To get this estimate and
also to be able to do the averaging, we rewrite the equations (see next section) as

{
∂t

~U +S1∂x
~U +S2∂y

~U + 1
ε L~U = ~Fε,

~U |t=0 = ~U0,ε,
(1.2)

where S1, S2 are symmetric matrices depending linearly on ~U and

L=
1√
2




0 0 L−
0 0 L+

L+ L− 0


, (1.3)
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in which L+ and L− denote the classical lowering and raising operators of mathemat-
ical physics:

L±=∂y±y.

It is then natural to decompose the system along parabolic cylinder functions (Sec-
tion 2.2). We already knew that (LW) could be completely solved by this method
[16]. In the present context, the decomposition will motivate our choice of functional
space (Section 2.3) and make it easy to build a basis of (L2)3 with eigenvectors of the
fast-wave operator L (Section 2.4), allowing us to define the fast-wave and slow-wave
projectors (Section 2.5). Theorems 1.2 and 1.3 are finally restated as Theorems 2.5
and 2.6 in the new notation (Section 2.6). The detailed proofs are given in Section 3,
which begins with the key a priori estimate.

Finally, we emphasize here that one surprising consequence of the analysis below
is the strong convergence of P̃0(uε,vε,hε) to (u,0,h) with general unbalanced initial
data; this property is not true for many other singular limits.

2. Reformulation of the equations

2.1. Changes of variables. The first step is to make the system symmetric
by setting

h̃=
2h

1+
√

1+εh
, (2.1)

which is equivalent to

h̃

2
=
√

1+εh−1
ε

or

1+εh=(1+
1
2
εh̃)2,

so that

(∂t,∂x,∂y)h=(1+
1
2
εh̃)(∂t,∂x,∂y)h̃.

Thus the equations (SWε) becomes

∂tu+εu∂xu+v∂yu+(1+
1
2
εh̃)∂xh̃−ε−1yv =Su

ε (2.2a)

∂tv+εu∂xv+v∂yv+
1
2
h̃∂yh̃+ε−1(yu+∂yh̃)=Sv

ε (2.2b)

∂th̃+εu∂xh̃+v∂yh̃+(1+
1
2
εh̃)∂xu+

1
2
h̃∂yv+ε−1∂yv =Sh̃

ε (2.2c)

with

Sh̃
ε =

Sh
ε

1+ 1
2εh̃

. (2.3)

This trick is exactly the same as the one which enables us to write the compressible
Euler equations in a symmetric form [11, 12, 27].
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Now, if we drop the nonlinear terms in (2.2a) and (2.2c), we are left with ∂tu+∂xh̃
in the first equation and ∂th̃+∂xu in the second. This suggests the orthogonal change
of variables

r =
1√
2
(u+ h̃), l=

1√
2
(−u+ h̃), (2.4)

which gives

∂tr+(1+
ε

2
√

2
(3r− l))∂xr+v∂yr+

1
4
(r+ l)∂yv

+ε−1 1√
2
(∂yv−yv)=F 1

ε (2.5a)

∂tl+(−1+
ε

2
√

2
(r−3l))∂xl+v∂yl+

1
4
(r+ l)∂yv

+ε−1 1√
2
(∂yv+yv)=F 2

ε (2.5b)

∂tv+
ε√
2
(r− l)∂xv+v∂yv+

1
4
(r+ l)∂yr+

1
4
(r+ l)∂yl

+ε−1 1√
2
(∂yr+yr+∂yl−yl)=F 3

ε , (2.5c)

with

F 1
ε =

1√
2
(Su

ε +Sh̃
ε ), F 2

ε =
1√
2
(−Su

ε +Sh̃
ε ), F 3

ε =Sv
ε . (2.6)

So, introducing the vector

~U =




r
l
v


, (2.7)

we get (1.2) with

S1 =S0
1 +εS1

1 ,

S0
1 =




1 0 0
0 −1 0
0 0 0


,

S1
1 =S1

1(~U)=
1

2
√

2




3r− l 0 0
0 r−3l 0
0 0 2r−2l




and

S2 =S2(~U)=
1
4




4v 0 r+ l
0 4v r+ l

r+ l r+ l 4v


.



380 THE DYNAMICS OF EQUATORIAL LONG WAVES

2.2. Decomposition of the system using parabolic cylinder functions.
The operators L± are called lowering and raising because of their action on the

parabolic cylinder functions:

1√
2
L−φn =−√n+1φn+1 for n≥0,

1√
2
L+φn =

√
nφn−1 for n≥1,

L+φ0 =0, (2.8)

where

φn(y)=(2nn!
√

π)−1/2Hn(y)e−
y2

2 , n=0,1,.. .

in which

Hn(y)=(−1)ney2 dn

dyn
e−y2

denotes the Hermite polynomial of degree n.
Since the φn form an orthonormal basis of L2(R), we may decompose the com-

ponents of ~U as follows:

r(t,x,y)=
∞∑

n=0

rn(t,x)φn(y),

l(t,x,y)=
∞∑

n=0

ln(t,x)φn(y),

v(t,x,y)=
∞∑

n=0

vn(t,x)φn(y).

From (1.3) and (2.8), it is readily seen that L acts for each t and x inside finite-
dimensional subspaces of (L2(R))3: first,

L




φ0

0
0


=0; (2.9)

second,

L




φ1

0
0


=




0
0
φ0


 and L




0
0
φ0


=−




φ1

0
0


; (2.10)

third, for all n≥0,

L




φn+2

0
0


=

√
n+2




0
0

φn+1


, (2.11)

L




0
φn

0


=−√n+1




0
0

φn+1


, (2.12)
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and

L




0
0

φn+1


=−√n+2




φn+2

0
0


+

√
n+1




0
φn

0


. (2.13)

Now consider (L2(R×T))3 equipped with the usual scalar (hermitian) product

〈~V , ~W 〉=
∫

T

∫

R
~V (x,y) · ~W (x,y)dxdy.

