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A NUMERICAL STUDY OF UNSTEADY, THERMAL, GLASS FIBER
DRAWING PROCESSES ∗

HONG ZHOU † AND M. GREGORY FOREST ‡

Abstract. An efficient second-order stable numerical method is presented to solve the model
partial differential equations of thermal glass fiber processing. The physical process and structure
of the model equations are described first. The numerical issues are then clarified. The heart
of our method is a MacCormack scheme with flux limiting. The numerical method is validated
on a linearized isothermal model and by comparison with known exact stationary solutions. The
numerical method is then generalized to solve the equations of motion of thermal glass fiber drawing,
exhibiting order of convergence. Further, the nonlinear PDE scheme is benchmarked against an
independent linearized stability analysis of boundary value solutions near the onset of instability,
which demonstrates the efficiency of the method.
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1. Introduction
Optical fibers are thin cylindrical dielectric waveguides used to send light energy

for communication. Optical fibers have a number of advantages over copper-based
electrical signal transmission. For example, glass optical fiber is immune to electro-
magnetic interference, such as is caused by thunderstorms, and has a much wider
bandwidth. The issue of interest for this paper is the actual production process for
glass fibers.

Fiber drawing begins by heating the tip of the preform (the solid rod from which
fibers are drawn) to a molten state and allowing it to extend downward under the force
of gravity while shrinking in diameter into a fine-diameter filament. These conditions
correspond to upstream boundary conditions on fiber radius, velocity and tempera-
ture. A pulling and winding mechanism sustains a drawing force, which corresponds
to a downstream boundary condition. The equations and attendant boundary con-
ditions are given in section 2. Interior to the steady process is a free boundary of
liquid-to-glass transition.

Extensive research has been done on the drawing process of glass fibers (for ex-
ample, Glicksman [10], Geyling and Homsy [9]). The governing model equations of a
slender glass fiber drawing process consist of a system of nonlinear partial differential
equations in one space dimension (along the fiber axis) and time. The equations can-
not be simply classified as elliptic, hyperbolic or parabolic, and the structure varies
with the assumed physics. Most previous studies on glass fiber drawing processes
deal with steady solutions, in which case one only needs to solve a set of ordinary dif-
ferential equations with appropriate boundary conditions. However, from a practical
standpoint, it is of significant interest to simulate the unsteady or transient process of
glass fiber drawing, for example to investigate the sources of diameter variations, or to
assess stability of a given process. To do so, one has to solve the full set of partial dif-
ferential equations. Due to the nonstandard structure of the governing equations, an
efficient numerical method has to be developed, rather than simply adopted from the
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existing literature. As one varies the dominant physics, the mathematical structure
of the model equations varies [1], and the numerical algorithm likewise has to accom-
modate this structure. For viscoelastic fluids, Beris and Liu [3, 14], Forest and Wang
[6], have developed algorithms where the differential operator (in one space dimension
and time) is quasi-linear first order, for which an explicit nonlinear classification is
provided by characteristic analysis. For the optical fiber model below, the quasi-linear
part of the differential operator has an elliptic space-time component (which is itself
ill-posed), and viscosity terms provide the regularizer; Eggers and Dupont [5] have
developed an algorithm for an isothermal viscous fluid model, some features of which
are adopted here.

The aim of this paper is to present an efficient numerical method for solving the
governing model equations of slender glass fibers. This model is robust enough to
accommodate anticipated variations in the governing physics and rheology. Detailed
simulations of glass fiber processing and comparisons with experiments have been
presented elsewhere [7], although exemplary simulations are included here.

In the following sections a brief discussion of the governing equations is given,
and different numerical methods are compared with application to a simple model
problem. Then we outline our method to solve the governing model equations for
glass fibers. Numerical experiments are presented, demonstrating the efficiency of
our method. The paper ends with some numerical results on the glass fiber drawing
process.

2. The equations of motion
To model the glass fiber preform drawing process, one typically takes advantage

of the fact that the fiber is slender and uses asymptotic theory to obtain a quasi-
one-dimensional approximation [1, 4, 9, 16, 17]. In this approach, leading order
descriptions of the free surface radius φ, the axial velocity v, pressure p, and temper-
ature T are derived which depend only on the axial coordinate z and time t. These
slender fiber models have proven extremely valuable in isolating coupled phenomena
in systems of one-dimensional nonlinear PDEs, from which one can extract significant
physical information and develop accurate codes.

