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DOMAIN DECOMPOSITION ALGORITHM FOR THE PARABOLIC
EQUATION WITH VARIABLE COEFFICIENT ∗

ZHIQIANG SHENG † , XINGPING LIU ‡ , AND XIA CUI §

Abstract. In this paper, we design a domain decomposition algorithm for the two-dimensional
parabolic equation with variable coefficient by using a larger spacing at interface points and the
implicit scheme at the interior points, hence get an algorithm with the relaxed stability bounds.
Then we prove the stability and analyze the accuracy of the algorithm by using the idea of maximum
principle. Some results of numerical experiments are also provided.
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1. Introduction
Domain decomposition is a powerful tool for devising parallel PDE methods.

There is rich literature on domain decomposition methods. [1] has developed the
finite difference domain decomposition algorithm for the linear parabolic equation
by using the larger spacing H =mh(m is a positive integer) in the explicit scheme
at the interface points. The algorithm increases the stability bound of the classi-
cal explicit scheme by m2 times. [2] has developed some techniques for the linear
parabolic equation by using smaller time step ∆t=∆t/m in Saul’yev schemes at the
interface points. The algorithm designed with the technique can increase the sta-
bility bound of the classical explicit scheme by 2m times. The algorithm in [3] can
increase the stability bound of the classical explicit scheme by 2m2 times for the lin-
ear parabolic equation, using the larger spacing in the x-direction implicit scheme
and the y-direction implicit scheme at the interface points. The parallel efficiency is
not very high, because the algorithm needs the global communication while solving
the tridiagonal linear algebraic equations. [4] has proposed a parallel finite difference
method for parabolic PDEs, using either a high-order explicit scheme or a multistep
explicit scheme with an intermediate mesh size H lying inside (h,HD) at the interface
points. There are some other algorithms, see [5,6,7,8,9] for related discussions.

However, much of the work has been directed at the linear parabolic equation,
and the proof technique is a constructive method, which is unfit for the parabolic
equation with variable a coefficient. In this paper, we design a domain decomposition
algorithm which can increase the stability bound of the classical explicit scheme by
4m2 times for the parabolic equation with a variable coefficient, and prove the stability
and analyze the accuracy of the algorithm by using the idea of maximum principle.

The framework of the paper is as follows. In the next section, a domain decompo-
sition algorithm for the parabolic equation with a variable coefficient is constructed.
We use a larger spacing at interface points and the implicit scheme at the interior
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points, hence we get an algorithm with the relaxed stability bounds. Then the approx-
imation property is displayed. In section 3, first some Lemmas are provided, then we
prove that the algorithm is stable in the sense of L∞ and analyze the accuracy of the
algorithm by these Lemmas. In the last section, we provide some results of numerical
experiments and examine numerically the stability, accuracy and parallelism of the
algorithm on a certain test problem.

2. Domain decomposition algorithm
In this paper, we consider the two-dimensional parabolic equation with variable

coefficient:

ut =a(x,y,t)uxx +b(x,y,t)uyy, (x,y)∈Ω, t∈ [0,T ]
u(x,y,t)=0, (x,y)∈∂Ω, t∈ [0,T ]
u(x,y,0)=u0(x,y), (x,y)∈Ω, (2.1)

where Ω=(0,1)×(0,1); u0 is a known function. a is a continuous function and b is a
continuous function in Ω, 0<δ1≤a=a(x,y,t)≤K1 <∞, 0<δ2≤ b= b(x,y,t)≤K2 <
∞.

Divide interval [0,T] and [0,1], [0,1] into N and J , J equal small intervals respec-
tively. Denote τ =T/N , tn =nτ , h=1/J , xi = ih, yj = jh, r = τ/h2. For a function
φ(x,y,t) defined at mesh points (xi,yj ,tn), let φn

ij =φ(xi,yj ,tn).
It’s well known that there are several discrete schemes for the parabolic equation

the explicit scheme:

un+1
i,j =an

ijru
n
i+1,j +an

ijru
n
i−1,j +bn

ijru
n
i,j+1 +bn

ijru
n
i,j−1 +(1−2an

ijr−2bn
ijr)u

n
ij ,(2.2)

the implicit scheme:

−an+1
ij run+1

i+1,j−an+1
ij run+1

i−1,j−bn+1
ij run+1

i,j+1−bn+1
ij run+1

i,j−1

+(1+2an+1
ij r+2bn+1

ij r)un+1
ij =un

ij , (2.3)

the x-direction implicit scheme:

−an+1
ij run+1

i+1,j +(1+2an+1
ij r)un+1

ij −an+1
ij run+1

i−1,j

=(1−2bn
ijr)u

n
ij +bn

ijru
n
i,j+1 +bn

ijru
n
i,j−1, (2.4)

and the y-direction implicit scheme:

−bn+1
ij run+1

i,j+1 +(1+2bn+1
ij r)un+1

ij −bn+1
ij run+1

i,j−1

=(1−2an
ijr)u

n
ij +an

ijru
n
i+1,j +an

ijru
n
i−1,j . (2.5)

Their truncation errors are O(τ +h2).
In another paper we have gotten a new difference scheme for the linear parabolic
equation, e.g.

un
ij =[r2un−1

i+2,j +r(1−r)un−1
i+1,j +r(1−r)un−1

i−1,j +r2un−1
i−2,j +r2un−1

i,j+2

+r(1−r)un−1
i,j+1 +r(1−r)un−1

i,j−1 +r2un−1
i,j−2 +(1−r)un−1

i,j ]/(1+3r).

For the same reason, we can get a new difference scheme for the parabolic equation
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with variable coefficient as follows:

un+1
ij =

(an
ijr)

2un
i−2,j +an

ijr(1−an
ijr)u

n
i−1,j +an

ijr(1−an
ijr)u

n
i+1,j +(an

ijr)
2un

i+2,j

1+3an
ijr

+
(bn

ijr)
2un

i,j−2 +bn
ijr(1−bn

ijr)u
n
i,j−1 +bn

ijr(1−bn
ijr)u

n
i,j+1 +(bn

ijr)
2un

i,j+2

1+3bn
ijr

+[
1+an

ijr

1+3an
ijr

+
1+bn

ijr

1+3bn
ijr

−1]un
ij . (2.6)

By Taylor’s expansion at (i,j,n) for the solution un
i,j of ut =auxx +buyy, the truncation

error for (2.6) is

O(τ +h2),

which is the same as the accuracy of the fully implicit scheme.
Next we design a domain decomposition algorithm.

Define the following operators:

L1u
n+1
ij =un+1

ij − [
1+an

ijR

1+3an
ijR

+
1+bn

ijR

1+3bn
ijR

−1]un
ij

− (an
ijR)2un

i−2m,j +an
ijR(1−an

ijR)un
i−m,j +an

ijR(1−an
ijR)un

i+m,j +(an
ijR)2un

i+2m,j

1+3an
ijR

− (bn
ijR)2un

i,j−2m +bn
ijR(1−bn

ijR)un
i,j−m +bn

ijR(1−bn
ijR)un

i,j+m +(bn
ijR)2un

i,j+2m

1+3bn
ijR

,

(2.7)

L4u
n+ 1

2
ij =u

n+ 1
2

ij − [
1+an

ijR1

1+3an
ijR1

+
1+bn

ijR1

1+3bn
ijR1

−1]un
ij−

(an
ijR1)2un

i−2m,j +an
ijR1(1−an

ijR1)un
i−m,j +an

ijR1(1−an
ijR1)un

i+m,j +(an
ijR1)2un

i+2m,j

1+3an
ijR1

− (bn
ijR1)2un

i,j−2m +bn
ijR1(1−bn

ijR1)un
i,j−m +bn

ijR1(1−bn
ijR1)un

i,j+m +(bn
ijR1)2un

i,j+2m

1+3bn
ijR1

,

(2.8)

L2u
n+1
ij =−an+1

ij r1u
n+1
i+1,j +(1+2an+1

ij r1)un+1
ij −an+1

ij r1u
n+1
i−1,j−(1−2b

n+ 1
2

ij R1)u
n+ 1

2
ij

−b
n+ 1

2
ij R1u

n+ 1
2

i,j+m−b
n+ 1

2
ij R1u

n+ 1
2

i,j−m, (2.9)