Let P (−2), P (−1), and P (n) for n≥0, be the orthogonal projections onto its subspaces
generated by t(φ0,0,0), by t(φ1,0,0) and t(0,0,φ0), and by t(φn+2,0,0), t(0,φn,0) and
t(0,0,φn+1).

Equations (2.9) to (2.13) imply that L and P (n) commute for all n; therefore,
(1.2) is equivalent to the family of systems

{
∂tP

(n)~U +P (n)(S1∂x
~U +S2∂y

~U)+ 1
ε LP (n)~U =P (n) ~Fε,

P (n)~U |t=0 =P (n)~U0,ε,
(2.14)

for n≥−2.

2.3. The functional spaces W̃ s. When we take the scalar product of (2.14)
with P (n)~U , the term in ε−1 disappears. Indeed, integration by parts shows that L is
skew-symmetric in (L2)3, so 〈LP (n)~U,P (n)~U〉=0. We can also check it explicitly:

〈P (n)~U,LP (n)~U〉

= 〈



rn+2φn+2

lnφn

vn+1φn+1


,




−vn+1

√
n+2φn+2

vn+1

√
n+1φn

rn+2

√
n+2φn+1− ln

√
n+1φn+1


〉

=−
∫

T
rn+2(t,x)vn+1(t,x)

√
n+2dx

∫

R
φ2

n+2(y)dy (2.15)

+
∫

T
ln(t,x)vn+1(t,x)

√
n+1dx

∫

R
φ2

n(y)dy (2.16)

+
∫

T
vn+1(t,x)rn+2(t,x)

√
n+2dx

∫

R
φ2

n+1(y)dy (2.17)

−
∫

T
vn+1(t,x)ln(t,x)

√
n+1dx

∫

R
φ2

n+1(y)dy (2.18)

=0,

because
∫
Rφ2

n(y)dy =1 for all n, so that (2.17) cancels (2.15) and (2.18) cancels (2.16).
So, for any function ϕ, (2.14) implies

1
2
∂t(‖ϕ(n)P (n)~U‖2L2)+ϕ2(n)〈P (n)(S1∂x

~U +S2∂y
~U),P (n)~U〉

= 〈ϕ(n)P (n) ~Fε,ϕ(n)P (n)~U〉
for all n≥2. By summing over n, this gives a uniform estimate on

( ∞∑
n=−2

‖ϕ(n)P (n)~U‖2L2

)1/2

,
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if the term
∑∞

n=−2ϕ2(n)〈P (n)(S1∂x
~U +S2∂y

~U),P (n)~U〉 can be disposed of.
In view of (2.8), the derivation with respect to y and the multiplication by y both

roughly amount to
∑+∞

n=−2

√
nP (n). This motivates our definition of modified Sobolev

spaces W̃ s below. As we explain in more detail in Section 3.1, the estimate in W̃ 4 is
obtained by choosing ϕ(n)∼n2.

Definition 2.1. We denote by W̃ s the subspace of L2(T×R) consisting of functions

f(x,y)=
+∞∑

k=−∞

∞∑
n=0

fkne2πikxφn(y) (2.19)

whose norm

‖f‖W̃ s =

(
+∞∑

k=−∞

∞∑
n=0

(1+ |k|+√n)2s|fkn|2
)1/2

(N0)

is finite.

The next proposition implies in particular that Definition 2.1 agrees with Defini-
tion 1.1 for all values of s. It also shows that the role played by ∂y in a usual Sobolev
space W s is played here by both ∂y and y, or L− alone, or L+ alone.

Proposition 2.2. For s∈N and f ∈L2(T×R), the norms
∑

α+β+γ≤s

‖∂α
x yβ∂γ

y f‖L2 , (N1)

‖∂s
xf‖L2 +‖Ls

−f‖L2 , (N2)
‖∂s

xf‖L2 +‖Ls
+f‖L2 +‖f‖L2 , (N3)

are all equivalent to (N0).

Proof. • (N1) . (N0). Indeed,

∂α
x yβ∂γ

y f =
1
4

+∞∑

k=−∞

+∞∑
n=0

fkn(2πik)αe2πikx(L+−L−)β(L+ +L−)γφn;

by (2.8),

(L+−L−)β(L+ +L−)γφn =
β+γ∑

l=−β−γ

cnlφn+l

for some coefficients cnl≤C(1+
√

n)β+γ ; hence

‖∂α
x yβ∂γ

y f‖L2 ≤ C

4
(2π)α

β+γ∑

l=−β−γ

‖
+∞∑

k=−∞

+∞∑
n=0

fkn|k|α(1+
√

n)β+γφn+l‖L2

≤ C

2
(2π)α(β+γ+

1
2
)‖f‖W̃ s

if α+β+γ≤s, because then |k|α(1+
√

n)β+γ≤ (1+ |k|+√n)s.
• (N2) . (N1) and (N3) . (N1) are trivial (just replace L± by ∂y±y).



A. DUTRIFOY AND A. MAJDA 383

• (N0) . (N2) follows from

‖∂s
xf‖L2 =(2π)s

(
+∞∑

k=−∞

+∞∑
n=0

|k|2s|fkn|2
)1/2

(2.20)

and

‖Ls
−f‖L2 =‖

+∞∑

k=−∞

+∞∑
n=0

fkne2πikx

(
s∏

l=1

−
√

2
√

n+ l

)
φn+s‖L2

≥
(

+∞∑

k=−∞

+∞∑
n=0

(1+
√

n)2s|fkn|2
)1/2

.

