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ON LARGE TIME STEP GODUNOV SCHEME FOR HYPERBOLIC
CONSERVATION LAWS ∗

JINGHUA WANG † , HAIRUI WEN ‡ , AND TIE ZHOU §

Abstract. In this paper we study the large time step (LTS) Godunov scheme for scalar hyper-
bolic conservation laws proposed by LeVeque. We show that for an arbitrary Courant number, all the
possible wave interactions in each time step occur only in a finite number of cells, and the number of
cells is bounded by a constant depending on the Courant number for a given initial value problem.
As an application of the result mentioned above, we show that for any given Courant number, if the
total variation of the initial value satisfies some conditions, then the numerical solutions of the LTS
Godunov scheme will converge to the entropy solutions of the convex scalar conservation laws.
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condition
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1. Introduction and Notation
We are concerned with initial value problems for nonlinear hyperbolic conservation

laws

ut +f(u)x =0, −∞<x<∞,t≥0, (1.1)
u(x,0)=u0(x), −∞<x<∞, (1.2)

where the flux function f(u) is a smooth function of u, and the initial data satisfies

u0∈L∞(R)
⋂

BV (R) with ‖u0‖∞≤M0. (1.3)

It is well known that solutions to (1.1)−(1.2) generally develop discontinuities
even when u0(x) is smooth. Therefore we seek weak solutions, i.e., a locally integrable
function u(x,t) satisfying

∫∫

R×(0,∞)

[uϕt +f(u)ϕx]dxdt+
∫ ∞

−∞
u0(x)ϕ(x,0)dx=0

for all ϕ∈C∞0 (R× [0,∞)).
Moreover, a weak solution u is called an entropy solution, if it satisfies

U(u)t +F (u)x≤0 (1.4)

in the sense of distributions, that is

−
∫∫

R×[0,∞)

[U(u)ϕt +F (u)ϕx]dxdt≤0, for all 0≤ϕ∈C∞0 (R×(0,∞)), (1.5)
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478 GODUNOV SCHEME FOR HYPERBOLIC CONSERVATION LAWS

where U is any strictly convex function satisfying

0<ca≤U ′′(u)≤ cb, for |u|≤M.

Here M can be chosen as u0(−∞)+TV(−∞,∞)(u0) since the LTS Godunov scheme
is TVD and does not satisfy maximum principle. (cf.LeVeque[11]). U is called an
entropy of problem (1.1)-(1.2); the function F (u)=

∫ u

0
U ′(ξ)f ′(ξ)dξ is the associated

entropy flux. Any smooth solution u of (1.1) satisfies U(u)t +F (u)x =0. The entropy
condition (1.4) ensures uniqueness of weak solutions to the initial value problem (1.1)-
(1.2).

In order to compute the numerical approximation of (1.1)-(1.2), we partition the
x-axis into intervals of length h by the set of points xi = ih,i∈Z, and the positive
time axis into intervals by the points tj = j∆t,j∈N0. The grid points (xi,tj) define
a rectangular mesh on R× [0,∞). We will always assume that the time step ∆t=λh
for some fixed mesh ratio λ>0. We denote the Courant number C as

C =
a∆t

h
, where a= sup

|u|≤M

|f ′(u)|. (1.6)

Many approximate methods for (1.1)-(1.2) are based on solutions to Riemann
problems. At each time step t= tj , we just use a piecewise constant function

uj
h(x)=uj

i , x∈ [xi,xi+1), i=0,±1±2,···

to approximate the true solution u(x,tj). Denote the Riemann solution with left
and right states uj

i−1 and uj
i at grid point (xi,tj) as uj

h,i(x,t). In convex scalar
equations, uj

h,i(x,t) is either a shock wave or a rarefaction wave. As long as the
Courant number C < 1

2 , the neighboring Riemann solutions will be separated by the
intermediate constant states. Therefore, setting

uj
h(x,t)=uj

h(x)+
∑

i∈Z
[uj

h,i(x,t)−uj
h,i(x,tj)] (1.7)

gives an exact weak solution to (1.1) with initial data uj
h(x) in the strip tj <t<tj+1.

When C > 1
2 the waves issuing from different grid points may interact with each other

and the use of the exact weak solution beyond the time of interaction would be
computationally difficult and expensive, except for the Godunov scheme with the
Courant number less than or equal to 1 (see [11]). In the large time step (LTS)
Godunov scheme proposed by LeVeque [12], the solution (1.7) is taken when C > 1

2 .
This means that the waves simply pass through one another with no changes in speed
or strength and with no creation of new waves, so they behave as solutions to a linear
system ut +Aux =0. In other words, we use the linear superposition formula (1.7) to
approximate the nonlinear interaction. For convenience, we will still call each wave
in (1.7) a shock, admissible discontinuity or rarefaction wave respectively although it
is no longer that beyond the linear superpositions.

