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FDTD BASED SECOND-ORDER ACCURATE LOCAL MESH

REFINEMENT METHOD FOR MAXWELL’S EQUATIONS IN TWO

SPACE DIMENSIONS ∗

A. R. ZAKHARIAN † , M. BRIO ‡ , AND J. V. MOLONEY §

Abstract. An algorithm is presented for local space-time mesh refinement appropriate for
electromagnetic simulations based on the space-time staggered FDTD method. The method is based
on the adaptive mesh refinement algorithm originally developed for hyperbolic conservation laws.
Analysis of the dispersion relation and of the numerical reflection and transmission coefficients in
one and two space dimensions shows that a scheme based on linear interpolation at the grid interfaces
is unstable due to reflection coefficient >1 at frequencies above the cutoff frequency of the coarse grid.
A second-order accurate algorithm based on higher-order interpolations that enforces conservation of
the magnetic field circulation at the fine-coarse grid boundaries is constructed. The new algorithm
is shown to be stable and accurate for long time integration. A numerical simulation of an optical
ring microcavity resonator using multilevel grid refinement in two space dimensions is presented.
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1. Introduction

In the last two decades there have been numerous investigations of the local grid
refinement strategies. The main advantages of such methods are improved resolution
and efficiency over the methods that use uniform mesh size. The trade off is in
a more complicated data structure and a need for interface boundary conditions.
The adaptive mesh refinement algorithm (AMR) developed originally by Berger et
al (e.g. [1] and references therein) for systems of hyperbolic conservation laws is
freely available in a software package AMRCLAW [1]. The algorithm found many
applications in fluid dynamics, magnetohydrodynamics and astrophysics [6].

In this article we extend the AMR algorithm to the space-time staggered Yee
FDTD scheme for Maxwell’s equations of electrodynamics. The key issue is the de-
velopment of the fine-coarse boundary condition that is void of spurious oscillations,
accurate and stable for long time integration with small but fixed mesh sizes, and not
just in the theoretical limit of vanishing discretization parameters. For example, if
a reflection coefficient at the interface is R=1+O(∆t), the theoretical convergence
is not precluded according to Lax convergence theory, as ∆t→0. In practice, how-
ever, such R>1 may lead to instability if ∆t stays small but fixed and the number of
reflections is sufficiently large.

Numerical studies of this issue performed in the past [5], [8] indicated that the
stability of the local grid refinement algorithm is sensitive to the interpolation method
and the choice of the interpolated fields. In [3] the problem of spurious reflections at
the grid interfaces with material traverse was addressed by a set of experimentally
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determined averaging procedures, illustrating that indeed the filtering of the high
frequencies may work.

The theoretical analysis of a reflection coefficient for the scheme that preserves
discrete energy was presented in [4] for a one-dimensional case. The reflection and
transmission coefficients were shown to be of order one near Nyquist frequencies and
the overall scheme is consistent and convergent in the theoretical limit of vanishing
discretization parameters. However, the discrete energy defined in [4] is invariant for
arbitrary CFL numbers, and does not preclude amplification of the high frequency
modes.

For semi-discrete approximation with continuous time and discrete space [7] and
[10] showed that it is possible to construct an interpolation scheme at the grid inter-
faces, such that the energy is conserved in continuous time.

Finally, a paper by Vay [11] compares various reflection coefficients in the context
of a new numerical scheme proposed by the author. The method consists of replacing
the wave equation by a set of characteristic equations describing left and right going
waves and then applies the one-sided Sommerfeld boundary condition for each of
the waves. The author showed a significant reduction in the reflection coefficient in
comparison to previously suggested methods.

In this article we propose formulation of the AMR technique for the space-time
staggered Yee FDTD algorithm that enforces the conservation of circulation in a
manner similar to the conservation of the flux in hyperbolic conservation laws. The
method fits into the standard AMR grid management scheme and allows for the use
of previously developed software. Numerical examples illustrating accuracy, stability,
and efficiency are performed on three problems: scattering from a dielectric cylinder,
propagation in a waveguide and computation of coupling efficiency in a microring
cavity.