The leading order dimensionless quasi-1D model equations for axisymmetric fil-
aments consist of the continuity equation, balance of linear momentum, and energy
equation [7, 8]:





(φ2)t +(vφ2)z =0,

(φ2v)t +(φ2v2)z = 1
F φ2 + 1

W φz +[φ2η(T )vz]z,

Tt +vTz = H
φ (T 4

wall−T 4)−2Stφ−1[(vφ)mφ−1](T −Ta),

(2.1)

where z∈ [0,1], m=1/3, and the temperature-dependent dimensionless viscosity η(T )
is

η(T )=exp
[
α(

1
T
−β)

]
. (2.2)

Here F and W are the Froude and Weber numbers, which respectively parametrize
gravity and surface tension relative to inertia; St is the Stanton number, represent-
ing the dimensionless heat transfer coefficient; H is the effective radiative transfer
coefficient for the surface of the fiber; Twall is the temperature of the furnace; Ta is
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the ambient air temperature. The furnace temperature Twall may vary in the axial
direction. One can also use a nonconstant ambient temperature Ta to simulate the
heating zone and cooling zone. In this study we simply treat both Twall and Ta as
constants.

The boundary conditions are given as follows:
• Upstream boundary conditions:

φ(0)=1,v(0)=1,T (0)=1.

• Downstream boundary conditions:

v(1)=Dr(draw ratio).

Let

w=




φ2

φ2v
T


, (2.3)

then the equations we will solve can be put in a general form

wt =−A(w)wz +M(w)+NL(wz)+[G(w)wz]z, (2.4)

where

A(w)=




0 1 0
−v2− 1

2W φ 2v 0
0 0 v


, (2.5)

and NL(wz) is a nonlinear function of wz, M(w) and G(w) are some functions of w.
The three eigenvalues of A are

λ=v±
√
− 1

2W φ
, v. (2.6)

So the system (2.1) is a second-order PDE, whose first two equations would form an
elliptic system if viscosity were ignored. This classical Hadamard instability behavior
in the absence of viscosity comes from Rayleigh instability [2, 6, 18]. The Rayleigh
instability tells us that a fluid jet with uniform radius and constant velocity will break
up due to the surface tension induced growth of perturbation. Therefore, the viscous
terms in (2.1) are necessary to make the initial value problem well-posed.

In the absence of viscosity, the system (2.1) in our study here is elliptic type
everywhere (that is, it is elliptic for all values of v and φ). The viscosity is necessary
to regularize the system. In other systems, for example, the PDE describing the
isothermal evolution of a compressible fluid [12], the PDE is of mixed-type (that is,
in some regions of solution value, it is elliptic; in other regions, it is hyperbolic). For
such PDEs, weak solutions can be properly defined by adding relaxation regulation.
Jin [12] has designed a robust total-variation-diminishing (TVD) method for solving
mixed-type PDEs. However, the PDE system in our study is not mixed-type. The
initial value problem we study here is well-posed and our numerical method works
only for positive viscosity. We also note that our numerical method cannot be applied
to solve mixed-type PDEs.
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If one assumes that viscosity dominates and thereby ignores the effects of fluid
inertia, surface tension, and gravity, then the system (2.1) is reduced to (set m=1/3)

(φ2)t +(vφ2)z =0, (2.7)[
φ2η(T )vz

]
z
=0, (2.8)

Tt +vTz =
H

φ
(T 4

wall−T 4)−2St
1

φ5/3
v1/3 (T −Ta), (2.9)

whose steady state solutions and their linearized stability have been studied by
Geyling and Homsy [9]. Dewynne, Ockendon and Wilmott [4] also studied the same
reduced model where the energy equation (2.9) is not included but the viscosity η is
assumed to be a function of z or t only. Under these assumptions, they have found
exact solutions. Schultz and Davis [17] have studied steady solutions of isothermal
thin fiber models.

To our knowledge, the present paper is the first one to study the full equations
(2.1) and (2.2). We now focus our attention on numerical methods for the model (2.1)
and (2.2).

3. A preliminary study of numerical methods
In this section we compare several numerical methods with application to a simple

model. This study will shed light on the numerical solution of (2.1).
Let us consider a simplified linear system of isothermal equations as follows:

φt +φz +vz =0, (3.1)
vt−φz +vz =vzz, (3.2)

where z∈ [0,1], and the boundary conditions are

φ(0)=1,v(0)=1,v(1)=1.5. (3.3)

By rewriting it as
[

φ
v

]

t

+
[

1 1
−1 1

][
φ
v

]

z

=
[

0
v

]

zz

, (3.4)

it is easy to see that this simple system is similar to (2.1) in the sense that they both
contain viscosity terms and would be elliptic if viscosity were absent.