• (N0) . (N3) follows from

‖Ls
+f‖L2 =‖

+∞∑

k=−∞

+∞∑
n=s

fkne2πikx

(
s−1∏

l=0

√
2
√

n− l

)
φn−s‖L2

≥Cs

(
+∞∑

k=−∞

+∞∑
n=s

(1+
√

n)2s|fkn|2
)1/2

,

where Cs is such that
√

n−s+1≥Cs(1+
√

n) for all n≥s, and

‖f‖L2 ≥ 1
(1+

√
s−1)s

(
+∞∑

k=−∞

s−1∑
n=0

(1+
√

n)2s|fkn|2
)1/2

,

and (2.20) again.

Corollary 2.3. For s∈N, W̃ s is embedded in the usual Sobolev space W s. In
particular, W̃ 4⊂C1.

Proof. The norm in W s is smaller than (N1).

Finally let H be the Hermite operator, defined by

Hf =
1
2
(L+L−+L−L+)f =

d2

dy2
f−y2f.

Recall that

Hφn =−(2n+1)φn (2.21)

for all n≥0.

Proposition 2.4. For s even, the norm in W̃ s is equivalent to

‖∂s
xf‖L2 +‖Hs/2f‖L2 . (N4)
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Proof. Because of (2.21),

‖Hs/2f‖L2 =‖
+∞∑

k=−∞

+∞∑
n=0

fkne2πikx(2n+1)s/2φn‖L2

≥C

(
+∞∑

k=−∞

+∞∑
n=0

(1+
√

n)2s|fkn|2
)1/2

. (2.22)

So (N0) . (N4) by (2.20) and (2.22).
Again, (N4) . (N1) is immediate when H is replaced by its definition.

2.4. The eigenvalues and eigenvectors of L. Since iL is self-adjoint on
(L2)3, the eigenvectors of L must be mutually orthogonal. We set

~e−1
0 =




φ0

0
0


;

by (2.9), L~e−1
0 =0. By (2.10),

~e−1
±1 =

1√
2



±iφ1

0
φ0




are eigenvectors of L corresponding to the eigenvalues ±i, respectively. Finally, a
short calculation on equations (2.11), (2.12), (2.13) yields the eigenvectors

~en
0 =

1√
2n+3

(
√

n+1




φn+2

0
0


+

√
n+2




0
φn

0


),

corresponding to the eigenvalue 0, and

~en
±1 =

1√
2

1√
2n+3

(±i
√

n+2




φn+2

0
0


∓ i

√
n+1




0
φn

0




+
√

2n+3




0
0

φn+1


)

corresponding to the eigenvalues ±i
√

2n+3.
The ~en

α span the whole of L2(R) and we have

L~en
α =αi

√
2n+3~en

α (2.23)

for all n≥−1 and α=0,±1.

2.5. Projectors. We define P0, P1, P−1, P
(n)
0 , P

(n)
1 and P

(n)
−1 for n≥−1 by

(P (n)
0

~U)(x,y)=
(∫

R
~U(x,y) ·~en

0 (y′)dy′
)

~en
0 (y), P0 =

∞∑
n=0

P
(n)
0 ,

(P (n)
±1

~U)(x,y)=
(∫

R
~U(x,y′) ·~en

±1(y′)dy′
)

~en
±1(y), P±1 =

∞∑
n=0

P
(n)
±1 .
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We also write Posc =P1 +P−1. Remark that

P (−2) =P
(−1)
0

P (−1) =P
(−1)
1 +P

(−1)
−1

and

P (n) =P
(n)
0 +P

(n)
1 +P

(n)
−1

for all n≥0.

2.6. Statements and comments. Our results can now be restated as follows.

Theorem 2.5 (existence). If ‖~U0,ε‖W̃ 4 ≤C and ‖~Fε‖C(R;W̃ 4)≤C for some con-

stant C independent of ε, there is a time T >0 such that solutions ~Uε of the initial
value problems

{
∂t

~Uε +S1(~Uε)∂x
~Uε +S2(~Uε)∂y

~Uε + 1
ε L~Uε = ~Fε

~Uε|t=0 = ~U0,ε

(2.24)

exist (and are unique) in C([0,T ];W̃ 4)∩C1([0,T ];W̃ 3) for all ε, and are bounded in
that space uniformly in ε.

Theorem 2.5 implies Theorem 1.2 because uniform bounds on u0ε, v0ε, h0ε and
~Sε translate to uniform bounds on ~U0,ε and ~Fε after the changes of variables (2.1),
(2.3), (2.6) and (2.7).

Theorem 2.6 (convergence). Assume that the hypotheses of Theorem 2.5 are
satisfied and let ~Uε be the solutions this theorem provides on [0,T ].

Assume, in addition, that ~U0,ε and ~Fε(t) converge respectively to ~U0 and ~F (t) in
L2, uniformly in t, and that ‖~Fε‖Lip([0,T ];L2)≤C.

Then

~Uε =P0
~U+

∞∑
n=−1

e−i t
ε

√
2n+3P

(n)
1

~U−
∞∑

n=−1

ei t
ε

√
2n+3P

(n)
−1

~U+o(1)

in C([0,T ];W̃ s) for all s<4, where ~U ∈C([0,T ];W̃ 4)∩C1([0,T ];W̃ 3) satisfies the ini-
tial condition ~U|t=0 = ~U0 and the equations

∂tP0
~U+P0S

0
1∂xP0

~U =P0
~F (2.25)

and, for all n≥0,

∂tP
(n)
±1

~U+
1

2(2n+3)
∂xP

(n)
±1

~U+c
(n)
±1 (P0

~U)P (n)
±1

~U =0, (2.26)

with

c
(n)
±1 (P0

~U)= 〈S2(P0
~U)∂y~e

n
±1 +S2(~en

±1)∂yP0
~U ,~en

±1〉.
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The long-wave part of ~Uε is P0
~Uε; it converges strongly to P0

