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WAVPRED: A WAVELET-BASED ALGORITHM FOR THE
PREDICTION OF TRANSMEMBRANE PROTEINS*

PATRICK FISCHER', GUY BAUDOUX?¥, AND JOHAN WOUTERS§

Abstract. Mathematical filtering using wavelet transform was applied to analyse hydropathy
signals of membrane proteins. The accuracy of our localization of transmembrane approaches that of
well-established methods. The analysis of hydrophobicity plots using wavelets presents advantages
with respect to other “filtering” methods based on fixed windows or Fourier transforms and compared
to “training” (neural networks) techniques. Although the method embodies principles that have long
been appreciated, its simplicity makes it a very useful tool for the evaluation of protein membrane-
spanning segments. Generalization of use of wavelets should be encouraged in other aspects of
bioinformatics.

1. Review on Wavelets

Since all the results presented in the sequel are one dimensional, only 1D wavelets
theory is introduced in this part. The generalization to higher dimension is relatively
easy and is based on tensor products of basis functions.
Any signal, which can be seen as a 1D mathematical function, can be represented by
a sum of fundamental or simple functions called basis functions. The most famous
example, the Fourier series

+oo )
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is valid for any 2m-periodic function sufficiently smooth. Each basis function e**¢ is
indexed by a parameter k which is related to a frequency. In (1.1), s(¢) is written as
a superposition of harmonic modes with frequencies k. The coefficients ¢, are given

by the integral

1 2m

Cr s(t)e *dt. (1.2)

27/,
Each coefficient ¢ can be viewed as the average harmonic content of s(t) at
frequency k. Thus the Fourier decomposition gives a frequency representation of any
signal. The computation of ¢ is called the decomposition of s and the series on the
right-hand side of (1.1) is called the reconstruction of s.
Although this decomposition leads to good results in many cases, some disadvantages
are inherent to the method. One of them is the fact that all the information concerning
the space behavior of the signal is completely lost in the Fourier description. For
instance, a discontinuity or a localized high variation of the frequency will not be well
described by the Fourier representation. The underlying reason lies in the nature of
complex exponential functions used as basis functions. They all cover the entire real
line and differ only with respect to frequency. They are not suitable for representing
the behaviour of a discontinuous function or a signal with high localized oscillations.
Like the complex exponential functions of the Fourier decomposition, wavelets can be
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used as basis functions for the representation of a signal. But, unlike the complex
exponential functions, they are able to restore the positional information as well as
the frequency information.

1.1. Continuous Wavelets. Functions depending on two variables a and
b respectively linked to frequency and position are used to define the mathematical
transformation:

- / de f() Yo p(2), (13)

where 14 5(x) plays the same part as the exponential functions in the Fourier trans-
form. A possibility is to construct {tq5(x)}es from a function g(x) by translating
and modulating it:

Yap(z) = g(z —b) e a,b € R (1.4)

where g(z) is a window function. In spite of the improvement brought by this “pseudo-
spectral” representation, this transformation is not perfect, and in particular it is not
adapted to describe accurately functions which exhibit high variations. This kind of
phenomenon is generally very localized in space whereas low variations often spread
over a large area. To overcome this disadvantage (a fixed-size window function),
analyzing functions with position support widths adapted to their frequency need
obviously to be defined.

The idea is to apply dilations on top of translations previously introduced. Start-
ing with a function @ well localized in position and frequency spaces, a family of
analyzing functions can be constructed:

nale) = ol (2

),aeR*,beR. (1.5)

The initial function is called the mother wavelet. Here, b is a position parameter
and 1/a is homogeneous to a frequency.

The continuous wavelet transform is an isometry from L?(R) into L?(RxR, a2 dadb).

Similar to the definition of the inverse Fourier transform, it is possible to define
a reconstruction formula that allows to rewrite f(z) as an expansion. The following
theorem specifies few characteristics of continuous wavelet theory:

Let 1 be a normalized function belonging to L' (R) N L?(R), of which the Fourier
transform 1& verifies the following equality:

/d{ |1|ﬁ€||2 K < 0. (1.6)

Then, the conservation of the norm defined by,

N RO a7
K a

and the possibility to recover the function f(z) using the reconstruction formula

defined as follows:
dadb
x| [ S i) (L8)
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Fic. 1.1. The “Mexican hat” mother wavelet.

are ensured. The condition (1.6) means that any oscillating function localized in both
spaces and whose integral over the whole space R is null can be used as a mother
wavelet. A typical choice for v is,

M

z

Y(x)=(1—-zhe = (1.9)

the second derivative of the Gaussian function, sometimes called the “Mexican hat”
function (Figure 1.1).

