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A STOCHASTIC EVOLUTION EQUATION ARISING FROM THE
FLUCTUATIONS OF A CLASS OF INTERACTING PARTICLE

SYSTEMS ∗
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Abstract. In an earlier paper, we studied the approximation of solutions V (t) to a class of
SPDEs by the empirical measure V n(t) of a system of n interacting diffusions. In the present paper,
we consider a central limit type problem, showing that

√
n(V n−V ) converges weakly, in the dual of

a nuclear space, to the unique solution of a stochastic evolution equation. Analogous results in which
the diffusions that determine V n are replaced by their Euler approximations are also discussed.
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1. Introduction
In [26], we considered a class of nonlinear stochastic partial differential equations

(SPDE) of the form

dv(t,x)=

(
1
2

d∑

i,j=1

∂xi∂xj [aij(x,v(t,·))v(t,x)]−
d∑

i=1

∂xi [bi(x,v(t,·))v(t,x)]

+d(x,v(t,·))v(t,x)

)
dt

−
∫

U

(
β(x,v(t,·),u)v(t,x)+

d∑

i=1

∂xi
[αi(x,v(t,·),u)]

)
W (dudt) . (1.1)

The natural interpretation of v is as the density of a mass distribution V evolving in
time, and in fact, since v will not have the regularity presumed in (1.1), to rigorously
formulate the equation, we must use a weak form

〈φ,V (t)〉−〈φ,V (0)〉

=
∫ t

0

〈φd(·,V (s))+L(V (s))φ,V (s)〉ds

+
∫

U×[0,t]

〈
φβ(·,V (s),u)+∇φT α(·,V (s),u),V (s)

〉
W (duds) . (1.2)

where

L(v)φ(x)=
1
2

∑

i,j

aij(x,v)∂xi∂xj φ(x)+
∑

i

bi(x,v)∂xiφ(x).
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326 STOCHASTIC EVOLUTION EQUATION FOR FLUCTUATIONS

Equations in this class arise in a variety of settings, including nonlinear filtering
with both the Zakai and the Kushner-FKK equations being of this form. Other
examples include McKean-Vlasov equations [30] and classes of SPDEs considered by
Kotelenez [23] and Dawson and Vaillancourt [9].

In [26], we established a representation of the solution of (1.1) in terms of weighted
empirical measures of the form

V (t)= lim
n→∞

1
n

n∑

i=1

Ai(t)δXi(t), (1.3)

where δx is the Dirac measure at x and the limit exists in the weak* topology on
M(Rd). To be precise, let U be a Polish space and µ be a σ-finite measure on U .
W will be a space-time Gaussian white noise on U× [0,∞) with covariance measure
µ(du)dt, namely

E(W (A× [0,t])W (B× [0,s]))=µ(A∩B)(t∧s).

For 1≤ i, j≤d, aij , bi, d and αi, β will be real functions on Rd×M(Rd) and on
Rd×M(Rd)×U respectively. Here M(Rd) is the collection of all finite measures on
Rd. Dot notation will represent a function in that variable alone. For example, d(·,v)
is the real-valued function on Rd with v∈M(Rd) fixed. b and α will denote the vectors
with components bi and αi and a will denote the matrix ((aij)).

The particle system {Xi,Ai,V } giving the solution is governed by the following
equations:

Xi(t)=Xi(0)+
∫ t

0

σ(Xi(s),V (s))dBi(s)+
∫ t

0

c(Xi(s),V (s))ds

+
∫

U×[0,t]

α(Xi(s),V (s),u)W (duds) (1.4)

and

Ai(t)=Ai(0)+
∫ t

0

Ai(s)γT (Xi(s),V (s))dBi(s)+
∫ t

0

Ai(s)d(Xi(s),V (s))ds

+
∫

U×[0,t]

Ai(s)β(Xi(s),V (s),u)W (duds) , (1.5)

where the Bi are independent, standard Rd-valued Brownian motions, independent of
W , and {(Xi(0),Ai(0))} is an exchangeable sequence of random variables in Rd×R
that is independent of {Bi} and W . Here σ, c and γ are related to a, b, α, and β by

a(x,v)=σ(x,v)σT (x,v)+
∫

U

α(x,v,u)αT (x,v,u)µ(du)

and

b(x,v)= c(x,v)+σ(x,v)γ(x,v)+
∫

U

β(x,v,u)α(x,v,u)µ(du).