~U . In the partic-
ular case of well-prepared initial data (that is, when Posc

~U0 =0), ~Uε itself converges
strongly to ~U , which is then equal to P0

~U , because (2.26) and P
(n)
±1

~U|t=0 =0 imply
P

(n)
±1

~U ≡0 for all n.
To show that (2.25) is equivalent to the system (LW) of the beginning of Section 1,

let us set ~V=P0
~U . Then ~V is equal to




r
l
0


 (2.27)

for some r and l such that

L+r+L−l=0. (2.28)

Since P0
~Uε→ ~V is equivalent to P̃0(uε,vε,hε)→ (u,0,h̃) with (u,h̃) related to (r,l) by

(2.4), we get the condition yu+∂yh=0 inside (LW), after dropping the ˜. On the
other hand, equation (2.25) may be written

P0(∂t
~V+S1

0∂x
~V− ~F )=0, (2.29)

and for ~U ∈ (L2)3, P0
~U =0 means that there exists some v∈W̃ 1 such that

U1 =L−v, U2 =L+v. (2.30)

Indeed, t(L−v,L+v,∗) is orthogonal in (L2)3 to all vectors of the form (2.27) satisfying
(2.28) because L+ and L− are adjoint to each other, and conversely, P0

~U =0 implies

~U =
+∞∑

n=−1

∑
α=−1,1

U (n)
α ~en

α

=
+∞∑

n=−1

∑
α=−1,1

U
(n)
α√

2
√

2n+3




αi
√

n+2φn+2

−αi
√

n+1φn√
2n+3φn+1




=
+∞∑

n=−1

∑
α=−1,1

U
(n)
α√

2
√

2n+3



−α i√

2
L−φn+1

−α i√
2
L+φn+1√

2n+3φn+1


,

hence (2.30) with

v =−
+∞∑

n=−1

∑
α=−1,1

αiU
(n)
α

2
√

2n+3
φn+1.

Therefore, (2.29) is equivalent to
{

∂tr+∂xr+L−v =(P0
~F )1

∂tl−∂xl+L+v =(P0
~F )2

for some v∈W̃ 1, which shows that the first two equations of the system (LW) are
also satisfied.
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3. Proofs

3.1. Proof of existence—Main estimate. The existence of the solutions
of (2.24) on a time interval of length independent of ε is proved as if the system
was symmetric hyperbolic [15]: the initial data are mollified, and an iterative scheme
brings back the problem to the linear case, which is in turn solved thanks to an a
priori estimate on the linearized system.

So, what we have to prove here is an a priori estimate on the solution of (1.2)
assuming S =(S1(ε, ~V ),S2(~V )) with ~V , as well as ~F , continuous in time with values
in W̃ 4.

To obtain the a priori estimates in W̃ 4, according to Proposition 2.4, it is sufficient
to estimate ‖H2~Uε‖L2 and ‖∂4

x
~Uε‖L2 . With only the y-dependence of the singular

terms, the estimates for ‖∂4
x
~Uε‖L2 are straightforward. Below we emphasize the new

estimate for ‖H2~Uε‖L2 .
Developing the terms in ε−1 in the system using the parabolic cylinder functions

gives

∂tr+S ·∇r− 1
ε
v0φ1− 1

ε

∞∑
n=0

vn+1(n+2)1/2φn+2 =F 1 (3.1)

∂tl+S ·∇l+
1
ε

∞∑
n=0

vn+1(n+1)1/2φn =F 2 (3.2)

∂tv+S ·∇v+
1
ε
r1φ0 +

1
ε

∞∑
n=0

(rn+2(n+2)1/2− ln(n+1)1/2)φn+1 =F 3. (3.3)

Define Hr and Hv by

Hrf =f0φ0 +f1φ1−
∞∑

n=0

fn+2(2n+1)φn+2

Hvf =f0φ0−
∞∑

n=0

fn+1(2n+1)φn+1.

If we apply H2
r to (3.1) and then take the scalar product with H2

r r in L2, we get

1
2
∂t‖H2

r r‖2L2 +
∫∫

H2
r rH2

r (S ·∇r)dxdy

+
1
ε

∫
(−r1v0−

∞∑
n=0

rn+2vn+1(n+2)1/2(2n+1)4)dx

=
∫∫

H2
r rH2

r F 1dxdy. (3.4)

Similarly, applying H2 to (3.2) and H2
v to (3.3), we get

1
2
∂t‖H2l‖2L2 +

∫∫
H2lH2(S ·∇l)dxdy

+
1
ε

∫ ∞∑
n=0

lnvn+1(n+1)1/2(2n+1)4dx

=
∫∫

H2lH2F 2dxdy (3.5)
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and

1
2
∂t‖H2

vv‖2L2 +
∫∫

H2
vvH2

v (S ·∇v)dxdy

+
1
ε

∫
(r1v0 +

∞∑
n=0

vn+1(rn+2(n+2)1/2− ln(n+1)1/2)(2n+1)4)dx

=
∫∫

H2
vvH2

vF 3dxdy. (3.6)

Additioning (3.4), (3.5) and (3.6), the terms in ε−1 vanish:

1
2
∂t(‖H2

r r‖2L2 +‖H2l‖2L2 +‖H2
vv‖2L2)

+
∫∫

H2
r (S ·∇r)H2

r rdxdy (3.7)

+
∫∫

H2(S ·∇l)H2ldxdy (3.8)

+
∫∫

H2
v (S ·∇v)H2

vvdxdy (3.9)

=
∫∫

(H2
r F 1H2

r r+H2F 2H2l+H2
vF 3H2

vv)dxdy. (3.10)

The sum of (3.7), (3.8) and (3.9) is equal to
∫∫

(S ·∇H2~U) ·H2~U)dxdy (3.11)

+
∫∫

([H2,S ·∇]~U) ·H2~U dxdy (3.12)

+
∫∫

(H2
r −H2)(S ·∇r)H2

r rdxdy (3.13)

+
∫∫

H2(S ·∇r)(H2
r −H2)rdxdy (3.14)