Although (1.7) will fail to be a weak solution of (1.1) on the strip tj≤ t<tj+1

beyond the interaction time, in [11], LeVeque showed that even for an arbitrarily
large Courant number, the LTS Godunov scheme gives a consistent approximation
for systems of conservation laws and convergent approximation to the initial value
problem of (1.1)-(1.2). Wang [15] showed that the LTS Glimm scheme gives a conver-
gent approximation for the Courant number less than or equal to 1, and a consistent
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approximation for any given Courant number for system of conservation laws. Bre-
nier [2] showed that the LTS Glimm scheme gives a convergent approximation with
the Roe Riemann solver for the Courant number less than or equal to 1. In fact, the
approximate solutions constructed by the LTS Godunov and Glimm schemes are a
total variation diminishing (TVD) for scalar conservation laws. Other LTS schemes
had been introduced by Brenier [1], Toro and Billet [14]. In [11] LeVeque conjectured
that his LTS Godunov scheme approximates an entropy solution. As we know, there
is not any numerical evidence of entropy violating shocks for these schemes, see [12][8].
Surprisingly, it has been found numerically that the LTS scheme with moderate value
of the Courant number (larger than 1 but smaller than 3, say) has much higher resolu-
tion, see [12]. In [16] and [17] Wang and Warnecke proved the entropy consistency of
the LTS Godunov and Glimm schemes for the Courant numbers less than or equal to
1 for convex scalar conservation laws. If the flux function has constant curvature, the
results can be extend to the Courant numbers slightly larger than 1. And if the flux
function is monotone, this holds for the Courant number being 2, and for monotone
initial data this is true for an arbitrary Courant number. The entropy consistency of
large time step schemes for the isentropic equations of gas dynamics was considered
by Jiang and Wang [9]. For L1(R) error estimate of the LTS schemes see [13] and
[7]. To our knowledge, the entropy consistency results are essentially proved for the
Courant number C≤1 till now.

In this paper, we will study the LTS Godunov scheme with an arbitrary Courant
number. In this case, waves can travel C cells in one time interval, so the linear
superpositions of waves cannot be confined in one cell. In section 2 we will prove that
in the time interval (tj ,tj+1), all the superpositions are confined in a finite number of
cells, and the number is bounded by a constant depending on the Courant number C
for a given initial value problem. This means that the total length in x direction of
these cells is O(h).

It is well known that if the initial value u0 is in L∞(R)
⋂

BV (R), the solutions
of the LTS Godunov scheme are bounded uniformly in L∞(R×R+)

⋂
BV (R×R+);

see [11]. Thus the entropy condition (1.5) is a distributional inequality for the signed
Radon measure η(u)=U(u)t +F (u)x. This measure is called the dissipation measure
by DiPerna [3]. In section 3, we study the change of the dissipation measure through
the linear superpositions. Since the change of the dissipation measure across the
linear superposition involving rarefaction waves is too complicated to estimate, we
use a piecewise constant function to approximate the rarefaction wave. In the linear
superpositions of all kinds of waves, only a shock interacting with a rarefaction wave
will increase the dissipation measure. A rarefaction wave meeting another rarefaction
wave or a shock interacting another shock will decrease the dissipation measure. We
will estimate the net increase amount. The key estimation is (3.11) in Lemma 3.4,
which gives a sufficient condition to ensure that the dissipation measure is negative
in a linear superposition zone. In section 4, we prove an entropy consistency theorem
(Theorem 4.1) on the entropy consistency for the LTS Godunov scheme. The final
result is: for any given Courant number C, if the product of increasing total variation
and decreasing total variation of the initial data is bounded by a constant depending
on the Courant number C for a given initial value problem of convex conservation
law, the numerical solutions of the LTS Godunov scheme will converge to the entropy
solution, and the constant approaches to infinity as the Courant number tends to 1

2 .
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(b) linear superposition of two
neighboring admissible dis-
continuities

Fig. 2.1. Figure for Lemma 2.1

2. The estimations on linear superposition zone
In this section, we are concerned with the initial value problem for general scalar

conservation law (1.1), (1.2) with the flux function f satisfying

sup
|u|≤M

|f ′′(u)|≤ c2 (2.1)

where c2 is a positive constant.
For the LTS Godunov scheme proposed by LeVeque (1.7), waves issuing from

different grid points at time level t= tj may interact(linear superposition) with each
other in the time interval (tj ,tj+1). Thus for a group of consecutive waves {Wi}, if
the trajectories of waves in {Wi} form a connected set in the strip tj <t<tj+1, and if
any wave in this group does not interact with waves not in this group, this connected
set is actually a connected component. Here and in the sequel, for simplicity, we name
trajectories of admissible discontinuities and trajectories of boundaries of rarefaction
waves as trajectories of waves. If a closed domain D in the strip tj <t<tj+1 is the
minimum domain containing a connected component, we call it a linear superposition
zone. Specifically, if the group of waves {Wi} is

A={Wi,Wi+1,··· ,Wi+K},
and the trajectories of these waves form a connected component, then the linear super-
position zone D corresponding to A has the following boundaries: the top boundary is
the line segment between (xi−[C]−1,tj+1) and (xi+K+[C]+1,tj+1), the bottom bound-
ary is the line segment between (xi,tj) and (xi+K ,tj), the left boundary is a broken
line from (xi,tj) to (xi−[C]−1,tj+1), and the right boundary is a broken line from
(xi+K ,tj) to (xi+K+[C]+1,tj+1)(see section 3 for the details about the left and the
right boundaries).