To investigate the well-posedness of the initial value problem of (3.4), we con-
sider solutions of (3.4) of the form φ=exp(ikz)f1(t) and v =exp(ikz)f2(t). Then the
system (3.4) yields

f
′
1(t)+ ikf1(t)+ ikf2(t)=0, (3.5)

f
′
2(t)+ ikf2(t)− ikf1(t)=−k2f2(t), (3.6)

or in vector form,

d

dt

[
f1(t)
f2(t)

]
=−ik

[
1 1
−1 1− ik

][
f1(t)
f2(t)

]
≡B

[
f1(t)
f2(t)

]
. (3.7)

The eigenvalues of the matrix B are given by

λ1,2 =−ik− k2

2
±k

√
k2

4
+1, (3.8)
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whose real parts are bounded by

Re(λ1)=−k2

2
−k

√
k2

4
+1≤0, (3.9)

Re(λ2)=k

(
−k

2
+

√
k2

4
+1

)
=

k

k
2 +

√
k2

4 +1
≤ k

k
2 + k

2

=1, (3.10)

respectively. This simple analysis shows that the solution of the initial value problem
of (3.4) depends continuously on the data.

The exact steady state solution of (3.4) with boundary conditions (3.3) is

v0(z)=
1

e2−1
(0.5e2z +e2−1.5), (3.11)

φ0(z)=2−v0(z)=
1

e2−1
(e2−0.5−0.5e2z). (3.12)

To study the stability of the steady state solution, we consider the evolution of
perturbations to the steady state. Substituting φ̃(z,t)=φ0(z)+φ(z,t) and ṽ(z,t)=
v0(z)+v(z,t) into (3.3) and (3.4), we obtain that perturbations φ(z,t) and v(z,t)
satisfy

{
φt =−φz−vz, φ(0)=0,
vt =φz−vz +vzz, v(0)=v(1)=0.

(3.13)

Let

g(t)=
∫ 1

0

e−2z

[
(φ(z,t))2

2
+

(v(z,t))2

2

]
dz. (3.14)

We are going to show that g(t) is non-increasing. Taking the derivative with respect
to t, we get

dg(t)
dt

=
∫ 1

0

e−2z [φφt +vvt]dz

=
∫ 1

0

e−2z[φ(−φz−vz)+v(φz−vz +vzz)]dz

=
∫ 1

0

e−2z

[
−(

φ2

2
)z−2φvz +(vφ)z−(

v2

2
)z +(vvz)z−(vz)2

]
dz. (3.15)

Here we have used (3.4) and the two relations below:

vφz =(vφ)z−φvz, (3.16)
vvzz =(vvz)z−(vz)2. (3.17)

Rearranging terms leads to

dg(t)
dt

=
∫ 1

0

e−2z

[
−φ2

2
+vφ− v2

2
+vvz

]

z

dz+
∫ 1

0

e−2z
[−2φvz−(vz)2

]
dz. (3.18)
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Applying integration by parts to the first integral and using the boundary conditions
φ(0)=v(0)=v(1)=0, we obtain

dg(t)
dt

=−e−2

2
[φ(1)]2 +

∫ 1

0

e−2z
[−φ2 +2vφ−v2 +2vvz

]
dz

+
∫ 1

0

e−2z
[−2φvz−(vz)2

]
dz,

=−e−2

2
[φ(1)]2−

∫ 1

0

e−2z [φ−v+vz]
2
dz≤0. (3.19)

Thus g(t) is non-increasing, indeed decreasing unless all perturbations vanish.
This implies that the perturbations are decreasing until the steady state is reached,
so that the steady state solution is stable. Numerical experiments confirm that the
perturbations decrease with time and the steady state is stable.

Now we compare several different numerical methods and their corresponding
results for this simple system. For simplicity, we use the predictor-corrector method
for time-integration in all the methods presented in this section.

Divide time into intervals of length ∆t and let ∆z =1/N be the spatial incre-
ment. Let φn

j approximate the solution φ(j∆z,n∆t) and vn
j approximate the solution

v(j∆z,n∆t).

One-sided first order method
This one-sided first order method is motivated by upwind differences in the velocity
direction. It is given by

Predictor :





φ∗j =φn
j −

∆t

∆z
(φn

j −φn
j−1)−

∆t

∆z
(vn

j −vn
j−1)

v∗j =vn
j +

∆t

∆z
(φn

j −φn
j−1)−

∆t

∆z
(vn

j −vn
j−1)+

∆t

(∆z)2
(vn

j+1−2vn
j +vn

j−1)
(3.20)

Corrector :





φn+1
j =

φn
j +φ∗j

2
− ∆t

2∆z
(φ∗j −φ∗j−1)−

∆t

2∆z
(v∗j −v∗j−1)

vn+1
j =

vn
j +v∗j

2
+

∆t

2∆z
(φ∗j −φ∗j−1)−

∆t

2∆z
(v∗j −v∗j−1)