The representation of the solution given by (1.3) suggests that the solution can
be approximated by the weighted empirical measure

V n(t)=
1
n

n∑

i=1

An
i (t)δXn

i (t), (1.6)
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of a finite particle system satisfying

Xn
i (t)=Xi(0)+

∫ t

0

σ(Xn
i (s),V n(s))dBi(s)+

∫ t

0

c(Xn
i (s),V n(s))ds

+
∫

U×[0,t]

α(Xn
i (s),V n(s),u)W (duds) (1.7)

An
i (t)=Ai(0)+

∫ t

0

An
i (s)γT (Xn

i (s),V n(s))dBi(s)+
∫ t

0

An
i (s)d(Xn

i (s),V n(s))ds

+
∫

U×[0,t]

An
i (s)β(Xn

i (s),V n(s),u)W (duds), (1.8)

for i=1,2,··· ,n.
In [27], it was shown that for an appropriate metric ρ̃ on M(Rd),

{√nρ̃(V n(t),V (t))}n≥1 is stochastically bounded, that is, for each ε>0, there is a
constant Kε such that

sup
n
P

(√
nρ̃(V n(t),V (t))>Kε

)
<ε. (1.9)

From (1.9), we see that the convergence rate has an upper bound of the order
of 1√

n
. A natural question to ask is whether 1√

n
is the right order. To this end, we

study the convergence of the process Sn(t)=
√

n(V n(t)−V (t)) and show that for an
appropriate space Φ−κof distributions, Sn converges in distribution in CΦ−κ

[0,∞).
We characterize the limit S as the unique solution of a stochastic evolution equation
of the form

〈φ,S(t)〉= 〈φ,S(0)〉+〈φ,M(t)〉+
∫ t

0

〈F1(V (s))φ,S(s)〉ds

+
∫

U×[0,t]

〈F2(V (s),u)φ,S(s)〉W (duds), (1.10)

where F1 and F2 are linear in φ and M is a distribution-valued martingale. F1 and
F2 are defined in Assumption (S6) in Section 4 in terms of appropriate differentials of
the coefficients of (1.2), reflecting the fact that we are rescaling the deviation of V n

from V .
This type of problem has been studied by various authors in the McKean-Vlasov

setting, that is, α=0 and An
i (t)≡1 (cf. Hitsuda and Mitoma [19] and the references

therein). Comparing the present results with those of [19], here the process V is not
deterministic and the process S is not Gaussian. In [19], the limit S is characterized
by its covariance structure which, because S is Gaussian, uniquely determines its
distribution. A stochastic evolution equation is also derived in that paper. The
uniqueness of the solution to that stochastic evolution equation is proved by Mitoma
[33].

Another new feature in this paper is that the driving martingale M in the evo-
lution equation (1.10) is not Gaussian and has to be defined by the particle system
{Xi,Ai,V } itself. The main difficulty in establishing the uniqueness of the solution
of (1.10) comes from the addition of the last term in (1.10) which does not appear in
[19] and [33].
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Limits of empirical measure processes for systems of interacting diffusions have
been studied by various authors (see, for example, Chiang, Kallianpur and Sundar
[4], Graham [18], Kallianpur and Xiong [22], Méléard [31], and Morien [34]) since
the pioneering work by McKean [30]. Typically, the driving processes in the models
are assumed to be independent, and the limit is then a deterministic, measure-valued
function.

Florchinger and Le Gland [14] consider particle approximations for stochastic
partial differential equations in a setting that, in the notation above, corresponds
to taking γ =σ =0 and the other coefficients independent of V . Florchinger and Le
Gland were motivated by approximations to the Zakai equation of nonlinear filtering.
Del Moral [10] specifically studies this example. Kotelenez [23] introduces a model of
n-particles with the same driving process for each particle and studies the empirical
process as the solution of an SPDE. His model corresponds to taking γ =σ =d=β =0,
but the other coefficients are allowed to depend on V . In particular, the weights Ai

are constants. Dawson and Vaillancourt [9] consider a model given as a solution
of a martingale problem that corresponds to taking Ai(t)≡1 in the current model.
Bernard, Talay, and Tubaro [1] consider a system with time-varying weights and a
deterministic limit.

The paper is organized as follows: In the next section, we derive key estimates
on the magnitude of the An

i and on the error in the approximation of (Xi,Ai) by
(Xn

i ,An
i ). In Section 3, we prove that {Sn} is a tight sequence of Φ′-valued processes

(Φ′ being a conuclear space defined later). Then, in Section 4, we show that the limit
S of {Sn} is the unique solution of (1.10).

If one wants to use the finite system to simulate the solution of the SPDE, then
the finite system must also be approximated. The simplest approach is to use an Euler
approximation. In the last section of this paper, we analyze this approximation in
the simplest setting, assuming that W is a one-dimensional Brownian motion (that is,
U consists of a single point). Letting V n,1/n denote the weighted empirical measure
for the Euler scheme approximating the finite system (cf. (5.1-5.3)), we consider the
process S̃n(t)=

√
n(V n,1/n(t)−V n(t)). We prove tightness for {S̃n} and characterize

its limit as the unique solution of another stochastic evolution equation. Finally, we
combine the two parts and derive a stochastic evolution equation for the limit of√

n(V n,1/n−V ).

2. Preliminaries
In this section, we state the main results of [26] and [27] needed in the present

paper for the convenience of the reader. The following assumptions were made in [26]
for the existence and uniqueness of solutions of the SPDE (1.1).