L3u
n+1
ij =−bn+1

ij r1u
n+1
i,j+1 +(1+2bn+1

ij r1)un+1
ij −bn+1

ij r1u
n+1
i,j−1−(1−2a

n+ 1
2

ij R1)u
n+ 1

2
ij

−a
n+ 1

2
ij R1u

n+ 1
2

i+m,j−a
n+ 1

2
ij R1u

n+ 1
2

i−m,j , (2.10)

L5u
n+ 1

2
ij =−a

n+ 1
2

ij r1u
n+ 1

2
i+1,j +(1+2a

n+ 1
2

ij r1)u
n+ 1

2
ij −a

n+ 1
2

ij r1u
n+ 1

2
i−1,j−(1−2bn

ijR1)un
ij

−bn
ijR1u

n
i,j+m−bn

ijR1u
n
i,j−m, (2.11)

L6u
n+ 1

2
ij =−b

n+ 1
2

ij r1u
n+ 1

2
i,j+1 +(1+2b

n+ 1
2

ij r1)u
n+ 1

2
ij −b

n+ 1
2

ij r1u
n+ 1

2
i,j−1−(1−2an

ijR1)un
ij

−an
ijR1u

n
i+m,j−an

ijR1u
n
i−m,j , (2.12)

Sun+1
ij =−an+1

ij run+1
i+1,j−an+1

ij run+1
i−1,j−bn+1

ij run+1
i,j+1−bn+1

ij run+1
i,j−1 +

(1+2an+1
ij r+2bn+1

ij r)un+1
ij −un

ij , (2.13)
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where r1 = r/2, R= τ/H2, R1 =R/2= τ/(2H2), H =mh.
One has the truncation error

L1u
n+1
ij =O(τ +H2),

Lkun+1
ij =O(τ1 +H2)(k =2,3),

Lku
n+ 1

2
ij =O(τ1 +H2)(k =4,5,6),

Sun+1
ij =O(τ +h2),

where τ1 = τ/2.
The domain decomposition algorithm is as follows:
Algorithm:

Un+1
ij =un+1

ij ,at boundary points,

L1U
n+1
kj =0, at interface points (xk,yj ,t

n+1)(2m≤ j≤J−2m),

L1U
n+1
il =0, at interface points (xi,yl,t

n+1)(2m≤ i≤J−2m),

L4U
n+ 1

2
ij =0, i∈P1and j∈P2, or j∈P1and i∈P3,

L5U
n+ 1

2
ij =0, 0<i<2m or J−2m<i<J, and j∈P2,

L6U
n+ 1

2
ij =0, 0<j <2m or J−2m<j <J, and i∈P3,

L2U
n+1
il =0, at interface points (xi,yl,t

n+1)(0<i<2m or J−2m<i<J),
L3U

n+1
kj =0, at interface points (xk,yj ,t

n+1)(0<j <2m or J−2m<j <J),

SUn+1
ij =0, at interior points (xi,yj ,t

n+1)(i 6=k,j 6= l), (2.14)

where P1 ={2m,J−2m}, P2 ={l−m,l,l+m}, P3 ={k−m,k,k+m}.
Figure 1 and 2 illustrate the various regions that used different operators (J =

14,m=2,k = l=7).

Fig. 2.1. (n+1/2) Fig. 2.2. (n+1)

Our algorithm and the ones in [1,2,3] all use the classical implicit scheme at the
interior points, the difference lying in the scheme used at the interface points. The
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stability bounds of algorithms relax m2 in [1], 2m in [2] and 2m2 in [3] respectively.
Our algorithm can relax the stability bound to a further extent (4m2) by combining
the larger spacing with the smaller time step.

We can show the algorithm has a feasible accuracy.

Theorem 2.1. For the numerical solution Un+1
ij of the algorithm and the real solution

un+1
ij of (1), if the following conditions are satisfied, e.g.

