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NONLINEAR STABILITY OF TWO–LAYER FLOWS ∗

PAUL MILEWSKI † , ESTEBAN TABAK ‡ , CRISTINA TURNER § , RUBEN ROSALES ¶,
AND FERNANDO MENZAQUE ‖

Abstract. We study the dynamics of two–layer, stratified shallow water flows. This is a model
in which two scenarios for eventual mixing of stratified flows (shear-instability and internal breaking
waves) are, in principle, possible. We find that unforced flows cannot reach the threshold of shear-
instability, at least without breaking first. This is a fully nonlinear stability result for a model of
stratified, sheared flow. Mathematically, for 2X2 autonomous systems of mixed type, a criterium is
found deciding whether the elliptic domain is reachable –smoothly– from hyperbolic initial conditions.
If the characteristic fields depend smoothly on the system’s Riemann invariants, then the elliptic
domain is unattainable. Otherwise, there are hyperbolic initial conditions that will lead to incursions
into the elliptic domain, and the development of the associated instability.
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1. Introduction
We study the dynamics of two–layer, shallow water flows. This dynamics in princi-

ple includes two closely related physical scenarios for mixing: internal breaking waves
and shear instability. Even though the rolls arising from shear instability are visually
reminiscent of breaking waves, the two phenomena are clearly distinct. Mathemat-
ically, breaking waves arise from nonlinear wave modulation in hyperbolic systems,
while instability can be associated with the equations governing the dynamics turning
elliptic [1, 2]. Physically, wave propagation is primarily a conservative process that
concentrates energy at the location of breaking, whereas shear instability is a process
that creates vortical structures by withdrawing energy from the mean flow. Thus,
for mathematical models of stratified fluids allowing in principle both breaking waves
and excursions into elliptic domains, we may ask the following natural question: with
smooth initial data in the stable (hyperbolic) regime, are the two scenarios attain-
able? Or does wave breaking always precede and possibly preclude shear instability?
In mathematical terms, we are asking under which conditions can systems of mixed
type, given data in the hyperbolic domain, actually reach their elliptic domain.

In order to make progress on this question, we concentrate here on what is possibly
its simplest setting: the one–dimensional evolution of long waves in two–layer flows
of slightly different density, constrained by two horizontal rigid lids [3]. This problem
leads to an autonomous system of two equations of mixed type. In this context, we
find a precise nonlinear stability criterion, and confirm it with numerical experiments.
We find that unforced two–layer flows remain hyperbolic, at least as long as the
flow remains smooth. Hence, in our model, breaking waves always precede, and
maybe altogether eliminate, shear instability. Beyond fluid dynamics, for general
2×2 autonomous systems of mixed type, the elliptic domain is unreachable if its
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characteristic speeds are smooth functions of the Riemann invariants.
Hence, at least for shallow water two–layer flows, shear–instability can only arise

from sources external to the flow, through external forces or boundary conditions.
Then the only mechanism by which the system’s internal dynamics may lead to mixing
is through breaking waves. This contrasts sharply with the way mixing is typically
conceptualized and modeled in present–day general circulation models [4]. There
mixing results solely from shear–instability, parameterized by the Richardson number
Ri, which measures the relative strengths of the stratification, stabilizing the flow, to
the shear, which renders it unstable [5, 6].

2. Two layer hydraulics
Consider two layers of incompressible fluid between two horizontal rigid lids (see

figure 2). We shall denote the lower layer 1 and the upper layer 2, with respective
(constant) densities ρ1 and ρ2, mean horizontal velocities u1 and u2, and thicknesses
h1 and h2, with h1 +h2 =H, where H is the distance between the two rigid boundaries.
The pressure at the top rigid lid will be denoted P . The unknowns are therefore h1,
h2, P , u1 and u2, all functions of (x,t). We shall consider the usual shallow water
limit where the pressure is hydrostatic and the flow is primarily in x.
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Fig. 2.1. Two-layered fluid model

The corresponding equations describing the motion are:

(h2)t +(h2u2)x =0 (2.1)
(h1)t +(h1u1)x =0 , (2.2)

corresponding to conservation of mass and volume for the two layers, and

(h2u2)t +
(

h2u2
2 +

P h2

ρ2
+g

h2
2

2

)

x

=− 1
ρ2

(P +gρ2h2)h1x (2.3)

