
COMM. MATH. SCI. c© 2004 International Press

Vol. 2, No. 3, pp. 443–476

THE BROADWELL MODEL IN A THIN CHANNEL ∗

ANDREW J. CHRISTLIEB, † , JAMES A. ROSSMANITH, ‡ , AND PETER SMEREKA §

Abstract. In this paper we are concerned with the limiting behavior of gas flow in a thin channel
as described by the Broadwell model. The Broadwell model is a simplified kinetic description for gas
dynamics where the main assumption is that the particle distribution function can be represented by
a discrete number of velocities. Starting from the Broadwell model and the appropriate boundary
conditions we derive two 1D models for gas transport in a thin channel. In the limit of no inter-
particle collisions the 1D model is the well known telegraph equation. In the case of collisional flow
the 1D model is a system of three first-order hyperbolic PDEs. Both 1D models are validated through
numerical simulations that compare the 1D models to the 2D Broadwell system. Furthermore, in the
limit of no inter-particle collisions we are able to rigorously show that under a diffusive scaling the
solutions of the full Broadwell model converge weakly to solutions of the diffusion equation. Under
a hyperbolic scaling we are able to show that solutions to the collisionless Broadwell model converge
weakly to the solutions of the telegraph equation. Finally, we derive a long-time asymptotic formula
for the solution of the collisionless Broadwell system, which reveals oscillations that explain why
the convergence in the diffusive and hyperbolic scalings must be weak. Due to the nonlinearity of
the inter-particle collisions, we are not able to prove rigorous convergence results for the collisional
Broadwell system.

Key words. Discrete velocity models, Broadwell model, Thin channel, Telegraph equation,
Kinetic modeling, Rarefied gas dynamics.
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1. Introduction

Recent advances in the manufacturing of microscale technology have made it
possible to construct mechanical systems on the micro-scale [19]. It was quickly
discovered that systems on the scale of tens of microns can behave quite differently
from their macroscale counterparts. The effects of decreasing the gas density have
been discussed in review articles in the MEMS community [20, 22] and are discussed
in standard texts on gas dynamics [8, 14, 31]. In addition, experiments have shown
that even mildly rarefied gas flows behave far different on the microscale then they
do on the macroscale [15, 27, 33, 34]. This initial work has generated a great deal of
interest in trying to describe the fundamental physics for systems on this scale with
the goal of better predicting the behavior of these systems.

A subclass of these devices (e.g., micro-sensors and/or micro-pumps) have mi-
cro/nano scale flow channels cut in them. The channel width in these devices may
range from tens of microns down to tens of nanometers [28, 29]. Because these devices
are often intended to be operated at atmospheric pressure where the mean distance
a particle travels before undergoing a binary collision with another particle is about
70 nanometers in air, the gas may appear very dilute on the scale of these devices.
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The dynamics of a gas can be modelled using the Boltzmann equation:

∂f

∂t
+~u ·∇f =

{
δf

δt

}

c

, (1.1)

where f =f(~x,~u,t) is the particle distribution function in phase-space. The left-hand
side of this equation represents particle transport while the right-hand side models
binary collisions. A measure of the diluteness of a gas is the Knudsen number, Kn,
which is the ratio of the mean distance between inter-particle collisions, λ, and the
characteristic length scale of the system, L. The relative importance of the collision
operator is directly tied to the Knudsen number, Kn. If the Knudsen number is
small then the flow is dominated by binary collisions. In this case, the solution of the
Boltzmann equation can be approximated by a function of the type:

fM =ρ(~x,t)exp

{
− (u0−u(~x,t))2

T (~x,t)

}
, (1.2)

where fM is called a local Maxwellian. In this limit one can employ the Chapman-
Enskog formalism to derive transport equations for the density, ρ(~x,t), velocity, u(~x,t),
and temperature, T (~x,t) [14]. However, when Kn is not small this approximation to
the Boltzmann equation fails.

For the micro/nano devices, the Knudsen number is typically in the range 0.01≤
Kn≤10. As the width of the channel reduces to the point where Kn>1, the gas
enters the free molecular flow regime in which the gas particles are more likely to
have a collision with the walls of the system than with each other. This regime
has been studied analytically as one possible limit of the Boltzmann equation by
Babovsky [2, 3] and Börgers et al. [6]. These articles consider the long-time behavior
of the Boltzmann equation in the limit of no particle-particle collisions; this limit is
sometimes referred to as the Knudsen gas limit. Babovsky [2] describes the long-time
evolution of a Knudsen gas in a thin tube. Börgers et al. [3, 6] and Babovsky [2]
discuss the behavior of a Knudsen gas for flow in a thin channel. In these articles, it
is shown that under an appropriate scaling the long-time behavior of the Knudsen gas
converges to solutions of the diffusion equation. In addition, Börgers et al. [6] have
shown that the time scale on which diffusion takes place is sensitive to the model used
to describe the distribution of particles reflecting from the wall. The approach taken
in these articles is based on statistical arguments regarding the behavior of small angle
collisions with the wall of the channel or tube. In addition, Golse [21], Dogbé [18], and
Boatto and Golse [9] develop non-statistical arguments to show that solutions of the
Knudsen gas for thin channel flow have a diffusion limit as the depth of the channel
goes to zero. Degond and Mancini [17] and Degond, Latocha, Mancini, and Mellet [16]
rigorously showed that a diffusion limit is also reached by an electron gas in both the
collisionless and collisional cases, respectively. Finally, Aoki and Degond [1] showed
that a Knudsen gas that is driven by temperature gradients along the channel walls
can be approximated by a convection-diffusion equation.

In this work, we consider the dynamics of a discrete velocity model in a thin chan-
nel. Because the model we consider is a significant simplification of the full Boltzmann
equation, we are able to extract more detailed information than previous work on the
Knudsen gas in a thin channel. The major simplifying assumption of the model is
that the gas particles can only travel along a discrete number of directions. Broad-
well [10, 11] developed the first discrete velocity model as a tool for understanding
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shock formation in a gas. The success of this simple model inspired a great deal of
work on discrete velocity models. Caflisch [12, 13] studied the fluid dynamic limit of
the Broadwell model and was able to show that solutions of the 1D Broadwell model
converge weakly to solutions of the fluid dynamic equations. The literature on dis-
crete velocity models has become quite extensive. The review article by Platkowski
and Illner [26] discusses much of the know theory about the fluid dynamic limit and
the numerical schemes derived for fluid dynamics based on discrete velocity models.
More recent work has involved using discrete velocity models to study rarefied gas
dynamics. Valougeorgis and Naris [30] used discrete velocity models in the simulation
of high Kn gas flows in a microchannel. Bellouquid [7] has shown that under the right
scaling, solutions of the collisional Broadwell model in the infinite domain converge
to solutions of a wave equation.

The paper is broken into two main parts. In the first part, we derive depth-
averaged models for flow in a thin channel for both the collisionless and collisional
Broadwell model. The collisionless equations lead to a telegraph equation, while the
collisional equations lead to a system of three first-order hyperbolic PDEs. In the
second part, we show that under a hyperbolic scaling the solutions of the Broadwell
model converge to solutions of our 1D model in the weak sense. Under a diffusive
scaling, we show that the collisionless Broadwell model converges weakly to solutions
of a diffusion equation. Finally, we derive a long-time asymptotic formula for the
solution of the collisionless Broadwell system, which reveals oscillations that explain
why the convergence in the diffusive and hyperbolic scalings must be weak.

Fig. 1.1. The Broadwell model in a thin channel and no variation in the z-direction. Without
collisions (σ=0) only N1,N2,N3, and N4 are dynamically important. With collisions (σ 6=0) an
additional component, N5, is introduced to denote the particles that end up travelling in the z-
direction after collisions. In the collisional case we do not need to consider two densities in the (+)
and (−) z-directions (e.g., N5 and N6) since N5≡N6 in order to maintain zero momentum in the
z-direction.

2. Derivation of a collisionless thin-channel model
We consider a version of the 6-velocity model originally proposed by Broadwell

as a discrete velocity approximation to the Boltzmann equations [10]. In Broadwell’s
model, all particles move at a constant speed c and are allowed only to travel in six
directions: ±x, ±y, and ±z. We will study this model in an infinitely long channel
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of height H. We consider only solutions that are independent of z, and we rotate
Broadwell’s model by 45◦ degrees so that particles that are incident on the wall are
reflected down the channel (see Figure 1.1). We note that in order to obtain 2D
solutions with zero z-momentum it is required that the number of particles in the (+)
and (−) z-directions are equal for all (x,y,t). Therefore, the system considered in this
work is described entirely by five directions: N1,N2,N3,N4, and N5.