+
∫∫

(H2
v −H2)(S ·∇v)H2

vvdxdy (3.15)

+
∫∫

H2(S ·∇v)(H2
v −H2)vdxdy. (3.16)

In the first term, the ∇ can be put on S by integration by parts, thanks to the
symmetry of S:

∫∫
(S ·∇H2~U) ·H2~U)dxdy

=
∫∫ 3∑

i,j=1

(Sij ·∇H2U j)H2U idxdy

=
∫∫

1
2

3∑

i,j=1

Sij ·∇(H2U iH2U j)dxdy

=−
∫∫

1
2

3∑

i,j=1

(∂xSij
1 +∂ySij

2 )H2U iH2U j dxdy,
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hence

|(3.11)|≤C(ε‖∂x
~V ‖L∞ +‖∂y

~V ‖L∞)‖H2~U‖2L2 . (3.17)

The commutator in (3.12) is expanded explicitly and each term is estimated in L2; as

H2 =(∂2
y−y2)(∂2

y−y2)=∂4
y−2y2∂2

y−4y∂y +y4−2,

we just have four commutators to estimate.
• With ∂4

y :

‖[∂4
y ,S ·∇]~U‖L2 =‖[∂4

y ,S] ·∇~U‖L2

≤‖[∂4
y ,S1]∂x

~U‖L2 +‖[∂4
y ,S2]∂y

~U‖L2

≤C(‖∂yS1‖L∞‖~U‖W 4 +ε‖~V ‖W 4‖∂x
~U‖L∞)

+C(‖∂yS2‖L∞‖~U‖W 4 +‖S2‖W 4‖∂y
~U‖L∞)

≤C(ε‖∂x
~U‖L∞ +‖∂y

~U‖L∞)‖~V ‖W 4

+C‖∂y
~V ‖L∞‖~U‖W 4

thanks to the classical estimates of such commutators in Sobolev spaces (here
and below we may replace ‖S1‖ by ε‖~V ‖ whatever ‖‖ is, because the constant
part of S1 commutes).

• With y2∂2
y :

‖[y2∂2
y ,S ·∇]~U‖L2 ≤‖y2∂2

yS1∂x
~U‖L2 +‖2y2∂yS1∂x∂y

~U‖L2

+‖y2∂2
yS2∂y

~U‖L2 +‖2y2∂yS2∂
2
y
~U‖L2

+‖2yS2∂
2
y
~U‖L2

≤‖y2∂2
yS1‖L2‖∂x

~U‖L∞ +2‖∂yS1‖L∞‖y2∂x∂y
~U‖L2

+‖y2∂2
yS2‖L2‖∂y

~U‖L∞ +2‖∂yS2‖L∞‖y2∂2
y
~U‖L2

+2‖S2‖L∞‖y∂y
~U‖L2

≤2(‖S2‖L∞ +‖∂yS2‖L∞)‖~U‖W̃ 4 +‖∂y
~U‖L∞‖S2‖W̃ 4

+‖∂x
~U‖L∞‖S1‖W̃ 4

≤C(‖~V ‖L∞ +‖∂y
~V ‖L∞)‖~U‖W̃ 4

+C(ε‖∂x
~U‖L∞ +‖∂y

~U‖L∞)‖~V ‖W̃ 4 .

• With y∂y:

‖[y∂y,S ·∇]~U‖L2 ≤‖y∂yS1∂x
~U‖L2 +‖y∂yS2∂y

~U‖L2 +‖S2∂y
~U‖L2

≤‖∂x
~U‖L∞‖S1‖W̃ 2 +2‖∂y

~U‖L∞‖S2‖W̃ 2

≤C(ε‖∂x
~U‖L∞ +‖∂y

~U‖L∞)‖~V ‖W̃ 2 .

• With y4:

‖[y4,S ·∇]~U‖L2 =‖4S2y
3~U‖L2

≤4‖S2‖L∞‖~U‖W̃ 3

≤C‖~V ‖L∞‖~U‖W̃ 3 .
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So

|(3.12)| ≤C(‖~V ‖L∞ +‖∂yV ‖L∞ +ε‖∂x
~V ‖L∞)‖~U‖2

W̃ 4

+C(‖∂y
~U‖L∞ +ε‖∂x

~U‖L∞)‖~V ‖W̃ 4‖~U‖W̃ 4 . (3.18)

The terms (3.13–3.16) are easy to estimate because the difference between H2
r (or H2

v )
and H2 contains derivatives and multiplications in y only up to order two. Indeed:

(H2
r −H2)

( ∞∑
n=0

fnφn

)

=f0φ0 +f1φ1 +
∞∑

n=0

fn+2(2n+1)2φn+2−
∞∑

n=0

fn(2n+1)2φn

=−8f1φ1−8
∞∑

n=0

fn+2(2n+5−2)φn+2

=−8f1φ1 +16(f−f0φ0−f1φ1)−8(Hf−f0φ0−3φ1)
=−8Hf +16f−8f0φ0.

Therefore

‖(H2
r −H2)(S ·∇r)‖L2 ≤C‖S ·∇r‖L2 +C‖H(S ·∇r)‖L2 ,

and since

‖H(S ·∇r)‖L2 =‖∂2
y(S ·∇r)−y2(S ·∇r)‖L2

≤‖(∂2
yS) ·∇r‖L2 +‖2(∂yS) ·∇∂yr‖L2 +‖S ·∇∂2

yr‖L2

+‖y2S ·∇r‖L2

≤C(‖∂y
~U‖L∞ +ε‖∂x

~U‖L∞)‖~V ‖W 2

+C(‖~V ‖L∞ +‖∂y
~V ‖L∞ +ε‖∂x

~V ‖L∞)‖~U‖W̃ 3 , (3.19)

we have

|(3.13)| ≤ C(‖∂y
~U‖L∞ +ε‖∂x

~U‖L∞)‖~V ‖W 2‖H2
r r‖L2

+C(‖~V ‖L∞ +‖∂y
~V ‖L∞ +ε‖∂x

~V ‖L∞)‖~U‖W̃ 3‖H2
r r‖L2 . (3.20)

Similarly,

|(3.15)| ≤ C(‖∂y
~U‖L∞ +ε‖∂x

~U‖L∞)‖~V ‖W 2‖H2
vv‖L2

+C(‖~V ‖L∞ +‖∂y
~V ‖L∞ +ε‖∂x

~V ‖L∞)‖~U‖W̃ 3‖H2
vv‖L2 . (3.21)

Because H is self-adjoint, we may write

(3.14)=
∫∫

H(S ·∇r)H(H2
r −H2)rdxdy

=
∫∫

H(S ·∇r)(−8H2r+16Hr−8f0φ0)dxdy.