(h1u1)t +
(

h1u1
2 +

(P +gρ2h2)h1

ρ1
+g

h1
2

2

)

x

=
1
ρ1

(P +gρ2h2)h1x , (2.4)

for conservation of momentum.
Adding (2.1) and (2.2) yields the constraint

(h1u1 +h2u2)=Q(t). (2.5)
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Adding (2.3) and (2.4), on the other hand, yields an equation relating P and Q′:

Px +
(

h1

ρ1
+

h2

ρ2

)−1 [(
h1u1

2 +h2u2
2
)
x
+g′h1h1x +Q′(t)

]
=0 , (2.6)

where g′ is the reduced gravity

g′=g
ρ1−ρ2

ρ1
. (2.7)

The method for solving (2.5, 2.6) for P and Q depends on the boundary condi-
tions. If there is a boundary such that there is no flux at a given point (such as a
fixed sidewall), then Q(t)=0, and P (x,t) follows simply from integrating (2.6) (with
an arbitrary constant of integration with no physical relevance, since only Px appears
in the equations). If the boundary conditions are periodic, on the other hand, then
integrating (2.6) over the full domain yields Q′(t):

Q′(t)=−
∫ L

0

(
h1
ρ1

+ h2
ρ2

)−1 [(
h1u1

2 +h2u2
2
)
x
+g′h1h1x

]
dx

∫ L

0

(
h1
ρ1

+ h2
ρ2

)−1

dx
, (2.8)

and then P follows again from integrating (2.6).
In either case, this allows us to think of the system (2.1, 2.2, 2.3, 2.4) as describing

the evolution of two dynamical variables, say u1 and h1, together with two quantities,
P (x,t) and Q(t), which follow from global constraints. For example, one can use
equations (2.2) and (2.4) to evolve u=u1 and h=h1, with h2 =H−h1, u2 given by
(2.5), P by (2.6), and Q updated in the periodic case using (2.8), or set to zero in the
bounded case.

We can rewrite (2.2) and (2.4) in the form

ht +uhx +hux =0 (2.9)

ut +uux +
Px

ρ1
+g′hx =0 . (2.10)

In order to obtain a simpler model, we shall invoke the Boussinesq assumption,
whereby density variations are small, and become negligible in the inertial terms.
This allows us to take Q(t)=0 even in the periodic case, since (2.8) yields Q′(t)=0
(h1/ρ1 +h2/ρ2 is replaced by H/ρ1, and the rest is the integral of derivatives of peri-
odic functions over a period.)

Then, with Q=0, Px from (2.6) is given by

Px

ρ1
=−

[
h

H−h
u2 +g′

h2

2H

]

x

, (2.11)

and the system (2.9, 2.10) becomes

ht +uhx +hux =0 (2.12)

ut +
H−3h

H−h
uux +

(
g′

H−h

H
− H

(H−h)2
u2

)
hx =0 . (2.13)



430 NONLINEAR STABILITY OF TWO–LAYER FLOWS

We shall nondimensionalize the system (2.12, 2.13), by making the replacement

h→Hh (2.14)

u→
√

g′Hu (2.15)
x→Hx (2.16)

t→
√

H

g
t, (2.17)

so that it becomes

ht +uhx +hux =0 (2.18)

ut +
1−3h

1−h
uux +

(
(1−h)− 1

(1−h)2
u2

)
hx =0 . (2.19)

These equations, describing the flow of two fluid layers of slightly different density
between two horizontal rigid boundaries, are those we shall study in the remaining
sections.

3. Hyperbolic and elliptic domains: instabilities and mixing
The eigenvalues of the system (2.18, 2.19) are given by

λ=
1−2h

1−h
u±

√
h

(1−h)2−u2

1−h
,

so the system is of mixed type: hyperbolic when

(1−h)2

u2
>1 (3.1)

and elliptic otherwise. We define the quantity

Ri=
(1−h)2

u2
, (3.2)

the Richardson number for two–layer flows. In dimensional variables, this takes the
form

Ri=
g′ (H−h)2

Hu2
(3.3)

and the condition for hyperbolicity of the system (2.12, 2.13) is still that Ri>1.
This Richardson number has a simple interpretation in terms of the ratio of the

kinetic energy available for mixing the two layers, to the potential energy barrier given
by the stratification [7]. To see this, consider a complete mixing scenario, in which
we start with two distinct layers, and end up with a single, homogeneous one with
density ρ∗ and velocity u∗=0 (see 3).

Conservation of mass yields

ρ∗=
ρ1h+ρ2(H−h)

H
.