We first consider the completely collisionless case. This further reduces the orig-
inal 6-velocity model to a 4-velocity model (N1–N4), because in the absence of col-
lisions we can assert without loss of generality that N5≡0 for all (x,y,t). After
non-dimensionalization, the collisionless 4-velocity Broadwell model for flow in a nar-
row channel that we consider in this work is given by the following four advection
equations:

∂N1
∂t

+
∂N1
∂x

+
∂N1
∂y

=0, (2.1)

∂N2
∂t
− ∂N2

∂x
− ∂N2

∂y
=0, (2.2)

∂N3
∂t
− ∂N3

∂x
+
∂N3
∂y

=0, (2.3)

∂N4
∂t

+
∂N4
∂x
− ∂N4

∂y
=0, (2.4)

on (x,y)∈ [−∞,∞]× [0,h], where h is the non-dimensional channel depth. Non-
dimensional parameters are related to dimensional quantities in the following way:

N?=L−3N, x?=Lx, y?=Ly, t?=(L/c)t, and h=H/L,

where L is the characteristic length scale of the initial condition. Coupling between
the four velocities comes from interaction at the top and bottom walls of the channel:

N1
∣∣
y=0

=(1−α)N4
∣∣
y=0

+
α

2

(
N2
∣∣
y=0

+N4
∣∣
y=0

)
(2.5)

N3
∣∣
y=0

=(1−α)N2
∣∣
y=0

+
α

2

(
N2
∣∣
y=0

+N4
∣∣
y=0

)
(2.6)

N2
∣∣
y=h

=(1−α)N3
∣∣
y=h

+
α

2

(
N1
∣∣
y=h

+N3
∣∣
y=h

)
(2.7)

N4
∣∣
y=h

=(1−α)N1
∣∣
y=h

+
α

2

(
N1
∣∣
y=h

+N3
∣∣
y=h

)
, (2.8)

where 0<α<1 is the accommodation coefficient and describes the “roughness” of the
wall. α→0 implies that the wall is smooth, and therefore particles undergo specular
reflection at the walls. In our model this means that incident particles simply bounce
off in a direction 90◦ from the incident direction. α→1 implies that the wall is rough,
and therefore particles undergo diffuse reflection at the walls. In our model this means
that incident particles are redistributed equally into the two directions pointing away
from the wall.

The goal of this section is to derive a 1D approximation the collisionless equations
(2.1) – (2.4) in the case where the channel depth, h, is a small parameter. In Sections
2.1–2.3 we derive such a model, in Section 2.4 we indicate how this model behaves in
the long-time, and in Section 2.5 we test this 1D model against the full 2D equations
in a numerical example.
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2.1. The depth-averaged equations. We begin by defining the depth-
averaged number density:

N i(x,t)=
1

h

∫ h

0

Ni(x,y,t)dy , (2.9)

where i=1,2,3,4. Depth-averaging equations (2.1)–(2.4) across the channel yields the
following equations:

∂N1

∂t
+
∂N1

∂x
=

1

h
(N1

∣∣
y=0
−N1

∣∣
y=h

) (2.10)

∂N2

∂t
− ∂N2

∂x
=

1

h
(N2

∣∣
y=h
−N2

∣∣
y=0

) (2.11)

∂N3

∂t
− ∂N3

∂x
=

1

h
(N3

∣∣
y=0
−N3

∣∣
y=h

) (2.12)

∂N4

∂t
+
∂N4

∂x
=

1

h
(N4

∣∣
y=h
−N4

∣∣
y=0

) . (2.13)

Applying boundary conditions (2.5) – (2.8) yields

∂N1

∂t
+
∂N1

∂x
=

1

h

(
(1−α)N4

∣∣
y=0

+
α

2

(
N2
∣∣
y=0

+N4
∣∣
y=0

)
−N1

∣∣
y=h

)
(2.14)

∂N2

∂t
− ∂N2

∂x
=

1

h

(
(1−α)N3

∣∣
y=h

+
α

2

(
N1
∣∣
y=h

+N3
∣∣
y=h

)
−N2

∣∣
y=0

)
(2.15)

∂N3

∂t
− ∂N3

∂x
=

1

h

(
(1−α)N2

∣∣
y=0

+
α

2

(
N2
∣∣
y=0

+N4
∣∣
y=0

)
−N3

∣∣
y=h

)
(2.16)

∂N4

∂t
+
∂N4

∂x
=

1

h

(
(1−α)N1

∣∣
y=h

+
α

2

(
N1
∣∣
y=h

+N3
∣∣
y=h

)
−N4

∣∣
y=0

)
. (2.17)

We define the total density, ρ, and the momentum, m, as follows:

ρ(x,t)=N1(x,t)+N2(x,t)+N3(x,t)+N4(x,t) (2.18)

m(x,t)=N1(x,t)−N2(x,t)−N3(x,t)+N4(x,t) . (2.19)

Re-writing equations (2.14)–(2.17) in terms of the total density and the momentum
yields

∂ρ

∂t
+
∂m

∂x
=0 (2.20)

∂m

∂t
+
∂ρ

∂x
=
α

h

(
N2
∣∣
y=0

+N3
∣∣
y=h
−N4

∣∣
y=0
−N1

∣∣
y=h

)
. (2.21)

2.2. The thin-channel approximation. We now turn our attention to
replacing the right-hand side of equation (2.21) by something only involving ρ(x,t)
and m(x,t). We begin by defining the following functions:

fi(x,y,t)=
1

h

∫ y

0

Ni(x,η,t)dη (2.22)

gi(x,y,t)=−
1

h

∫ y

h

Ni(x,η,t)dη , (2.23)
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for i=1,2,3,4. Note that

fi(x,h,t)=gi(x,0,t)=N i(x,t) .

In order to relate fi(x,0,t) to fi(x,h,t), a Taylor expansion about the point y=0 can
be applied:

fi(x,h,t)=N i(x,t)=fi(x,0,t)+h
∂fi
∂y

(x,0,t)+
h2

2

∂2fi
∂y2

(x,0,t)+ . . .

=0+Ni(x,0,t)+
h

2

∂Ni

∂y
(x,0,t)+ . . . .

(2.24)

Similarly, in order to relate gi(x,h,t) to gi(x,0,t), a Taylor expansion about the point
y=h can be applied:

gi(x,0,t)=N i(x,t)=gi(x,h,t)−h
∂gi
∂y

(x,h,t)+
h2

2

∂2gi
∂y2

(x,h,t)+ . . .

=0+Ni(x,h,t)−
h

2

∂Ni

∂y
(x,h,t)+ . . . .

(2.25)

Next, we can replace the partial derivatives with respect to y in (2.24)–(2.25) by
appealing to the two-dimensional equations (2.1)–(2.4); noting that

Ni=N i+O(h)

we find:

−∂N1
∂y

(x,h,t)=

(
∂N1

∂t
+
∂N1

∂x

)
+O(h)

−∂N3
∂y

(x,h,t)=

(
∂N3

∂t
+
∂N3

∂x

)
+O(h)

∂N2
∂y

(x,0,t)=

(
∂N2

∂t
+
∂N2

∂x

)
+O(h)

∂N4
∂y

(x,0,t)=

(
∂N4

∂t
+
∂N4

∂x

)
+O(h) .

Combining the above result and the Taylor expansions (2.24) and (2.25) yields the
following result:

N1
∣∣
y=h

=N1−
h

2

(
∂N1

∂t
+
∂N1

∂x

)
+O(h2)

N3
∣∣
y=h

=N3−
h

2

(
∂N3

∂t
− ∂N3

∂x

)
+O(h2)

N2
∣∣
y=0

=N2−
h

2

(
∂N2

∂t
− ∂N2

∂x

)
+O(h2)

N4
∣∣
y=0

=N4−
h

2

(
∂N4

∂t
+
∂N4

∂x

)
+O(h2) .