In the following section we describe the dispersion relation for the Yee scheme
and the evanescent, non-propagating modes with complex wave numbers. Interface
boundary conditions are derived and studied analytically and numerically in sections
2.2 and 2.3. Numerical examples are presented in section 3.

2. FDTD grid refinement algorithm

2.1. The Yee scheme dispersion relation. We consider the non-
dimensional linear vector Maxwell’s equations in isotropic, homogeneous nondisper-
sive media for transverse magnetic (TM) mode propagation (ignorable z-coordinate),
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Numerical discretization on each level of refinement is done using the standard
Yee scheme that is staggered in space and time and applied on a uniform mesh,
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where νx and νy are defined as ∆t/∆x and ∆t/∆y, respectively. A diagram of the
staggered grid of the Yee scheme is shown in Fig. 2.1 along with variable locations
at the interface between coarse and fine grids. The grid is usually refined near the
material interfaces and in the regions of high refractive index, where the wavelength is
shorter, and hence higher resolution is beneficial. We restrict our analysis to the cases
when material interfaces do not cross grid refinement interfaces. The reflection and
transmission properties of such grid interfaces will be modified, and this analysis is
out of the scope of the present paper. However, in the numerical examples we applied
our algorithm also to the cases of grid interface crossing the material boundary.

When the material interfaces are enclosed by the refined grids, the appropriate
FDTD update for Maxwell’s equations with inhomogeneous material properties can
be applied at the material interfaces. Therefore, at the grid refinement interfaces,
we can use in the following analysis the equations (2.1)-(2.3) valid for homogeneous
medium.
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Fig. 2.1. Staggered grid with a 1:2 refinement interface. Dashed lines denote boundaries of the
ghost cells. Arrows show a sample interpolation from coarse to fine Ez electric field values.

In one space dimension, (dropping the y-dependence and Hx component of the
magnetic field), the numerical dispersion relation of the Yee scheme is

sin
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2

)
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2

)

, (2.4)

where ∆t and ∆x describe the grid size on the level of refinement considered.

When considering an initial value problem for Maxwell’s equation, the wave num-
ber k is given and the frequency ω(k) is determined by the dispersion relation. The
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stability condition, uniform boundness of the numerical solution with respect to n–
number of iterations and initial condition eikx, for k∈ [− π

∆x ,
π
∆x ], implies that ν <1.

The scheme is dispersive and nondissipative: ω(k) is real and amplification factor is
unity for real k, with the phase velocity ω/k and group velocity ω′(k) approximat-
ing exact phase and group velocities to second order accuracy near k=0. Note that
the original wave equation describes a simple advection with the dispersion relation
ω=±k.

In the case of a boundary value problem or a problem with a forcing term that
oscillates at a given frequency ω, the wave number k(ω), determined by the above
dispersion relation, becomes complex for values of ω larger than the cutoff frequency
ωc, that is defined by identity sin[ωc∆t/2]=ν. The phase and group velocities of the
plane wave are shown in Fig. 2.2 computed for ν=0.4 and ∆x=0.02µm. On the same
figure it is shown that the wave amplitude attenuates exponentially for frequencies
between the cutoff frequency and the Nyquist frequency, while the group velocity is
zero in this regime that is often referred to, as a region of non-propagating modes.
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Fig. 2.2. Attenuation, phase and group velocities of the Yee scheme from the plane wave analysis.

On the fine grid the cutoff frequency is double that on the coarse grid if the grid
size ratio is 1:2, as follows from eq. (2.4). Therefore on the fine grid, the relevant
frequencies (up to the cutoff frequency) include both propagating and non-propagating
modes of the coarse grid. As shown in the next section numerical difficulties arise
beyond the cutoff frequency of the coarse grid due to the reflection of these non-
propagating modes back into the fine grid.

2.2. AMR Algorithm. The grid refinement algorithm is designed in the finite
volume context with electric field representing the cell averages and magnetic field and
its circulation defined along the cell boundaries, analogous to the flux function in the
systems of hyperbolic conservation laws. The discussion is given for the TM mode,
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but it applies equally to the TE mode, and can be derived by exchanging the roles of
the magnetic and electric fields.