In Theorem 2.4 we will show that each linear superposition zone contains a finite
number of consecutive waves, and the number is bounded by a constant depending
on the Courant number for a given initial value problem.

If a pair of neighboring waves interact with each other, we call them an interacting
neighbor pair. In each interacting neighbor pair, at least one of the two waves is
admissible discontinuity since any two neighboring rarefaction waves cannot interact
with each other.
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Lemma 2.1. Let C be the Courant number (defined in (1.6)) for the LTS Godunov
scheme (1.7).

(1) If an interacting neighbor pair consists of a rarefaction wave R(u−1,u0) and
an admissible discontinuity S(u0,u1) (cf. Figure 2.1(a)), then the strength of
S(u0,u1) is bounded below by 2a

c2C , i.e.,

|u0−u1|≥ 2a

c2C
. (2.2)

(2) If an interacting neighbor pair consists of two admissible discontinuities
S(u−1,u0) and S(u0,u1) (cf. Figure 2.1(b)), then,

|u−1−u1|≥ 2a

c2C
. (2.3)

This implies that the strength of at least one of them bounded below by a
c2C ,

i.e.,

|u−1−u0|≥ a

c2C
, or |u0−u1|≥ a

c2C
. (2.4)

Proof. For (1 ), since the right boundary of the rarefaction wave R(u−1,u0) trav-
els with speed f ′(u0), and the discontinuity S(u0,u1) travels with speed (f(u0)−
f(u1))/(u0−u1)

∣∣∣∣f ′(u0)− f(u0)−f(u1)
u0−u1

∣∣∣∣∆t

=
∣∣∣∣
f(u1)−f(u0)−f ′(u0)(u1−u0)

u0−u1

∣∣∣∣∆t

≤ (u0−u1)2
∫ 1

0
ξ|f ′′(ξu0 +(1−ξ)u1)|dξ

|u0−u1| ∆t

≤ c2

2
|u0−u1|∆t (2.5)

If

c2

2
|u0−u1|∆t<h,

then the rarefaction wave (left one) can not catch up the discontinuity (right one)
within the time period 0<t<∆t. Hence, in order to let them interact, we must have

c2

2
|u0−u1|∆t≥h,

i.e.,

|u0−u1|≥ 2a

c2C
. (2.6)
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xk+lxi xk xi+j

tn+1

tn
xi+2[C]+1

Fig. 2.2. Figure for Lemma 2.2

For (2 ), since,
∣∣∣∣
f(u−1)−f(u0)

u−1−u0
− f(u1)−f(u0)

u1−u0

∣∣∣∣∆t

≤
∫ 1

0

|f ′(ξu−1 +(1−ξ)u0)−f ′(ξu1 +(1−ξ)u0)|ξ∆t

≤
∫ 1

0

∫ 1

0

|f ′′(ηξ(u−1−u1)+ξu−1 +(1−ξ)u0)||u−1−u1|ξdηdξ∆t

≤ c2|u−1−u1|
∫ 1

0

∫ 1

0

ξdηdξ∆t

≤ c2

2
|u−1−u1|∆t (2.7)

by a similar way, we must have

|u−1−u1|≥ 2a

c2C
(2.8)

to ensure the interaction of the two discontinuities. If u−1,u0 and u1 are three mono-
tone numbers, then the total strength of the two discontinuities is equal to |u−1−u1|.
If u0 is not between u−1 and u1, then

|u−1−u1|= ||u−1−u0|−|u1−u0||.

So the strength of at least one of the discontinuities is greater than a
c2C .

Lemma 2.2. If the trajectories of a set of waves {Wi,··· ,Wi+p}(p≥1) form a con-
nected set in the strip tn <t<tn+1, then there exists at least one interacting neighbor
pair in this set of waves. And trajectories of 2[C]+2 consecutive waves in a linear
superposition zone contain at least one connected set formed by trajectories of different
waves.

Proof: It is easy to know that at least two waves in {Wi,··· ,Wi+p}(p≥1) must
interact with each other. Without loss of generality, we suppose that trajectories of
wave Wk and trajectories of wave Wk+l form a connected set(i≤k,k+ l≤ i+p), such
that l is the smallest positive integer (cf.Figure 2.2). The proof of the first statement
is completed if l=1. Otherwise, if l>1, we have another wave Wi+j between Wk and
Wk+l, it must interact with either Wk or Wk+l. This contradicts with the fact that l
is the smallest.

Now we prove the second statement, suppose that trajectories of waves in
{Wi,··· ,Wi+2[c]+1}(denoted by A) are contained in a linear superposition D, and
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there exists no connected set formed by different waves in A, i.e., any two waves in
A do not interact with each other in the strip tn <t<tn+1. Since {Wi−j}(j≤1) in
D and {wi+k}(k≥2[c]+2) in D cannot interact with each other, the trajectories of
waves in D would be located on the left side and right side respectively of an interval
(x′,x′′)⊂ (xi,xi+2[c]+1). This contradicts the fact that D is a linear superposition
zone.
Remark 2.3. From the first statement of Lemma 2.2, there is at least one interacting
neighbor pair in a linear superposition zone.

Denote the total variation of a function u(x) over (a,b) by TV(a,b)(u). We have
the following important theorem on the size of the linear superposition zone.