Finally, this result can be plugged into (2.21) to produce

∂m

∂t
+
∂ρ

∂x
=
α

2

(
∂m

∂t
+
∂ρ

∂x

)
− α
h
m+O(h) . (2.26)
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Therefore, to order O(h) we obtain the following system of equations:

∂ρ

∂t
+
∂m

∂x
=0 (2.27)

∂m

∂t
+
∂ρ

∂x
=

(−2α
2−α

)(
1

h

)
m. (2.28)

We will refer to this system of hyperbolic partial differential equations as the colli-
sionless thin-channel model.

2.3. A telegraph equation. Further insight can be gained into the collision-
less thin-channel model by taking the derivative of equation (2.27) with respect to t
and the derivative of equation (2.28) with respect to x:

∂2ρ

∂t2
+
∂2m

∂x∂t
=0 (2.29)

∂2m

∂x∂t
+
∂2ρ

∂x2
=

(−2α
2−α

)(
1

h

)
∂m

∂x
. (2.30)

Combining these two equations and reordering the terms produces the following tele-
graph equation:

(
2α

2−α

)
∂ρ

∂t
−h∂

2ρ

∂x2
+h

∂2ρ

∂t2
=0 . (2.31)

Therefore, we have shown that the collisionless thin-channel model is in fact a tele-
graph equation. This implies that the depth-averaged density, ρ(x,t), has the tendency
to both propagate and diffuse along the channel. The derivation we have presented
in this section is not rigorous; however, in Section 4 we will in fact prove that the 2D
4-velocity Broadwell model converges weakly to the telegraph equation (2.31) under
an appropriate scaling (Theorem 4.2).

2.4. Long-time behavior: the diffusion equation. It is well-known that as
t→∞, the telegraph equation on an infinite domain behaves like a diffusion equation
(see for example Zauderer [35]). In Section 4 we will prove that under an appropriate
scaling, the 2D 4-velocity Broadwell model converges weakly to a diffusion equation.
In this section, however, we will use a non-rigorous approach to obtain a diffusion
equation from the telegraph equation (2.31).

We consider the behavior of system (2.27)–(2.28) on a time scale of t=O(h−1).
On this time scale, equation (2.28) reduces to the following relationship:

O(h)+ ∂ρ

∂x
=

(−2α
2−α

)(
1

h

)
m. (2.32)

Solving this equation for m(x,t) yields

m=−h
(
2−α
2α

)
∂ρ

∂x
+O(h2) . (2.33)

Substituting this result into the conservation of mass equation, (2.27), yields to O(h2)
the following diffusion equation:

∂ρ

∂t
−h
(
2−α
2α

)
∂2ρ

∂x2
=0 . (2.34)
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Therefore, on long-time scales the collisionless thin-channel model approximately dif-
fuses down the channel with the diffusion constant proportional to the channel depth,
h. This result is qualitatively in agreement with previous work on the long-time
behavior of a Knudsen gas in a thin channel [4, 5, 21].

2.5. An example. In order to demonstrate the validity of the above derived
collisionless thin-channel model, we consider an example with h=0.04, α=0.5, and
the following initial conditions:

N1,2,3,4(x,y,0)=

{
0.25 if (x−0.5)2+15(y−0.02)2<0.152

0 otherwise.
(2.35)

The solution to the 2D collisionless 4-velocity Broadwell model is computed on a
1000×20 grid on the computational domain [−0.5,1.5]× [0,h] using the clawpack

software package [23], which is based on the wave propagation method of LeVeque [24].
We take in this computation a CFL (Courant-Friedrichs-Lewy) number of exactly one:

∆t

∆x
=

∆t

∆y
=1,

which for this constant coefficient problem results in the wave propagation method
reproducing the exact solution. Ghost cells are introduced to enforce boundary con-
ditions (2.5)–(2.8) at y=0 and y=h and zeroth-order extrapolation conditions at
x=−0.5 and x=1.5 [25].

The thin-channel model (2.27)–(2.28) with initial conditions

ρ(x,0)=

{
10
3

√
0.152−(x−0.5)2 if 0.35<x<0.65

0 otherwise
(2.36)

m(x,0)=0, (2.37)

is also solved using the clawpack software package. In particular we use a grid
of 2000 points on the computational domain [−0.5,1.5], zeroth-order extrapolation
conditions at x=−0.5 and x=1.5, and a CFL number of 0.95. The source term in
(2.28) is coupled to the left-hand side of system (2.27)–(2.28) through Strang operator
splitting [25]. The results of this 1D simulation are compared against the depth-
averaged 2D solution as well as the exact solution of the diffusion equation (2.34) in
Figures 3.1–3.2. In these figures we only display the solution for x∈ [0.3,0.7]. These
results show that the 1D thin-channel model accurately captures the general form of
the depth-averaged 2D solution. The plots also indicate that the diffusion equation is
not accurate for short times, but becomes more accurate for long time. Finally, these
plots show that for a fixed h and t→∞ the 1D thin-channel model converges only
weakly the Broadwell model solution. In Section 4 we will rigorously prove that the
convergence is indeed only weak.

3. Derivation of a collisional thin-channel model

We now attempt to obtain an analogous result to the above thin-channel model
in the case of the collisional Broadwell model. The Broadwell model with collisions is
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given by

∂N1
∂t

+
∂N1
∂x

+
∂N1
∂y

=
1

3
σ
(
−2N1N2+N3N4+N2

5

)
(3.1)

∂N2
∂t
− ∂N2

∂x
− ∂N2

∂y
=

1

3
σ
(
−2N1N2+N3N4+N2

5

)
(3.2)

∂N3
∂t
− ∂N3

∂x
+
∂N3
∂y

=
1

3
σ
(
N1N2−2N3N4+N

2
5

)
(3.3)

∂N4
∂t

+
∂N4
∂x
− ∂N4

∂y
=

1

3
σ
(
N1N2−2N3N4+N

2
5

)
(3.4)

∂N5
∂t

=
1

3
σ
(
N1N2+N3N4−2N2

5

)
, (3.5)

where σ≥0 is the collision constant and is related to the dimensional collision constant
in the following way:

σ?=L2cσ.

N5 represents the velocities in both the + and − z-directions. The collisions that
appear on the right-hand sides of these equations can be understood by noting the
following properties:

1. The only collisions that actually change the densities are N1–N2, N3–N4, and
N5–N5;

2. Each of these collisions will produce one the following three outcomes each
with a 1/3 probability: N1 and N2, N3 and N4, and N5 and N5.

Therefore, the right-hand side of (3.1), for example, says that N1 will be produced
with probability 1/3 if an N3–N4 collision occurs, produced with probability 1/3 if
an N5–N5 collision occurs, but lost with probability 2/3 if an N1–N2 collision occurs.
The remaining right-hand sides follow from similar reasoning for N2 through N5. We
should note here that equation (3.5) represents only one of the N5 velocities (i.e., only
the + or only the − z-direction density); and therefore, to obtain the total density of
all particles we will have to count N5 twice.

The goal of this section is to derive a 1D approximation the collisional equations
(3.1) – (3.5) in the case where the channel depth, h, is a small parameter. In Section
3.1 we derive such a model, in Section 3.2 we indicate how this model behaves in the
long-time, and in Section 3.3 we test this 1D model against the full 2D equations in
a numerical example.

3.1. The thin-channel model. We begin, again, by depth-averaging the
above equations. The key observation one needs to make is that

σNiNj≡
σ

h

∫ h

0

Ni(x,y,t)Nj(x,y,t)dy=σN iN j+O(σh2) . (3.6)

With this approximation, it is quite straightforward to use the same techniques as in
the collisionless case to obtain the thin-channel approximation. However, in order to
obtain a thin-channel approximation that is O(h), we make the following assumption:

σ≤O(h−1), (3.7)

which gives an upper bound on the collision constant in order to still obtain quasi-1D
solutions. Under this assumption, the approximation in (3.6) is always accurate to at
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least O(h). The total density, ρ, and the momentum, m, can be defined as

ρ(x,t)=N1(x,t)+N2(x,t)+N3(x,t)+N4(x,t)+2N5(x,t) (3.8)

m(x,t)=N1(x,t)−N2(x,t)−N3(x,t)+N4(x,t) . (3.9)

By doing the identical steps as before, the Broadwell equations with collisions can be
reduced to the following system of first order partial differential equations:

∂ρ

∂t
+
∂m

∂x
=0 (3.10)

∂m

∂t
+
∂

∂x
(ρ−2z)=

(−2α
2−α

)(
1

h

)
m (3.11)

∂z

∂t
=
σ

24

(
(ρ+2z)(ρ−6z)−m2

)
, (3.12)

where z(x,t)≡N5(x,t). We will refer to this system of hyperbolic partial differential
equations as the collisional thin-channel model. The right-hand side of equation
(3.12) was obtained by noting that if the depth-averaged y-momentum is zero then
N1=N4 and N2=N3. System (3.10)–(3.12) is analogous to the collisionless system
(2.27)–(2.28); however, the collisional system cannot be written as a simple telegraph
equation analogous to (2.31).