Then we use the Cauchy-Schwarz inequality and the estimate (3.19), which gives

|(3.14)| ≤ C(‖∂y
~U‖L∞ +ε‖∂x

~U‖L∞)‖~V ‖W 2‖r‖W̃ 4

+C(‖~V ‖L∞ +‖∂y
~V ‖L∞ +ε‖∂x

~V ‖L∞)‖~U‖W̃ 3‖r‖W̃ 4 . (3.22)
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Similarly,

|(3.16)| ≤ C(‖∂y
~U‖L∞ +ε‖∂x

~U‖L∞)‖~V ‖W 2‖v‖W̃ 4

+C(‖~V ‖L∞ +‖∂y
~V ‖L∞ +ε‖∂x

~V ‖L∞)‖~U‖W̃ 3‖v‖W̃ 4 . (3.23)

Summing up, we have

‖H2~U(t)‖L2

≤ C(‖H2
r
~U(t)‖L2 +‖H2l(t)‖L2 +‖H2

vv(t)‖L2)

≤ C‖~U(0)‖W̃ 4 +C

∫ t

0

‖F (t′)‖W̃ 4 dt′

+C

∫ t

0

(‖~V (t′)‖L∞ +‖∂y
~V (t′)‖L∞ +ε‖∂x

~V (t′)‖L∞)‖~U(t′)‖W̃ 4 dt′

+C

∫ t

0

(‖∂y
~U(t′)‖L∞ +ε‖∂x

~U(t′)‖L∞)‖~V (t′)‖W̃ 4 dt′. (3.24)

By a proof of the same kind, only simpler, this last expression also bounds ‖∂4
x
~U(t)‖L2 ,

and therefore ‖~U(t)‖W̃ 4 .

3.2. Fast averaging. We apply the method of fast averaging introduced by
Schochet [25].

Using the projectors of Section 2.5, we define for any τ ∈R the exponential of τL
by

eτL ~U =
+∞∑

n=−1

+1∑
α=−1

eαiτ
√

2n+3P (n)
α

~U,

for all ~U ∈ (L2)3.

Proposition 3.1. There is a constant C such that ‖eτL ~U‖W̃ s ≤C‖~U‖W̃ s for any
τ ∈R, any s≥0 and any ~U ∈W̃ s.

Proof. The coefficients of (eτL ~U)1 in the decomposition (2.19) are

(eτL ~U)1k(n+2)

=

(
+1∑

α=−1

eαiτ
√

2n+3P (n)
α

~U

)1

k(n+2)

=

(
+1∑

α=−1

eαiτ
√

2n+3

(∫

R
~U(x,y′) ·~en

α (y′)dy′
)

(~en
α )1(y)

)

k(n+2)

=
+1∑

α=−1

eαiτ
√

2n+3

∫

R
(~en

α )1(y)φn+2(y)dy

∫

T

(∫

R
~U(x,y′) ·~en

α (y′)dy′
)

e−2πikxdx,

so

|(eτL ~U)1k(n+2)|≤C(|U1
k(n+2)|+ |U2

kn|+ |U3
k(n+1)|). (3.25)

The same calculation shows that the coefficients (eτL ~U)2kn and (eτL ~U)3k(n+1) are also
bounded by (3.25).
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Lemma 3.2. Let s≥0. If ~U ∈C([0,T ];W̃ s), the series

+∞∑
n=−1

+1∑
α=−1

eαi t
ε

√
2n+3P (n)

α
~U(t) (3.26)

converges to e
t
ε L ~U(t) in C([0,T ];W̃ s).

Proof. For any η >0, there exists N >0 such that

‖~U(t)−
N∑

n=−1

+1∑
α=−1

P (n)
α

~U(t)‖W̃ s ≤η

for all t∈ [0,T ], because ~U is uniformly continuous on [0,T ], and

‖e t
ε L ~U(t)−

N∑
n=−1

+1∑
α=−1

eαi t
ε

√
2n+3P (n)

α
~U(t)‖W̃ s

=‖e t
ε L(~U(t)−

N∑
n=−1

+1∑
α=−1

P (n)
α

~U(t))‖W̃ s

=‖~U(t)−
N∑

n=−1

+1∑
α=−1

P (n)
α

~U(t)‖W̃ s

by Proposition 3.1.

Lemma 3.3. Let s≥0. If ~U ∈C([0,T ];W̃ s), the series

+∞∑
n=−1

+1∑
α=−1

eαiτ
√

2n+3P (n)
α

~U(t)

converges to eτL ~U(t) in C([0,T ];W̃ s), uniformly with respect to τ ∈R.

Proof. Same as above.