Theorem 2.4. Let C be the Courant number (defined in (1.6)) for the LTS Godunov
scheme (1.7). Then, a linear superposition zone D contains a finite number of con-
secutive waves {Wi,Wi+1,··· ,Wi+K},i∈Z,K ∈N, and the positive integer K satisfies

K≤ 2c2C(2C +1)
a

TV(−∞,∞)(u0).

Proof: Denote the set of waves {Wi} by A and from the definition of the linear super-
position zone, we know that trajectories of waves in A form a connected component.
We first show that K must be a finite number. If D contains infinite consecutive
waves, we can find subsets Bk of A with

Bk ={Wik
,··· ,Wik+2[C]+1}, ik+1≥ ik +2[C]+1.

By Lemma 2.2, there is at least one interacting neighboring pair in each Bk. By
Lemma 2.1, we have

a

c2C
≤TV[xik

,xik+2[C]+1](uh(·,tj)).

Since we have infinite Bk, this contradicts the fact that

TV(−∞,∞)(uh(·,tj))≤TV(−∞,∞)(u0)<∞.

As the trajectories of the K +1 waves in A form a connected component, if K <
2[C]+1, there exists at least one interacting neighbor pair in A. Otherwise, we find
the positive integer m such that m(2[C]+1)<K≤ (m+1)(2[C]+1), and divide A
into m+1 subsets

B1 ={Wi,··· ,Wi+2[C]+1},
B2 ={Wi+2[C]+1,··· ,Wi+4[C]+2},
···
Bm ={Wi+(m−1)(2[C]+1),··· ,Wi+m(2[C]+1)},
Bm+1 ={Wi+m(2[C]+1),··· ,Wi+K}.

By Lemma 2.2, we have at least m interacting neighbor pairs in A. We know that the
total strength of discontinuities in each interacting neighboring pair is bounded below
by 2a

c2C (cf.Lemma 2.1). But there is the possibility that two interacting neighbor
pairs belonging to different subsets,e.g.,B1,B2, share one wave. In this case, the total
strength of the discontinuities in the two interacting neighbor pairs is bounded below
by 2a

c2C . Therefore, the total strength of discontinuities in the m subsets is bounded
below by m a

c2C .



484 GODUNOV SCHEME FOR HYPERBOLIC CONSERVATION LAWS

Since m a
c2C ≤TV[xik

,xi+K ](uh(·,tj)),we have

m≤ c2C

a
TV[xik

,xi+K ](uh(·,tj))≤ c2C

a
TV(−∞,∞)(uh(·,tj)).

Notice that m≥1 and TV(−∞,∞)(uh(·,tj))≤TV(−∞,∞)(u0),

K≤ (2m(2[C]+1))≤ 2c2C(2[C]+1)
a

TV[xik
,xi+K ](uh(·,tj)), (2.9)

therefore

K≤ 2c2C(2C +1)
a

TV(−∞,∞)((uh(·,tj))≤ 2c2C(2C +1)
a

TV(−∞,∞)(u0),

which completes the proof.

Remark 2.5. This theorem tells us that when we use the LTS Godunov scheme to
approximate general scalar conservation laws, as long as the initial data u0∈BV (R),
the number of grid cells in a linear superposition zone can be bounded by the Courant
number of a given problem. So when the mesh size h is small, each linear superposition
zone must be small.

If the flux function in (1.1) is convex, the total strength of the shocks is bounded by
decreasing total variation of the initial data, thus the number of grid cells in a linear
superposition zone can be bounded by the decreasing total variation of the initial data
u0, i.e.

K≤ 2c2C(2C +1)
a

DTV (u0) (2.10)

In fact,there is at least an interacting neighboring pair in each group of 2([C]+1)
consecutive waves if the trajectories of these waves form a connected component in
the strip tj <t<tj+1(cf.Lemma 2.2), and there is at least an interacting neighboring
pair in a linear superposition zone when K <2[C]+1(cf.Remark 2.3). Thus, by the
inequality (2.9), K can be considered as the total number of cells of all the linear
superposition zones in the strip tj <t<tj+1.

3. Estimation on the change of dissipation measure in a linear super-
position zone

In this section, we are concerned with convex scalar conservation law (1.1),(1.2)
with

0<c1≤f ′′(u)≤ c2, for |u|≤M,

where c1 and c2 are constant numbers. Denote Q(t) as

Q(t)=
∫ b(t)

a(t)

U(uh(x,t))t +F (uh(x,t))xdx, t∈ (tj ,tj+1) (3.1)

where a(t) and b(t) are the left and right boundary of the linear superposition zone
corresponding to A(the trajectories of waves in A form a connected component, as
in Theorem 2.4). a(t) is formed by all the points on the left-most waves in A, b(t)
is formed by all the points on the right-most waves in A. Evidently, they are broken
lines satisfying a(t)≥xi− Ch

∆t (t− tj) and b(t)≤xi+K + Ch
∆t (t− tj). From Theorem 2.4,
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the length of [a(t),b(t)] is of order h for a given initial value problem (1.1)-(1.2). In
this section, we will estimate the change of Q(t) on the time interval (tj ,tj +∆t).

In order to investigate the interaction of a rarefaction wave with a shock, we use
a fan function of a piecewise constant to approximate a rarefaction wave.