3.2. Long-time behavior: the diffusion equation. Let us consider the
behavior of system (3.10)–(3.12) on a time scale of t=O(h−p), where p≥1. We note
that the value of p should be made large enough in order to allow equation (3.12) to
relax. Therefore, p directly depends on the strength of σ: the weaker the collisions,
the larger p has to be in order for the equation to (3.12) to relax to its natural state:

hp

σ
¿1.

On this time scale, equations (3.11) and (3.12) reduce to the following relationships:

O(hp)+ ∂

∂x
(ρ−2z)=

(−2α
2−α

)(
1

h

)
m (3.13)

O
(
hp

σ

)
=(ρ+2z)(ρ−6z)−m2 . (3.14)

Solving these equations to leading for z(x,t) and m(x,t) yields

z=
ρ

6
+ · · · (3.15)

m=−2

3
h

(
2−α
2α

)
∂ρ

∂x
+ · · · . (3.16)

Substituting this result into the conservation of mass equation, (3.10), yields the
following diffusion equation:

∂ρ

∂t
− 2

3
h

(
2−α
2α

)
∂2ρ

∂x2
=0 . (3.17)

Note that the diffusion constant in (3.17) is 1.5 times smaller than the diffusion
constant in (2.34) and is independent of the actual value of σ (as long as σ<O(h−1)).
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This sudden jump to 2/3 of the collisionless value can be explained by the fact that
the Broadwell model goes from being described entirely by four directions in the
collisionless case to six when collisions are included. These extra directions allow
for some mass to accumulate in N5=N6, and unlike the other directions, N5 and
N6 do not contribute to the quantity that is being damped by wall collisions: the
x-momentum.

Unlike in the collisionless case, we have no rigorous theorems to show that the
collisional Broadwell model converges either to system (3.10)-(3.12) or to diffusion
equation (3.17). However, we will provide numerical evidence below that suggests that
system (3.10)-(3.12) is a good approximation to the collisional Broadwell model when
h is small; and furthermore, that diffusion equation (3.17) is a good approximation
to both (3.10)-(3.12) and the Broadwell model in the long-time.

3.3. An example. In order to demonstrate the validity of the above derived
collisional thin-channel model, we consider an example with h=0.04, α=0.5, σ=100,
and the following initial conditions:

N1,2,3,4(x,y,0)=

{
0.25 if (x−0.5)2+15(y−0.02)2<0.152

0 otherwise
(3.18)

N5(x,y,0)=0. (3.19)

The solution to the 2D collisional 4-velocity Broadwell model is computed on the same
computational grid with the same boundary conditions as in Section 2.5. We take in
this computation a CFL number of 0.995:

∆t

∆x
=

∆t

∆y
=0.995.

The collisional source term is approximated via the implicit trapezoidal rule and
coupled to the left-hand side of system (3.1)–(3.5) through Strang operator splitting.

The thin-channel model (3.10)–(3.12) with initial conditions

ρ(x,0)=

{
10
3

√
0.152−(x−0.5)2 if 0.35<x<0.65

0 otherwise
(3.20)

m(x,0)=0 (3.21)

z(x,0)=0, (3.22)

is solved on a grid of 2000 points on the computational domain [−0.5,1.5]. The source
term in (2.28) is again approximated using the implicit trapezoidal rule and coupled
to the left-hand side of system (3.10)–(3.12) through Strang operator splitting. The
results of this 1D simulation are compared against the depth-averaged 2D solution as
well as the exact solution of the diffusion equation (3.17) in Figures 3.3–3.4. In these
figures we only display the solution for x∈ [0,1]. These results show that the 1D thin-
channel model accurately captures the depth-averaged behavior of the 2D solution;
and furthermore, they indicate that the diffusion equation is a good approximation
only in the long-time.
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(a)

(b)

(c)

Fig. 3.1. The Broadwell model without collisions (σ=0) in a thin channel. Shown in these
panels are the depth-averaged exact 2D solution (circles-line), 1D telegraph solution (solid line), 1D
diffusion solution (dashed line). The exact 2D solution is sampled on a 1000×20 grid for (x,y)∈
[−0.5,1.5]× [0,0.04], the approximate 1D solution is computed with 2000 points for x∈ [−0.5,1.5],
and the diffusion equation is solved exactly.
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(a)

(b)

(c)

Fig. 3.2. Collisionless Broadwell solution continued from Figure 3.1. One can see from these
plots that the convergence of the 1D thin-channel approximation to the depth-averaged 2D system
for a fixed h and t→∞ is only weak.
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(a)

(b)

(c)

Fig. 3.3. The Broadwell model with collisions (σ=100) in a thin channel. Shown in these
panels are the depth-averaged exact 2D solution (circles-line), 1D telegraph solution (solid line), 1D
diffusion solution (dashed line). The exact 2D solution is sampled on a 1000×20 grid for (x,y)∈
[−0.5,1.5]× [0,0.04], the approximate 1D solution is computed with 2000 points for x∈ [−0.5,1.5],
and the diffusion equation is solved exactly.
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(a)

(b)

(c)

Fig. 3.4. Collisional Broadwell solution continued from Figure 3.3.
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4. Limiting behavior theorems in the collisionless case
In this section we shall prove some theorems concerning limiting behavior of the

4-velocity collisionless Broadwell model (2.1)–(2.4). To simplify the presentation we
shall rescale x, y, and t so that h=1 and the domain is D={(x,y)|(−∞,∞)× [0,1]}
in this section only. We shall also write the unknowns as a vector,

N(x,y,t)=(N1,N2,N3,N4)
T .

It is useful to define the inner product,

〈u,w〉≡
∫ 1

0

uHwdy, (4.1)

and the vectors 1≡ (1,1,1,1)T and 1±≡ (1,−1,−1,1)T . The depth-averaged density
and momentum can now be written as follows:

ρ(x,t)= 〈1,N(x, ·,t)〉
m(x,t)= 〈1±,N(x, ·,t)〉.

We will also require the Fourier transform of N in the x-direction, which we denote

as N̂ and define as follows:

N̂(k,y,t)=
1

2π

∫ ∞

−∞
N(x,y,t)e−ikxdx.

We shall use the following function space for our theorems

N ∈B(D) if max
0≤y≤1

∫ ∞

−∞

(
|N(x,y)|+ |N (x,y)|2+ |Nx(x,y)|2

)
dx<∞ (4.2)

In other words, N(x,y)∈L1∩H1(R) for each y∈ [0,1].
4.1. Diffusive behavior. The discussion in Section 2 suggests that the

Broadwell model under certain conditions behaves like a diffusion equation. We shall
prove that under a diffusive scaling the depth-averaged density converges weakly to a
solution of a diffusion equation.

Suppose we consider initial conditions of the form

N(x,y,0)=M 0(x/λ,y)/λ, (4.3)

where λ is a length scale. We note that the total mass for these initial conditions is
independent of λ. We use the following rescaled independent variables:

X=x/λ and T = t/λ2. (4.4)

In these variables, our new unknown is the rescaled number density, denoted by
Mλ(X,y,T ) and it is related to the original density by

Mλ(X,y,T )≡λN(λX,y,λ2T ), (4.5)

where the initial conditions are

Mλ(X,y,0)=M 0(X,y). (4.6)
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The rescaled depth-averaged density is denoted ψλ(X,T ) and is given by

ψλ(X,T )= 〈1,Mλ(X, ·,T )〉. (4.7)

We have the following theorem concerning the behavior of the rescaled density in the
limit as λ→∞.

Theorem 4.1. If the initial conditions are N(x,y,0)=M 0(x/λ,y)/λ, where
M0(x,y)∈B(D), then as λ→∞, ψλ(X,T ) (defined by (4.7)) converges weakly to
ψ(X,T ) which satisfies the diffusion equation:

ψT =DψXX ,

where D=(2−α)/2α, with the initial condition

ψ(X,0)= 〈1,M 0(X, ·)〉.