Proposition 3.4. If ~U ∈C1([0,T ];L2)∩C([0,T ];W̃ 1), then

∂t(e
t
ε L ~U)=e

t
ε L(∂t

~U +
1
ε
L~U). (3.27)

Proof. The derivation of (3.26) term by term gives

+∞∑
n=−1

+1∑
α=−1

eαi t
ε

√
2n+3(P (n)

α ∂t
~U(t)+

1
ε
αi
√

2n+3P (n)
α

~U(t)). (3.28)

Since
+∞∑

n=−1

+1∑
α=−1

αi
√

2n+3P (n)
α

~U(t)=
+∞∑

n=−1

+1∑
α=−1

P (n)
α (L~U(t)),

the series (3.28) converges to e
t
ε L(∂t

~U + 1
ε L~U) in C([0,T ];L2), by Lemma 3.2, which

justifies the derivation term by term.
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By Proposition 3.4, the solutions of (2.24) satisfy

∂t(e
t
ε L ~Uε)=e

t
ε L(~Fε−S(ε, ~Uε) ·∇~Uε) (3.29)

and therefore ∂t(e
t
ε L ~Uε) is bounded in C([0,T ];W̃ 3), uniformly in ε. We apply the

following version of the Lions-Aubin compactness lemma with s=4 and s′=3.

Lemma 3.5. Let 0≤s′<s. If functions fε are bounded in C([0,T ];W̃ s)∩
Lip([0,T ];W̃ s′), uniformly in ε, there is a sequence (fε(n)), with ε(n)↘0, that con-
verges in C([0,T ];W̃ s′′) for all s′′<s, and the limit belongs to Lip([0,T ];W̃ s′).

Thus we get

e
t
ε L ~Uε→ ~U in C([0,T ];W̃ 3)⊂C([0,T ];L2∩Lip) (3.30)

as ε= ε(n)↘0 (eventually it will turn out that the limit ~U is unique, so there really
is no need to extract), and

~U ∈Lip([0,T ];W̃ 3)⊂Lip([0,T ];L2∩Lip). (3.31)

The equations satisfied by ~U are obtained as follows. Integrating (3.29) gives

e
t
ε L ~Uε(t)= ~U0,ε +

∫ t

0

e
t′
ε L(~Fε(t′)−S(ε, ~Uε(t′)) ·∇~Uε(t′))dt′. (3.32)

The left-hand side of (3.32) converges to ~U in C([0,T ];L2). By assumption, ~U0,ε→ ~U0

in L2 and ~Fε→ ~F in C([0,T ];L2). Since ~Uε−e−
·
ε L ~U→0 in C([0,T ];L2∩Lip), by (3.30)

and Lemma 3.1, S(ε, ~Uε) ·∇~Uε−S(0,e
·
ε L ~U) ·∇(e−

·
ε L ~U)→0 in C([0,T ];L2). Therefore,

~U(t)= ~U0 + lim
ε→0

∫ t

0

h(t′,τ)|τ= t′
ε

dt′ (3.33)

with

h(t,τ)=eτL(~F (t)−S(0,e−τL ~U(t)) ·∇(e−τL ~U(t)))

=eτL(~F (t)−S0
1(e−τL∂x

~U(t))−S2(e−τL ~U(t))∂y(e−τL ~U(t)). (3.34)

The limit in (3.33) can be evaluated thanks to a lemma by Schochet [26].

Lemma 3.6. Let h∈C([0,T ]×R;L2). Assume that ‖h(t1,τ)−h(t2,τ)‖L2 ≤C|t1− t2|,
uniformly in τ , and that

1
T1

∫ T0+T1

T0

h(t,τ)dτ→ [Mh](t) (3.35)

in C([0,T ];L2), uniformly in T0, as T1→+∞. Then
∫ t

0

h(t′,
t′

ε
)dt′→

∫ t

0

[Mh](t′)dt′ (3.36)

in C([0,T ];L2) as ε→0.

Proof. See [26, Lemma 3.2].
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Let us compute Mh when h given by (3.34). As

eτL ~F −eτL
N∑

n=−1

+1∑
α=−1

P (n)
α

~F →0

in C([0,T ]×R;L2), by Lemma 3.3,

1
T1

∫ T0+T1

T0

eτL ~F dτ− 1
T1

∫ T0+T1

T0

eτL
N∑

n=−1

+1∑
α=−1

P (n)
α

~F dτ

converges to zero in C([0,T ];L2), uniformly in T0 and T1. For each n and α,

1
T1

∫ T0+T1

T0

eτLP (n)
α

~F dτ =
1
T1

∫ T0+T1

T0

eαiτ
√

2n+3dτP (n)
α

~F

→
{

P
(n)
α

~F if α=0,
0 if α=±1,

as T1→∞, uniformly in T0. So

lim
T1→∞

1
T1

∫ T0+T1

T0

eτL ~F dτ =
+∞∑

n=−1

P
(n)
0

~F =P0
~F . (3.37)

In the same way,

lim
T1→∞

1
T1

∫ T0+T1

T0

eτLS0
1(e−τL∂x

~U)dτ

= lim
N ′→∞

N ′∑

n′=−1

+1∑

α′=−1

lim
T1→∞

1
T1

∫ T0+T1

T0

eτLS0
1(e−α′iτ

√
2n′+3P

(n′)
α′ ∂x

~U)dτ

= lim
N ′→∞

N ′∑

n′=−1

+1∑

α′=−1

lim
N→∞

N∑
n=−1

+1∑
α=−1

lim
T1→∞

1
T1

∫ T0+T1

T0

eiτ(α
√

2n+3−α′
√

2n′+3)dτP (n)
α S0

1P
(n′)
α′ ∂x

~U

=P0S
0
1(P0∂x

~U)+
+∞∑

n=−1

P
(n)
1 S0

1(P (n)
1 ∂x

~U)+
+∞∑

n=−1

P
(n)
−1 S0

1(P (n)
−1 ∂x

~U).