Referring to the Fig. 2.1 and defining update as application of the Yee scheme
(2.1)-(2.3), the algorithm can be summarized by the following steps:
0. Update on the coarse grid, n→n+1:
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4. Update on the fine grid, n+1/2→n+1:
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5. Replace magnetic field on the coarse grid:
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6. Update interface cells En
zc i−1/2,j+1/2 and En

zc i+1/2,j−1/2, etc. as in step 0.

7. Replace Ezc by the volume average of Ezf in the regions where fine grid overlaps

coarse grid.

These steps are applied recursively at each refinement level. Note that this ap-
proach is different from the one proposed in [3], where the grid refinement ratio of
three is used and the magnetic field values at the interface are interpolated directly.
In our formulation the electric field is interpolated to obtain the ghost cell values.
Therefore, magnetic field values at the interface can be computed using the same Yee
algorithm as in the interior. In contrast, the discrete energy conserving approach
reported in [4] requires that fine and coarse values of the magnetic field be different
on each side of the interface.

Further, the replacement of the magnetic field on the coarse grid by the space-
time averaged magnetic fields on the fine grid at the interface in step 5, enforces the
preservation of the circulation across the grid hierarchy at multiples of the coarse time
step, which can be seen from the following. For dielectric medium the Ampere’s law,
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and its discrete counterpart, can be written in integral form as:

∂

∂t

∫

A

DdA=

∫

l

Hdl (2.5)

∑

ij

εij(E
n+1
ij −Enij)∆x∆y/∆t=

∑

l

H
n+1/2
l dl. (2.6)

Substituting the discrete time derivative from equation (2.3) into the left hand side of
equation (2.6), and performing summation over all cells constituting the area A, shows
that the discrete integral form of the Ampere’s law is satisfied by the Yee scheme:
all H fields cancel out except those that contribute to the integral of H along the
boundary l of A. We show that this property of the scheme holds in the presence of
grid refinement, by considering an area A that includes a refined grid region. The
only modification to the sum occurs at the grid interfaces. With reference to Figure
2.1 the E field on the coarse grid is updated once from time n to n+1 and E field on
the fine grid is updated twice according to:
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and similarly for E
n+1/2
zf i+1/4,j+3/4. By substituting equations (2.7)-(2.9) into the dis-

crete integral in (2.6), and using for the coarse grid H-fields on the interface (e.g.

H
n+1/2
yc i,j+1/2) their values computed from space-time average in step 5 of the algorithm,

again all H-field values, except those on the boundary l, cancel out.
In step 1 (and 3) of the algorithm, ghost cell values of Ezf are interpolated in

space (and space-time) from nearby coarse and fine cells. One approach is to use
second-order accurate linear interpolation with gradients ∇=(∇x,∇y) approximated
by central differences, e.g. at the point (i−1/2,j+1/2) in Fig. 2.1:
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where dr∓=(∆xc/4,∓∆yc/4). The values of the ghost cells at time n+1/2 are
obtained by additional linear interpolation in time:
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While second-order accurate, this interpolation method, as shown in section 2.3, re-
sults in a reflection coefficient R larger than 1 for waves propagating from fine to
coarse grid. In the following discussion we refer to this interpolation approach as
linear.

A higher-order interpolation in space that involves a minimum number of points
on the coarse grid can be obtained by using quadratic interpolation along each co-
ordinate direction. As an example, at the point (i−1/2,j+1/2) on Fig. 2.1, first
a parabola in y is used to obtain intermediate values at points (i−1/2,j+1/4) and
(i−1/2,j+3/4), e.g.:
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(2.13)

Second, a parabola in x interpolates to the position of the ghost cells, e.g.:
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5
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In the following discussion we refer to this interpolation approach as quadratic. Al-
ternatively, interpolation normal to the interface (along the x-axis) can be done using
a linear approximation that involves one value of E-field from the fine grid:
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3
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3
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In the following discussion we refer to this interpolation approach as quadratic-linear.
Interpolation in time is done using linear interpolation, as in steps (2.10)-(2.11).

Although the algorithm is given for a grid refinement ratio 1:2, it can be adapted for
higher ratios. This, however, increases gradients in the grid size, which may affect
stability. Then, several nested refinement levels may be preferable to one with high
refinement ratio.