(S1) There exists a constant K such that for each x∈Rd, ν ∈M(Rd)

|σ(x,ν)|2 + |c(x,ν)|2 +
∫

U

|α(x,ν,u)|2µ(du)

+|γ(x,ν)|2 + |d(x,ν)|2 +
∫

U

β(x,ν,u)2µ(du)≤K2.

(S2) For each x1,x2∈Rd, ν1,ν2∈M(Rd)

|σ(x1,ν1)−σ(x2,ν2)|2 + |c(x1,ν1)−c(x2,ν2)|2
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+|γ(x1,ν1)−γ(x1,ν1)|2 +
∫

U

|α(x1,ν1,u)−α(x2,ν2,u)|2µ(du)

+|d(x1,ν1)−d(x2,ν2)|2 +
∫

U

|β(x1,ν1,u)−β(x2,ν2,u)|2µ(du)

≤K2(|x1−x2|2 +ρ(ν1,ν2)2),

where

ρ(ν1,ν2)=sup{|〈φ,ν1〉−〈φ,ν2〉| :φ∈B1}

and

B1 =
{
φ : |φ(x)−φ(y)|≤ |x−y|,|φ(x)|≤1,∀x,y∈Rd

}
.

By the same proof as in Proposition 2.1 of [26], we have the following result.

Proposition 2.1. Suppose that Assumption (S1) holds and p is a positive number.
i) If

Eep|X1(0)|<∞, (2.1)

then

sup
1≤n≤∞

E sup
0≤s≤T

ep|Xn
i (s)|<∞. (2.2)

ii) If

E|A1(0)|p <∞, (2.3)

then

sup
1≤n≤∞

E sup
0≤s≤T

|An
i (s)|p <∞. (2.4)

iii) If

E|A1(0)|er|X1(0)|<∞, (2.5)

then

sup
1≤n≤∞

E sup
0≤s≤T

|An
i (s)|er|Xn

i (s)|<∞. (2.6)

Remark 2.2. If (2.1) and (2.3) hold, then (2.5) holds with r =p−1.
A weaker form of the following assumption was used in [27].

(S3) There exist constants λ>1 and K >0 such that for any iid sequence
(ξi,ηi), i=1,2,··· and x∈Rd,

E

∣∣∣∣∣σ
(

x,
1
n

n∑

i=1

ξiδηi

)
−σ(x,µ)

∣∣∣∣∣

2λ

≤ KEξ2λ
1

nλ
,

where µ(·)=E[ξ11η1∈·], and a similar inequality holds for the other coeffi-
cients.
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Remark 2.3. If σ(x,µ)=
∫

σ1(x,y)µ(dy) or σ(x,µ)=σ1(x), then (S3) usually holds.
For example, if |σ1(x,y)|≤K, then (S3) holds.

The following estimate is the key for the proof of the tightness of {Sn}.
Theorem 2.4. Under the assumptions (S1)-(S3), there exists a constant c1(T,m)
such that

Esup
t≤T


|Xn

i (t∧ηn
m)−Xi(t∧ηn

m)|2λ +


 1

n

n∑

j=1

|An
j (t∧ηn

m)−Aj(t∧ηn
m)|λ




2



≤ c1(T,m)
nλ

,

where

ηn
m =inf

{
t :

1
n

n∑

i=1

An
i (t)2 >m2 or lim

k→∞
1
k

k∑

i=1

Ai(t)2 >m2

}
.

Proof: By Doob’s inequality and Holder’s inequality, we have

Esup
r≤t

|Xn
i (r∧ηn

m)−Xi(r∧ηn
m)|2λ

≤32λ

(
2λ

2λ−1

)2λ

E
∫ t

0

|σ(Xn
i (s),V n(s))−σ(Xi(s),V (s))|2λ1s≤ηn

m
dstλ−1

+32λt2λ−1E
∫ t

0

|c(Xn
i (s),V n(s))−c(Xi(s),V (s))|2λ1s≤ηn

m
ds

+32λ

(
2λ

2λ−1

)2λ

tλ−1

×E
∫ t

0

(∫

U

|α(Xn
i (s),V n(s),u)−α(Xi(s),V (s),u)|2µ(du)

)λ

1s≤ηn
m

ds.

(2.7)

Let

Ṽ n(t)=
1
n

n∑

i=1

Ai(t)δXi(t) and Ṽ n
i (t)=

1
n−1

n∑

j=1, j 6=i

Aj(t)δXj(t).

Then

E|σ(Xn
i (s),V n(s))−σ(Xi(s),V (s))|2λ1s≤ηn

m

≤32λE|σ(Xn
i (s),V n(s))−σ(Xi(s),Ṽ n(s))|2λ1s≤ηn

m

+32λE|σ(Xi(s),Ṽ n(s))−σ(Xi(s),Ṽ n
i (s))|2λ

+32λE|σ(Xi(s),Ṽ n
i (s))−σ(Xi(s),V (s))|2λ1s≤ηn

m

≤32λK2λE
(
|Xn

i (s)−Xi(s)|2 +ρ(V n(s),Ṽ n(s))2
)λ

1s≤ηn
m

+32λK2λEρ(Ṽ n(s),Ṽ n
i (s))2λ1s≤ηn

m

+32λE
[
E

[|σ(Xi(s),
1

n−1

n∑

j=1, j 6=i

Aj(s)δXj(s))−σ(Xi(s),V (s))2λ|∣∣W,Xi

]]
.