The gain in the potential energy

PE =
∫ H

0

gρzdz
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Fig. 3.1. The two layers and the fully mixed fluid

is given by

PE+−PE−=
1
2
g′ρ1h(H−h),

where the subindexes + and − refer to the states after and before the mixing process.
The loss in the kinetic energy

KE =
1
2

∫ H

0

ρ1u2dz ,

on the other hand, is given by

KE−−KE+ =
1
2
ρ1

Hh

H−h
u2 .

Hence the quotient between the potential energy gain and the kinetic energy loss
is given precisely by the Richardson number (3.3). Hence the elliptic regime Ri<1
corresponds to a state in which the flow is sufficiently energetic that it could, for
miscible fluids, mix completely the two layers.

This is intuitively appealing since in many applications in physics, when an initial
value problem becomes elliptic, this is interpreted as an indication of an instability.
Here, we could imagine a mixing process induced by Rayleigh-Taylor instabilities if
the flow is sufficiently sheared. However, for the system (2.18, 2.19), we shall see
that, for smooth solutions, if the flow is initially everywhere hyperbolic, it will so
indefinitely. In figures 3.2, 3.3 we show numerical calculations of solutions before
breaking; they never cross the sonic boundary Ri=1.

It is worth noting that the configuration of figure 2, taken as initial data not for
two–layer flows, but for the full 2D Euler equations, is unstable to shear for all values
of Ri, not just for Ri<1 as in the two–layer model [1]. To interpret the results of the
two–layer model for Ri>1, one considers that, even though the real fluid system is
unstable, the instability will only mix a thin layer between the two fluids and stabilize
the system, leaving long–wave propagation and breaking as the dominant components
of the system’s dynamics. It is only when Ri<1 that the instability has sufficient
energy to fully mix the two layers into one, replacing wave propagation and breaking
in their central dynamical role.

Clearly, if one is in the unstable regime, the shallow water approximations in
equations (2.18, 2.19) cease to be consistent, and one must either change the model
or introduce some mixing closure that stabilizes it. Similarly, when the model predicts
wave-breaking, which will also mix the fluid, to continue using a shallow water model
one must introduce additional mixing closures to complete the model [8, 9].

In this paper, however, we focus on the dynamics prior to breaking, and conse-
quently neglect any mixing between the two fluid layers.
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Fig. 3.2. Numerical solution of the system (2.18, 2.19), showing the evolution of u,h and the
computed Ri−1. The initial data was chosen to have Ri=1 at one point. Note that the system
never goes into the elliptic region, but that the wave breaks with ”rollup” motion.
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Fig. 3.3. Numerical solution of the system (2.18, 2.19), showing the evolution of u,h and the
computed Ri−1. Dark curves are the initial data and the solution at the last computed time.

4. Expansion near criticality
We shall now simplify the system (2.18, 2.19) further by expanding around a

state with Ri=1. This allows us to study the simplest possible problem near the
hyperbolic-elliptic boundary (the sonic curve). Although this analysis will guide us
in the right direction, our final results do not hinge on this expansion and apply to
the full system. To this end, we propose the expansion

h=h0 +η (4.1)
u=u0 +µ, (4.2)

with 0<h0 <1, u0 =(1−h0), η <<h0, and µ<<u0.
At the linear level, this expansion gives

ηt +(1−h0)ηx +h0µx =0 (4.3)



P. MILEWSKI, E. TABAK, C. TURNER, R. ROSALES, AND F. MENZAQUE 433

µt +(1−3h0)µx−h0ηx =0 , (4.4)

a “parabolic” system with just one real characteristic. The characteristic form follows
from adding and subtracting the equations:

(η+µ)t +(1−2h0)(η+µ)x =0 (4.5)
(η−µ)t +(1−2h0)(η−µ)x =−2h0 (η+µ)x . (4.6)

The solution to this system has

(η+µ)=F (x−ct) (4.7)

and

(η−µ)=−2h0 tF ′(x−ct)+G(x−ct), (4.8)

where c=1−2h0 and F and G are arbitrary functions.
Let us now consider a weakly nonlinear situation close to the parabolic regime.