+
∆t

2(∆z)2
(v∗j+1−2v∗j +v∗j−1)

(3.21)

where j =2,··· ,N . The boundary conditions are

φn
1 =φ∗1 =1, vn

1 =v∗1 =1, vn
N+1 =v∗N+1 =1.5. (3.22)

In Figure 3.1 we show the difference between the numerical solution at time = 5.0
with 80 grid points in [0,1] and the exact steady state solution. The initial conditions
are φ=1 for z∈ [0,1], v =1 for z∈ [0,1) and v =1.5 at z =1.
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Fig. 3.1. Error of one-sided first order method.

Central-differencing method

Predictor :





φ∗j =φn
j −

∆t

2∆z
(φn

j+1−φn
j−1)−

∆t

2∆z
(vn

j+1−vn
j−1)

v∗j =vn
j +

∆t

2∆z
(φn

j+1−φn
j−1)−

∆t

2∆z
(vn

j+1−vn
j−1)

+
∆t

(∆z)2
(vn

j+1−2vn
j +vn

j−1)

(3.23)

Corrector :





φn+1
j =

φn
j +φ∗j

2
− ∆t

4∆z
(φ∗j+1−φ∗j−1)−

∆t

4∆z
(v∗j+1−v∗j−1)

vn+1
j =

vn
j +v∗j

2
+

∆t

4∆z
(φ∗j+1−φ∗j−1)−

∆t

4∆z
(v∗j+1−v∗j−1)

+
∆t

2(∆z)2
(v∗j+1−2v∗j +v∗j−1)

(3.24)

where j =2,··· ,N . The boundary conditions are

φn
1 =φ∗1 =1, vn

1 =v∗1 =1, vn
N+1 =v∗N+1 =1.5. (3.25)

Additional boundary conditions are needed at the “ghost grid” for φn
N+1 and φ∗N+1,

obtained by extrapolation:

φn
N+1 =2φn

N −φn
N−1, φ

∗
N+1 =2φ∗N −φ∗N−1. (3.26)

Figure 3.2 depicts the error of the central differencing method, where the initial con-
ditions, final time and mesh size are chosen the same as in Figure 3.1. Clearly, the
central differencing method exhibits wild oscillations even though it is more accurate
than the one-sided first order method. Due to the presence of viscosity in the equation
of v, the oscillation of the error of v is smeared and hence less dramatic than that
of φ. As will be seen in comparing Fig. 3.2 and Fig. 3.5, oscillatory error at the
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numerical error level, although not fatal, does contribute to a significant increase in
the magnitude of error. In this study the goal we try to achieve by avoiding oscillatory
error is to reduce the magnitude of error.

It should also be pointed out that one can have several choices for providing values
at the “ghost grid”. For example, one might use

φn
N+1 =φn

N , φ∗N+1 =φ∗N . (3.27)

Comparison of Figures 3.2 and 3.3 implies that the boundary condition (3.26) is better
than (3.27).
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Fig. 3.2. Error of central differencing method using the boundary condition (3.26).
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Fig. 3.3. Error of central differencing method using the boundary condition (3.27).

“MacCormack” method
MacCormack’s scheme [15] was originally developed for solving conservative hyper-
bolic equations. First it uses the one-sided first order scheme to obtain predicted val-
ues. Then it uses two-level points to approximate the spatial derivatives. In the first



HONG ZHOU AND M. GREGORY FOREST 35

level the upwind-like stencil is employed whereas in the second level the downwind-like
stencil is used with the predicted values. Here we adopt the idea and obtain:

Predictor :





φ∗j =φn
j −

∆t

∆z
[(φn

j −φn
j−1)+(vn

j −vn
j−1)]

v∗j =vn
j +

∆t

∆z
[(φn

j −φn
j−1)−(vn

j −vn
j−1)]+

∆t

(∆z)2
(vn

j+1−2vn
j +vn

j−1)

(3.28)

Corrector :





φn+1
j =

φn
j +φ∗j

2
− ∆t

2∆z
[(φ∗j+1−φ∗j )+(v∗j+1−v∗j )]

vn+1
j =

vn
j +v∗j

2
+

∆t

2∆z
[(φ∗j+1−φ∗j )−(v∗j+1−v∗j )]

+
∆t

2(∆z)2
(v∗j+1−2v∗j +v∗j−1)

(3.29)

where j =2,··· ,N . The boundary conditions are

φn
1 =φ∗1 =1, vn

1 =v∗1 =1, vn
N+1 =v∗N+1 =1.5, (3.30)

and

φ∗N+1 =2φ∗N −φ∗N−1. (3.31)

Figure 3.4 gives the result using MacCormack’s method with boundary conditions
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Fig. 3.4. Error of MacCormack method.