Consider a rarefaction wave

R(x/t;ul,ur)=





ul, x/t≤f ′(ul),
g(x/t), f ′(ul)≤x/t≤f ′(ur),
ur, x/t≥f ′(ur),

where g is the inverse function of f ′. Denote

ui =ul + i
ur−ul

n
, i=0,.. .,n,

and

ui+1/2 =
1

f ′(ui+1)−f ′(ui)

∫ f ′(ui+1)

f ′(ui)

u(ξ)dξ, i=0,.. .,n−1,

=
f ′(ui+1)ui+1−f ′(ui)ui−f(ui+1)+f(ui)

f ′(ui+1)−f ′(ui)
,

un+ 1
2
=un,

AR(ul,ur;n)=





u0 =ul, x/t≤f ′(ul),
ui+1/2, f ′(ui)≤x/t≤f ′(ui+1), i=0,... ,n,

un =ur, x/t≥f ′(ur).

Then we call AR(ul,ur;n) the approximate rarefaction wave for R(x/t;ul,ur).

In this way, we approximate a rarefaction wave by n+1 discontinuities with dif-
ferent speeds

(u0,u1/2,f
′(u0)),(u1/2,ui+3/2,f

′(u1)),··· ,(un−1/2,un+ 1
2
,f ′(un)).

AR(ul,ur;n) is in fact a kind of the approximate Riemann solver proposed by
Harten, Lax and Van Leer [6], which is consistent with (1.1) and satisfies the entropy
condition in the sense given by them.

If there are only rarefaction waves in (xi,xi+K)×(tj ,tj +∆t), then we have Q(t)≡
0,t∈ (tj ,tj +∆t). When we replace R(ul,ur;x/t) with AR(ul,ur;n), this will lead to
an approximation for Q(t), which we call Qn(t). First of all, we can show that Qn(t)
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is negative, and will tend to zero as n goes to infinity. In fact we have

Qn =(U(u0)−U(u 1
2
))f ′(u0)−F (u0)+F (u 1

2
)+

+(U(u 1
2
)−U(u 3

2
))f ′(u1)−F (u 1

2
)+F (u 3

2
)+

+ ···+
+(U(ui− 1

2
)−U(ui+ 1

2
))f ′(ui)−F (ui− 1

2
)+F (ui+ 1

2
)+

+ ···+
+(U(un− 1

2
)−U(un))f ′(un)−F (un− 1

2
)+F (un)

=U(u0)f ′(u0)+U(u 1
2
)(f ′(u1)−f ′(u0))+

+ ···+
+U(ui+ 1

2
)(f ′(ui+1)−f ′(ui))+

+ ···+
+U(un− 1

2
)(f ′(un)−f ′(un−1))−

−U(un)f ′(un)−F (u0)+F (un) (3.2)

By Taylor expansion, we have

U(u(ξ))=U(ui+ 1
2
)−U ′(ui+ 1

2
)(ui+ 1

2
−u(ξ))+

1
2

U ′′(ũ)(u(ξ)−ui+ 1
2
)2.

If we set η =u(ξ), then f ′(u(ξ))= ξ,f ′(η)= ξ,dξ =f ′′(η)dη. From the definition of
ui+ 1

2
, we have

∫ f ′(ui+1)

f ′(ui)

(ui+ 1
2
−u(ξ))dξ =0.

Therefore,

1
f ′(ui+1)−f ′(ui)

∫ f ′(ui+1)

f ′(ui)

U(u(ξ))dξ

=U(ui+ 1
2
)+

1
2(f ′(ui+1)−f ′(ui))

∫ f ′(ui+1)

f ′(ui)

U ′′(ũ)(u(ξ)−ui+ 1
2
)2dξ

=U(ui+ 1
2
)+

U ′′(û)
2(f ′(ui+1)−f ′(ui))

∫ ui+1

ui

f ′′(η)(η−ui+ 1
2
)2dη

U(ui+ 1
2
)+

U ′′(ũ)f ′′(η̂)
2(f ′(ui+1)−f ′(ui))

ui+1−ui

3
[(ui+1−ui+ 1

2
)2+

+(ui+1−ui+ 1
2
)(ui−ui+ 1

2
)+(ui−ui+ 1

2
)2]

=U(ui+ 1
2
)+

U ′′(ũ)f ′′(η̂)
6f ′′(η̃)

[(ui+1−ui+ 1
2
)2+

+(ui+1−ui+ 1
2
)(ui−ui+ 1

2
)+(ui−ui+ 1

2
)2].

Since

0> (ui+1−ui+ 1
2
)(ui−ui+ 1

2
)≥−

(ui+1−ui+ 1
2
)2 +(ui−ui+ 1

2
)2

2
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and

0<c1≤f ′′(u)≤ c2, 0<ca≤U ′′(u)≤ cb,

we have

1
f ′(ui)−f ′(ui+1)

∫ f ′(ui+1)

f ′(ui)

U(u(ξ))dξ≥U(ui+ 1
2
)

+
ca c1

12c2
[(ui+1−ui+ 1

2
)2 +(ui−ui+ 1

2
)2].