2.3. Reflection and transmission coefficients. The reflection and trans-
mission coefficients were computed both analytically, using symbolic manipulations,
and numerically - using the AMR computer program. The analytical solutions were
obtained by substituting a plane wave ansatz into the interface boundary conditions
and solving the resulting linear system for the unknown reflection and transmission
coefficients.

2.3.1. One space dimension. The plane wave ansatz takes into account
that a single coarse grid frequency ω∆t corresponds to two fine grid wavenumbers
corresponding to the primary frequency ω∆t and the secondary aliased frequency
ω̃∆t=ω∆t+2π. The corresponding wavenumbers are denoted as k(ω∆t) and k̃(ω̃∆t).
Note, that the secondary aliased wave is evanescent for all grid frequencies ω∆t∈ [0,π],
while the primary wave is propagating for grid frequencies ω∆t∈ [0,4sin−1(ν)]. The
exact solution to the reflection-transmission problem is obtained with the following
plane wave ansatz,
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for a wave incident on the grid interface from the fine grid side x>0, and
(
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)
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for a wave incident on the grid interface from the coarse grid side x<0. The reflection
and transmission coefficients are determined by solving a linear system of equations
obtained by substitution of the solution ansatz into the update equations for the ghost
E-field values and H-fields at the interface.
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Fig. 2.3. Left: reflection coefficient in direction of fine to coarse. Right: enlarged region near
cutoff frequency. Solid lines correspond to R computed analytically using linear interpolation normal

to the grid interface, dashed lines - quadratic interpolation normal to the grid interface. Symbols

represent numerical solution. Vertical dotted line marks the cutoff frequency on the coarse grid.
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Fig. 2.4. Transmission coefficient in direction of fine to coarse.

Numerically measured reflection coefficients for the coarse (fine) reflected wave
were computed by taking the difference between an incident Gaussian pulse Ez=
sin(2πft)exp(−[(t− t0)/σ]

2) with carrier frequency f , sampled near the grid interface
on the (coarse) fine side, and a reference solution sampled at the same point, but
computed without the interface. Then, the numerical reflection coefficient R(f) was
evaluated by taking a ratio of amplitudes of Discrete Fourier Transforms (DFT) of
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time samples of the two signals. The coarse to fine (fine to coarse) transmission
coefficient T (f) was evaluated by taking a ratio of DFTs of the transmitted signal
on the fine (coarse) grid and a reference solution computed on the fine (coarse) grid
without the interface.
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Fig. 2.5. Left: reflection coefficient in direction of coarse to fine. Right: transmission coefficient
in direction of coarse to fine.

The reflection and transmission coefficients for fine-to-coarse propagation are
shown in Figs. 2.3 and 2.4 for ν=0.4. The numerically computed reflection coef-
ficient is greater than 1 above the cutoff frequency of the coarse grid for the linear
interpolation model, and less than 1 at all frequencies up to the Nyquist frequency of
the coarse grid for the quadratic interpolation scheme. At low frequencies all methods
recover second order accuracy, with the reflection coefficient R∼O(∆t2). The trans-
mission coefficient at the cutoff frequency is Tfc∼1.3 for the quadratic interpolation
method, but the product of TfcTcf is less than unity (Figure 2.5), and this prevents
the build up of the energy in the high frequency modes.

2.3.2. Two space dimensions. In two dimensions on the fine grid there
are two frequencies and two transverse wave numbers corresponding to single primary
coarse frequency and transverse wave number: ∆t,ω∆+2π and ky,ky+2π. This re-
sults in four possible reflected or transmitted waves on the fine side. The number
of unknown coefficients corresponds to the number of interface conditions, for ex-
ample, one coarse interface condition for the magnetic field corresponds to a single
reflected/transmitted wave on the coarse grid, while two fine ghost values at each
time sub-cycle of the fine mesh correspond to four reflected or transmitted waves on
the fine grid. For a given frequency ω and transverse wavenumber ky, the dispersion
relation on both grids determines the wavenumber normal to the interface for the
coarse and fine grids, respectively, with a corresponding dispersion relation on the
coarse mesh,
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(

ω∆t

2

)