1.2. Discrete and Orthonormal Wavelets.  Discrete wavelets correspond
to the choices a = af*, b = nboay’, indicating that the translation parameter b depends
on the chosen dilation rate. The family of wavelets becomes, then, for m,n € Z,

U = ag ™ (a5 ™z — nbo). (1.10)

The dilation step ag is generally taken greater than one and the translation step bg
different from zero. It is also possible to define wavelets that constitute an orthonormal
basis. They are defined as the collection,

Yip =227 — k), j,k € L. (1.11)

The simplest and most famous example of orthonormal wavelet basis is the Haar
system already known at the beginning of the century [6]:

1 0<z<1/2
P(x) = -1 1/2<z<1
0 otherwise

The construction of orthonormal wavelet bases is presented in the following
section.

1.3. Multiresolution Analysis. The theoretical construction of orthogonal
wavelet families is intimately related to the notion of multiresolution analysis:
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DEFINITION: A multiresolution analysis is a decomposition of the Hilbert space L%(RR)
of physically admissible functions (i.e square integrable functions) into a chain of
closed subspaces,

L.V cVicVyaCVoy, C Vg, ..

such that
. ﬂ V; = {0} and U V; is dense in L*(R)
JEZ JEZ

o F() €V, & f(20) € Viy
o f(z) eVo & flz—k) €V
e There is a function ¢ € Vj such that {¢(x — k)}rez is an orthonormal basis
of Vy
Let W; be the orthogonal complementary subspace of V; in V;_;:

VieW; =Vj1. (1.13)

This space contains the difference in information between V; and V;_;, and allows
the decomposition of L2(R) as a direct form:

L*(R) = ®;ezW;. (1.14)

Then, there exists a function ¢ € Wy, called the mother wavelet, such that {¢(z —
k)}rez is an orthonormal basis of Wy. The corresponding wavelet bases are then
characterized by:

(@) =272 2 — k), k,jEL, (1.15)
() =272 27T — k), k,j €. (1.16)

The mother wavelet corresponding to the chosen wavelet basis verifies:
/dmzﬁ(m)xm:O, m=0,...,.M -1, (1.17)
R
which means that it has M vanishing moments.

Since the scaling function ¢(z), and the mother wavelet ¢ (z) belong to V_y, they
admit the following expansions:

L—1

p(x) = V2 hioQRu—k), T =(p,0 1), (1.18)
k=0
L—-1

(@) =vV2Y gz —k), gr=(-1*hp 1, (1.19)
k=0

where the number L of coefficients is connected to the number M of vanishing
moments and is also connected to other properties that can be imposed to ¢(x).
Functions verifying (1.18) or (1.19) have their support included in [0, ..., L —1]. Fur-
thermore, if there exists a coarsest scale, j = n, and a finest one, j = 0, the bases can
be rewritten as:

L—1
vjk(z) = Z higj—1oki(x), j=1,...,n, (1.20)
=0
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and
L1
Yik(@) =D gj1okn(@), j=1,...,n. (1.21)
1=0

The wavelet transform of a function f(z) is then given by two sets of coefficients
defined as

&, = [ do 1) i) (1.22)
and
%Zémﬂ@wﬂﬂ (1.23)

Starting with an initial set of coefficients s?, and using (1.20) and (1.21), coeffi-
cients dJ, and s}, can be computed by means of the following recursive relations:

L—-1

j j—1

=3 sl . (1.24)
=0

and

. L_l .

st=Y hishi . (1.25)
=0

Coefficients di, and si are considered in (1.24) and (1.25) as periodic sequences with
the period 277, The set df; is composed by coefficients corresponding to the decom-
position of f(x) on the basis ¢; x, and s{c may be interpreted as the set of averages at
various scales. The principle of applying (1.24) and (1.25) is usually symbolized by
the pyramid scheme (Figure 1.2).