Moreover,

ui+1−ui+ 1
2
=

1
f ′(ui+1)−f ′(ui)

∫ f ′(ui+1)

f ′(ui)

(ui+1−u(ξ))dξ

=
1

f ′(ui+1)−f ′(ui)

∫ ui+1

ui

(ui+1−η)f ′′(η)dη

=
f ′′(η̂)

f ′(ui+1)−f ′(ui)
· 1
2
(ui+1−ui)2

≥ c1

2c2
(ui+1−ui),

Finally, we have

1
f ′(ui+1)−f ′(ui)

∫ f ′(ui+1)

f ′(ui)

U(u(ξ))dξ≥U(ui+ 1
2
)+

ca c3
1

24c3
2

(ui+1−ui)2. (3.3)

Hence,

U(ui+ 1
2
)(f ′(ui+1)−f ′(ui))≤

∫ f ′(ui+1)

f ′(ui)

U(u(ξ))dξ− ca c4
1

24c3
2

(ui+1−ui)3. (3.4)

Using the inequality (3.4) in (3.2) gives

Qn≤
∫ f ′(ul)

f ′(ur)

U(u(ξ))dξ−U(ur)f ′(ur)+U(ul)f ′(ul)−F (ul)+F (ur)−

− ca c4
1

24c3
2

n−1∑

i=0

(ui+1−ui)3.

Since u(ξ) is a rarefaction wave, we have
∫ f ′(ul)

f ′(ur)

U(u(ξ))dξ−U(ur)f ′(ur)+U(ul)f ′(ul)−F (ul)+F (ur)=0.

Noting that ui+1−ui =
ur−ul

n
, we obtain

Qn≤−ca c4
1

24c3
2

(ur−ul)3

n2
<0. (3.5)

Now we estimate the change of Q(t) when two discontinuities interact linearly
with each other.
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u
−1

u0

u1

ũ

s 1

2

s
−

1

2

Fig. 3.1. A pair of interacted discontinuities

Lemma 3.1. Suppose that a pair of neighboring discontinuities (u−1,u0,s− 1
2
) and

(u0,u1,s 1
2
) interact linearly with each other(cf. figure 3.1). Then, through the inter-

action, Q(t) must be decreased when (i) u−1 >u0 >u1, or (ii) u−1 <u0 <u1; must be
increased when (iii) u−1 <u0 and u0 >u1, or (iv) u−1 >u0 and u0 <u1.

Proof: Before the interaction,

Q1 =(U(u−1)−U(u0))s− 1
2
−F (u−1)+F (u0)+

+(U(u0)−U(u1))s 1
2
−F (u0)+F (u1).

After the interaction,

Q2 =(U(u−1)−U(ũ))s 1
2
−F (u−1)+F (ũ)+

+(U(ũ)−U(u1))s− 1
2
−F (ũ)+F (u1),

where ũ=u−1 +u1−u0.
We study their difference

−(Q1−Q2)=−(U(u−1)−U(ũ)−U(u0)+U(u1))(s− 1
2
−s 1

2
)

=−
∫ u−1

u0

∫ u

u+(u1−u0)

U ′′(η)dηdu ·(s− 1
2
−s 1

2
). (3.6)

In order to make sure that the two discontinuities interact with each other, we must
have s 1

2
<s− 1

2
. Thus,

−sign(Q1−Q2)=sign

(∫ u−1

u0

∫ u

u+(u1−u0)

U ′′(η)dηdu

)

=−sign((u−1−u0)(u1−u0)). (3.7)

Here U ′′>0 is used. And the conclusion of the lemma follows from (3.7).

Now, we consider a typical case for the linear interactions in a LTS scheme.
Suppose that AR(u−1,u0;n) and S(ũ0,u1) are in the same linear superposition zone
D, and they interact with each other in D. We denote the total strength of all the
shocks between AR(u−1,u0;n) and S(ũ0,u1) by S̄, cf. figure 3.2.
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u
k−

1

2

u
k+

1

2

ũ1

ũ2

ũ3

ũ4

(x′

k
, t′

k
)

u0 u1ũ0

u
−1

other interactions

other interactions

Fig. 3.2. Figure for Lemma 3.2

Lemma 3.2. For the typical case mentioned above, Qn will increase after the inter-
action of AR(u−1,u0;n) and S(ũ0,u1), and the increased amount ∆Qn satisfies

∆Qn≤ n+1
n

c2cb

2
(u0−u−1)(ũ0−u1)

[
2S̄ +(ũ0−u1)

]
.

Proof: Qn(t) remains unchanged until the interaction. Consider the interaction point
(x′k,t′k) of a discontinuity in AR(u−1,u0;n)

x−xi =f ′(u′k)(t− tj),

with the shock

x−xi+1 =
f(ũ0)−f(u1)

ũ0−u1
(t− tj).