Inspired by the structure of the parabolic problem, we shall use the variables a=
(h+u−1) and b=(h−u+1−2h0), in terms of which the system (2.18, 2.19) reads

(
a
b

)

t

+
1
2

(
1− 1

Ri + 2−4h√
Ri

1− 1
Ri−2h+ 2h√

Ri

−1+ 1
Ri +2h+ 2h√

Ri
−1+ 1

Ri + 2−4h√
Ri

)(
a
b

)

x

=
(

0
0

)
. (4.9)

Expanding close to the parabolic regime, with a and b small, we have

h=h0 +
a+b

2

u=1−h0 +
a−b

2
1√
Ri

=
1−h0 + a−b

2

1−h0− a+b
2

≈1+
a

1−h0

1
Ri
≈1+2

a

1−h0
,

so the system (4.9) reduces to
(

a
b

)

t

+
(

1−2h0− 1+h0
1−h0

a−b −a

2h0 + 2
1−h0

a+b 1−2h0 +a−b

)(
a
b

)

x

=
(

0
0

)
. (4.10)

We may now change the independent variables into (x−(1−2h0)t,h0 t), and the de-
pendent ones into (a/h0,b/h0), to obtain

(
a
b

)

t

+
( − 1+h0

1−h0
a−b −a

2+ 2
1−h0

a+b a−b

)(
a
b

)

x

=
(

0
0

)
. (4.11)

The eigenvalues of the matrix in (4.11) are given by

λ=−
(

h

1−h0
a+b

)
±

√
−a

(
2+b+

1−2h0

(1−h0)2
a

)
. (4.12)
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Fig. 4.1. Solution of the system (4.11), showing the evolution of a,b. Note that the system
never goes into the elliptic region before breaking.
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Fig. 4.2. Solution of the system (4.11), showing the evolution of a,b. The initial data was
chosen to be partially in the elliptic domain. Note the numerical instability typical of attempting to
numerically integrate an ill-posed problem.

Hence the condition for (4.11) to be hyperbolic is

−a

(
2+b+

1−2h0

(1−h0)2
a

)
>0.

The only possibility consistent with the expansion giving rise to (4.11), which has a
and b small, is a<0.

The numerical simulation displayed in figure 4.1 shows that this system does not
cross the sonic boundary a=0. Solutions remain hyperbolic, with its waves deforming
nonlinearly and eventually breaking. The solution shown in figure 4.2 starts in the
elliptic domain, and exhibits typical instabilities of numerically computed elliptic
initial value problems. If the grid is refined in this case, the grid-size oscillations
would grow more rapidly since the problem is ill-posed.
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Fig. 5.1. Numerical solution of the model system (5.1). The solutions are shown up to t=6,
which is close to breaking time. Note that the solution never crosses the sonic boundary a=0.

5. Three simpler models
To obtain a full understanding of why solutions cross or not into an elliptic region,

we now introduce three simpler models that contain the essence of the problem. These
simpler problems do not have particular physical relevance, but will illustrate the final
results. First, a simple system that can be obtained from (4.11) by keeping only the
dominant term in each equation with both a and b small:

at +abx =0
bt +ax =0 . (5.1)

A contrasting example to (5.1) is the system

at +bbx =0
bt +ax =0 . (5.2)

The system (5.1) is hyperbolic for a>0 and elliptic for a<0 while the second system
is hyperbolic for b>0 and elliptic for b<0.

Numerical calculations on these systems show that the first system remains hyper-
bolic, whilst the solution to the second system may cross the sonic boundary into the
elliptic, unstable, domain. Figure (5.1) shows several snapshots of a typical solution
to the system (5.1). The solution deforms and eventually breaks, but it never crosses
the sonic boundary a=0. Figure (5.2) shows a typical solution to (5.2), crossing into
the elliptic domain. Once in the unstable regime, numerical oscillations appear, with
wavelength and growth rate determined by the numerical grid size.

A difference between the two systems that provides intuition for their different
behavior is that, for the first model, sonic curves are characteristics, a condition that
does not necessarily hold for the second.

The characteristic nature of the sonic curve for the system (5.1) can be derived
as follows. At a sonic point, the characteristics have dx/dt=±√a=0. Along these
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Fig. 5.2. Numerical solution of the model system (5.2). Note that the solution crosses the sonic
boundary b=0, and exhibits the typical unstable numerical oscillations.

characteristics, da/dt=at + dx
dt ax =at =−abx =0. Hence the sonic condition a=0 is

preserved along characteristics. The system (5.2), on the other hand, is sonic whenever
b=0, where the characteristics have dx/dt=±

√
b=0. In this case, db/dt= bt + dx

dt bx =
bt =−ax, which is not necessarily zero. Hence there exist non–characteristic sonic
curves.