1−aR≥0 and 1−bR≥0,

then Algorithm is stable and

||en+1||∞≤||e0||∞+C(τ +H2),

where en+1
ij =Un+1

ij −un+1
ij , C is a positive constant independent of τ and H.

It is obvious that our algorithm can increase the stability bound of the classical
explicit scheme by 4m2 times. The accuracy of the classical implicit scheme is O(τ +
h2), but τ is generally greater than h2 in the practical computation, hence we can use
an appropriate H instead of h without reducing the accuracy. The accuracy of the
algorithm in [1] is maxi,j,n |Un

ij−un
ij |≤C(τ +h2 +H3), and the stability condition is

τ/H2≤1/2. If we take τ =H2/2, then the accuracy of algorithm in [1] is maxi,j,n |Un
ij−

un
ij |≤C ′H2, and the accuracy of our algorithm is ||en+1||∞≤||e0||∞+C ′′H2. So the

accuracy of our algorithm is feasible. At the same condition, the algorithms in [2, 3]
have similar accuracy, e.g. O(H2).

3. Proof of Theorem
In order to show the theorem, we first provide some lemmas.

Lemma 3.1. If vij satisfies the following relation

−an+1
ij rvn+1

i+1,j−an+1
ij rvn+1

i−1,j−bn+1
ij rvn+1

i,j+1−bn+1
ij rvn+1

i,j−1 +(1+2an+1
ij r+2bn+1

ij r)vn+1
ij

=vn
ij (i=k1 +1,··· ,k2−1;j = l1 +1,··· ,l2−1),

(3.1)

then

max
k1≤ i≤k2
l1≤ j≤ l2

|vn+1
ij |≤max{ max

k1 +1≤ i≤k2−1
l1 +1≤ j≤ l2−1

|vn
ij |, max

i∈P1
l1≤ j≤ l2

|vn+1
ij |, max

j∈P2
k1≤ i≤k2

|vn+1
ij |},

where P1 ={k1,k2}, P2 ={l1,l2}.
Proof: Let M =max k1≤ i≤k2

l1≤ j≤ l2

|vn+1
ij |, P ={(i,j)||vn+1

ij |=M, i∈{k1,··· ,k2};j∈
{l1,··· ,l2}}, and (i0,j0)∈P , if i0∈P1 or j0∈P2, the conclusion is obvious.
Next suppose i0 /∈P1 and j0 /∈P2.
Because |vn+1

i0,j0
|=M , first suppose vn+1

i0,j0
=M for convenience, there are

vn+1
i0−1,j0

≤M, vn+1
i0+1,j0

≤M, vn+1
i0,j0+1≤M, vn+1

i0,j0−1≤M,

from (3.1), we know that

vn
i0,j0 =−an+1

i0,j0
rvn+1

i0+1,j0
−an+1

i0,j0
rvn+1

i0−1,j0
−bn+1

i0,j0
rvn+1

i0,j0+1−bn+1
i0,j0

rvn+1
i0,j0−1

+(1+2an+1
i0,j0

r+2bn+1
i0,j0

r)vn+1
i0,j0

≥−an+1
i0,j0

rM−an+1
i0,j0

rM−bn+1
i0,j0

rM−bn+1
i0,j0

rM +(1+2an+1
i0,j0

r+2bn+1
i0,j0

r)M
=M.



396 DOMAIN DECOMPOSITION ALGORITHM FOR THE PARABOLIC EQUATION

Then suppose vn+1
i0,j0

=−M , there are

vn+1
i0−1,j0

≥−M, vn+1
i0+1,j0

≥−M, vn+1
i0,j0+1≥−M, vn+1

i0,j0−1≥−M,

from (3.1), we know that

−vn
i0,j0 =an+1

i0,j0
rvn+1

i0+1,j0
+an+1

i0,j0
rvn+1

i0−1,j0
+bn+1

i0,j0
rvn+1

i0,j0+1 +bn+1
i0,j0

rvn+1
i0,j0−1

−(1+2an+1
i0,j0

r+2bn+1
i0,j0

r)vn+1
i0,j0

≥−an+1
i0,j0

rM−an+1
i0,j0

rM−bn+1
i0,j0

rM−bn+1
i0,j0

rM +(1+2an+1
i0,j0

r+2bn+1
i0,j0

r)M
=M,

hence

M ≤−vn
i0,j0 ≤|vn

i0,j0 |;

From above, we know that

M ≤max{ max
k1 +1≤ i≤k2−1
l1 +1≤ j≤ l2−1

|vn
ij |, max

i∈P1
l1≤ j≤ l2

|vn+1
ij |, max

j∈P2
k1≤ i≤k2

|vn+1
ij |},

and the proof is finished.

