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A LOGARITHMIC FOURTH-ORDER PARABOLIC EQUATION AND
RELATED LOGARITHMIC SOBOLEV INEQUALITIES∗

JEAN DOLBEAULT† , IVAN GENTIL‡ , AND ANSGAR JÜNGEL§

Abstract. A logarithmic fourth-order parabolic equation in one space dimension with periodic
boundary conditions is studied. This equation arises in the context of fluctuations of a stationary
nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of
global-in-time non-negative weak solutions and some regularity results are shown. Furthermore, we
prove that the solution converges exponentially fast to its mean value in the “entropy norm” and in
the Fisher information, using a new optimal logarithmic Sobolev inequality for higher derivatives. In
particular, the rate is independent of the solution and the constant depends only on the initial value
of the entropy.
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1. Introduction
This paper is concerned with the study of some properties of weak solutions

to a nonlinear fourth-order equation with periodic boundary conditions and related
logarithmic Sobolev inequalities. More precisely, we consider the problem

ut +(u(logu)xx)xx =0, u(·,0)=u0≥0 in S1, (1.1)

where S1 is the one-dimensional torus parametrized by a variable x∈ [0,L] for some
fixed L>0.

Recently equation (1.1) has attracted the interest of many mathematicians since it
possesses some remarkable properties. For instance, it is a one-homogeneous equation
which is a simple example of a generalization of the heat equation to higher-order
operators. The solutions are non-negative and there are several Lyapunov functionals.
A formal calculation shows that the entropy is non-increasing:

d

dt

∫

S1
u(logu−1)dx+

∫

S1
u |(logu)xx|2dx=0. (1.2)

Another example of a Lyapunov functional is
∫

S1(u− logu)dx which formally yields

d

dt

∫

S1
(u− logu)dx+

∫

S1
|(logu)xx|2dx=0. (1.3)
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The last property is used to prove that solutions of (1.1) are non-negative. Indeed,
a Poincaré inequality shows that logu is bounded in H2(S1) and hence in L∞(S1),
which implies that u≥0 in S1×(0,∞). We prove this result rigorously in section 2.
Notice that the equation is of higher order and no maximum principle argument can
be employed. More Lyapunov functionals of (1.1) have been found in [4, 5]; for a
systematic study we refer to [12].

Equation (1.1) has been first derived in the context of fluctuations of a stationary
non-equilibrium interface [8]. It also appears as a zero-temperature zero-field approx-
imation of the quantum drift-diffusion model for semiconductors [1] which can be
derived by a quantum moment method from a Wigner-BGK equation [7]. The first
analytical result has been presented in [4]; there the existence of local-in-time clas-
sical solutions with periodic boundary conditions has been proved. A global-in-time
existence result with homogeneous Dirichlet-Neumann boundary conditions has been
obtained in [13]. However, up to now, no global-in-time existence result is available
for the problem (1.1). Our proof is an adaption of the method of [13]; we present the
complete proof since we need the approximation scheme for the subsequent sections.

The long-time behavior of solutions has been studied in [5] using periodic bound-
ary conditions under restrictive regularity conditions on the initial data, in [15] with
homogeneous Dirichlet-Neumann boundary conditions and finally, in [11] employing
non-homogeneous Dirichlet-Neumann boundary conditions. In particular, it has been
shown that the solutions converge exponentially fast to their steady state in various
norms and, see [13], in terms of the entropy. The decay rate has been numerically
computed in [6]. We also mention the work [14] in which a positivity-preserving
numerical scheme for the quantum drift-diffusion model has been proposed.

Concerning the multi-dimensional problem, there exists only the work [10] in
which the existence of global-in-time weak solutions has been proved.

In the last years the question of non-negative or positive solutions of fourth-
order parabolic equations has also been investigated in the context of lubrication-type
equations, like the thin film equation

ut +(f(u)uxxx)x =0

(see, e.g., [2, 3]), where typically, f(u)=uα for some α>0. This equation is of de-
generate type which makes the analysis easier than for (1.1), at least concerning the
positivity property. Notice that (1.1) is not of degenerate type.

In this paper we show the following results. First, the existence of global-in-
time weak solutions is shown under a rather weak condition on the initial datum
u0. We only assume that u0≥0 is measurable and such that

∫
S1(u0− logu0)dx<∞.

Compared to [4], we do not impose any smallness condition on u0. We are able
to prove that the solution is non-negative. The existence proof is based on a semi-
discrete formulation of (1.1). The semi-discrete problem has a strictly positive and
smooth solution. This property enables us to prove the long-time behavior of solutions
rigorously.

Our second result is concerned with regularity issues. We prove that, if
√

u0∈
H1(S1),

√
u∈L∞(0,T ;H1(S1))∩L2(0,T ;H3(S1)) for all T >0.