In practice, the wavelet expansion (like the Fourier one) must be truncated at
some finest and coarsest scales. A Fast Wavelet Transform based on the pyramid
scheme is used to compute this expansion with a very low computational cost (in the
same way as the FFT is used for a Fourier expansion) [11].

The mathematical construction of the wavelet bases (particular choice for the
mother wavelet) is not described in this paper, all the details can be found in the
literature [5, 14, 1].

Here we want to present an original application of wavelet analysis to the predic-
tion of transmembrane helices using hydrophobicity scales.

2. HTMs Prediction

A well-known problem in protein modelling is the prediction of the position of
transmembrane helices (HTMs) in protein sequences. One of the most commonly used
methods in this field is the interpretation of hydropathy profiles. This method was
first introduced by Kyte and Doolittle [10] who used a window of 19 residues to smooth
the hydropathy data, to enable the detection of potential transmembrane helices as
peaks in a two dimensional plot. Rao and Argos [16], using several physico-chemical
properties of amino acids and repeated window smoothing further refined the method.
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Fic. 1.2. The pyramid scheme.

Following the same concept, Von Heijne [7] proposed the use of a trapezoidal win-
dow to smooth the hydropathy data, and Edelman [2] presented an optimal predictor
(a window with position weights and amino acids weight scale) for the prediction of
HTMs. Those methods perform quite well (according to Sonnhammer et al. [19]).
They were, however, outmoded by more recent programs including TMAP [15], MEM-
SAT [8], PHDhtm [17, 18] or TMHMM [19].

Despite these recent developments, predictions based on hydropathy analysis re-
main interesting tools for theoretical and practical reasons. Theoretically, approaches
based on hydrophobicity scales can “provide insight into the principles governing the
formation of secondary structures” (quoting King and Sternberg [9] when they com-
pared their secondary structure method, DSC, to neural network techniques).

Practically, hydrophobicity analysis enables the rapid scanning of entire genomes,
in searches for transmembrane helices, which are indicators of potential antigens or
drug receptors.

3. Methods

The method is schematically presented on Fig. 3.1. The protein sequence is
first converted into a “hydropathy signal” using the scales of Kyte and Doolittle [10],
Eisenberg [3], or GES [4], and the mean hydropathy of the whole protein < H > is
computed (Step (1)). The numerical sequence is then subjected to a mathematical
filtering (grey square I), followed by a “biochemical” filtering (grey square II).

In the mathematical filtering, the wavelet transform is applied using a mother
wavelet with 10 vanishing moments, the so-called Daubechies 20 [1](Step (2)). Then,
in the filtering step (3), the wavelet coefficients corresponding to high frequencies (for
frequency parameter j = 0 to j = 4), are turned to zero, and finally, the signal is
reconstructed and around zero by sub straction of its mean value (Step (4)), producing
a zero mean filtered hydropathy signal whose maximum, m, is used in the subsequent
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Fic. 3.1. General flowchart presenting the different steps of both the mathematical filtering
(grey square I) and the “biochemical” filtering (grey square II) implemented in our filtering method
based on wavelets.
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treatment. The case of the CYDB-ECOLI protein sequence is shown to illustrate the
action of the mathematical filtering. The linear (lettered) sequence (Figure 3.2) is first
numerized using a hydropathy scale, here the so-called Kyte-Doolittle scale (Figure
3.3). Then the wavelet filtering is applied leading to a smoother signal (Figure 3.4).

MIDYEVLRFIWWLLVGVLLIGFAVIDGFDMGVGMLTRFLGRNDTERRI
MINSIAPHWDGNQVWLITAGGALFAAWPMVYAAAFSGFYVAMILVLA
SLFFRPVGFDYRSKIEETRWRNMWDWGIFIGSFVPPLVIGVAFGNLLQG
VPENVDEYLRLYYTGNFFQLLNPFGLLAGVVSVGMIITQGATYLQMRT
VGELHLRTRATAQVAALVTLVCFALAGVWVMYGIDGYVVKSTMDHYA
ASNPLNKEVVREAGAWLVNENNTPILWAIPALGVVLPLLTILTARMDKA
AWAFVFSSLTLACIILTAGIAMFPFVMPSSTMMNASLTMWDATSSQLT
LNVMTWVAVVLVPIILLY TAWCYWKMFGRITKEDIERNTHSLY

Fi1c. 3.2. Linear sequence of the CYDB-ECOLI protein.
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F1a. 3.3. Hydropathy plot of the CYDB-ECOLI sequence.