=ν2
[

sin2
(

kx∆x

2

)

+sin2
(

ky∆y

2

)]

,

sin2
(

ω∆t+2πp

4

)

=ν2
[

sin2
(

kp,qx ∆x

4

)

+sin2
(

ky∆y+2πq

4

)]

p,q=0,1,
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where we assumed that ∆x=∆y and therefore ν=νx=νy. The amplitudes of the
plane wave modes are normalized using the following variables,

A=ν
sin(kx∆x/2)

sin((ω∆t/2)
, B=−ν

sin((ky∆y)/4)

sin((ω∆t)/4)
,

ap,q=ν
sin(kp,qx ∆x/4)

sin((ω∆t+2πp)/4)
, bp,q=ν

sin((ky∆y+2πq)/4)

sin((ω∆t+2πp)/4)
.

Then, the plane wave ansatz is




Efz

Hfy

Hfx



=





1
a0,0
−b0,0



ei(k
0,0

x
x+kyy+ωt)+

∑

p,q

Rp,q





1
−ap,q
−bp,q



ei(−k
p,q

x
x+kyy+ωt) ,

with p=0,1 and q=0,1. The transmitted plane wave on the coarse side is given by





Ecz

Hcy

Hcx



=Tei(kxx+kyy+ωt)
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
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Fig. 2.6. Reflection coefficient R(ω,ky) for waves incident from the coarse grid side in 2-D.
Left: quadratic interpolation, right: linear interpolation.

Similarly, when the wave is incident onto an interface from the coarse grid side,
x<0, there are four possible transmitted waves. The incident and reflected wave
ansatz on the coarse side is,





Ecz

Hcy

Hcx



=





1
−A
−B



ei(−kxx+kyy+ωt)+R





1
A
−B



ei(kxx+kyy+ωt) ,
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On the fine side the transmitted wave ansatz is as follows,





Efz

Hfy

Hfx



=
∑

p,q

Tp,qe
i(−kp,q

x
x+kyy+ωt)





1
−ap,q
−bp,q



ei(−k
p,q

x
x+kyy+ωt) ,

where each of the variables p and q are equal to 0 or 1.
In order to determine the five unknown reflection/transmission coefficients, the

plane wave ansatz is substituted into the interface boundary conditions defined by
interpolation equations of section 2.2. For example, using the linear interpolation
equation (2.14), the planewave ansatz is substituted into following five equations,
taking into account the staggered positioning of E and H fields in space and time:

H
n+1/2
xc i+1/2,j=

1

4

(

H
n+1/4
xf i+1/4,j+H

n+3/4
xf i+1/4,j+H

n+1/4
xf i+3/4,j+H

n+3/4
xf i+3/4,j

)

En
zf i−1/4,j∓1/4=

2

3
En
zf i−1/2,j∓1/4+

1

3
En
zf i+1/4,j∓1/4

E
n+1/2
zf i−1/4,j∓1/4=E

n
zf i−1/4,j∓1/4+(E

n+1
cz i−1/2,j+1/2−E

n
cz i−1/2,j+1/2)/2,

where En
zf i−1/2,j∓1/4 is defined by interpolation along the grid interface in (2.13).

Plots of the absolute value of the reflection coefficient as a function of frequency
and transverse wavenumber for quadratic and linear interpolation cases are shown
in Figure 2.6. The transverse wavenumber ky∆y runs through interval [0,2π] taking
into account that the normalization of the wavenumbers was done using the coarse
grid ∆y. The frequency interval is determined for each transverse wavenumber by the

propagation condition of the incident wave, real k
(0,0)
x or 0≤ sin(k

(0,0)
x ∆x)≤1 imposed

by the respective dispersion relation.
Figure 2.6 shows that for the angles of incidence near 14◦, the reflection coefficient

for waves incident from the coarse grid side is larger than unity for the quadratic
interpolation case. For the quadratic-linear scheme the reflection coefficient is <1 for
all angles, preventing amplification of modes that undergo multiple reflections at the
fine-coarse grid interface. A detailed analysis of the stability of the algorithm using
other interpolation approaches for the two-dimensional methods, is presented in [2].