Although one might obtain more regularity results from this (see Remark 3.4), we are
interested in applying this property in order to show an exponential decay rate of the
Fisher information

∫
S1 |(

√
u)x(·,t)|2dx.
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The third and main result of this paper is the exponential time decay of the
solutions, i.e., we show that the solution constructed in Theorem 2.1 converges expo-
nentially fast to its mean value ū=

∫
u(x,t)dx/L: for all t>0,

∫

S1
u(x,t)log

(
u(x,t)

ū

)
dx≤e−M1t

∫

S1
u0 log

(u0

ū

)
dx, (1.4)

∫

S1
|(√u)x(·,t)|2dx≤e−M2t

∫

S1
|(√u0)x|2dx, (1.5)

where M1 =32π4/L4, M2 =16µπ4/L4, and µ=1.646169... The constant M1 is easily
obtained by linearization in the asymptotic regime. It also shows up in [5] (as the
decay rate in a different norm) but only in the more restrictive H1 setting. In [5], an
exponential convergence rate in the Lp norm has been given. Then, in principle, the
decay rate in the “entropy norm” (1.4) could be derived by letting p→1. However,
the decay rate of [5] contains the factor p−1 which vanishes in the limit such that no
decay rate in the “entropy norm” can be deduced. In [15], the exponential decay of
the relative entropy is established, but with a rate which depends on the initial data.
Here, M1 and M2 are independent of the solution and the constant on the right-hand
side of (1.4) is optimal; it is simply the initial value of the relative entropy. Thus,
both decay results (1.4) and (1.5) are new.

Our proof is based on the entropy–entropy production method. For the proof
of (1.4), we show that the entropy production term

∫
u |(logu)xx|2dx in (1.2) can be

bounded from below by the entropy itself yielding

d

dt

∫

S1
u log

(u

ū

)
dx+M1

∫

S1
u log

(u

ū

)
dx≤0.

Then Gronwall’s inequality gives (1.4). For the proof of (1.5) we first need to show
that the following entropy–entropy production inequality holds for some µ>0,

d

dt

∫

S1
|(√u)x(·,t)|2dx+µ

∫

S1
|(√u)xxx|2dx≤0,

and then we apply the Poincaré inequality and Gronwall’s lemma. The proof of the
above inequality is based on the algorithmic entropy construction method recently
developed in [12].

The lower bound for the entropy production in (1.2) is obtained through a log-
arithmic Sobolev inequality in S1. We show (see Theorem 4.1) that any function
u∈Hn(S1) (n∈N) satisfies

∫

S1
u2 log

(
u2

‖u‖2L2(S1)

)
dx≤2

(
L

2π

)2n∫

S1

∣∣∣u(n)
∣∣∣
2

dx, (1.6)

where ‖u‖2L2(S1) =
∫

u2dx/L, and the constant is optimal. As already mentioned in
the case n=2, the proof of this result uses the entropy–entropy production method.

Entropy estimates are interesting for the following reason. The L1 norm of a
solution u to (1.1) is preserved by the evolution. It is therefore natural to look for a
convergence of u to its average ū measured in L1 rather than in Lp, p>1. As noted
in many papers, the limit of such Lp estimates as p→1, p>1, is the entropy rather
than the L1 norm itself. The convergence of u to ū is then a consequence of the
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standard Csiszár-Kullback inequality. Exactly as for the heat equation, p=1 looks
as a threshold from the point of view of the existence theory and for the optimality
of the estimates on the asymptotic behaviour. This work is a step towards a deeper
understanding of both entropy methods and higher-order equations.

The paper is organized as follows. In section 2 the existence of weak solutions is
proved. Section 3 is concerned with the regularity result. Then, section 4 is devoted
to the proof of the optimal logarithmic Sobolev inequality (1.6). Finally, in section 5,
the exponential time decay (1.4) and (1.5) are shown.

2. Existence of solutions

Theorem 2.1. Let u0 :S1→R be a nonnegative measurable function such that∫
S1(u0− logu0)dx<∞ and let T >0. Then there exists a global weak solution u of

(1.1) satisfying

u∈L5/2(0,T ;W 1,1(S1))∩W
1,10/9
loc (0,T ;H−2(S1)),

u≥0 in S1×(0,∞), logu∈L2(0,T ;H2(S1)),

and for all T >0 and all smooth test functions φ,
∫ T

0

〈ut,φ〉H−2,H2dt+
∫ T

0

∫

S1
u(logu)xxφxxdxdt=0.

The initial datum is satisfied in the sense of H−2(S1) :=(H2(S1))∗.
In order to prove this theorem, we first transform (1.1) by introducing the new

variable u=ey as in [13]. Then (1.1) becomes

(ey)t +(eyyxx)xx =0, y(·,0)=y0 in S1, (2.1)

where y0 =logu0. In order to prove the existence of solutions to this equation, we
semi-discretize (2.1) in time. For this, let T >0, and let 0= t0 <t1 < ···<tN =T with
tk =kτ be a partition of [0,T ] with τ =T/N . Furthermore, let yk−1∈H2(S1) with∫

exp(yk−1)dx=
∫

u0dx and
∫

(exp(yk−1)−yk−1)dx≤∫
(u0− logu0)dx given. Then we

solve recursively the elliptic equations

1
τ

(eyk −eyk−1)+(eyk(yk)xx)xx =0 in S1. (2.2)

Lemma 2.2. There exists a solution yk ∈C∞(S1) of (2.2).