The hodograph transformation makes the tangency (or lack thereof) of the sonic
curve and the characteristics particularly apparent (see appendix).

It is tempting to infer from these two examples that characteristic sonic curves are
unreachable, while non–characteristic ones are not. Indeed the full two layer equations
(2.18, 2.19) also share the property that sonic curves are characteristic. To see this,
it is convenient to write the equations in terms of the variables h and

r =
u

1−h
,

whereby they become

ht +r(1−2h)hx +h(1−h)rx =0 (5.3)
rt +(1−r2)hx +(1−2h)rrx =0 , (5.4)

with characteristics

dx

dt
= r(1−2h)±

√
h(1−h)(1−r2). (5.5)

At the sonic boundary, the Richardson number Ri is one, so r is either one or minus
one, and

dx

dt
= r(1−2h), (5.6)
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Fig. 5.3. Numerical solution of the model (5.8), with a close–up showing the crossing into the
elliptic domain.

so along characteristics

dr

dt
= rt +

dx

dt
rx =0 , (5.7)

proving that the sonic condition is preserved.
That this condition is not sufficient in general, is clear from looking at a third

simple model:

at +a1/3 bx =0
bt +ax =0 . (5.8)

Here the sonic line a=0 is also a characteristic, yet figure 5.3 displays a numerical
solution crossing it from the hyperbolic into the elliptic domain.

A precise condition determining which systems permit crossings into the elliptic
domain, follows from looking at the Riemann invariants of the three models. The
characteristic form of the systems is

R±t +λ±R±x =0 . (5.9)

For the system (5.1), the Riemann invariants are

R±= b±2
√

a, (5.10)

and the characteristic speeds are

λ±=±√a=±1
4

(
R+−R−

)
. (5.11)

The systems (5.2) and (5.8) have

R±=a± 2
3
b3/2 (5.12)

λ±=∓
√

b=∓3
4

(
R+−R−

) 1
3 (5.13)
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and

R±= b± 6
5
a5/6, (5.14)

λ±=±a
1
6 =± 5

12
(
R+−R−

) 1
5 . (5.15)

A difference between the system (5.1), which cannot reach the sonic line, and
(5.2) and (5.8), than can, is that the characteristic slopes of the former are smooth
functions of its Riemann invariants at the sonic points, which is not the case for the two
others. As explained in the section below, this turns out to be the crucial distinction,
providing a necessary and sufficient condition for hyperbolic–elliptic crossings.

As shown in [11], the characteristic structure (5.9) for the full two–layer system
(2.18, 2.19) is surprisingly simple, with

R±=2
√

h(1−h)(1−r2)∓r(2h−1) (5.16)

λ±=±3
4
R±∓ 1

4
R∓ . (5.17)

Hence the characteristics are smooth functions of the Riemann invariants, consistent
with the numerical evidence indicating that the elliptic domain is unreachable.

6. A general result for systems of 2 equations of mixed type
Summarizing the evidence of the prior sections, we derive a result characterizing

the possibility of smooth transitions into the elliptic, unstable domain:

Smooth solutions in the hyperbolic domain of a 2X2 autonomous sys-
tem of mixed type cannot reach the sonic boundary if the system’s
characteristic speeds are smooth functions of the Riemann invariants.

When this smoothness requirement is satisfied, a characteristic reaching a sonic
point must have been sonic all along. Moreover, such a sonic characteristic must be
a straight line in the (x,t) plane, and the solution along it must be a constant. The
smoothness of the characteristic fields forces sonic curves to be characteristic, but
not the other way around: a system with characteristic sonic boundaries need not
satisfy the smoothness requirement, and when smoothness is not present, sonic points
may be reached. This explains why all examples where crossings are not observed
have characteristic sonic boundaries, yet examples exist (i.e., model (5.8)), where
characteristic sonic boundaries are not sufficient to inhibit crossings.

In particular, the two–layer shallow water model, our present physical applica-
tion, satisfies the smoothness condition, and hence remains hyperbolic, at least up to
breaking times.