(2.8)
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Note that, similar to the arguments in the proof of Theorem 2.1 in [26], we have

ρ(V n(s),Ṽ n(s))

≤ 1
n

n∑

j=1

An
j (s)|Xn

j (s)−Xj(s)|+ 1
n

n∑

j=1

|An
j (s)−Aj(s)|

≤ (
1
n

n∑

j=1

An
j (s)2)1/2(

1
n

n∑

j=1

|Xn
j (s)−Xj(s)|2)1/2 +

1
n

n∑

j=1

|An
j (s)−Aj(s)|. (2.9)

Similarly,

ρ(Ṽ n(s),Ṽ n
i (s))≤ 1

n
Ai(s)+

1
n(n−1)

n∑

j=1

Aj(s).

Let

fn
m(t)=Esup

r≤t
|Xn

i (r∧ηn
m)−Xi(r∧ηn

m)|2λ
,

and

gn
m(t)=Esup

r≤t


 1

n

n∑

j=1

|An
j (r∧ηn

m)−Aj(r∧ηn
m)|λ




2

.

Then, for the right hand side of (2.8),

1st term≤32λK2λ2λ
(
E|Xn

i (s∧ηn
m)−Xi(s∧ηn

m)|2λ

+22λm2λE
1
n

n∑

j=1

|Xn
j (s∧ηn

m)−Xj(s∧ηn
m)|2λ +22λgn

m(s)
)

≤18λK2λ
(
fn

m(s)+4λm2λfn
m(s)+4λgn

m(s)
)

and

2nd term ≤ 32λK2λ22λ

(
1

n2λ
Esup

r≤t
|Ai(r)|2λ +

1
(n−1)2λ

m2λ

)
.

Since, conditioning on (W,Xi), (Aj ,Xj), j 6= i, are iid, we have

3rd term ≤ 32λE
(

K2λ

(n−1)λ
E

(
A1(s)2λ|W,Xi

))
=

32λK2λ

(n−1)λ
EA1(s)2λ.

Hence, the first term on the right hand side of (2.7) is dominated by

(
6λ

2λ−1

)2λ

Tλ−1

∫ t

0

18λK2λ
(
(1+2λm2λ)fn

m(s)+2λgn
m(s)

)
ds

+
(

6λ

2λ−1

)2λ[
32λK2λ22λ

(
1

n2λ
Esup

r≤t
|Ai(r)|2λ +

1
(n−1)2λ

m2λ

)

+
32λK2λ

(n−1)λ
EA1(s)2λ

]
Tλ.
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Similar estimates hold for other terms on the right hand side of (2.7). Therefore, there
exist constants c2(T,m) and c3(T,m) such that

fn
m(t)≤ c2(T,m)

∫ t

0

(fn
m(s)+gn

m(s))ds+
c3(T,m)

nλ
. (2.10)

By similar arguments as in (2.7) of [26] and (2.10) above, we have

gn
m(t)≤ c4(T,m)

∫ t

0

(fn
m(s)+gn

m(s))ds+
c5(T,m)

nλ
.

Therefore

fn
m(t)+gn

m(t)≤ (c2 +c4)
∫ t

0

(fn
m(s)+gn

m(s))ds+
c3 +c5

nλ
.

By Gronwall’s inequality, we have

fn
m(t)+gn

m(t)≤ c1

nλ

by taking c1 = e(c2+c4)T (c3+c5)
c2+c4

.

3. Tightness
In this section, we prove tightness for {Sn} in an appropriate space. For simplicity

of notation, we restrict our calculations to space dimension d=1 in the rest of this
paper.

As in Hitsuda and Mitoma [19], we use the modified Schwartz space Φ. Let
ρ(x)=C exp

(−1/(1−|x|2))1|x|<1 where C is a constant such that
∫

ρ(x)dx=1. Let

ψ(x)=
∫

e−|y|ρ(x−y)dy.

Then for any integer k, we have |e(k)(x)|≤ c6(k)(1+e|x|). Let

Φ={φ :φψ∈S},
where S is the Schwartz space. For κ=0,1,2,.. ., define

‖φ‖2κ =
∑

0≤k≤κ

∫

R
(1+ |x|2)2κ

∣∣∣∣
dk

dxk
(φ(x)ψ(x))

∣∣∣∣
2

dx.

Let Φκ be the completion of Φ with respect to ‖·‖κ. Then Φκ is a Hilbert space with
inner product

〈φ1,φ2〉κ =
∑

0≤k≤κ

∫

R
(1+ |x|2)2κ

(
dk

dxk
(φ1(x)ψ(x))

)(
dk

dxk
(φ2(x)ψ(x))

)
dx.