From (3.6), we have

Q(t′k +0)−Q(t′k−0)

=
∫ ũ3

ũ4

∫ u

u+(ũ1−ũ4)

U ′′(η)dη

(
f(ũ0)−f(u1)

ũ0−u1
−f ′(u′k)

)
du

≤
∫ ũ4

ũ3

∫ u

u+(ũ1−ũ4)

U ′′(η)dη

(
f ′(u0)− f(ũ0)−f(u1)

ũ0−u1

)
du. (3.8)
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Since
(

f ′(u0)− f(ũ0)−f(u1)
ũ0−u1

)

=
∫ 1

0

(f ′(u0)−f ′(ũ0ξ+u1(1−ξ)))dξ

=
∫ 1

0

f ′′(η)[(u0− ũ0)ξ+(u0−u1)(1−ξ)]dξ

≤ c2

2
[(u0− ũ0)+(u0−u1)]

≤ c2

2


2

∑

j

|Sj |+(ũ0−u1)




where S′js are the shocks between AR(u−1,u0;n) and S(ũ0,u1), |Sj | is the strength
of Sj . So

Q(t′k +0)−Q(t′k−0)≤ c2cb

2
(ũ4− ũ1)(ũ4− ũ3)[2

∑

j

|Sj |+(ũ0−u1)].

Noting that

ũ4− ũ3 =uk+ 1
2
−uk− 1

2
, ũ4− ũ1 = ũ0−u1

and using the definition of uk+ 1
2
, we have

Q(t′k +0)−Q(t′k−0)≤ c2cb

2
u0−u−1

n
(ũ0−u1)[2

∑

j

|Sj |+(ũ0−u1)]

Summing with respect to k, we get the total increased amount:

∆Qn =
∑

k

(Q(t′k +0)−Q(t′k−0))

≤ c2cb

2
n+1

n
(u0−u−1)(ũ0−u1)


2

∑

j

|Sj |+(ũ0−u1)




which completes the proof.

Now we need an inequality (3.9) which can be deduced from the Hölder inequality
to estimate Qn(t) in a linear superposition zone.

Assume that a1,a2,... ,an are positive real numbers. Then we have

n2
n∑

i=1

a3
i ≥

( n∑

i=1

ai

)3

. (3.9)

Lemma 3.3. Assume that there are l shocks S1,S2,.. .,Sl and m (m≥1) approximate
rarefaction waves AR1,AR2,.. .,ARm in a linear superposition zone D, with

S =
l∑

i=1

|Si|, R=
m∑

j=1

|Rj |
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Then for any t∈ (tj ,tj +∆t),

Qn(t)≤ c2cb

2
S2

[
2(n+1)

n
R− c1ca

c2cb
l−2S

]
(3.10)

where |Rj | is the strength of ARj.

Proof: For t∈ (tj ,tj +∆t), Qn(t) remains unchanged until the interaction happens.
By Lemma 3.1, Qn(t) increases only when it passes a interaction point of a shock and
a discontinuity in an approximate rarefaction wave. From Lemma 3.2, for a typical
case (x′k,t′k) we have

∆Qn≤ c2cb
n+1

n
(u0−u−1)(ũ0−u1)S.

Summing all the interaction points from tj to t, we have,

Qn(t)−Q(tj +0)≤ c2cb
n+1

n
S2R

where

Q(tj +0)≤−c1ca

2

l∑

i=1

|Si|3.

From (3.9)

Qn(t)≤ c2cb

2

[
2(n+1)

n
S2R− c1ca

c2cb

l∑

i=1

|Si|3
]

≤ c2cb

2

[
2(n+1)

n
S2R− c1ca

c2cb
l−2S3

]

which completes the proof.

Lemma 3.4. Assume that there are l shocks S1,S2,.. .,Sl and m rarefaction waves
R1,R2,.. .,Rm in a linear superposition zone D. Denote R as the total strength of
R1,R2,.. .,Rm, S as the total strength of S1,S2,... ,Sl, and

<η,1> |D =
∫ tj+1

tj

∫ b(t)

a(t)

(U(uh)t)+F (uh)x)dxdt.

Then

<η,1> |D≤
(

1− 1
2C

)
∆tc2cbS

2

[
R− c1ca

c2cb

C

2C−1
l−2S

]
. (3.11)

Proof: Denote un as the linear superposition of l shocks S1,S2,... ,Sl and m ap-
proximate rarefaction waves AR1,AR2,... ,ARm (un is a approximation to uh), and
denote

ηn =U(un)t +F (un)x.
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Then, as any pair of waves from (xi,tj) and (xk,tj) cannot meet each other before

t= tj +
∆t

2C
,

by (3.9), (3.5) and a classical result for shock (see Lemma 2.1 in [16]), we have

<ηn,1> |D≤
∫ tj+1

tj+
∆t
2C

∫ b(t)

a(t)

ηndxdt+
∫ tj+

∆t
2C

tj

∫ b(t)

a(t)

ηndxdt

≤
∫ tj+1

tj+
∆t
2C

Qn(t)dt+
∫ tj+

∆t
2C

tj

(
−c1ca

2

l∑

i=1

|Si|3
)

dt

≤∆t

(
1− 1

2C

)
c2cb

2
S2

[
2(n+1)

n
R− c1ca

c2cb
l−2S

]

− ∆t

2C

c1ca

2
l−2S3

≤∆t

(
1− 1

2C

)
c2cbS2

[
n+1

n
R− c1ca

c2cb

C

2C−1
l−2S

]
.

Since AR(ul,ur;n) converges to R(ul,ur;x/t) point-wisely when n−→∞, we have

<η,1> |D = lim
n→∞

<ηn,1> |D

≤
(

1− 1
2C

)
∆tc2cbS

2

[
R− c1ca

c2cb

C

2C−1
l−2S

]

which completes the proof.