To prove our statement, notice that the transition from hyperbolic to elliptic be-
havior occurs when the two characteristic slopes, λ+ and λ−, real on the hyperbolic
side, become identical on the sonic line, and then develop an imaginary component
in the elliptic domain. Hence consider the evolution of their difference along a char-
acteristic, say the (+) one for concreteness. We have, with d/dt=∂/∂t+λ+∂/∂x,
that

d(λ+−λ−)
dt

=
∂ (λ+−λ−)

∂R+

dR+

dt
+

∂ (λ+−λ−)
∂R−

dR−

dt
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=
∂ (λ+−λ−)

∂R−

(
∂R−

∂t
+λ−

∂R−

∂x
+

(
λ+−λ−

) ∂R−

∂x

)

=
∂ (λ+−λ−)

∂R−

(
∂R−

∂x

)(
λ+−λ−

)

Since
∂(λ+−λ−)

∂R− is bounded by assumption (i.e., the λ±s depend smoothly on the
R±s), and if the solution remains smooth, we see that if the two characteristic slopes
are initially different, they will remain different along the (+) characteristic. It follows
that, if the initial data is strictly hyperbolic, a smooth solution cannot reach the sonic
boundary.

7. Conclusions
We have shown that long waves in two–layer flows can not give rise to profiles

unstable to shear; these can only be imposed upon a flow by external forcing or
boundary conditions. Instead, these waves will always deform and break, giving way to
a mixing scenario quite different from the conventional one driven by shear–instability.
How to actually model mixing due to internal breaking waves is a subject of active
research, not addressed here.

In more generality, we have found a criterion for when a 2X2 autonomous system
of mixed type can undergo a smooth hyperbolic-elliptic transition, leading to insta-
bility: such transitions are only possible in systems for which the dependence of the
characteristic speeds on the Riemann invariants degenerate at sonic points, becoming
non–smooth.

Appendix A. Weakly nonlinear dynamics.
Having established that the hyperbolic regime is an invariant set of the dynamics,

it makes sense to study the weakly nonlinear propagation of waves [12]. Thus, in the
hyperbolic regime, and using α=R−1 = u0

1−h0
, the linear waves have speed

λ±=α(1−2h0)±
√

h0(1−h0)(1−α2),

where |α|<1.
Defining S =

√
h0(1−h0)(1−α2), and seeking a weakly nonlinear expansion of

the form

h=h0 +εh0σ(x−λ±t,εt)+ ...

u=u0 +ε(±S−αh0)σ(x−λ±t,εt)+ ...,

one obtains the following Burger’s equation for σ(x,τ):

(∓2S)στ +Rσσx =0,

where

R=
−(S2∓2Sαh0 +α2h2

0)(3−5h0)+4(∓S−αh0)h2
0α+(1−h0 +2α2)h2

0

1−h0
.

In the case of a shearless basic state, u0 =0, then α=0, and we have

στ ± 3
2

√
h0

1−h0
(1−2h0)σσx =0.
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Fig. A.1. Numerical solution of the full equations (2.18, 2.19) in a weakly nonlinear regime
where the solutions are governed approximately by Burgers equation (A). On the left is a case where
the bottom fluid layer is thin and on the right, the top layer is thin. Note the direction of wave
propagation and breaking.

This shows the expected symmetry h0→1−h0 and σ→−σ between waves of elevation
and depression about h0 =1/2. Solutions of the full system (2.18, 2.19) in this regime
are shown in figure A.1. For h0 <1/2, i.e. when the bottom layer is shallower that the
top one, the waves break much as bores in single layer shallow water, with the lower
layer’s depth increasing as the bore passes through. Reciprocally, it is the upper layer
which grows across bores when h0 >1/2.

Appendix B. The hodograph plane.
For our model systems (5.1, 5.2), the sonic curves in (x,t) space become straight

lines in the hodograph plane (a,b), and the characteristic lines are easy to compute
and draw. For the model (5.1), the hodograph transformation yields the linear system

Xb +aTa =0
Xa +Tb =0 . (B.1)

Eliminating T yields the Keldysh equation

Xbb−aXaa =0 . (B.2)

Its characteristics satisfy

da

db
=±√a,

which can be integrated into

a=
1
4

(b−b0)
2
.
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Hence (see figure B.1), the characteristic lines are tangent to the sonic line a=0. In
other words, the sonic line is also a characteristic.

For the model (5.2), on the other hand, the hodograph transform gives,

Xb +bTa =0
Xa +Tb =0 . (B.3)

which yields the Tricomi equation

b

a

b 0

Fig. B.1. The sonic line is a characteristic

Tbb−bTaa =0 . (B.4)

The characteristic equations are

da

db
=±

√
b,

with solutions

b=
3
2

(a−a0)
2/3

.

These are not tangent to the sonic line (b=0), which is therefore not a characteristic
(see figure B.2).
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b

a

a 0

Fig. B.2. The sonic line is not a characteristic
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