Note that Φκ⊃Φκ+1 and that Φ0 is L2(µψ), where µψ(dx)=ψ2(x)dx. For φ̂∈Φ0 and
φ∈Φκ,

〈φ̂,φ〉≡〈φ̂,φ〉0 =
∫

R
φ̂(x)φ(x)ψ2(x)dx
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defines a continuous linear functional on Φκ with norm

‖φ̂‖−κ = sup
φ∈Φκ

|〈φ̂,φ〉|
‖φ‖κ

,

and we let Φ−κ denote the completion of Φ0 with respect to this norm. Then Φ−κ is
a representation of the dual of Φκ. If {φκ

j } is a complete, orthonormal system for Φκ,
then the inner product for Φ−κ can be written as

〈φ̂1,φ̂2〉−κ =
∞∑

j=1

〈φ̂1,φ
κ
j 〉〈φ̂2,φ

κ
j 〉. (3.1)

By a slight modification of Theorem 7, page 82, of [17], these norms determine a
nuclear space, so in particular, for each κ there exists a κ′>κ such that the embedding
Tκ′

κ :Φκ′→Φκ is a Hilbert-Schmidt operator. The adjoint Tκ′∗
κ :Φ−κ→Φ−κ′ is also

Hilbert-Schmidt. Φ′=∪∞k=0Φ−k gives a representation of the dual of Φ. (See [17],
page 59.) We prove tightness for {Sn} in CΦ−κ

[0,∞) for an appropriate κ.

Theorem 3.1. Suppose that (S1)-(S3) hold and that (2.1) and (2.3) hold for

p=max(4λ,λ/(λ−1)).

Then there exists κ such that {Sn} is tight in CΦ−κ [0,∞).
Proof: Let

ηn,p
m =inf

{
t :

1
n

n∑

i=1

An
i (t)p≥mp or

1
n

n∑

i=1

(
1+ep|Xn

i (t)|∨ep|Xi(t)|
)
≥mp

}
.

Then for T >0, we have

sup
n
P(ηn,p

m ≤T )≤ 2
mp

sup
1≤n≤∞

(
1+E sup

0≤s≤T
An

i (s)p +E sup
0≤s≤T

ep|Xn
i (s)|

)
,

and since by Proposition 2.1, for each T >0, the right side goes to zero as m→∞, it
is enough to prove tightness for {Sn(·∧ηn,p

m )}.
By Itô’s formula, we have

〈φ,V n(t)〉−〈φ,V n(0)〉

=
1
n

n∑

i=1

∫ t

0

An
i (s)

(
φ(Xn

i (s))γ(Xn
i (s),V n(s))

+φ′(Xn
i (s))σ(Xn

i (s),V n(s))
)

dBi(s)

+
∫ t

0

〈φd(·,V n(s))+L(V n(s))φ,V n(s)〉ds

+
∫

U×[0,t]

〈φβ(·,V n(s),u)+φ′α(·,V n(s),u),V n(s)〉W (duds), (3.2)

where

L(v)φ(x)=
1
2
a(x,v)φ′′(x)+b(x,v)φ′(x).



334 STOCHASTIC EVOLUTION EQUATION FOR FLUCTUATIONS

Hence, by (1.2) and (3.2), we have

〈φ,Sn(t)−Sn(0)〉

=
1√
n

n∑

i=1

∫ t

0

An
i (s)

(
φ(Xn

i (s))γ(Xn
i (s),V n(s))

+φ′(Xn
i (s))σ(Xn

i (s),V n(s))
)

dBi(s)

+
∫ t

0

√
n
(
〈φd(·,V n(s))+L(V n(s))φ,V n(s)〉

−〈φd(·,V (s))+L(V (s))φ,V (s)〉
)
ds

+
∫

U×[0,t]

√
n
(
〈φβ(·,V n(s),u)+φ′α(·,V n(s),u),V n(s)〉

−〈φβ(·,V (s),u)+φ′α(·,V (s),u),V (s)〉
)
W (duds). (3.3)

Note that 〈φ,Sn(t)〉=M1,n
φ (t)+An

φ(t)+M2,n
φ (t) is a semimartingale with respect to

the filtration {Ft} generated by W and the Bi. Setting

Gn
φ(s,u)=

√
n
(
〈φβ(·,V n(s),u)+φ′α(·,V n(s),u),V n(s)〉

−〈φβ(·,V (s),u)+φ′α(·,V (s),u),V (s)〉
)
,

we have
[
M1,n

φ

]
t

=
1
n

n∑

i=1

∫ t

0

An
i (s)2

(
φ(Xn

i (s))γ(Xn
i (s),V n(s))+φ′(Xn

i (s))σ(Xn
i (s),V n(s))

)2

ds

and

[
M2,n

]
t
=

∫ t

0

∫

U

Gn
φ(s,u)2µ(du)dt.