(3.30) and (3.31). Again, initial conditions, mesh size and final time are the same as
before. Evidently, MacCormack’s method still cannot avoid oscillations.

So far, only the one-sided method does not exhibit oscillations. But the one-
sided method is only first-order. Fiber specifications require sub-micron tolerances on
radius fluctuations, so that it is desirable to use a high-order method. Furthermore,
all the methods presented above are explicit and the stability condition requires that
∆t≤min(C∆z/max|v|,0.5(∆z)2) where C is the CFL constant. For moderately small
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∆z, this method is very inefficient. To use a larger time step ∆t, one has to exploit
an implicit method. With these two things in mind, we propose a numerical method
based on MacCormack’s method, flux limiting [13] and the Crank-Nicolson method.
Modified MacCormack method with flux limiting
For hyperbolic systems, the flux limiter is usually imposed on characteristic variables.
Because the PDE in our study (in the absence of viscosity) is elliptic everywhere, we
simply impose the flux limiter on physical variables. Numerical results show that this
is adequate for suppressing numerical oscillations. We apply limiters to the flux, not to
the slope of variables [19]. More specifically, the flux of the first-order non-oscillatory
method is

flux1 =φn +vn, (3.32)

whereas the flux of the (second-order) MacCormack method is

flux2 =0.5∗(φ∗+v∗+φn +vn). (3.33)

We rewrite flux2 as

flux2 =flux1 +(flux2−flux1), (3.34)

and then apply limiters on the difference between two fluxes (flux2−flux1). This idea
is the same as the approach used by Harten [11]. When applied to a scalar hyperbolic
equation, the method is TVD.

Applying the above observation, we obtain the modified MacCormack method
with flux limiting:

Predictor :





φ∗j =φn
j −

∆t

∆z
[(φn

j −φn
j−1)+(vn

j −vn
j−1)]

v∗j =vn
j +

∆t

∆z
[(φn

j −φn
j−1)−(vn

j −vn
j−1)]+

∆t

(∆z)2
(v∗j+1−2v∗j +v∗j−1)

(3.35)

Corrector :





φn+1
j =φn

j −
∆t

∆z
(fj+ 1

2
−fj− 1

2
)

vn+1
j =vn

j +
∆t

∆z
(gj+ 1

2
−gj− 1

2
)+

∆t

2(∆z)2
(vn

j+1−2vn
j +vn

j−1)

+
∆t

2(∆z)2
(vn+1

j+1 −2vn+1
j +vn+1

j−1 )

(3.36)

where j =2,··· ,N . The fluxes fj+ 1
2

and gj+ 1
2

are

fj+ 1
2
=φn

j +vn
j +

A(
2[(φ∗j +v∗j )−(φn

j−1 +vn
j−1)],(φ

∗
j+1 +v∗j+1)−(φn

j +vn
j )

)

2
, (3.37)

gj+ 1
2
=φn

j −vn
j +

A(
2[(φ∗j −v∗j )−(φn

j−1−vn
j−1)],(φ

∗
j+1−v∗j+1)−(φn

j −vn
j )

)

2
, (3.38)

where the special function A(x,y) is defined as

A(x,y)=





x, ifx ·y≥0and |x|≤ |y|
y, ifx ·y≥0and |x|> |y|
0, ifx ·y <0.

(3.39)
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Or in a more compact form, A(x,y) can be expressed as

A(x,y)=sgn(x)max(0,min(|x|,sgn(x) ·y)). (3.40)

Note that
• If the special function A(x,y) is identically zero, then we obtain the one-sided

first order scheme;
• If A(x,y) is chosen by

A(x,y)=y, (3.41)

then one recovers MacCormack’s scheme.
The boundary conditions are

φn
1 =φn+1

1 =1, vn
1 =v∗1 =vn+1

1 =1, vn
N+1 =v∗N+1 =vn+1

N+1 =1.5, (3.42)

and

φ∗N+1 =2φ∗N −φ∗N−1. (3.43)

To find v∗, one needs to solve a tridiagonal system (which can be solved using
Crout factorization method). Similarly, vn+1 is obtained by solving another tridi-
agonal system. Now the stability condition is given by the CFL condition only:
∆t≤C∆z/max|v| where C is the CFL constant.