In the “biochemical” filtering step, a tentative list of HTMs is created first, by
selection of all amino acids having a positive filtered hydropathy (Step (5)), and for
each transmembrane segment s so defined, the number of amino acid is computed Nj.
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F1a. 3.4. Filtered hydropathy plot of the CYDB-ECOLI sequence.

This tentative list is re-examined in two steps:

e in a cutting procedure inspired from Rost et al. [17]:
— if Ny is smaller then 11 residues, s is discarded.
— if N; is between 38 and 72 residues, s is cut into 2 equal parts, declaring
the 3 central amino acids as non-transmembranar.
if Ny is greater than 72 residues, s is cut into 3 or more parts of 24

residues, declaring the 3 amino acids at the limits as non transmembra-
nar.

e in an overall hydrophobicity filtering:

if < H > is less then 0.1 (Step (6)), a second selection (Step (7)) of segments
is made using the following criteria :

— if < H > is less then -0.2, only predicted segments for which the max-
imum of filtered hydropathy is greater than m.0.7 are considered as
correct;

— if < H > is between -0.2 and 0.1, only predicted segments for which the
maximum filtered hydropathy is greater than m.0.5 are considered as
correct.

The “biochemical” filtering applied to the CYDB-ECOLI protein sequence gives

a prediction of 8 well localized HTMs (Figure 3.5). This prediction can be compared
to the experimental datas (Table 3.1).

4. Material

The 83 membrane protein sequences test set, and the complementary 48 sequences
used by Rost et al. [18] were obtained from the authors. Together, they form the
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F1a. 3.5. HTMs prediction for the CYDB-ECOLI sequence.

TABLE 3.1. Predicted and observed HTMs for the CYDB-ECOLI sequence.

HTMs 1 2 3 4 ) 6 7 8

Observed 9-28 80-99 123-142 165-184 206-225 263-282 293-312 337-356
Predicted 1-30 73-98 126-144 164-182 207-227 259-286 290-318 337-357

131-test sequences set. The 160-membrane sequences test set was retrieved from the
World Wide Web site of the TMHMM: (http://www.cbs.dtu.dk/krogh/TMHMM/)
[19]. The programs were first written for the MATLAB software, then an independant

C version called WavPred has been created. Codes can be obtained from the authors
upon request.

5. Results and Discussion

The analysis of hydrophobicity plots using wavelets presents advantages with
respect to other filtering methods based on fixed windows or Fourier transforms.
The display of the hydropathic character of a protein using the Kyte and Doolittle
technique [10] was the first successful empirical algorithm for transmembrane helix
prediction. It is based on a fixed window filtering procedure. Results are, however,
dependent on the size of the window and can lead to different localization of HTMs.
This procedure is implemented (as black box) in a variety of software. Non specialized
users may not be aware of the influence of the size of the window and produce useless
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results. Beside the need of an a priori determination of the window size, this method
is also unable to render the signal at the borders (typically there is a blind region at
the beginning and the end of the sequence).

The Fourier transform reconstruction (obtained by using only the low frequencies)
is also unable to produce an accurate hydropathy graph. Indeed, the peaks in a graph
obtained after Fourier analysis may not correspond to the position of HTMs. This is
inherent to the Fourier analysis, whose basis functions spread all over the real line. In
their construction process (Step (4) in Fig. 3.1), the low-frequency components are
distributed all along the sequence, even in the parts where they are not necessary.

In the wavelet reconstruction (using only the low-frequency coefficients) the basis
functions are localized and thus lead to a more accurate (locally) filtered hydropathy
signal. The plots obtained in this way are easy to interpret and indicate the precise
localization of the HTMs of a protein.

We have applied our filtering procedure to the three sequences sets described
in the materials section. The results, characterised by commonly used performance
indices, are presented in Table 6.1. In this table, data compiled from the literature
were also collected.