Lemma 3.2. If vij satisfies the following relation

−an+1
il rvn+1

i+1,l +(1+2an+1
il r)vn+1

il −an+1
il rvn+1

i−1,l

=(1−2bn
ilr)v

n
il +bn

ilrv
n
i,l+1 +bn

ilrv
n
i,l−1 (i=k1 +1,··· ,k2−1), (3.2)

and

1−2bn
ilr≥0,

then

max
k1≤ i≤k2

|vn+1
il |≤max{ max

k1 +1≤ i≤k2−1
j = l−1, l, l+1

|vn
ij |, |vn+1

k1,l |, |vn+1
k2,l |}.

Proof: Let M =max k1≤ i≤k2 |vn+1
il |, P ={i | |vn+1

il |=M, i∈{k1,··· ,k2}}, and i0∈P ,
if i0 =k1 or i0 =k2, the conclusion is obvious.
Next suppose i0 6=k1 and i0 6=k2.
Because |vn+1

i0,l |=M , first suppose vn+1
i0,l =M for convenience, there are

vn+1
i0−1,l≤M, vn+1

i0+1,l≤M,

from (3.2), we know that

−an+1
i0,l rvn+1

i0+1,l +(1+2an+1
i0,l r)vn+1

i0,l −an+1
i0,l rvn+1

i0−1,l

≥−an+1
i0,l rM +(1+2an+1

i0,l r)M−an+1
i0,l rM =M.

Notice that

1−2bn
i0,lr≥0,
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one deduces

(1−2bn
i0,lr)v

n
i0,l +bn

i0,lrv
n
i0,l+1 +bn

i0,lrv
n
i0,l−1≤ max

j = l−1,l,l+1
|vn

i0,j |,

hence

M ≤ max
k1 +1≤ i≤k2−1

j = l−1, l, l+1

|vn
ij |.

Then suppose vn+1
i0,l =−M , there are

vn+1
i0−1,l≥−M, vn+1

i0+1,l≥−M,

from (3.2), we know that

an+1
i0,l rvn+1

i0+1,l−(1+2an+1
i0,l r)vn+1

i0,l +an+1
i0,l rvn+1

i0−1,l

≥−an+1
i0,l rM +(1+2an+1

i0,l r)M−an+1
i0,l rM =M.

Notice that

1−2bn
i0,lr≥0,

one deduces

|(1−2bn
i0,lr)v

n
i0,l +bn

i0,lrv
n
i0,l+1 +bn

i0,lrv
n
i0,l−1|≤ max

j = l−1,l,l+1
|vn

i0,j |,

hence

M ≤ max
k1 +1≤ i≤k2−1

j = l−1, l, l+1

|vn
ij |.

So we get that

M ≤max{ max
k1 +1≤ i≤k2−1

j = l−1, l, l+1

|vn
ij |, |vn+1

k1,l |, |vn+1
k2,l |},

and the proof is finished.

Lemma 3.3. If vij satisfies the following relation

−bn+1
kj rvn+1

k,j+1 +(1+2bn+1
kj r)vn+1

kj −bn+1
kj rvn+1

k,j−1

=(1−2an
kjr)v

n
kj +an

kjrv
n
k+1,j +an

kjrv
n
k−1,j (j = l1 +1,··· ,l2−1), (3.3)

and

1−2an
kjr≥0,

then

max
l1≤ j≤ l2

|vn+1
kj |≤max{ max

l1 +1≤ j≤ l2−1
i = k−1, k, k+1

|vn
ij |, |vn+1

k,l1
|, |vn+1

k,l2
|}.