In Figure 3.5 we plot the error of the modified MacCormack method with flux
limiting. All the numerical parameters remain the same as before. Clearly, this
method does not generate oscillations while still maintaining high accuracy.
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Fig. 3.5. Error of modified MacCormack method with flux limiting.

4. Numerical method for solving glass fiber equations
In this section we extend the modified MacCormack method with flux limiting to

solve the glass fiber equations (2.1). For glass fibers, viscosity is usually very large. We
find that the Crank-Nicolson method does not completely suppress small amplitude
numerical oscillations. This is because the Crank-Nicolson method is not L-stable.
To see this intuitively, consider the model ODE

y
′
=−λy. (4.1)
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The amplification factor ρ(λ) of the Crank-Nicolson method is

ρ(λ)=
1− λ

2 ∆t

1+ λ
2 ∆t

, (4.2)

|ρ(λ)| does not go to zero when λ∆t>>1.
To obtain L-stability, one can use a weighting scheme in the corrector step, as

employed by Eggers and Dupont [5] for the isothermal limit of this model.
Introducing u=φ2, w=φ2v, we rewrite (2.1) as





ut +wz =0,

wt +(
w2

u
− 1

W

√
u)z =

1
F

u+[η(T )u(
w

u
)z]z,

Tt +
w

u
Tz =

H√
u

(T 4
wall−T 4)− 2St

u
[(

w√
u

)m](T −Ta).

(4.3)

The numerical scheme consists of two steps. In the first (predictor) step, for
j =2,··· ,N , one has

u∗j =un
j −

∆t

∆z
(fj+ 1

2
−fj− 1

2
), (4.4)

w∗j =wn
j −

∆t

∆z
(gj+ 1

2
−gj− 1

2
)+

∆t

F
un

j

+
∆t

(∆z)2

[
η(

Tn
j+1 +Tn

j

2
)
un

j+1 +un
j

2

(
w∗j+1

un
j+1

− w∗j
un

j

)

− η(
Tn

j +Tn
j−1

2
)
un

j +un
j−1

2

(
w∗j
un

j

− w∗j−1

un
j−1

)]
, (4.5)

T ∗j =Tn
j −

∆t

∆z

wn
j

un
j

(Tn
j −Tn

j−1)+
H√
un

j

[T 4
wall−(Tn

j )4]∆t

− 2St

un
j

[
wn

j√
un

j

]m

(Tn
j −Ta)∆t, (4.6)

where the flux functions are

fj+ 1
2
=wn

j , (4.7)

gj+ 1
2
=

[wn
j ]2

un
j

− 1
W

√
un

j . (4.8)
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The boundary conditions are:

upstream:un
1 , wn

1 , Tn
1 are given (4.9)

downstream:





wn
N+1

un
N+1

≡Dr is given

wn
N+1 =2wn

N −wn
N−1

un
N+1 =wn

N+1/Dr

Tn
N+1 =2Tn

N −Tn
N−1

(4.10)

In the second (corrector) step, we update w first and then use the new values
of w rather than the predicted values of w to update u. This treatment seems more
natural. Therefore, for j =2,··· ,N , we have

un+1
j =un

j −
∆t

∆z
(f̃j+ 1

2
− f̃j− 1

2
), (4.11)

wn+1
j =wn

j −
∆t

∆z
(g̃j+ 1

2
− g̃j− 1

2
)+

∆t

2F
(un

j +u∗j )

+
1+ε

2
∆t

(∆z)2

[
η(

T ∗j+1 +T ∗j
2

)
u∗j+1 +u∗j

2

(
wn+1

j+1

u∗j+1

− wn+1
j

u∗j

)

− η(
T ∗j +T ∗j−1

2
)
u∗j +u∗j−1

2

(
wn+1

j

u∗j
− wn+1

j−1

u∗j−1

)]

+
1−ε

2
∆t

(∆z)2

[
η(

Tn
j+1 +Tn

j

2
)
un

j+1 +un
j

2

(
wn

j+1

un
j+1

− wn
j

un
j

)

− η(
Tn

j +Tn
j−1

2
)
un

j +un
j−1

2

(
wn

j

un
j

− wn
j−1

un
j−1

)]
(4.12)

Tn+1
j =Tn

j −
∆t

2∆z

wn
j

un
j

(Tn
j −Tn

j−1)−
∆t

2∆z

wn+1
j

un+1
j

(h̃j+ 1
2
− h̃j− 1

2
)

+
H

2
√

un
j

[T 4
wall−(Tn

j )4]∆t+
H

2
√

un+1
j

[T 4
wall−(T ∗j )4]∆t

− St

un
j

[
wn

j√
un

j

]m

(Tn
j −Ta)∆t− St

un+1
j


 wn+1

j√
un+1

j




m

(T ∗j −Ta)∆t, (4.13)
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where

f̃j+ 1
2
=wn

j +
A(

2(wn+1
j −wn

j−1),(w
n+1
j+1 −wn

j )
)