Proof. Set z =yk−1. We consider first for given ε>0 the equation

(eyyxx)xx−εyxx +εy =
1
τ

(ez−ey) in S1. (2.3)

In order to prove the existence of a solution to this approximate problem we employ
the Leray-Schauder theorem. For this, let w∈H1(S1) and σ∈ [0,1] be given, and
consider

a(y,φ)=F (φ) for all φ∈H2(S1), (2.4)

where for all y,φ∈H2(S1),

a(y,φ)=
∫

S1
(ewyxxφxx +εyxφx +εyφ)dx, F (φ)=

σ

τ

∫

S1
(ez−ew)φdx.
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Clearly, a(·,·) is bilinear, continuous and coercive on H2(S1) and F is linear and
continuous on H2(S1). (Here we need the additional ε-terms.) Therefore, the Lax-
Milgram lemma provides the existence of a solution y∈H2(S1) of (2.4). This defines
a fixed-point operator S :H1(S1)× [0,1]→H1(S1), (w,σ) 7→y. It holds S(w,0)=0 for
all w∈H1(S1). Moreover, the functional S is continuous and compact (since the
embedding H2(S1)⊂H1(S1) is compact). We need to prove a uniform bound for all
fixed points of S(·,σ).

Let y be a fixed point of S(·,σ), i.e., y∈H2(S1) solves for all φ∈H2(S1)
∫

S1
(eyyxxφxx +εyxφx +εyφ)dx=

σ

τ

∫

S1
(ez−ey)φdx. (2.5)

Using the test function φ=1−e−y yields
∫

S1
y2

xxdx−
∫

S1
yxxy2

xdx+ε

∫

S1
e−yy2

xdx+ε

∫

S1
y(1−e−y)dx

=
σ

τ

∫

S1
(ez−ey)(1−e−y)dx.

The second term on the left-hand side vanishes since yxxy2
x =(y3

x)x/3. The third
and fourth term on the left-hand side are non-negative. Furthermore, with the in-
equality ex≥1+x for all x∈R,

(ez−ey)(1−e−y)≤ (ez−z)−(ey−y).

We obtain

σ

τ

∫

S1
(ey−y)dx+

∫

S1
y2

xxdx≤ σ

τ

∫

S1
(ez−z)dx.

As z is given, this provides a uniform bound for yxx in L2(S1). Moreover, the in-
equality ex−x≥|x| for all x∈R implies a (uniform) bound for y in L1(S1) and for∫

ydx. Now we use the Poincaré inequality

∥∥∥u−
∫

S1
u

dx

L

∥∥∥
L2(S1)

≤ L

2π
‖ux‖L2(S1)≤

(
L

2π

)2

‖uxx‖L2(S1) for all u∈H2(S1).

Recall that ‖u‖2L2(S1) =
∫

S1 u2dx/L. Then the above estimates provide a (uniform in
ε) bound for y and yx in L2(S1) and thus for y in H2(S1). This shows that all fixed
points of the operator S(·,σ) are uniformly bounded in H1(S1). We notice that we
even obtain a uniform bound for y in H2(S1) which is independent of ε. The Leray-
Schauder fixed-point theorem finally ensures the existence of a fixed point of S(·,1),
i.e., of a solution y∈H2(S1) to (2.3).

Next we show that the limit ε→0 can be performed in (2.3) and that the limit
function satisfies (2.2). Let yε be a solution of (2.3). The above estimate shows
that yε is bounded in H2(S1) uniformly in ε. Thus there exists a subsequence (not
relabeled) such that, as ε→0,

yε ⇀y weakly in H2(S1),
yε→y strongly in H1(S1) and in L∞(S1).

We conclude that eyε →ey in L2(S1) as ε→0. In particular, eyε(yε)xx ⇀eyyxx weakly
in L1(S1). The limit ε→0 in (2.5) can be performed proving that y solves (2.2).
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Moreover, using the test function φ≡1 in the weak formulation of (2.2) shows that∫
exp(yk)dx=

∫
exp(yk−1)dx=

∫
u0dx.

It remains to prove that the solution yk of (2.2) lies in C∞(S1). Writing u=eyk ,
we can reformulate (2.2) as

uxxxx =
(

2u2
xuxx

u
− u3

x

u2

)

x

− 1
τ

(u−eyk−1). (2.6)

Since yk ∈H2(S1) ↪→W 1,∞(S1), also u∈H2(S1) ↪→W 1,∞(S1) and u is strictly positive
in S1. In particular, 1/u∈L∞(S1). Thus u2

xuxx/u∈L2(S1) and u3
x/u2∈L∞(S1). By

(2.6) this implies that uxxxx∈H−1(S1) and therefore u∈H3(S1). Again by (2.6) this
yields uxxxx∈L2(S1) and u∈H4(S1). Continuing this procedure leads to u∈Hn(S1)
for all n∈N and hence u∈C∞(S1). Finally, since u is strictly positive, this shows
that yk =logu∈C∞(S1).