The proof is the same as the proof of Lemma3.2.
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Lemma 3.4. If vij satisfies the following relation

vn+1
ij =

(an
ijr)

2vn
i−2,j +an

ijr(1−an
ijr)v

n
i−1,j +an

ijr(1−an
ijr)v

n
i+1,j +(an

ijr)
2vn

i+2,j

1+3an
ijr

+
(bn

ijr)
2vn

i,j−2 +bn
ijr(1−bn

ijr)v
n
i,j−1 +bn

ijr(1−bn
ijr)v

n
i,j+1 +(bn

ijr)
2vn

i,j+2

1+3bn
ijr

+[
1+an

ijr

1+3an
ijr

+
1+bn

ijr

1+3bn
ijr

−1]vn
ij , (3.4)

and

1−an
ijr≥0 and 1−bn

ijr≥0,

then

max
2m≤ i≤J−2m
2m≤ j≤J−2m

|vn+1
ij |≤ max

0≤ i≤J
0≤ j≤J

|vn
ij |.

Proof: Notice that 1+x
1+3x is a monotonic function for x≥0, if 1−an

ijr≥0 and 1−bn
ijr≥

0, then

1+an
ijr

1+3an
ijr

+
1+bn

ijr

1+3bn
ijr

−1≥0,

Notice (3.4)

|vn+1
ij |≤ [

2an
ijr

1+3an
ijr

+
2bn

ijr

1+3bn
ijr

+
1+an

ijr

1+3an
ijr

+
1+bn

ijr

1+3bn
ijr

−1] max
0≤ i≤J
0≤ j≤J

|vn
ij |

= max
0≤ i≤J
0≤ j≤J

|vn
ij |,

so one deduces

max
2m≤ i≤J−2m
2m≤ j≤J−2m

|vn+1
ij |≤ max

0≤ i≤J
0≤ j≤J

|vn
ij |

and the proof is finished.
Next we show the Theorem.

It’s obvious that Uij satisfies the relation in Lemma 3.1, Lemma 3.2, Lemma 3.3,
Lemma 3.4, So, if there are

1−aR≥0 and 1−bR≥0,

notice that Un+1
ij =Un

ij =0 for i=0 or i=J or j =0 or j =J , then we have

max
0≤ i≤J
0≤ j≤J

|Un+1
ij |

=max{ max
0≤ i≤k
0≤ j≤ l

|Un+1
ij |, max

0≤ i≤k
l≤ j≤J

|Un+1
ij |, max

k≤ i≤J
0≤ j≤ l

|Un+1
ij |, max

k≤ i≤J
l≤ j≤J

|Un+1
ij |}

≤max{ max
1≤ i≤J−1, i 6= k
1≤ j≤J−1, j 6= l

|Un
ij |, max

0≤ j≤J
|Un+1

kj |, max
0≤ i≤J

|Un+1
il |}

≤ max
0≤ i≤J1
0≤ j≤J2

|Un
ij |,
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e.g.

||Un+1||∞≤||Un||∞. (3.5)

Then we deduce that

||Un||∞≤||Un−1||∞≤···≤ ||U0||∞, (3.6)

hence the algorithm is stable.
It’s obvious that eij satisfies the relation:

en+1
ij =0, at boundary points,

L1e
n+1
kj = τRn+1

kj , at interface points (xk,yj ,t
n+1)(2m≤ j≤J−2m),

L1e
n+1
il = τRn+1

il , at interface points (xi,yl,t
n+1)(2m≤ i≤J−2m),

L4e
n+ 1

2
ij = τ1R

n+ 1
2

ij ,i∈P1and j∈P2, or j∈P1and i∈P3,

L5e
n+ 1

2
ij = τ1R

n+ 1
2

ij ,0<i<2m or J−2m<i<J, and j∈P2,

L6e
n+ 1

2
ij = τ1R

n+ 1
2

ij ,0<j <2m or J−2m<j <J, and i∈P3,

L2e
n+1
il = τ1R

n+1
il , at interface points (xi,yl,t

n+1)(0<i<2m or J−2m<i<J),
L3e

n+1
kj = τ1R

n+1
kj , at interface points (xk,yj ,t

n+1)(0<j <2m or J−2m<j <J),

Sen+1
ij = τRn+1

ij , at interior points (xi,yj ,t
n+1)(i 6=k,j 6= l),

where Rn+1
ij ≤Cij(τ +h2)(i 6=k,j 6= l), Rn+1

il ≤Cil(τ +H2), Rn+1
kj ≤Ckj(τ +H2),

R
n+ 1

2
ij ≤C

′
ij(τ1 +H2), and |Cij |≤C, |C ′

ij |≤C.
Let P4 ={k−2m,k−m,k,k+m,k+2m}, P5 ={l−2m,l−m,l,l+m,l+2m} and no-
tice Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4, if there are

1−aR≥0 and 1−bR≥0,

then

max
2m≤ j≤J−2m

|en+1
kj |≤ max

i∈P4
0≤ j≤J

|en
ij |+ max

2m≤ j≤J−2m
τ |Rn+1

kj |

≤ max
i∈P4

0≤ j≤J

|en
ij |+Cτ(τ +H2),

max
0≤ j≤ 2m

|en+1
kj |≤ max

i = k−m,k,k+m
0≤ j≤ 2m

|en+ 1
2

ij |+ max
0≤ j≤ 2m

τ1|Rn+ 1
2

kj |

≤ max
i∈P4

0≤ j≤ 2m

|en
ij |+ max

i = k−m,k,k+m
0≤ j≤ 2m

τ1|Rn
ij |+ max

0≤ j≤ 2m
τ1|Rn+ 1

2
kj |

≤ max
i∈P4

0≤ j≤ 2m

|en
ij |+Cτ(τ +H2),

max
J−2m≤ j≤J

|en+1
kj |≤ max

i∈P4
J−2m≤ j≤J

|en
ij |+Cτ(τ +H2),

which means

max
0≤ j≤J

|en+1
kj |≤ max

i∈P4
0≤ j≤J

|en
ij |+Cτ(τ +H2).
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With the same reason

max
0≤ i≤J

|en+1
il |≤ max

j∈P5
0≤ i≤J

|en
ij |+Cτ(τ +H2);

then we deduce that

max
0≤ i≤J
0≤ j≤J

|en+1
ij |

=max{ max
0≤ i≤k
0≤ j≤ l

|en+1
ij |, max

0≤ i≤k
l≤ j≤J

|en+1
ij |, max

k≤ i≤J
0≤ j≤ l

|en+1
ij |, max

k≤ i≤J
l≤ j≤J

|en+1
ij |}

≤max{ max
0≤ i≤J, i 6= k
0≤ j≤J, j 6= l

|en
ij |+Cτ(τ +h2), max

0≤ j≤J
|en+1

kj |, max
0≤ i≤J

|en+1
il |}

≤ max
0≤ i≤J
0≤ j≤J

|en
ij |+Cτ(τ +H2),

e.g.

||en+1||∞≤||en||∞+Cτ(τ +H2),

hence

||en||∞≤||e0||∞+CT (τ +H2),

which finishs the proof.

4. Numerical experiment
In this section we provide some numerical experiments.
For the parabolic equation with a variable coefficient, consider the equation (1)

with initial function u0(x,y)=x(1−x)y(1−y), and

a(x,y,t)=x(1−x),
b(x,y,t)=y(1−y).

The real solution of this problem is u=e−4tx(1−x)y(1−y). We give some numerical
results calculated by serial procedures and the algorithm in Table 1.

In our experiments the algebraic equations are solved by the biconjugate gra-
dient stabilized algorithm. The control error in the biconjugate gradient stabi-
lized algorithm is 1.0e-5. The last computational time is t=0.1. The max er-
ror is max i,j,n |un

ij−Un
ij |, 2×2 processors are used in the parallel computation.

R= τ/H2 = τ/(m2h2)= r/m2, m is the ratio of the larger spatial step length H com-
pared with the one spatial step length h. Our experiments are implemented on a
massively distributed memory computer.

From Table 1 we find the smaller the spacing is, the higher the accuracy is. The
accuracy will reduce while R is increasing and h and m are fixed. The same tendency
occurs while m is increasing and h and R are fixed.