Let

H1,n
φ (s)=

1
n

n∑

i=1

An
i (s)2

(
φ(Xn

i (s))γ(Xn
i (s),V n(s))+φ′(Xn

i (s))σ(Xn
i (s),V n(s))

)2

H2,n
φ (s)=

∫

U

Gn
φ(s,u)2µ(du)

H3,n
φ (s)=n(〈φd(·,V n(s))+L(V n(s))φ,V n(s)〉−〈φd(·,V (s))+L(V (s))φ,V (s)〉)2 .

It follows, for example, that for t,h>0, we have

E[〈φ,Sn(t+h)−Sn(t)〉2|Ft]≤E[
∫ t+h

t

3(H1,n
φ (s)+H2,n

φ (s)+hH3,n
φ (s))ds|Ft], (3.4)

and, applying Doob’s inequality,

E[sup
s≤t

〈φ,Sn(s)−Sn(0)〉2]≤E[
∫ t

0

12(H1,n
φ (s)+H2,n

φ (s)+ tH3,n
φ (s))ds]. (3.5)
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We need to estimate each of the Hk,n
φ .

Let φ̃=φψ and |φ̃|κ =supx,0≤k≤κ |(dk/dxk)φ̃(x)|. Then |φ̃|κ≤ const‖φ‖κ+1. It is
easy to see that there exists a constant c7 such that

|φ(x)|≤ c7|φ̃|0e|x|

and

|φ(x)|+ |φ′(x)|≤ c7|φ̃|1e|x|.
Hence

E

∣∣∣∣∣
1
n

n∑

i=1

An
i (s)2

(
φ(Xn

i (s))γ(Xn
i (s),V n(s))+φ′(Xn

i (s))σ(Xn
i (s),V n(s))

)2
∣∣∣∣∣

λ

1{ηn,p
m ≥s}

≤E
∣∣∣∣∣
1
n

n∑

i=1

An
i (s)2K2c7e

2|Xn
i (s)||φ̃|21

∣∣∣∣∣

λ

1{ηn,p
m ≥s}

≤K2λcλ
7 |φ̃|2λ

1 E

∣∣∣∣∣
1
n

n∑

i=1

An
i (s)4

1
n

n∑

i=1

e4|Xn
i (s)|

∣∣∣∣∣

λ
2

1{ηn,p
m ≥s}

≤K2λcλ
7 |φ̃|2λ

1

∣∣m423m4
∣∣λ

2

≡ c8(m,λ,s)|φ̃|2λ
1 ,

and we have

E[H1,n
φ (s)λ1{ηn,p

m ≥s}]≤ c8(m,λ,s)|φ̃|2λ
1 ≤ c8(m,λ,s)‖φ‖2λ

2 . (3.6)

Observing that
√

n(〈φd(·,V n(s))),V n(s)〉−〈φd(·,V (s))),V (s)〉)
=
√

n
〈
φd(·,V n(s))),V n(s)− Ṽ n(s)

〉

+
√

n
〈
φ(d(·,V n(s))−d(·,Ṽ n(s)),Ṽ n(s)

〉

+
√

n
〈
φ(d(·,Ṽ n(s))−d(·,V (s))),Ṽ n(s)

〉

+
√

n
〈
φd(·,V (s)),Ṽ n(s)−V (s)

〉
,

we have∣∣∣√n
〈
φd(·,V n(s))),V n(s)− Ṽ n(s)

〉∣∣∣

=

∣∣∣∣∣
1√
n

n∑

i=1

(An
i (s)φ(Xn

i (s))d(Xn
i (s),V n(s))−Ai(s)φ(Xi(s))d(Xi(s),V n(s)))

∣∣∣∣∣

≤ 1√
n

n∑

i=1

|φ(Xn
i (s))−φ(Xi(s))||d(Xn

i (s),V n(s))|An
i (s)

+
1√
n

n∑

i=1

|φ(Xi(s))||d(Xn
i (s),V n(s))−d(Xi(s),V n(s))|An

i (s)

+
1√
n

n∑

i=1

|An
i (s)−Ai(s)||φ(Xi(s))d(Xi(s),V n(s))|
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≤ K√
n

n∑

i=1

|φ′(θXn
i (s)+(1−θ)Xi(s))||Xn

i (s)−Xi(s)|An
i (s)

+
K√
n

n∑

i=1

|φ(Xi(s))||Xn
i (s)−Xi(s)|An

i (s)

+
K√
n

n∑

i=1

|φ(Xi(s))||An
i (s)−Ai(s)|

≤ 2K√
n

n∑

i=1

c7

(
e|X

n
i (s)|∨e|Xi(s)|

)
|φ̃|1|Xn

i (s)−Xi(s)|An
i (s)

+
K√
n

n∑

i=1

c7e
|Xi(s)||φ̃|0|An

i (s)−Ai(s)|,

and hence

E
∣∣∣√n

〈
φd(·,V n(s))),V n(s)− Ṽ n(s)

〉∣∣∣
2λ

1{ηn,p
m ≥s}

≤22λ−1|φ̃|2λ
1 (2

√
nc7K)2λE

(
1
n

n∑

i=1

|Xn
i (s)−Xi(s)|2λ

×
(

1
n

n∑

i=1

∣∣∣
(
e|X

n
i (s)|∨e|Xi(s)|

)
An

i (s)
∣∣∣

2λ
2λ−1

)2λ−1

1{ηn,p
m ≥s}

)

+22λ−1|φ̃|2λ
0 nλK2λc2λ

7 E

((
1
n

n∑

i=1

|An
i (s)−Ai(s)|λ

)2

×
(

1
n

n∑

i=1

e
λ

λ−1 |Xi(s)|
)λ−1

1{ηn,p
m ≥s}

)

≤ c9(m,λ,s)|φ̃|2λ
1 .