For the proof of Theorem 2.1 we need further uniform estimates for the finite
sequence (y(N)). For this, let y(N) be defined by y(N)(x,t)=yk(x) for x∈S1, t∈
(tk−1,tk], 1≤k≤N . Then we have shown in the proof of Lemma 2.2 that there exists
a constant c>0 depending neither on τ nor on N such that

‖y(N)‖L2(0,T ;H2(S1)) +‖y(N)‖L∞(0,T ;L1(S1)) +‖ey(N)‖L∞(0,T ;L1(S1))≤ c. (2.7)

To pass to the limit in the approximating equation, we need further compactness
estimates on ey(N)

. Here we proceed similarly as in [11].

Lemma 2.3. The following estimates hold:

‖y(N)‖L5/2(0,T ;W 1,∞(S1)) +‖ey(N)‖L5/2(0,T ;W 1,1(S1))≤ c, (2.8)

where c>0 does not depend on τ and N .

Proof. We obtain from the Gagliardo-Nirenberg inequality and (2.7):

‖y(N)‖L5/2(0,T ;L∞(S1))≤ c‖y(N)‖3/5
L∞(0,T ;L1(S1))‖y(N)‖2/5

L1(0,T ;H2(S1))≤ c,

‖y(N)
x ‖L5/2(0,T ;L∞(S1))≤ c‖y(N)‖1/5

L∞(0,T ;L1(S1))‖y(N)‖4/5
L2(0,T ;H2(S1))≤ c.

This implies the first bound in (2.8). The second bound follows from the first one and
(2.7):

‖ey(N)‖L5/2(0,T ;W 1,1(S1))

≤c
(
‖ey(N)‖L5/2(0,T ;L1(S1)) +‖(ey(N)

)x‖L5/2(0,T ;L1(S1))

)

≤c‖ey(N)‖L5/2(0,T ;L1(S1)) +c‖ey(N)‖L∞(0,T ;L1(S1))‖y(N)
x ‖L5/2(0,T ;L∞(S1))

≤c.

The lemma is proved.

We also need an estimate for the discrete time derivative. We introduce the shift
operator σN by (σN (y(N)))(x,t)=yk−1(x) for x∈S1, t∈ (tk−1,tk].

Lemma 2.4. The following estimate holds:

‖ey(N)−eσN (y(N))‖L10/9(0,T ;H−2(0,1))≤ cτ, (2.9)
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where c>0 does not depend on τ and N .

Proof. From (2.2) and Hölder’s inequality we obtain

1
τ
‖ey(N)−eσN (y(N))‖L10/9(0,T ;H−2(S1))≤‖ey(N)

y(N)
xx ‖L10/9(0,T ;L2(S1))

≤‖ey(N)‖L5/2(0,T ;L∞(S1))‖y(N)
xx ‖L2(0,T ;L2(S1)),

and the right-hand side is uniformly bounded by (2.7) and (2.8) since W 1,1(0,1) ↪→
L∞(0,1).

Now we are able to prove Theorem 2.1, i.e. to perform the limit τ→0 in (2.2).
From estimate (2.7) the existence of a subsequence of y(N) (not relabeled) follows
such that, as N→∞ or, equivalently, τ→0,

y(N) ⇀y weakly in L2(0,T ;H2(S1)). (2.10)

Since the embedding W 1,1(S1)⊂L2(S1) is compact it follows from the second bound
in (2.8) and from (2.9) by an application of Aubin’s lemma [17, Thm. 5] that, up to
the extraction of a subsequence, ey(N) →g strongly in L5/2(0,T ;L2(S1)).

We claim that g =ey. For this, let z be a smooth function. Since ey(N) →g
strongly in L2(0,T ;L2(S1)) and y(N) ⇀y weakly in L2(0,T ;L2(S1)), we can pass to
the limit N→∞ in

0≤
∫ T

0

∫

S1
(ey(N)−ez)(y(N)−z)dxdt

to obtain the inequality

0≤
∫ T

0

∫

S1
(g−ez)(y−z)dxdt.

The monotonicity of x 7→ex finally yields g =ey.
Noticing that the uniform estimate (2.9) implies, for a subsequence,

1
τ

(
ey(N)−eσN (y(N))

)
⇀ (ey)t weakly in L10/9(0,T ;H−2(S1)), (2.11)

we can pass to the limit τ→0 in (2.2), using the convergence results (2.10)-(2.11),
which concludes the proof of Theorem 2.1.

3. Regularity of solutions

Theorem 3.1. Let u0∈H1(S1) satisfy the assumptions of Theorem 2.1. Then the
solution constructed in Theorem 2.1 satisfies the regularity properties

√
u∈L2(0,T ;H3(S1))∩L∞(0,T ;H1(S1)). (3.1)

The theorem is an immediate consequence of the following lemma and the con-
vergence properties shown in the previous section.