To estimate conservation properties of the algorithm, we integrated the solution
using the grid structure shown in Figure 2.7 with the Gaussian inital condition and
perfectly reflecting boundary conditions on the coarsest level. Divergence ∇·B com-
puted on the coarse base grid is of the order of 10−6 for all times up to the 2×105

iterations that we tested.
The discrete approximation of electromagnetic energy ε(En)2+(Hn+1/2)2/µ com-

puted for the FDTD algorithm on a uniform grid (single level) and on a grid with
2 levels of refinement as in Figure 2.7 (left) is shown in Figure 2.8. The discrete
energy on the uniform grid oscillates around its initial value, while on the refined
grid it decays due to reduction in amplitude of the waves on each crossing of the grid
interfaces. This smoothing is consistent with the second order accuracy of the scheme
and accumulates to a noticeable amount after 105 iterations. However this example
contradicts the original aim of the grid refinement to capture solution gradients and
energy on the finest grids, rather than allowing thousands of grid interface crossings.
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Fig. 2.7. Left: grid structure and initial condition used for the test of ∇·B=0. Right: ∇·B
after 2×105 iterations on the coarse grid.
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Fig. 2.8. Integral of discrete electromagnetic energy over the computational grid vs the number
of time steps.

3. Numerical Examples

In the first example we consider a 2D optical waveguide with refractive index
nw=3.2 and width w=0.3 µm. The waveguide is suspended in the background with
index nb=1, and extends along the y-axis from y=0 to y=8.2µm, Figure 3.1.

One level of 1:2 grid refinement is used to surround the waveguide. The resolution
on the coarse grid is ∆x=∆y=0.0272 µm. A carrier wave with frequency 200 THz
(free-space wavelength λ=1.5 µm) is excited at y=1.46 µm with a transverse profile
corresponding to the fundamental waveguide mode computed from the analytic dis-
persion relation. The ghost cell linear interpolation method becomes unstable. The
left column of Fig. 3.1 shows that after ten thousand iterations the signal to noise ratio
is about 0.3. The high frequency waves that originate due to the discretization error,
are trapped between the waveguide walls and the coarse-fine grid boundary. They
experience multiple reflections and since the fine-to-coarse reflection coefficient in the
linear interpolation case is greater than unity above the cutoff frequency, these modes
are amplified, leading to instability. On the right side of Fig. 3.1 the field is shown
for the quadratic interpolation method, with R<1 for all frequencies. The numeri-
cal solution is stable for long integration times: 5×104 fs corresponds to 2.75×106

iterations.
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Fig. 3.1. Left: linear O(∆x2) interpolation, right: quadratic O(∆x3) interpolation.

The second example evaluates the rate of convergence of the method using
quadratic interpolation. The solution is initialized with a Gaussian pulse,

Ez(x,y)=cos(2πy)exp[−((x−x0)
2+(y−y0)

2)/σ2]

Hx=−Ez,Hy=0, σ=0.8µm,x0=2.5µm,y0=3µm, that propagates along the y axis
in the background medium with refractive index nb=1. A dielectric disk with index
nd=2.0 is set at (x,y)=(2.5,6.0)µm. The number of points on the coarsest grid
is (nx,ny)=(125,250) (∆x=∆y=0.04, Nppw=25). Two levels l=1,2 of 1:2 grid
refinement are used to resolve the disk boundary and a twenty point PML boundary
layer terminates the coarse grid at level l=0. The wave diffracts in the x direction as
it propagates and interacts with the disk. Fig. 3.2 shows a snapshot of the electric
field distribution at the time when the peak of the wave crosses the grid interface of
the first refinement level. At the final time the incident wave has crossed the grid
boundaries in both coarse-to-fine and fine-to-coarse directions.