This theorem establishes that under a diffusive scaling the depth-averaged density
for the Broadwell model satisfies (weakly) a diffusion equation.

4.2. Hyperbolic behavior. The results from Section 2 also suggest that the
density for the Broadwell model should have a connection with a telegraph equation.
Here we verify that under hyperbolic scaling the depth-averaged density converges
weakly to a solution of the telegraph equation. To explain this statement more pre-
cisely, we first recall the telegraph equation (2.31),

2α

(2−α)ρt−ρxx+ρtt=0,

where we have set c=h=1. Next we use the following rescaling:

X=x/λ and T = t/λ, (4.8)

and obtain the following telegraph equation:

2αλ

(2−α)uT −uXX+uTT =0,

where u(X,T )=λρ(λX,λT ). We note that if we let α→0 and λ→∞ so that αλ=2Γ,
we obtain that

2ΓuT −uXX+uTT =0. (4.9)

For later reference we note that the solution of this equation can be written as

u(X,T )=

∫ ∞

−∞
ĝ1(k)e

i(kX−σ1(k)T )dk+

∫ ∞

−∞
ĝ2(k)e

i(kX−σ2(k)T )dk, (4.10)

where

σ1,2(k)=−iΓ± i
√

Γ2−k2, (4.11)

and ĝ1 and ĝ2 are determined by initial conditions. In particular if ρ(X,0)=ρ0(X)
and m(X,0)=m0(X), then

ĝ1=
σ2ρ̂0−km̂0

σ2−σ1
and ĝ2=

σ1ρ̂0−km̂0

σ1−σ2
.
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Based on the scalings used above we define the following rescaled number density:

P λ(X,y,T )≡λN(λX,y,λT,α=2Γ/λ), (4.12)

and the rescaled depth-averaged density:

φλ(X,T )= 〈1,P λ(X, ·,T )〉. (4.13)

We can prove the following theorem concerning the telegraph equation and the Broad-
well model.

Theorem 4.2. If the initial conditions are N(x,y,0)=M 0(x/λ,y)/λ, where
M0(x,y)∈B(D), then as λ→∞ and α→0 with αλ=2Γ we have that φλ(X,T ) con-
verges weakly to φ(X,T ). φ(X,T ) is a solution of the telegraph equation given by (4.9)
with initial conditions:

φ(X,0)= 〈1,M 0(X, ·)〉 and

m(X,0)= 〈1±,M0(X, ·)〉,
where φT +mX =0.

4.3. Long-time behavior. The final theorem we present provides us an
asymptotic formula for the behavior of the depth-averaged density as t→∞.

Theorem 4.3. If the initial conditions are N(x,y,0)=N 0(x,y), where N 0(x,y)∈
B(D) and

N̂0(k,y)=

∞∑

n=−∞

4∑

j=1

ĝj,n(k)vj,n(k,y) (4.14)

in L2([0,1]) (for each k) for some coefficients ĝj,n, then the density for the Broadwell
model has the following asymptotic behavior:

ρ(x,t)=

√
π

Dt
exp

[−x2
4Dt

]( ∞∑

m=−∞
cm

(
eiπm(x−t)+eiπm(x+t)

)
+o(t−

1

2 )

)
,

where D=(2−α)/(2α) and

c2m=
1

4
〈N̂0(2mπ, ·),v1,m(2mπ, ·)〉

c2m+1=
1

4
〈N̂0((2m+1)π, ·),v2,m(2m+1)π, ·〉.

Expressions for the vectors vj,n are derived in Section 4.4.1. Furthermore, if N 0=
1
4f(x)1 then ρ(x,0)=f(x) and it follows from the above expressions that

ρ(x,t)=

√
π

16Dt
exp

[−x2
4Dt

]( ∞∑

m=−∞
f̂(πm)

(
eiπm(x−t)+eiπm(x+t)

)
+o(t−

1

2 )

)
.

Remark. If we knew that the eigenfunctions {vj,n(k,y)} were, for all k, complete in
L2[0,1] we could remove the condition given by (4.14).

Theorem 4.3 indicates that for a class of initial conditions the long-time behavior is
composed of oscillatory functions that have the fundamental solution of the diffusion
equation as an envelope. In particular, this demonstrates that the convergence to
the diffusion equation as described in Theorem 4.1 can not be better than weak
convergence. Indeed, Figure 3.2(b) clearly shows these oscillations.
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4.4. Proof of Theorems. We prove in this section the above theorems. In
particular, we begin by computing the solution to the 4-velocity Broadwell model
(2.1)–(2.4).

4.4.1. Eigenfunction expansion. The proof of each of the above theorems
relies on an eigenfunction expansion of the the Broadwell model, which we will now
outline. We begin by Fourier transforming the Broadwell model in x and assuming a
solution of the form:

N̂j(k,y,t)= n̂j(k,y)e
−iω(k)t for j=1,2,3,4. (4.15)

Plugging this into the Fourier transformed Broadwell model results in a first order
ODE in y for each n̂; these are easily solved and in view of the boundary conditions
we write the solutions as

n̂1=a1 exp[i(ω−k)y]
n̂2=a2 exp[i(ω+k)(1−y)] (4.16)

n̂3=a3 exp[i(ω+k)y]

n̂4=a4 exp[i(ω−k)(1−y)] .

Applying the boundary conditions we find that

M(z)a=0, (4.17)

where a=(a1,a2,a3,a4)
T and

M(z)=




−2 αzp 0 (2−α)z/p
αz/p −2 (2−α)zp 0
0 (2−α)zp −2 αz/p

(2−α)z/p 0 αzp −2




with z=eiω and p=eik. For nontrivial solutions we must find the values of z for
which the determinant vanishes. We will also need to compute the eigenvectors, a,
that correspond to these values of z. The determinant of M(z) vanishes whenever

P+(z)P−(z)=0 where P±(z)=1+(1−α)z2± (2−α)
2

(
1

p
+p

)
z.

We define z1 and z2 such that P−(z1)=0 and P−(z2)=0. It follows that z3=−z1
and z4=−z2 satisfy P+(z3)=0 and P+(z4)=0. We can obtain an expression for z1
entirely in terms of k and α by solving P−(z)=0 and substituting p=eik:

z1(k)=
(
(2−α)cos(k)−

√
(2−α)2 cos2(k)−4(1−α)

)/
(2(1−α)).

Furthermore, it follows easily that

z2(k)=−z1(k+π), z3(k)=−z1(k), z4(k)=z1(k+π). (4.18)

Therefore it is enough to understand z1(k). We note the following properties:

z1(k)=z1(k+2nπ) where n=±1,±2, .....

z1(k+2nπ)=1+
2−α
2α

k2+O(k4).
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To compute the dispersion relationship we need to find ωj . Since z1=e
iω1 ,

ω1(k)=−i log(z1)
= iΩ(k)+θ(k)+2πn, n=0,±1,±2, ..., (4.19)

where Ω(k)=− log |z1| and θ(k)=cos−1(Re(z1)/|z1|). Since ω1 is a 2π-periodic func-
tion of k, it is enough to understand the behavior of ω1 for 0≤k≤2π. It easy to see
that

z1=

{
complex if kc<k<π−kc or π+kc<k<2π−kc
real otherwise,

where

kc=cos−1
(
2
√
1−α

2−α

)
.

We observe that if Im(z1)=0 then

θ=

{
0 if Re(z)>0
±π if Re(z)<0,

where the sign is chosen so that θ is continuous. On the other hand, we note if Im(z1) 6=
0 then one can easily check that |z1|=(1−α)−1/2 and cos(θ)=cos(k)/cos(kc). We
also observe that if we expand Ω, then we find that

Ω(k)=−2−α
2α

k2+O(k4). (4.20)

We collect the above results and summarize them in Figure 4.1. In view of the above
discussion and equation (4.18), we have the eigenfrequencies:

ω1,n(k)= iΩ(k)+θ(k)+2nπ

ω2,n(k)= iΩ(k+π)+θ(k+π)+(2n+1)π

ω3,n(k)= iΩ(k)+θ(k)+(2n+1)π

ω4,n(k)= iΩ(k+π)+θ(k+π)+2nπ.