As ∣∣∣√n
〈
φ(d(·,V n(s))−d(·,Ṽ n(s)),Ṽ n(s)

〉∣∣∣

=

∣∣∣∣∣
1√
n

n∑

i=1

Ai(s)φ(Xi(s))(d(Xi(s),V n(s))−d(Xi(s),Ṽ n(s)))

∣∣∣∣∣

≤ 1√
n

n∑

i=1

Ai(s)|φ(Xi(s))|Kρ(V n(s),Ṽ n(s)),

we have

E
∣∣∣√n

〈
φ(d(·,V n(s))−d(·,Ṽ n(s)),Ṽ n(s)

〉∣∣∣
2λ

1{ηn,p
m ≥s}

≤K2λnλE

∣∣∣∣∣
1
n

n∑

i=1

Ai(s)c7e
|Xi(s)||φ̃|0ρ(V n(s),Ṽ n(s))

∣∣∣∣∣

2λ

1{ηn,p
m ≥s}

≤K2λnλc2λ
7 |φ̃|2λ

0 E

[(
1
n

n∑

i=1

Ai(s)2
1
n

n∑

i=1

e2|Xi(s)|
)λ
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×22λ−1

(
m2λ(

1
n

n∑

i=1

|Xn
i (s)−Xi(s)|2)λ +(

1
n

n∑

i=1

|An
i (s)−Ai(s)|)2λ

)
1{ηn,p

m ≥s}

]

≤K2λnλc2λ
7 |φ̃|2λ

0

(
m2c(m,2)

)λ
22λ−1

×E

m2λ 1

n

n∑

i=1

|Xn
i (s)−Xi(s)|2λ +

(
1
n

n∑

i=1

|An
i (s)−Ai(s)|λ

)2

1{ηn,p
m ≥s}




≤ c10(m,λ,s)|φ̃|2λ
0 .

As

∣∣∣√n
〈
φ(d(·,Ṽ n(s))−d(·,V (s))),Ṽ n(s)

〉∣∣∣

=

∣∣∣∣∣
1√
n

n∑

i=1

Ai(s)φ(Xi(s))(d(Xi(s),Ṽ n(s)))−d(Xi(s),V (s)))

∣∣∣∣∣ ,

we have

E
∣∣∣√n

〈
φ(d(·,Ṽ n(s))−d(·,V (s))),Ṽ n(s)

〉∣∣∣
2λ

1{ηn,p
m ≥s}

≤ c2λ
7 K2λnλ|φ̃|2λ

0 E

[(
1
n

n∑

i=1

Ai(s)
2λ

2λ−1 e
2λ

2λ−1 |Xi(s)|
)2λ−1

× 1
n

n∑

i=1

∣∣∣d(Xi(s),Ṽ n(s))−d(Xi(s),V (s))
∣∣∣
2λ

1{ηn,p
m ≥s}

]

≤ c11(m,λ,s)|φ̃|2λ
0 ,

where the last inequality follows by arguments similar to the estimate for the third
term on the right side of (2.8).

Let

Nn =
n∑

i=1

(Ai(s)φ(Xi(s))d(Xi(s),V (s))−〈φd(·,V (s)),V (s)〉), n≥1.

Then {Nn : n=1,2,···} is a discrete-time P(·|W )-martingale with, using the notation
of Burkholder [3],

Sn(N)2 =
n∑

i=1

(Ai(s)φ(Xi(s))d(Xi(s),V (s))−〈φd(·,V (s)),V (s)〉)2 .

(Do not confuse Sn(N) here with our process Sn.) By Theorem 3.2 in Burkholder [3],
there exists a constant Cλ such that

E(N2λ
n |W )≤CλE(Sn(N)2λ|W ).
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Therefore

E
∣∣∣√n

〈
φd(·,V (s)),Ṽ n(s)−V (s)

〉∣∣∣
2λ

=
1
nλ
E(E(N2λ

n |W ))

≤ 1
nλ

CλE
[
E

[( n∑

i=1

(Ai(s)φ(Xi(s))d(Xi(s),V (s))−〈φd(·,V (s)),V (s)〉)2)λ∣∣W ]]

=CλE
(
|A1(s)φ(X1(s))d(X1(s),V (s))−〈φd(·,V (s)),V (s)〉|2λ

)

≤ c12(m,λ,s)|φ̃|2λ
0 ,

and we have

E[
∣∣√n(〈φd(·,V n(s))),V n(s)〉−〈φd(·,V (s))),V (s)〉)

∣∣2λ
1{ηn,p

m ≥s}]≤ c13(m,λ,s)|φ̃|2λ
1 .