Lemma 3.2. Let yk ∈C∞(S1) be the solution of (2.2) constructed in Theorem 2.1
and set uk =eyk , k =1,... ,N . Then

1
τ

∫

S1

(|(√uk)x|2−|(√uk−1)x|2
)
dx+µ

∫

S1
|(√uk)xxx|2dx≤0,
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where µ=(103+
√

241)/72=1.646169... is the largest root of 36x2−103x+72=0.

Proof. The proof is based on the algorithmic entropy construction method re-
cently developed in [12]. The main idea of this method is to reformulate the task of
proving entropy dissipation employing integration by parts as a decision problem for
polynomial systems.

The functions uk =eyk and uk−1 =eyk−1 are strictly positive and smooth and
satisfy

1
τ

(uk−uk−1)+(uk(loguk)xx)xx =0 in S1. (3.2)

We multiply this equation by u
−1/2
k (u1/2

k )xx, integrate over S1, and integrate by parts
the second term:

0=
1
τ

∫

S1
u
−1/2
k (uk−uk−1)(u

1/2
k )xxdx

−
∫

S1

(
uk(loguk)xx

)
x

(
u
−1/2
k (u1/2

k )xx

)
x
dx=: I1−I2.

Integrating by parts once, an elementary computation shows that

I1 =−1
τ

∫

S1

(|(u1/2
k )x|2−|(u1/2

k−1)x|2
)
dx− 1

4τ

∫

S1
uk−1|(loguk− loguk−1)x|2dx

≤−1
τ

∫

S1

(|(√uk)x|2−|(√uk−1)x|2
)
dx.

We claim that the integral I2 can be estimated as

I2≥µ

∫

S1
|(√uk)xxx|2dx, (3.3)

where µ is as in the statement of the lemma. We write, omitting the index k in the
following,

I2 =
∫

S1
u
[1
2

(ux

u

)6

−2
(ux

u

)4 uxx

u
+

(ux

u

)3 uxxx

u
+2

(ux

u

)2(uxx

u

)2

−2
ux

u

uxx

u

uxxx

u
+

1
2

(uxxx

u

)2]
dx.

Moreover, we have

J =
∫

S1
(
√

u)2xxxdx=
∫

S1
u
[ 9
64

(ux

u

)6

− 9
16

(ux

u

)4 uxx

u
+

3
8

(ux

u

)3 uxxx

u

+
9
16

(ux

u

)2(uxx

u

)2

− 3
4

ux

u

uxx

u

uxxx

u
+

1
4

(uxxx

u

)2]
dx.

In order to show that inequality (3.3) holds, we need to perform suitable integrations
by parts. It turns out that only the following integration by parts is useful:

0=
∫

S1

(u5
x

u4

)
x
dx=

∫

S1
u
[
−4

(ux

u

)6

+5
(ux

u

)4 uxx

u

]
dx=J1,

0=
∫

S1

(u3
xuxx

u3

)
x
dx=

∫

S1
u
[
−3

(ux

u

)4 uxx

u
+

(ux

u

)3 uxxx

u
+3

(ux

u

)2(uxx

u

)2]
dx=J2.
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Then we can write the integral as I2 = I2 +c1J1 +c2J2 for arbitrary constants c1,
c2∈R. We wish to find µ>0 and c1, c2∈R such that I2 +c1J1 +c2J2≥µJ . For
this task we identify the derivative ∂j

xu/u with the real variable ξj and deal with the
polynomials

P (ξ)=
1
2
ξ6
1−2ξ4

1ξ2 +ξ3
1ξ3 +2ξ2

1ξ2
2−2ξ1ξ2ξ3 +

1
2
ξ2
3 , which corresponds to I2,

E(ξ)=
9
64

ξ6
1−

9
16

ξ4
1ξ2 +

3
8
ξ3
1ξ3 +

9
16

ξ2
1ξ2

2−
3
4
ξ1ξ2ξ3 +

1
4
ξ2
3 , which corresponds to J,

T1(ξ)=−4ξ6
1 +5ξ4

1ξ2, which corresponds to J1,

T2(ξ)=−3ξ4
1ξ2 +ξ3

1ξ3 +3ξ2
1ξ2

2 , which corresponds to J2.

Thus we wish to find constants µ>0 and c1, c2∈R such that

(P −µE +c1T1 +c2T2)(ξ)≥0 for all ξ =(ξ1,ξ2,ξ3)>∈R3,

which corresponds to a pointwise estimate of the integrand of I2. The determination of
all parameters such that the above inequality is true is called a quantifier elimination
problem. In this situation it can be explicitly solved.