The eigenvectors corresponding the zjs described above are

a1=




1
E1
E1
1


 , a2=




1
E2
E2
1


, a3=




1
−E1
E1
−1


 , and a4=




1
−E2
E2
−1


,

where

Ej=

(
2p−(2−α)zj

)

αzjp2
for j=1,2.

We also note the following:

E1(k=2mπ)=1 and E1(k=(2m+1)π)=−1 (4.21)
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Fig. 4.1. A plot of θ and Ω as functions of k for α= 1
2
. The point on the k axis where θ first

becomes nonzero (moving away from the origin) marks kc.

E2(k=2mπ)=−1 and E2(k=(2m+1)π)=1. (4.22)

Equations (4.21) and (4.22) are valid if α is strictly bounded away from zero. On the
other hand,

lim
ε→0

E1(k=wε,α=2Γε)=
Γ

−iw+
√
Γ2−w2

≡F1(w,Γ) (4.23)
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lim
ε→0

E2(k=wε,α=2Γε)=
Γ

−iw−
√
Γ2−w2

≡F2(w,Γ). (4.24)

Combining the results for the eigenvectors and eigenfrequencies we obtain the
following eigenfunctions:

vj,n(k,y)=




aj,1 exp[i(ωj,n−k)y]
aj,2 exp[i(ωj,n+k)(1−y)]
aj,3 exp[i(ωj,n+k)y]
aj,4 exp[i(ωj,n−k)(1−y)]


. (4.25)

4.5. Orthogonality results. Unfortunately the set of eigenfunctions given by
(4.25) is not an orthogonal set; however, these eigenfunctions have some orthogonality
properties that turn out to be sufficient for our needs. We will outline these properties
in this section. If we define the inner product as in (4.1), then one can verify by a
direct computation using equations (4.21) and (4.22) that

〈v1,n(2mπ, ·),vj,`(2mπ, ·)〉=4δ1jδn` (4.26)

and

〈v2,n((2m+1)π, ·),vj,`((2m+1)π, ·)〉=4δ2jδn`. (4.27)

One can also establish, recalling that 1=(1,1,1,1)T , by direct computation that

〈1,v1,n(2mπ, ·)〉=





4 if n=m=0
2 if n=±m
0 otherwise

(4.28)

and

〈1,v2,n((2m+1)π, ·)〉=
{
2 if 2n+1=±(2m+1)
0 otherwise

(4.29)

〈1,v3,n(k, ·)〉= 〈1,v4,n(k, ·)〉=0. (4.30)

In expressions (4.26) – (4.30), j=1,2,3,4 and `,n,m=0,±1,±2,±3, ....

Proposition 4.1. The set of vectors
{
{vj,n(0,y)}4j=1

}∞
n=−∞

is complete in L2[0,1].

Proof. Define the following 4×4 matrices:

Wj=

{
diag(1,1,1,1) if j=1,3
diag(e2Ω(π)y,e2Ω(π)(1−y),e2Ω(π)y,e2Ω(π)(1−y))) if j=2,4.

(4.31)

One can use Wj to formulate the following orthogonality condition:

〈vj,n(0, ·),W`v`,m(0, ·)〉=4δj,`δm,n. (4.32)

An eigenfunction expansion for f(y) can be deduced using (4.32), and we find that

fN (y)=
1

4

N∑

n=−N

4∑

j=1

〈vj,n(0, ·),Wjf(·)〉vj,n(0,y). (4.33)

In section 4.6.4 (Lemma 4.1), we prove for any f ∈L2[0,1] that
lim
N→∞

||f−fN ||2=0. (4.34)

This completes the proof of Proposition 4.1.
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4.6. Fourier Transform. Returning to (4.15) we see that the Fourier trans-
form of N =(N1,N2,N3,N4)

T is

N̂ =
∞∑

n=−∞

4∑

j=1

ĝj,n(k)vj,n(k,y)e
−iωj,n(k)t, (4.35)

where ĝj,n(k) comes from expanding the initial condition:

N̂0(k,y)=

∞∑

n=−∞

4∑

j=1

ĝj,n(k)vj,n(k,y). (4.36)

Since

ρ(x,t)= 〈1,N〉 and ρ̂(k,t)= 〈1,N̂〉,

we can use equation (4.30) to write:

ρ̂(k,t)= ρ̂1(k,t)+ ρ̂2(k,t),

where

ρ̂j(k,t)=

∞∑

n=−∞
Gj,n(k)e

−iωj,n(k)t (4.37)

and

Gj,n(k)= ĝj,n(k)〈1,vj,n(k,y)〉. (4.38)

We will use the results of this section to prove the three theorems.

4.6.1. Proof of theorem 4.1. We start by taking the inverse Fourier
transform of ρ̂j . It is convenient to break up the integral in intervals of length 2π due
to the periodic nature of ω as outlined in the section above. We have that

ρj(x,t)=

∫ ∞

−∞
ρ̂j(k,t)e

ikxdk (4.39)

=

∞∑

m=−∞

∫ π(2m+1)

π(2m−1)
ρ̂j(k,t)e

ikxdk (4.40)

=

∞∑

m=−∞

∞∑

n=−∞
A(j)n,me

−iπ2nt, (4.41)

where

A(j)n,m=

∫ (2m+1)π

(2m−1)π
Gj,ne

−iωj,n(k)teikxdk.

Let k=2πm+w and we can write

A(j)n,m=ei2mπx I(j)n,m,
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where

I(j)n,m=

∫ π

−π
Gj,n(2mπ+w)e

−iωj,0teiwxdw. (4.42)

In expression (4.42) we have made use of he periodicity of ω. Therefore we can write

ρj(x,t)=
∞∑

m=−∞

∞∑

n=−∞
I(j)n,me

−i2π(mx−nt). (4.43)

Under the assumptions of the Theorem, the initial conditions for N take the form

N(x,y,0)=M 0(x/λ,y)/λ. Since M 0∈B(D) then M̂0(·,y)∈L1(R). It also follows
from our rescaling that

ĝj,n(k)→ ĝj,n(λk). (4.44)

Therefore we can write I
(j)
n,m as

I(j)n,m=

∫ π

−π
Gj,n(2mπ+w)e

−iωj,0(w)teiwxdw,

where

Gj,n(2mπ+w)= ĝj,n(2πmλ+λw)〈1,vj,n(2mπ+w)〉. (4.45)

We now use the rescaled variables to compute:

ψλ(X,T )=ψ1(X,T )+ψ2(X,T ), (4.46)

where

ψj(X,T )=

∞∑

m=−∞

∞∑

n=−∞
J (j)n,me

−i2πλ(mX−nTλ) (4.47)

with

J (j)n,m=

∫ λπ

−λπ
ĝj,n(2πmλ+k)〈1,v1,n(2mπ+ k

λ
)〉e−iωj,0( kλ )λ2T eikX dk.

One can show using the results of Section 4.4.1 that

lim
λ→∞

ω1,0( kλ )λ
2=−iDk2 (4.48)

and

lim
λ→∞

ω2,0( kλ )λ
2=−i∞. (4.49)

Clearly from (4.49) we find limλ→∞J
(2)
n,m=0. We will examine the behavior of J

(1)
n,m

as λ→∞. First we consider the case n=m=0:

J
(1)
0,0 =

∫ λπ

−λπ
ĝ0,0(k)〈1,v1,0( kλ )〉e−iω1,0(

k
λ
)λ2T eikX dk.
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By our hypothesis on the initial conditions g0,0(k)∈L1, and we can use the dominated
convergence theorem to verify that

lim
λ→∞

J
(1)
0,0 =

∫ ∞

−∞
4 ĝ1,0(k)e

ikX e−Dk
2T dk. (4.50)

Turning to the case m 6=0 and n 6=0; since ĝj,n(k)∈L1 it follows that

J (j)n,m<∞. (4.51)

Using (4.50), (4.51), and recalling that limλ→∞J
(2)
n,m=0, it follows from (4.46) and

(4.47) that

ψλ(X,T )→ψ(X,T ) weakly as λ→∞,

where

ψ(X,T )=

∫ ∞

−∞
4 ĝ1,0(k)e

ikX−k2DT dk,

which is a solution of the diffusion equation. To complete our proof we must compute
ĝ1,0 in terms the initial conditions. Combining (4.36) and (4.44) we have that

M̂0(λk,y)=

4∑

j=1

∞∑

m=−∞
ĝj,m(λk)vj,m(k,y). (4.52)