At first inspection, our method compares favorably with highly accurate ones.
The sensitivity of 94.4% for the 83-sequences set is near the 96.2% of TMHMM and
the 98.8 of PHDhtm. This is also the case for the specificity. The Q2, not given
for all methods, is good for the 160-sequences set (89.7%), but much weaker (76.2)
for the 83-sequences set compared to PHDhtm. Our method is so able to distinguish
accurately between HTM and non-HTM regions in protein sequences. The good values
of the sensitivity and selectivity, obtained on isolated sequences, show that a totally
general property (hydropathy), if filtered correctly, can have important predictive
power. This is an advantage over methods based on a training procedure with known
protein sequences and whose results with totally new sequences can be doubtful.

However, the QM is rather low: 60.0% compared to the 80-90% of the best meth-
ods. That means that the method is unable, at this stage of development, to predict
the whole set of HTMs of a protein. As a consequence, an HTM topology hypothesis
cannot be based on the predictions. A detailed examination of the results can, how-
ever, explain this fact. Indeed, in the 160-sequences set, 49 observed HTMs were not
detected. Examined individually, those segments are generally less hydrophobic than
the others and so fall below our cut off criteria. In further developments, additional
criteria should be included.

6. Conclusions and Perspectives

The increasing number of DNA and protein sequences entering databases makes
necessary the use of rapid and faithful algorithms to predict protein structures (and
functions). Among proteins, membrane proteins are usually involved in important
functions, but prediction of their structure represents a real challenge, because their
three-dimensional structures are often very difficult to obtain experimentally. In this
perspective, accurate localization of transmembrane hydrophobic stretches along the
amino acid sequence yields valuable information.

In this work, we show that the use of wavelet analysis is an interesting alternative
to existing methods. This procedure allows the rapid generation of clear hydropathy
plots useful to locate and identify segments rich in apolar residues. Due to its simplic-
ity and its graphical nature, we think that the wavelet filtering of hydropathy plots
can have its place in general protein analysis packages.

To reach a good level of accuracy in the detection of HTMs, our method is depen-
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dent upon the post-treatment of the signal obtained after wavelet reconstruction. To
increase the performances and so make HTM topology predictions feasible, the use of
complementary physico-chemical properties is needed. Alternatively, more sophisti-
cated wavelet analysis techniques (wavelet packet methods for instance) could also be
used in order to extract additional features of the hydropathy plots (similar wavelet
techniques were already used by Mandell et al. [12, 13] in mode matches between the
hydrophobicity of ligands and receptors).

Moreover, our results are obtained on single-sequence analysis. It is an advantage
because the sequences obtained from large genome sequence projects are in some cases
unrelated. But we expect better results from the usage of aligned sequences, as was
observed by Rost et al. [17]. Generalization of the usage of wavelets should also
be encouraged in other domains of bioinformatics, in particular for the prediction of
globular helices, transmembranar strands, denoising of dot plots, etc.

TABLE 6.1. Numerical results; (Nprot: number of proteins in the test set; Nyps, number of
observed HTMs; Q2, percentage of residues predicted correctly in either of the two states, HTM or
not-HTM; Qur, percentage of proteins for which all HTMs were predicted correctly; Npred, number of
HTM predicted; Neorr, number of HTM correctly predicted (a predicted HTM is counted as correct if
there is an overlap of at least 5 residues with a true heliz); Sens (sensitivity), percentage of observed
HTMs correctly predicted; Spec (Specificity), percentage of predicted HTMs that are correct. nd: not
determined).

Method Nprot  Nobs Q> Qm  Nprea Neorr  Sens Spec  Ref
05 37 195 88.0% 43.2% 221 193 99.0% 87.3% 4
TMAP 28 126 nd 82.1% 125 123 97.6% 984% 6
TopPred 26 134 nd  73.1% 142 134 100% 944% 3
PHDhtm 83 341  93.6% 88.0% 354 337  98.8% 95.2% 89
PHDhtm 131 539 93.8% 89.3% 552 533  98.9% 96.6% 8,9
MEMSAT 83 341 nd  80.7% nd nd  96.8% 94.6% 7
MEMSAT 160 696 nd 73.8% nd nd 933% 956% 7
TMHMM 83 341 nd 83.1% nd nd  96.2% 97.6% 5
TMHMM 160 696 nd 83.8% nd nd  97.1% 97.7% 5
WavPred 83 341 76.2% 63.9% 352 322 94.4% 91.5%
WavPred 129 535 755% 55.1% 536 487  91.1% 90.9%
WavPred 160 696 89.7% 60.0% 696 647  93.0% 93.0%
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