The above inequality is equivalent to

a1ξ
6
1 +a2ξ

4
1ξ2 +a3ξ

3
1ξ3 +a4ξ

2
1ξ2

2 +a5ξ1ξ2ξ3 +a6ξ
2
3 ≥0 for all ξ1,ξ2,ξ3∈R,

where

a1 =
1
2
− 9

64
µ−4c1, a2 =−2+

9
16

µ+5c1−3c2, a3 =1− 3
8
µ+c2, (3.4)

a4 =2− 9
16

µ+3c2, a5 =−2+
3
4
µ, a6 =

1
2
− 1

4
µ. (3.5)

Now, we recall (a slight generalization of) Lemma 12 of [12]:

Lemma 3.3. [12] Let the real polynomial

P (ξ1,ξ2,ξ3)=a1ξ
6
1 +a2ξ

4
1ξ2 +a3ξ

3
1ξ3 +a4ξ

2
1ξ2

2 +a5ξ1ξ2ξ3 +a6ξ
2
3

be given and let a6 >0. Then the statement

P (ξ1,ξ2,ξ3)≥0 for all ξ1,ξ2,ξ3∈R
is equivalent to

either (i) 4a4a6−a2
5 =2a2a6−a3a5 =0 and 4a1a6−a2

3≥0, (3.6)

or (ii) 4a4a6−a2
5 >0 and 4a1a4a6−a1a

2
5−a2

2a6−a2
3a4 +a2a3a5≥0. (3.7)

In both cases, the condition a6 >0, which is equivalent to µ<2, has to be satisfied.
The first two conditions of case (i) give

c2 =
µ

24(2−µ)
, c1 =

µ(3µ−8)
240(2−µ)2

,

and the third one is equivalent to

−36µ2 +103µ−72≥0.



284 A LOGARITHMIC FOURTH-ORDER PARABOLIC EQUATION

This polynomial has two real roots,

103−√241
72

=1.214942... and
103+

√
241

72
=1.646169...

Thus we obtain the requirement µ≤ (103+
√

241)/72 in case (i).
It can be seen that case (ii) gives a stronger condition on µ; we leave the details

to the reader.

Remark 3.4. From Theorem 3.1 it follows that

u∈L∞(S1×(0,∞))∩H1(0,T ;H−1(S1)) for all T >0.

Indeed, we know that u(N)∈L∞(0,T ;H1(S1))∩L2(0,T ; H3(S1)). Thus, the first prop-
erty is a consequence of the embedding H1(S1) ↪→L∞(S1) in one space dimension.
Furthermore, we obtain from (3.2)

1
τ

(
u(N)−σN (u(N))

)
=−2

(√
u(N)(

√
u(N))xxx

−(
√

u(N))x(
√

u(N))xx

)
x
∈L2(0,T ;H−1(S1)).

Then the limit N→∞ shows the claim.

4. Optimal logarithmic Sobolev inequality on S1

The main goal of this section is the proof of a logarithmic Sobolev inequality
for periodic functions. The following theorem is due to Weissler and Rothaus (see
[9, 16, 18]). We give a simple proof using the entropy–entropy production method.
Recall that S1 is parametrized by 0≤x≤L.

Theorem 4.1. Let H1 ={u∈H1(S1) :ux 6≡0 a.e.} and ‖u‖2L2(S1) =
∫

S1 u2dx/L. Then

inf
u∈H1

∫
S1 u2

xdx∫
S1 u2 log(u2/‖u‖2L2(S1))dx

=
2π2

L2
. (4.1)

We recall that the optimal constant in the usual Poincaré inequality is L/2π, i.e.

inf
v∈H1

∫
S1 v2

xdx∫
S1(v− v̄)2dx

=
4π2

L2
, (4.2)

where v̄ =
∫

S1 vdx/L.

Proof. Let I denote the value of the infimum in (4.1). First we prove that

I≤ 1
2

inf
v∈H1

∫
S1 v2

xdx∫
S1(v− v̄)2dx

, (4.3)

since then the upper bound I≤2π2/L2 follows directly from (4.2). Let v∈H1 and set
u=uε =1+ε(v− v̄). Without loss of generality, we may replace v− v̄ by v such that∫

S1 vdx=0. Then u2 =1+2εv+ε2v2 and the expansion log(1+x)=x−x2/2+O(x3)
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for x→0 yields
∫

S1
u2 log(u2)dx=

∫

S1
(1+2εv+ε2v2)log(1+2εv+ε2v2)dx

=3ε2

∫

S1
v2dx+O(ε3),

∫

S1
u2dxlog

(
1
L

∫

S1
u2dx

)
=

∫

S1
(1+ε2v2)dxlog

(
1
L

∫

S1
(1+ε2v2)dx

)

=ε2

∫

S1
v2dx+O(ε4) (ε→0).

Taking the difference of the two expansions gives
∫

S1
u2 log

(
u2

∫
S1 u2dx/L

)
dx=2ε2

∫

S1
v2dx+O(ε3).

Therefore, using
∫

S1 u2
xdx=ε2

∫
S1 v2

xdx,
∫

S1 u2
xdx∫

S1 u2 log(u2/‖u‖2L2(S1))dx
=

1
2

∫
S1 v2

xdx∫
S1 v2dx

+O(ε).