4. Entropy consistency of the LTS Godunov scheme
In this section, we will prove an entropy consistency theorem on the LTS Godunov

scheme. It is well known (cf. [4]) that for convex scalar conservation laws a weak
solution satisfies (1.5) for all convex entropy pairs {U(u),F (u)} if it satisfies (1.5) for
the special entropy pair

U(u)=
u2

2
, F (u)=

∫ u

uf ′(u)du. (4.1)

Theorem 4.1. Assume that the initial data u0(x) satisfies (1.3). For the LTS Go-
dunov scheme, a sufficient condition to ensure the entropy consistency for any given
Courant number C is

ITV (u0)DTV (u0)≤ a2c1

4c3
2C(2C−1)(2C +1)2

. (4.2)

Proof: By Theorem 2.4, in a linear superposition zone D, there are at most K +1
waves, and

K≤ 2c2C(2C +1)
a

DTV (u0).

If all of them are shocks, by Lemma 3.1, we have <η,1> |D <0. Otherwise, there are
at most K shocks among the K +1 waves. By Lemma 2.1 and Lemma 2.2, there are
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at least m shocks (m≥ K
2(2[C]+1) ) in D with total strength of all these shocks bounded

below by ma
c2C . By Lemma 3.4, we have <η,1> |D≤0 if

∆=
∑

i

|Ri|− c1

K2c2

C

2C−1

∑

j

|Sj |≤0.

Since ∑

Ri∈D

|Ri|≤ ITV (u0),
∑

Sj∈D

|Sj |≥m
a

c2C
,

when DTV (u0) 6=0, we have

∆≤ ITV (u0)− c1

c2
2

1
K2

a

2C−1
m

≤ ITV (u0)− ac1

c2
2

1
K

1
2C−1

1
2(2[C]+1)

≤ ITV (u0)− a2c1

4c3
2

1
C(2C−1)(2C +1)2

1
DTV (u0)

≤0

where we have used (4.2) in the final inequality. If DTV (u0)=0, the initial data is
monotone increasing, there are only rarefaction waves in the solution and there is no
interaction, so the entropy consistency can be guaranteed.

Finally, consider the relation between the inequality

<η,1> |D≤0 (4.3)

and the cell entropy inequality
∫ xi+1

xi

U(u(x,tj+1 +0)dx−

−
∫ xi+1

xi

U(u(x,tj +0)dx+
∫ ti+1

ti

(F (u(xi+1,t)−F (u(xi,t))dt≤0

where {U,F} is the entropy pair (4.1).
By the generalized Gauss-Green formula for BV functions [5], on any cell Dij =

(xi,xi+1)×(tj ,tj+1),

<η,1> |Dij

=
∫ xi+1

xi

U(u(x,tj+1−0)dx−
∫ xi+1

xi

U(u(x,tj +0)dx

+
∫ ti+1

ti

(F (u(xi+1,t)−F (u(xi,t))dt,

thus ∫ xi+1

xi

U(u(x,tj+1 +0)dx−

−
∫ xi+1

xi

U(u(x,tj +0)dx+
∫ ti+1

ti

(F (u(xi+1,t)−F (u(xi,t))dt

=<η,1> |Dij
+

[∫ xi+1

xi

U(u(x,tj+1 +0)dx−
∫ xi+1

xi

U(u(x,tj+1−0)dx

]
.
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As the second term in the right hand side is non-positive from Jensen’s inequality and
the construction of Godunov scheme, we can get the ordinary cell entropy inequality
when <η,1> |Dij

≤0 . In the LTS Godunov scheme with the Courant number C >1,
if there is no interaction happening in D, or D is a linear superposition zone, (4.3) is
valid. From Theorem 2.4, the number of waves in a linear superposition zone is finite
and independent of the mesh size h, so we can add the neighboring cells, in which
there are no interactions of waves, to one or several linear superposition zones, and
form a rectangular zone Di,

Di ={(x,t)|xi≤x<xi+ki ,tj≤ t<tj+1}.

By
∫ ti+1

ti

F (u(xi−0,t))dt=
∫ ti+1

ti

F (u(xi +0,t))dt,

we have
∫ xi+ki

xi

U(u(x,tj+1 +0)dx−

−
∫ xi+ki

xi

U(u(x,tj +0)dx+
∫ ti+1

ti

(F (u(xi+ki
,t)−F (u(xi,t))dt

=<η,1> |Di
+

[∫ xi+1

xi

U(u(x,tj+1 +0)dx−
∫ xi+1

xi

U(u(x,tj+1−0)dx

]

+

[∫ xi+2

xi+1

U(u(x,tj+1 +0)dx−
∫ xi+2

xi+1

U(u(x,tj+1−0)dx

]

···· ··

+

[∫ xi+ki

xi+ki−1

U(u(x,tj+1 +0)dx−
∫ xi+ki

xi+ki−1

U(u(x,tj+1−0)dx

]

≤<η,1> |Di
≤0. (4.4)

This is in fact a cell entropy inequality on Di. By the technique used in the Lax-
Wendroff Theorem[10], this inequality also implies the entropy condition (1.5) for the
LTS Godunov scheme.
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