The computation can be continued a little further:

P
(n)
±1 S0

1P
(n)
±1 ∂x

~U = 〈∂x
~U ,~en

±1〉〈S0
1~e

n
±1,~e

n
±1〉~en

±1

= 〈S0
1~e

n
±1,~e

n
±1〉P (n)

±1 ∂x
~U ,

and

〈S0
1~e

n
±1,~e

n
±1〉=

1
2(2n+3)

∫

R



±i
√

n+2φn+2

±i
√

n+1φn

0


 ·



∓i
√

n+2φn+2

±i
√

n+1φn

∗


 dy

=
1

2(2n+3)
((n+2)〈φn+2,φn+2〉−(n+1)〈φn,φn〉)

=
1

2(2n+3)
.
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So

lim
T1→∞

1
T1

∫ T0+T1

T0

eτLS0
1(e−τL∂x

~U)dτ

=P0S
0
1(P0∂x

~U)+
+∞∑

n=−1

1
2(2n+3)

(P (n)
1 +P

(n)
−1 )∂x

~U . (3.38)

Finally,

lim
T1→∞

1
T1

∫ T0+T1

T0

eτLS2(e−τL ~U(t))∂y(e−τL ~U(t))dτ

= lim
N→∞

N∑

n′,n′′=−1

+1∑

α′,α′′=−1

lim
T1→∞

1
T1

∫ T0+T1

T0

e−iτ(α′
√

2n′+3+α′′
√

2n′′+3)

eτLS2(P
(n′)
α′

~U(t))∂y(P (n′′)
α′′

~U(t))dτ

= lim
N→∞

N∑

n′,n′′=−1

+1∑

α′,α′′=−1

lim
N ′→∞

N ′∑
n=−1

+1∑
α=−1

lim
T1→∞

1
T1

∫ T0+T1

T0

eiτ(α
√

2n+3−α′
√

2n′+3−α′′
√

2n′′+3)dτ

P (n)
α (S2(P

(n′)
α′

~U(t))∂y(P (n′′)
α′′

~U(t))),

after applying Lemma 3.3 several times. The factor α
√

2n+3−α′
√

2n′+3−
α′′
√

2n′′+3 in the exponential vanishes only in the following cases:

α=α′=α′′=0 (3.39)
α=0, α′=−α′′ 6=0, n′=n′′ (3.40)
α′=0, α=α′′ 6=0, n=n′′ (3.41)
α′′=0, α=α′ 6=0, n=n′. (3.42)

The terms corresponding to (3.39) and (3.40), however, don’t contribute anything to
the limit. Because the third component of P

(m)
0 applied to something is zero, for all

m, those corresponding to (3.39) are all identically zero:

P
(n)
0 (S2(P

(n′)
0

~U)∂y(P (n′′)
0

~U))=P
(n)
0







0 0 ∗
0 0 ∗
∗ ∗ ∗


∂y



∗
∗
0







=P
(n)
0




0
0
∗


=0.

On the other hand, those corresponding to (3.40) cancel out by pairs, because

P
(n)
0 (S2(P

(n′)
±1

~U)∂y(P (n′′)
∓1

~U))= 〈~U ,~en′
1 〉〈~U ,~en′

−1〉P (n)
0 (S2(~en′

±1)∂y~e
n′
∓1)

=
±i

8
√

2n+3
〈~U ,~en′

1 〉〈~U ,~en′
−1〉

P
(n)
0



−4
√

n+2φn+1φ
′
n+2 +(

√
n+2φn+2−

√
n+1φn)φ′n+1

4
√

n+1φn+1φ
′
n +(

√
n+2φn+2−

√
n+1φn)φ′n+1

∗


.
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Hence,

lim
T1→∞

1
T1

∫ T0+T1

T0

eτLS2(e−τL ~U)∂y(e−τL ~U)dτ

=
+∞∑

n=−1

P
(n)
1 (S2(P0

~U)∂y(P (n)
1

~U)+S2(P
(n)
1

~U)∂y(P0
~U))

+
+∞∑

n=−1

P
(n)
−1 (S2(P0

~U)∂y(P (n)
−1

~U)+S2(P
(n)
−1

~U)∂y(P0
~U))

=
+∞∑

n=−1

(〈S2(P0
~U)∂y~e

n
1 +S2(~en

1 )∂yP0
~U ,~en

1 〉P (n)
1

~U

+〈S2(P0
~U)∂y~e

n
−1 +S2(~en

−1)∂yP0
~U ,~en

−1〉P (n)
−1

~U . (3.43)

4. Concluding discussion
The theorems and proofs presented above pave the way for a rigorous PDE anal-

ysis of both the equatorial shallow water equations and the equatorial Boussinesq
equations in other suitable physically relevant singular limit regimes [18, 20, 2]. These
results will be reported elsewhere by the authors in the near future. The extension of
the present results to include the active nonlinear effects of moisture [7] requires new
a priori estimates beyond those developed in [7] and the present paper.

As the limit system (LW) is linear, its solutions are global in time and so it is
expected that, given any time T >0, the solutions of (SWε) exist on [0,T ] for all ε
smaller than some ε0 = ε0(T ). When the initial data are well prepared, a reasoning
by Iftimie [9] (see also [4]), solving this problem for the quasigeostrophic limit, can be
adapted; it yields 1/ε0∼ exp(expCT ) assuming that the oscillating parts of the data
are of order ε. When the initial data are not well prepared, the method of Schochet
[25, Theorem 2.3] still allows us to prove that the times of existence of (SWε) tend to
infinity, but then we have no estimate on ε0. These results will be included in another
paper.

Finally, it is an interesting challenge to see whether there is a direct proof of
convergence in the weak topology through only the basic L2 energy estimate alone.
Masmoudi and Lions [14, 22] (see also [13]) have obtained such results for the com-
pressible to incompressible fluid limit with fixed viscosity under suitable hypotheses.
However, in the physical problems of tropical meteorology and oceanography, the
dissipative effects are (undifferentiated) Rayleigh damping and friction [16, 7] so com-
pletely different ideas are needed; on the other hand, as discussed here, the formal
limit equation is linear so this might help such a strategy in the weak topology.
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