In the limit ε→0 we obtain (4.3).
In order to prove the lower bound for the infimum we use the entropy–entropy

production method. For this we consider the heat equation

vt =vxx in S1×(0,∞), v(·,0)=u2 in S1

for some function u∈H1(S1). We assume for simplicity that ‖u‖2L2(S1) =
∫

S1 u2dx/L=
1. Then

d

dt

∫

S1
v logvdx=−4

∫

S1
w2

xdx,

where the function w :=
√

v solves the equation wt =wxx +w2
x/w. Now, the time

derivative of

f(t)=
∫

S1
w2

xdx− 2π2

L2

∫

S1
w2 log(w2)dx

equals

f ′(t)=−2
∫

S1

(
w2

xx +
w4

x

3w2
− 4π2

L2
w2

x

)
dx≤−2

3

∫

S1

w4
x

w2
dx≤0,

where we have used the Poincaré inequality
∫

S1
w2

xdx≤ L2

4π2

∫

S1
w2

xxdx. (4.4)

This shows that f(t) is non-increasing and moreover, for any u∈H1(S1),

∫

S1
u2

xdx− 2π2

L2

∫

S1
u2 log

(
u2

‖u‖2L2(S1)

)
dx=f(0)≥f(t).
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As the solution v(·,t) of the above heat equation and hence w(·,t) converges to zero
in appropriate Sobolev norms as t→+∞, we conclude that f(t)→0 as t→+∞. This
implies I≥2π2/L2.

Remark 4.2. Similar results as in Theorem 4.1 can be obtained for the so-called
convex Sobolev inequalities. Let σ(v)=(vp− v̄p)/(p−1), where v̄ =

∫
S1 vdx/L for 1<

p≤2. We claim that

inf
v∈H1

∫
S1 σ′′(v)v2

xdx∫
S1 σ(v)dx

=
8π2

L2
.

As in the logarithmic case, the lower bound is achieved by an expansion around 1
and the usual Poincaré inequality. On the other hand, let v be a solution of the heat
equation. Then

d

dt

∫

S1
σ(v)dx=−4

p

∫

S1
w2

xdx

where w=vp/2 solves

wt =wxx +
(

2
p
−1

)
w2

x

w
, (4.5)

and, using (4.4),

d

dt

∫

S1

(
w2

x−
2π2p

L2
σ(v)

)
dx=−2

∫

S1

(
w2

xx−
4π2

L2
w2

x +
(

2
p
−1

)
w4

x

3w2

)
dx

≤−2
3

(
2
p
−1

)∫

S1

w4
x

w2
dx≤0.

This proves the upper bound

p

4

∫

S1
σ′′(v)v2

xdx=
∫

S1
w2

xdx≥ 2π2p

L2

∫

S1
σ(v)dx.

With the notation v =u2/p this result takes the more familiar form

1
p−1

[∫

S1
u2dx−L

(
1
L

∫

S1
u2/pdx

)p]
≤ L2

2π2p

∫

S1
u2

xdx for all u∈H1(S1). (4.6)

The logarithmic case corresponds to the limit p→1 whereas the case p=2 gives the
usual Poincaré inequality.

We may notice that the method gives more than what is stated in Theorem 4.1
since there is an integral remainder term. Namely, for any p∈ [1,2], for any v∈H1(S1),
we have

p

4

∫

S1
σ′′(v)v2

xdx+R[v]≥ 2π2p

L2

∫

S1
σ(v)dx

with

R[v]=2
∫ ∞

0

∫

S1

(
w2

xx−
4π2

L2
w2

x +
(

2
p
−1

)
w4

x

3w2

)
dxdt,
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where w=w(x,t) is the solution to (4.5) with initial datum u
p/2
0 . Inequality (4.6)

can also be improved with an integral remainder term for any p∈ [1,2], where in the
limit case p=1, one has to take σ(v)=v log(v/v̄). As a consequence, the only optimal
functions in (4.1) or in (4.6) are the constants.

Corollary 4.3. Let n∈N, n>0 and let Hn ={u∈Hn(S1) :ux 6≡0 a.e.}. Then

inf
u∈Hn

∫
S1

∣∣u(n)
∣∣2dx∫

S1 u2 log(u2/‖u‖2L2(S1))dx
=

1
2

(
2π

L

)2n

. (4.7)

Proof. We obtain a lower bound by applying successively Theorem 4.1 and the
Poincaré inequality:

∫

S1
u2 log

(
u2

‖u‖2L2(S1)

)
dx≤ L2

2π2

∫

S1
u2

xdx≤2
(

L

2π

)2n∫

S1

∣∣∣u(n)
∣∣∣
2

dx.

The upper bound is achieved as in the proof of Theorem 4.1 by expanding the
quotient for u=1+εv with

∫
S1 vdx=0 in powers of ε,

∫
S1

∣∣u(n)
∣∣2dx∫

S1 u2 log(u2/‖u‖2L2(S1))dx
=

1
2

∫
S1

∣∣v(n)
∣∣2dx∫

S1 v2dx
+O(ε) (ε→0),

and using the Poincaré inequality

inf
u∈Hn

∫
S1

∣∣v(n)
∣∣2dx∫

S1 |v− v̄|2dx
=

(
2π

L

)2n

.

The best constant ω =(2π/L)2n in such an inequality is easily recovered by looking
for the smallest positive value of ω for which there exists a nontrivial periodic solution
of (−1)nv(2n) +ωv =0.

5. Exponential time decay of the solutions
We show the exponential time decay of the solutions of (1.1). Our main result is

contained in the following theorem.