2
, (4.14)

g̃j+ 1
2
=

[wn
j ]2

un
j

− 1
W

√
un

j +
A(2x,y)

2
, (4.15)

x=

(
[w∗j ]2

u∗j
− 1

W

√
u∗j

)
−

(
[wn

j−1]
2

un
j−1

− 1
W

√
un

j−1

)
, (4.16)

y =

(
[w∗j+1]

2

u∗j+1

− 1
W

√
u∗j+1

)
−

(
[wn

j ]2

un
j

− 1
W

√
un

j

)
, (4.17)

h̃j+ 1
2
=Tn

j +A(
2(T ∗j −Tn

j−1), (T
∗
j+1−Tn

j )
)
, (4.18)

and A(·,·) is defined in (3.40). In (4.12), ε is a free parameter between 0 and 1. If ε is
0, then one obtains the second-order Crank-Nicolson method; if ε is 1, then one has
a complete implicit first order method.

5. Order of spatial convergence
In this section we want to check the order of convergence in the spatial direction.
Recall that the L1, L2, and L∞-norms for a vector u=(u1,··· ,uN ) on the uniform

grid with mesh size 1
N are defined respectively by

||u||1 =
∑N

i=1 |ui|
N

, ||u||2 =

√∑N
i=1u2

i

N
, ||u||∞=max1≤i≤N |ui|. (5.1)

In Tables 5.1 – 5.3 we check the order of convergence of our method in different
norms as defined above. In this computation, 1/F =1/W =1, H =0.2, St=0.1, m=
1/3, Ta =0.6, η(T )=30.0, Dr =5, ε=0.3, and the final time is 10. As shown here,
our method exhibits second-order accuracy in the spatial direction.

Notice that in the above computations, the viscosity is a constant. Now we keep
all the other parameters unchanged but replace the constant viscosity by a typical
temperature-dependent form,

η(T )=exp[30(
1
T
−1.0113)]. (5.2)

The results are shown in Tables 5.4 – 5.6. Again, our method exhibits second-order
accuracy.

6. Numerical experiments near the onset of linearized instability
In this section we want to further demonstrate the efficiency of our numerical

scheme by benchmarking the code at the onset of controllable instability.
In [8] we have solved steady state boundary-value solutions for a more general class

than (2.1), and performed the linearized stability analysis of steady state solutions by
solving an eigenvalue problem. Those equations and codes contain the system (2.1)
as a special case. Now we want to use results from [8] to test the performance of all
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Table 5.1. The order of convergence for radius φ where η(T )=30.

error of ||φ||1 order error of ||φ||2 order error of ||φ||∞ order

6.3848e-6 ♣ 6.9867e-6 ♣ 9.4746e-6 ♣

1.4932e-6 ♦ 2.0963 1.6292e-6 ♦ 2.1004 2.2038e-6 ♦ 2.1041

3.3929e-7 ♥ 2.1378 3.6912e-7 ♥ 2.1420 4.9553e-7 ♥ 2.1529

♣
Using 20–40 grid points

♦
Using 40–80 grid points

♥
Using 80–160 grid points

Table 5.2. The order of convergence for axial velocity v where η(T )=30.

error of ||v||1 order error of ||v||2 order error of ||v||∞ order

4.9177e-5 ♣ 5.7460e-5 ♣ 8.9325e-5 ♣

1.1685e-5 ♦ 2.0734 1.3680e-5 ♦ 2.0705 2.1489e-5 ♦ 2.0555

2.7008e-6 ♥ 2.1131 3.1754e-6 ♥ 2.1070 5.0514e-6 ♥ 2.0888

♣
Using 20–40 grid points

♦
Using 40–80 grid points

♥
Using 80–160 grid points

Table 5.3. The order of convergence for temperature T where η(T )=30.

error of ||T ||1 order error of ||T ||2 order error of ||T ||∞ order

5.1560e-5 ♣ 5.9112e-5 ♣ 1.5000e-4 ♣

1.2745e-5 ♦ 2.0164 1.4009e-5 ♦ 2.0771 3.7422e-5 ♦ 2.0030

3.1637e-6 ♥ 2.0102 3.4002e-6 ♥ 2.0427 9.3428e-6 ♥ 2.0020

♣
Using 20–40 grid points

♦
Using 40–80 grid points

♥
Using 80–160 grid points
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Table 5.4. The order of convergence for radius φ where η(T )= exp[30(1/T −1.0113)].