Fig. 3.3 shows the differences between solutions at consecutive resolutions of ∆x
and ∆x/2 in the discrete L2 norm. We keep the staircased geometry invariant when
changing the grid resolution, since our objective is to evaluate the errors due to the
grid refinement interfaces and not staircased geometry. Solutions on both uniform
and refined grids with one level of refinement are compared at t=16 fs on the domain
[1.0,4.0]× [1.0,9.0]µm, using values sampled on the coarse grid. In the case of the
refinement the coarse values are replaced by the averages of the fine values according
to the step 7 of the algorithm. As seen from the figure, in all cases the rate of
convergence is second order, and the error of the solution obtained on the refined grid
is approximately the same as error on the uniform grid with doubled resolution. The
second-order errors due to grid interfaces can be seen from the log-scale plots of the
reflection coefficients vs frequency, Figures 2.3,2.5.
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Fig. 3.2. Gaussian pulse incident on a dielectric disk. Boundaries of the dielectric and of the
refined grids are outlined.

In the last example we compute the coupling efficiency and transmittance spec-
trum of the microcavity ring resonator from [9]. The geometry and the grid structure
are shown in Fig. 3.4. The outer ring radius is 2.5µm and all waveguides have a
width of w=0.3µm. The separation between straight waveguides and the ring sec-
tion shown in Fig. 3.4 is g=0.2312µm. Refractive index of the waveguides and of
the background is set to nw=3.2 and nb=1.0 respectively. The cell size of the most
refined grid is ∆x=∆y=0.0136µm. A Gaussian pulse with carrier frequency 200
THz is initiated in the left waveguide WL using precomputed time dependence of the
transverse electric field Ez [9]. The pulse propagates and couples some of its energy
into the ring microcavity, Fig. 3.5. This ”trapped” pulse repeatedly circumnavigates
the ring and couples its energy back into the waveguides WL and WR on each pass.
To compute the coupling efficiency of the ring cavity, we use the same procedure as in
[9]. First the Discrete Fourier Transforms of the time dependent E and H fields are
calculated. The sampling of the fields is taken across the waveguide WL at y=2.5µm
and across the top section of the ring at x=5.2µm. Then, we integrate the Poynting
vector across the waveguide cross-sections, and take the ratio of the resulting fluxes.

The computed coupling coefficient κ for different gap sizes g, using uniform and
refined grids with one and two levels of refinement, is shown in Fig. 3.6 as a function
of frequency. The coupling coefficient computed using the multilevel grid structure
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Fig. 3.4. Ring microcavity resonator geometry and grid structure. For clarity, grid lines are
decimated by a factor of four.

agrees well with the values obtained on a uniform grid. The improvement in perfor-
mance due to space and time mesh refinement depends on the number of refinement
levels and the fraction of the computational domain that is refined. Table 3.1 com-
pares required computer memory and normalized run times for the examples of pulse
scattering from a dielectric rod and the microring cavity computations, to achieve rel-
ative accuracy of 10−3. Comparison is done for the case of uniform grids and refined
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Fig. 3.5. Time evolution of the electric field Ez component in the ring microcavity. Dashed

lines mark waveguide boundaries.
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Fig. 3.6. Coupling efficiency of the microring as a function of frequency and gap size g. Lines

correspond to uniform grid, circles - to one level, and triangles - to two levels of grid refinement.

grids with the same resolution on the most refined level. Using one and two levels
of refinement for the microring resonator problem results in about 1.8 and 4.0 times
improvement in computation time.
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Table 3.1. Comparison of the FDTD method on the uniform and refined grids

Number of Levels ∆ [nm] Memory [MB] Run time

scattering 1 10 58.7 17.5
scattering 2 20-10 17.8 3.4
scattering 3 40-20-10 6.3 1.0
microring 1 13.6 78.4 3.8
microring 2 27.2-13.6 34.0 1.76
microring 3 54.4-27.2-13.6 28.6 1.0

4. Conclusions

In this paper we have proposed a simple interface boundary condition for local
space-time grid refinement appropriate for the FDTD method for Maxwell’s equations
in two space dimensions. The algorithm is in a form similar to the flux formulation
of the hyperbolic conservation laws and allows for the use of previously developed
data management algorithms for solution adaptive grid refinement. The algorithm
preserves overall accuracy of the solution in the regions of high gradients, and is more
efficient compared to the uniform grid case.

The interface boundary condition we propose is significantly simpler than the ones
used previously. The numerical experiments demonstrate the accuracy, efficiency and
stability of the algorithm for long time integration. Its applicability in three spatial
dimensions and to dispersive material models is under investigation.
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