Theorem 5.1. Assume that u0 is a nonnegative measurable function such that∫
S1(u0− logu0)dx and

∫
S1 u0 logu0dx are finite. Let u be the weak solution of (1.1)

constructed in Theorem 2.1 and set ū=
∫

S1 u0(x)dx/L. Then

∫

S1
u(·,t)log

(
u(·,t)

ū

)
dx≤e−M1t

∫

S1
u0 log

(u0

ū

)
dx, where M1 =

32π4

L4
.

Moreover, if in addition
√

u0∈H1(S1), then

∫

S1

(
(
√

u)x(·,t))2
dx≤e−M2t

∫

S1
(
√

u0)2xdx, where M2 =
16µπ4

L4

where µ=(103+
√

214)/72=1.646169... is the largest root of 36x2−103x+72=0.
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Proof. Since we do not have enough regularity of the solutions of (1.1) in order to
manipulate the differential equation directly, we need to regularize the equation first.
For this we consider the semi-discrete problem

1
τ

(uk−uk−1)+(uk(loguk)xx)xx =0 in S1 (5.1)

as in the proof of Theorem 2.1. The solution uk ∈C∞(S1) of this problem for given
uk−1 is strictly positive and we can use loguk as a test function in the weak formulation
of (5.1). In order to simplify the presentation we set u :=uk and z :=uk−1. Then we
obtain as in [15]

1
τ

∫

S1
(u logu−z logz)dx+

∫

S1
u |(logu)xx|2dx≤0. (5.2)

From integration by parts it follows
∫

S1

u2
xuxx

u2
dx=

2
3

∫

S1

u4
x

u3
dx.

This identity gives
∫

S1
u |(logu)xx|2dx=

∫

S1

(
u2

xx

u
+

u4
x

u3
−2

uxxu2
x

u2

)
dx=

∫

S1

(
u2

xx

u
− 1

3
u4

x

u3

)
dx

=
∫

S1

(
u2

xx

u
+

1
3

u4
x

u3
− uxxu2

x

u2

)
dx=4

∫

S1
|(√u)xx|2dx+

1
12

∫

S1

u4
x

u3
dx.

Thus, (5.2) becomes

1
τ

∫

S1

(
u log

(u

ū

)
−z log

( z

ū

))
dx+4

∫

S1

∣∣(√u)xx

∣∣2dx≤0. (5.3)

Now we use Corollary 4.3 with n=2:
∫

S1
u log

(u

ū

)
dx≤ L4

8π4

∫

S1

∣∣(√u)xx

∣∣2dx.

From this inequality and (5.3) we conclude

1
τ

∫

S1

(
u log

(u

ū

)
−z log

( z

ū

))
dx+

32π4

L4

∫

S1
u log

(u

ū

)
dx≤0.

This is a difference inequality for the sequence

Ek :=
∫

S1
uk log

(uk

ū

)
dx,

yielding

(1+τM1)Ek≤Ek−1 or Ek≤E0(1+τM1)−k,

where M1 is as in the statement of the theorem. For t∈ ((k−1)τ,kτ ] we obtain further

Ek≤E0(1+τM1)−t/τ .
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Now the proof goes exactly as in [15]. Indeed, the functions uk(x) converge a.e. to
u(x,t) and (1+τM1)−t/τ →e−M1t as τ→0. This implies the first assertion. The
second one is obtained similarly employing Lemma 3.2.

Remark 5.2. In the H1-norm we obtain the following decay estimate if
√

u0∈
H1(S1):

‖u(·,t)− ū‖2H1(S1)≤Ce−M2t, (5.4)

where

M2 =
16µπ4

L4
and C =4

(
1+

L2

4π2

)[√
L

2
‖(√u0)x‖L2(S1) +

√
ū

]2

‖(√u0)x‖2L2(S1).

The decay rate is slightly worse than that in [5] which equals 32π4/L4, but we do not
need the strong condition ‖(logu0)x‖L2(S1) <12 which is assumed in [5].

The proof of (5.4) uses the inequality

‖g− ḡ‖L∞(S1)≤
√

L

2
‖gx‖L2(S1) for all g∈H1(S1)

and the uniform bound

‖u(·,t)‖L∞(S1)≤‖
√

u(·,t)−√ū‖L∞(S1) +
√

ū≤
√

L

2
‖(√u)x(·,t)‖L2(S1) +

√
ū

≤
√

L

2
‖(√u0)x‖L2(S1) +

√
ū.

By Poincaré’s inequality, we have

‖u(·,t)− ū‖2H1(S1)≤
(
1+

L2

4π2

)∫

S1

(
2
√

u(
√

u)x

)2 (·,t)dx

≤4
(
1+

L2

4π2

)
‖
√

u(·,t)‖2L∞(S1)‖(
√

u)x(·,t)‖2L2(S1)

≤4
(
1+

L2

4π2

)(√L

2
‖(√u0)x‖L2(S1) +

√
ū
)2

‖(√u0)x‖2L2(S1)e
−M2t.
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