error of ||φ||1 order error of ||φ||2 order error of ||φ||∞ order

4.0910e-4 ♣ 6.0634e-4 ♣ 1.3571e-3 ♣

1.0646e-4 ♦ 1.9422 1.5561e-4 ♦ 1.9622 3.5159e-4 ♦ 1.9486

2.6674e-5 ♥ 1.9968 3.8801e-5 ♥ 2.0037 8.7929e-5 ♥ 1.9995

♣
Using 20–40 grid points

♦
Using 40–80 grid points

♥
Using 80–160 grid points

Table 5.5. The order of convergence for axial velocity v where η(T )= exp[30(1/T −1.0113)].

error of ||v||1 order error of ||v||2 order error of ||v||∞ order

3.8444e-3 ♣ 4.8094e-3 ♣ 8.3349e-3 ♣

9.8634e-4 ♦ 1.9626 1.2285e-3 ♦ 1.9689 2.1280e-3 ♦ 1.9696

2.4641e-4 ♥ 2.0010 3.0647e-4 ♥ 2.0031 5.3067e-4 ♥ 2.0036

♣
Using 20–40 grid points

♦
Using 40–80 grid points

♥
Using 80–160 grid points

Table 5.6. The order of convergence for temperature T where η(T )= exp[30(1/T −1.0113)].

error of ||T ||1 order error of ||T ||2 order error of ||T ||∞ order

1.2993e-4 ♣ 1.3518e-4 ♣ 2.0141e-4 ♣

3.4855e-5 ♦ 1.8983 3.5774e-5 ♦ 1.9179 5.1752e-5 ♦ 1.9604

8.9214e-6 ♥ 1.9660 9.1058e-6 ♥ 1.9740 1.3038e-5 ♥ 1.9888

♣
Using 20–40 grid points

♦
Using 40–80 grid points

♥
Using 80–160 grid points
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the above schemes and demonstrate that our proposed scheme gives the best results.
The idea here is to benchmark the transient PDE code near the onset of linearized
stability of boundary-value solutions. The precise question is whether the PDE code
correctly indicates linearized growth of superimposed spatial perturbations on steady
states, at the precise critical parameter value. We focus on variation of the take-up
speed, for fixed upstream boundary conditions. Using the codes developed in [8], we
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Fig. 6.1. A comparison of the one-sided, MacCormack, central differencing and MacCormack
with flux limiting schemes with Dr = 5.3.

find that for the isothermal case where the temperature T is constant and η(T )=3,
and the other parameters are 1/F =0, 1/W =10, the critical draw ratio Dr∗ – the
critical fiber spinning speed above which the steady state solution is linearly unstable,
is about 5.39. The value is obtained by solving an eigenvalue problem. Now we can
initially perturb the steady state solutions with draw ratio equal to 5.3 ( <Dr∗ ) and
5.5 ( >Dr∗ ) respectively, and use the different numerical schemes discussed above
to obtain the time-dependent solution. If the time-dependent solution relaxes to the
steady state solution, then the critical draw ratio is predicted to be above the current
draw ratio; otherwise, the critical draw ratio is lower.

Figure 6.1 demonstrates the results for Dr =5.3. The one-sided first order scheme
and the flux-limiting-MacCormack scheme both predict that the steady state is stable,
whereas the MacCormack scheme and central differencing scheme imply that the
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Fig. 6.2. A comparison of the one-sided, MacCormack, central differencing and MacCormack
with flux limiting schemes with Dr = 5.5.

steady state is unstable. Figure 6.2 gives the results for Dr =5.5. This time only the
one-sided first order scheme predicts that the steady state is stable. The oscillations
of the curves are consistent with nonzero imaginary parts of the largest-real-part
linearized eigenvalue. As shown in Figures 6.1 and 6.2, the MacCormack and central
differencing schemes both underestimate the critical draw ratio, whereas the one-sided
first order scheme overestimates the critical draw ratio. Only the flux-limiting-
MacCormack scheme gives a prediction consistent with linearized stability
analysis.

7. Conclusions
In this paper we have presented an efficient numerical method for solving the

governing model equations of a thermal glass fiber drawing process. Our method
combines the MacCormack scheme from hyperbolic conservation laws with the ideas
of flux limiting generally used in high resolution methods [11]. The method is tested on
a linearized transient model and against a linearized boundary-value stability method.
This method can now be applied to predict various aspects of the physical process [7]:
confirmation of linearized stability; bounds on the domain of convergence for linearly
stable solutions; and most importantly, spatial stability to transient perturbations at
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boundaries, which is the primary source of fiber instability and which is unresolved
by linearized stability methods.
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