Table 2 shows the parallel property of the algorithm. Where mesh scale equals
J×J , Ts is the run time of a serial implementation, Tp is the parallel run time,
speedup is the ratio of Ts and Tp, parallel efficiency is the ratio of speedup and the
number of CPUS.

From this table we can see that the parallel efficiency will increase while the
number of CPUS is increasing and the scale is fixed. This is because of the fact that our
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Mesh scale R m Max error in
the Serial

Max error Average er-
ror

Relative er-
ror(100%)

150×150 2.0 5 7.4106E-004 1.0117E-003 9.4656E-005 2.4201E-002

150×150 2.0 10 2.8809E-003 2.5180E-003 3.0589E-004 6.3633E-002

150×150 2.0 15 6.4144E-003 3.8527E-003 5.1609E-004 0.1081276

150×150 4.0 5 1.4942E-003 1.2721E-003 1.2464E-004 3.0503E-002

150×150 4.0 10 5.9528E-003 3.3049E-003 3.8478E-004 8.6057E-002

150×150 4.0 15 1.3671E-002 5.0588E-003 6.1974E-004 0.1538021

300×300 2.0 5 1.8596E-004 3.7717E-004 2.4704E-005 8.6821E-003

300×300 2.0 10 7.4107E-004 1.0335E-003 9.6162E-005 2.4789E-002

300×300 2.0 15 1.6570E-003 1.7934E-003 1.9685E-004 4.4316E-002

300×300 2.0 20 2.8808E-003 2.5726E-003 3.0719E-004 6.5256E-002

300×300 4.0 5 3.7146E-004 4.5558E-004 3.4156E-005 1.0531E-002

300×300 4.0 10 1.4942E-003 1.3189E-003 1.2790E-004 3.1738E-002

300×300 4.0 15 3.2775E-003 2.3429E-003 2.4928E-004 5.7677E-002

300×300 4.0 20 5.9528E-003 3.4182E-003 3.8950E-004 8.9445E-002

450×450 2.0 5 8.2748E-005 2.0571E-004 1.1192E-005 4.6827E-003

450×450 2.0 10 3.2979E-005 5.8460E-004 4.4879E-005 1.3630E-002

450×450 2.0 15 7.4106E-004 1.0408E-003 9.6829E-005 2.4987E-002

450×450 2.0 20 1.3025E-003 1.5458E-003 1.6078E-004 3.7694E-002

450×450 4.0 5 1.6560E-004 2.4030E-004 1.5361E-005 5.4801E-003

450×450 4.0 10 6.6199E-004 7.2731E-004 6.1273E-005 1.7081E-002

450×450 4.0 15 1.4942E-003 1.3355E-003 1.2910E-004 3.2175E-002

450×450 4.0 20 2.6437E-003 2.0140E-003 2.1057E-004 4.9550E-002

Table 1

Mesh scale Ts (s) CPU Tp (s) Speedup Parallel effi-
ciency(100%)

300×300 186.3031359 9 13.837983 13.4632 1.4959

300×300 186.3031359 25 3.7042720 50.2941 2.0118

300×300 186.3031359 36 2.2475039 82.8934 2.3026

450×450 1047.474992 9 76.897519 13.6217 1.5135

450×450 1047.474992 25 24.197152 43.2892 1.7316

450×450 1047.474992 36 15.337695 68.2942 1.8971

450×450 1047.474992 100 4.0995520 255.5096 2.5551

600×600 3529.428375 9 404.73663 8.7203 0.9689

600×600 3529.428375 25 87.232743 40.4599 1.6184

600×600 3529.428375 36 57.924847 60.9312 1.6925

600×600 3529.428375 100 14.912160 236.6812 2.3668

Table 2

algorithm can be implemented only with communication between nearby processors.
Because the smaller the scale of the algebraic equations is, the less the iteration count
is when it converges, when we use our algorithm and get some small scale algebraic
equations instead of large scale algebraic equations in the serial procedures, the run
time can be significantly reduced, so the parallel efficiency is very high.
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