We let w=λk and take λ→∞ to obtain that

M̂0(w,y)=
4∑

j=1

∞∑

m=−∞
ĝj,m(w)vj,m(0,y). (4.53)

Our choice of initial conditions implies that M̂0(·,y)∈L2[0,1]. By Proposition 4.1
the eigenfunctions, {vj,m(0,y)}, are complete in L2[0,1]. This combined with (4.32)

indicates that we can uniquely determine ĝj,m for any M̂0(·,y)∈L2[0,1].
To finish, we use (4.26) to obtain that

ĝ1,0(w)=
1

4
〈v1,0(0, ·),M̂0(w, ·)〉=

1

4
〈1,M̂0(w, ·)〉,

and the proof of Theorem 4.1 is complete. ¥

4.6.2. Proof of Theorem 4.2. In this theorem the initial conditions are
the same as for Theorem 4.1, and the expression for I

(j)
n,m is thereby the same:

I(j)n,m=

∫ π

−π
Gj,n(2mπ+w)e

−iωj,0(w,α)teiwxdw,

whereGj,n(2mπ+w) is given by (4.45) and we have written ωj,0 so that its dependence
on α is explicitly recognized. We now use the rescaled variables (4.8) to compute:

φλ(X,T )=φ1(X,T )+φ2(X,T ),
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where

φj(X,T )=

∞∑

m=−∞

∞∑

n=−∞
J (j)n,me

−i2πλ(mX−nT )

with

J (j)n,m=

∫ λπ

−λπ
ĝj,n(2mπλ+k)〈1,vj,n(2mπ+ k

λ
, 2Γ
λ
,y)〉e−iλωj,0( kλ , 2Γλ )T eikX dk

and vj,n=vj,n(k,α,y).
By expanding λωj,0(

k
λ ,
2Γ
λ ) in series in λ−1 one can prove that

lim
λ→∞

λωj,0

(
k

λ
,
2Γ

λ

)
=σj(k), (4.54)

where σj(k) is given by (4.11). In addition one can show that

lim
λ→∞

vj,n

(
2πm+

k

λ
,
2Γ

λ
,y

)
=uj,n(m,y),

with

uj,n(m,y)=




exp[2πi(n−m)y]
Fj exp[2πi(n+m)(1−y)]
Fj exp

[
2πi(n+m+ 1

2 )y
]

exp
[
2πi(n−m+ 1

2 )(1−y))
]




where j=1,2 and Fj are given by (4.23) and (4.24). The expressions for j=3,4
follow in a straightforward way. One can prove the following orthogonality relationship
about these vectors:

〈uj,n(0, ·),uj,m(0, ·)〉=2(1+F 2j )δn,−m for j=1,2

〈uj,n(0, ·),uj,m(0, ·)〉=2(1+F 2j−2)δn,−(m+1) for j=3,4 (4.55)

〈ui,n(0, ·),uj,m(0, ·)〉=0 if i 6= j.

We can establish that ui,n(0,y) can be used to form a complete basis in L2[0,1] using
a similar argument as was given in Proposition 4.1. In addition we have the identity:

〈1,uj,0(0, ·)〉=2(1+Fj). (4.56)

We proceed in a similar fashion as in Theorem 4.1, using (4.56), and prove that

lim
λ→∞

J
(j)
0,0 =

∫ ∞

−∞
gj,0(k)(1+Fj(k,Γ))e

i(kx−σj(k))tdk,

and if m 6=0 and n 6=0 then

lim
λ→∞

J (j)n,m<∞.

Therefore we have that

φλ(X,T )→φ(X,T ) weakly as λ→∞,
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where

φ(X,T )=

∫ ∞

−∞

[
φ1(k)e

−iσ1(k)T +φ2(k)e
−iσ2(k)T

]
eikX dk

with φj(k)=(1+Fj(k,Γ)) ĝj,0(k).

To complete the proof we must compute φj(k) in terms of the initial conditions.
Recall from (4.36) that ĝj,n(λk) must satisfy:

M̂0(λk,y)=

4∑

j=1

∞∑

n=−∞
ĝj,n(λk)vj,n(k,α,y), (4.57)

which we write as

M̂0(w,y)=
4∑

j=1

∞∑

n=−∞
ĝj,n(w)vj,n(w/λ,2Γ/λ,y). (4.58)

Now let λ→∞ to obtain that

M̂0(w,y)=

4∑

j=1

∞∑

n=−∞
ĝj,n(w)uj,n(0,y). (4.59)

Our choice of initial conditions implies that M̂0(·,y)∈L2[0,1] and we know that
{uj,m(0,y)} forms a complete basis in L2[0,1]. We can use the orthogonality relations

(4.55) to uniquely determine ĝj,n for any M̂0(·,y)∈L2[0,1].
It follows from (4.59) and (4.55) that

ĝj,0(w)=
〈uj,0(0, ·),M̂0(·)〉
2(1+F 2j (w,Γ))

for j=1,2. (4.60)

Finally we note that

uj,0(0)=
1

2
(1+Fj)1+

1

2
(1−Fj)1± for j=1,2. (4.61)

A straightforward but somewhat lengthy calculation yields that

φ1(k)=
σ2ρ̂0−km̂0

σ2−σ1

φ2(k)=
σ1ρ̂0−km̂0

σ1−σ2
,

where ρ0= 〈1,M0(X, ·)〉, m0= 〈1±,M0(X, ·)〉, and σj is given by (4.11). If we com-
pare with the solution of the telegraph equation given by (4.10), we see that the proof
of this theorem is complete. ¥
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4.6.3. Proof of Theorem 4.3. We again start by taking the inverse Fourier
transform of ρ̂1. We have that

ρ1(x,t)=

∫ ∞

−∞
ρ̂1(k,t)e

ikxdk (4.62)

=

∞∑

m=−∞

∫ π(2m+1)

π(2m−1)
ρ̂1(k,t)e

ikxdk (4.63)

=

∞∑

m=−∞

∞∑

n=−∞
An,me

−iπ2nt, (4.64)

where

An,m=

∫ (2m+1)π

(2m−1)π
G1,ne

t(Ω(k)−iθ(k))eikxdk.

Let k=2πm+w and we can write:

An,m=ei2mπx I(1)n,m,

where

I(1)n,m=

∫ π

−π
G1,n(2mπ+w)e

t(Ω(w)−iθ(w)) eiwxdw. (4.65)

Here we have used the periodicity of Ω and θ. Using this definition we can write:

ρ1(x,t)=

∞∑

m=−∞

∞∑

n=−∞
I(1)n,me

−i2π(mx−nt). (4.66)

We can handle ρ2(x,t) is a similar fashion except the starting point is slightly different,
namely

ρ2(x,t)=

∫ ∞

−∞
ρ̂2(k,t)e

ikxdk (4.67)

=

∞∑

m=−∞

∫ (2m+2)π

2mπ

ρ̂2(k,t)e
ikxdk. (4.68)

Following essentially the same steps we arrive at

ρ2(x,t)=
∞∑

m=−∞

∞∑

n=−∞
I(2)n,me

−iπ((2m+1)x−(2n+1)t) (4.69)

I(2)n,m=

∫ π

−π
G2,n((2m+1)π+w)et(Ω(w)−iθ(w)) eiwxdw. (4.70)

Our choice of initial conditions guarantees that ĝj,n(k) will be bounded; consequently
Gj,n is also bounded and we can use Lemmas 4.2 and 4.3 to establish the following
asymptotic expression:

I(j)n,m=e−x
2/4Dt

( √
π√
Dt

Gj,n((2m+j−1)π)+o(t−
1

2 )

)
for j=1,2. (4.71)
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Next we use equations (4.38), (4.28) and (4.29) to show that

G1,n(2mπ)=





4 if n=m=0
2 if n=±m
0 otherwise

(4.72)

G2,n((2m+1)π)=

{
2 if 2n+1=±(2m+1)
0 otherwise.

(4.73)

Combining equations (4.66), (4.69), (4.71), (4.72), and (4.73) we have that

ρ(x,t)=
2
√
π√
Dt

e−x
2/4Dt

( ∞∑

m=−∞
cm

(
eiπ2m(x−t)+eiπ2m(x+t)

)
+o(t−

1

2 )

)
, (4.74)

where

c2m= ĝ1,m(2mπ) and c2m+1= ĝ2,m((2m+1)π). (4.75)

To complete the proof of the theorem we must determine cm in terms of the initial
conditions. Recall from (4.36) that

N̂0(k,y)=
4∑

j=1

∞∑

m=−∞
ĝj,m(k)vj,m(k,y)

We can use the orthogonality relations (4.26) and (4.27) to obtain that

ĝ1,m(2mπ)=
1

4
〈N̂0(2mπ, ·),v1,m(2mπ, ·)〉

and

ĝ2,m((2m+1)π)=
1

4
〈N̂0((2m+1)π, ·),v2,m((2m+1)π, ·)〉.

This completes the proof of Theorem 4.3. ¥

4.6.4. Three lemmas.

Lemma 4.1. For any f ∈L2[0,1] its eigenfunction expansion as given by (4.33)
converges in L2. In other words, limN→∞ ||f−fN ||2=0.

Proof. The eigenfunction expansion given by (4.33) can be written as

fN (y)=

∫ 1

0

K(x,y)f(y)dy, (4.76)

where K is the 4×4 matrix given by

K(x,y)=
1

4

N∑

n=−N

4∑

j=1

vj,n(0,x)⊗Wjvj,n(0,y). (4.77)
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The entries of K are given by

K11= 1

4
(1+eΩ(π)(y−x))(1+eiπ(y−x)))DN (x−y)

K12= 1

4
(1−eΩ(π)(1−x−y))(1+eiπ(x+y))DN (x+y)

K13= 1

4
(1−eΩ(π)(y−x)))(1+eiπ(x−y))DN (x−y)

K14= 1

4
(1+eΩ(π)(1−x−y))(1+eiπ(x+y))DN (x+y)

K21= 1

4
(1−eΩ(π)(x+y−1))(1+e−iπ(x+y))DN (x+y)

K22= 1

4
(1+eΩ(π)(x−y))(1+eiπ(x−y))DN (x−y)

K23= 1

4
(1+eΩ(π)(x+y−1))(1+e−iπ(x+y))DN (x+y)

K24= 1

4
(1−eΩ(π)(x−y))(1+eiπ(y−x))DN (x−y)

K31= 1

4
(1−eΩ(π)(y−x))(1+eiπ(x−y))DN (x−y)

K32= 1

4
(1+eΩ(π)(1−y−x))(1+eiπ(x+y))DN (x+y)

K33= 1

4
(1+eΩ(π)(y−x))(1+eiπ(x−y))DN (x−y)

K34= 1

4
(1−eΩ(π)(1−y−x))(1+eiπ(x+y))DN (x+y)

K41= 1

4
(1+eΩ(π)(x+y−1))(1+e−iπ(x+y))DN (x+y)

K42= 1

4
(1−eΩ(π)(x−y))(1+eiπ(y−x))DN (x−y)

K43= 1

4
(1−eΩ(π)(x+y−1))(1+e−iπ(y+x))DN (x+y)

K44= 1

4
(1+eΩ(π)(x−y))(1+eiπ(y−x))DN (x−y),

where DN is the Dirichlet Kernel and is given by

DN (x)=
N∑

n=−N
e2πnix=

sin((2N+1)πx)

sin(πx)
.

We now invoke the following theorem concerning the Dirichlet kernel (see for example
[32]).

Theorem (Riesz). For f ∈L2

lim
N→∞

∥∥∥∥f(x)−
∫ 1

0

f(y)DN (x−y)dy
∥∥∥∥
2

=0.

This theorem is valid in Lp for 1<p<∞ but here we are only concerned with the
L2 case. In fact, we require a slight generalization of this theorem:

Let g(x) be a C∞ function, then for f ∈L2

lim
N→∞

∥∥∥∥f(x)g(0)−
∫ 1

0

f(y)g(x−y)DN (x−y)dy
∥∥∥∥
2

=0. (4.78)

This modification follows directly from Riesz’s Theorem. We can use (4.78) to
show that

lim
N→∞

∥∥∥∥fi−
∫ 1

0

Kiifidy

∥∥∥∥
2

=0
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for i=1,2,3,4, and

lim
N→∞

∥∥∥∥
∫ 1

0

Kij fj dy

∥∥∥∥
2

=0

for (i,j)=(1,3),(3,1),(2,4),(4,2). To handle the other cases we observe that

∫ 1

0

f(x)g(x+y)(1+eiπ(x+y))DN (x+y)dy

=

∫ 1

0

f(x)g(x−w+1)(1−eiπ(x−w))DN (x−w)dw.

To derive this expression we have used the periodicity of the Dirichlet kernel (DN (x)=
DN (x+1)). It then follows from (4.78) that

lim
N→∞

∥∥∥∥
∫ 1

0

f(x)g(x−w+1)(1−eiπ(x−w))DN (x−w)dw
∥∥∥∥
2

=0.

The proof of the lemma is complete.

Lemma 4.2. Consider

g(x,t)=

∫ `

−`
eikxeΩ(k)tf(k)dk, (4.79)

where f(k) is a bounded function and

Ω(k)+Dk2≤0 (4.80)

Ω(k)+Dk2=o(k2). (4.81)

Then we have the following asymptotic expression:

g(x,t)=e−x
2/4Dt

(
f(0)
√
π√

Dt
+o(t−

1

2 )

)
. (4.82)

Proof. Let k=w/
√
t and s=x/

√
t, then

g(x,t)=e−s
2/4Dh(s,t)/

√
t, (4.83)

where

h(s,t)=

∫ ∞

−∞
p(t,w,s)dw

and

p(t,w,s)=es
2/4D eiws−Dw

2

etΩ(w/
√
t)+Dw2 f(w/

√
t)χ[−`

√
t,`
√
t].

In the above expression χA is the characteristic function of the set A. In view of
hypothesis (4.81) we have that

lim
t→∞

tΩ(w/
√
t)+Dw2=0.
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Consequently

lim
t→∞

p(t,w,s)=eiws−Dw
2

f(0)es
2/4D.

We can use hypothesis (4.80) to obtain the following bound (uniform in t):

|p(t,w,s)|≤e−Dw2 es2/4D max
[−`,`]

f(k).

We can now use the dominated convergence theorem to verify that

lim
t→∞

∫ ∞

−∞
p(t,w,s)dw=es

2/4D

∫ ∞

−∞
eiws−Dw

2

f(0)dw (4.84)

=
f(0)
√
π√

D
. (4.85)

Therefore we can conclude that

h(s,t)=
f(0)
√
π√

D
+o(1) as t→∞. (4.86)

Combining (4.83),(4.86), and s=x/
√
t completes the proof of Lemma 4.2.

Lemma 4.3. We have the following asymptotic expression for I
(j)
n,m given by (4.65)

and (4.70):

I(j)n,m=e−x
2/4Dt

( √
π√
Dt

Gj,n((2m+j−1)π)+o(t−
1

2 )

)
for j=1,2. (4.87)

Proof. We begin with the definition of I
(j)
n,m:

I(j)n,m=

∫ π

−π
Gj,n((2m+j−1)π+w)et(Ω(w)−iθ(w)) eiwxdw.

In view of the properties of Ω and θ outlined in Section 4.4.1, we can write the above
equation as

I(j)n,m=

∫ kc

−kc
Gj,n((2m+j−1)π+w)etΩ(w)eiwxdw+O(e−t).

One can expand the expression for Ω(w) in a power series in w and verify that it
satisfies the hypotheses of Lemma 4.2. By our hypothesis on the initial conditions
Gj,n is bounded. Hence we may apply Lemma 4.2 to the integral above and our proof
is finished.

5. Summary
In this paper, we have examined the Broadwell model between two parallel plates

with and without inter-particle collisions. In the collisionless case we present formal
asymptotic arguments that indicate that the depth-averaged density should satisfy
a telegraph equation. A similar analysis is performed to the Broadwell model with
collisions. Here we find that the depth-averaged density should satisfy a telegraph
equation coupled to an ODE which accounts for the effects of collisions. In addition,
it is demonstrated that in both cases the predictions of our telegraph equations agree
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well with numerical calculations. In the collisionless case, we prove that under a
diffusive scaling the depth-averaged density will converge weakly to a solution of a
diffusion equation. We also prove that under a hyperbolic scaling the depth-averaged
density will converge weakly to a solution of the telegraph equation. Finally, we derive
an asymptotic formula for the long-time behavior of the depth-averaged density, which
reveals oscillations indicating that the convergence discussed above must be weak.
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