Similar arguments give

E[
(√

n |〈L(V n(s))φ,V n(s)〉−〈L(V (s))φ,V (s)〉|)2λ
1{ηn,p

m ≥s}]≤ c14(m,λ,s)|φ̃|2λ
3 ,

where the estimate in terms of the higher derivatives is required because of the dif-
ferential operator, and we have

E[H3,n
φ (s)λ1{ηn,p

m ≥s}]≤ c15(m,λ,s)|φ̃|2λ
3 ≤ c15(m,λ,s)‖φ‖2λ

4 . (3.7)

Finally, again applying similar arguments, we can show

E[H2,n
φ (s)λ1{ηn,p

m ≥s}]≤ c16(m,λ,s)|φ̃|2λ
2 ≤ c16(m,λ,s)‖φ‖2λ

3 . (3.8)

Without loss of generality, we can assume that all of the cl(m,λ,s) are nonde-
creasing in s. Applying (3.6), (3.7), and (3.8), (3.5) gives

E[sup
s≤t

〈φ,Sn(s∧ηn,p
m )−Sn(0)〉2]≤ c17(m,p,t)‖φ‖24.

For κ sufficiently large, the embedding T 4
κ−1 :Φκ−1→Φ4 is Hilbert-Schmidt and hence,

if {φk} is an orthonormal basis for Φκ−1,
∑∞

k=1‖φk‖24 <∞. (See [17], Lemma 1 and
Theorem 2, pages 33-34.) Consequently,

E[sup
s≤t

‖Sn(s∧ηn,p
m )−Sn(0)‖2−(κ−1)]≤E[

∞∑

k=1

sup
s≤t

〈φk,Sn(s∧ηn,p
m )−Sn(0)〉2]

≤ c17(m,p,t)
∞∑

k=1

‖φk‖24 <∞.

It follows that for each t≥0 and ε>0, there exists kt,ε >0 such that

sup
n
P{sup

s≤t
‖Sn(s∧ηn,p

m )‖−(κ−1) >kt,ε}≤ ε.

But {ψ∈Φ−κ :‖ψ‖−(κ−1)≤kt,ε} is a compact subset of Φ−κ, so {Sn(·∧ηn,p
m )} satisfies

the compact containment condition in Φ−κ.
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Similarly, by (3.4), for t<t+h≤T , h<1,

E[‖Sn((t+h)∧ηn,p
m )−Sn(t∧ηn,p

m )‖2−(κ−1)|Ft]

≤
∞∑

k=1

E[
∫ t+h

t

(H1,n
φk

(s)+H2,n
φk

(s)+hH3,n
φk

(s))1{ηn,p
m ≥s}ds|Ft]

≤h(λ−1)/λE[
∞∑

k=1

(
∫ T

0

(H1,n
φk

(s)+H2,n
φk

(s)+hH3,n
φk

(s))λ1{ηn,p
m ≥s}ds)1/λ|Ft].

Then

E[
∞∑

k=1

(
∫ T

0

(H1,n
φk

(s)+H2,n
φk

(s)+hH3,n
φk

(s))λ1{ηn,p
m ≥s}ds)1/λ]

=E[
∞∑

k=1

‖φk‖24(
∫ T

0

(
(H1,n

φk
(s)+H2,n

φk
(s)+hH3,n

φk
(s))/‖φk‖24

)λ

1{ηn,p
m ≥s}ds)1/λ]

≤E[
∞∑

k=1

‖φk‖24(
∫ T

0

(
(H1,n

φk
(s)+H2,n

φk
(s)+hH3,n

φk
(s))/‖φk‖24

)λ

1{ηn,p
m ≥s}ds)1/λ]

≤ (
∞∑

k=1

‖φk‖24)(λ−1)/λ

×
( ∞∑

k=1

‖φk‖24
∫ T

0

E[
(
(H1,n

φk
(s)+H2,n

φk
(s)+hH3,n

φk
(s))/‖φk‖24

)λ

1{ηn,p
m ≥s}]ds

)1/λ

<∞.

Since

‖Sn((t+h)∧ηn,p
m )−Sn(t∧ηn,p

m )‖2−κ≤‖Sn((t+h)∧ηn,p
m )−Sn(t∧ηn,p

m )‖2−(κ−1),

we have verified the conditions of Theorem 4.20 of [24] (Theorem 3.8.6 of [13]) with

γn(δ)= δ(λ−1)/λ
∞∑

k=1

(
∫ T

0

(H1,n
φk

(s)+H2,n
φk

(s)+δH3,n
φk

(s))λ1{ηn,p
m ≥s}ds)1/λ.

Note that since the Sn are continuous, tightness of {Sn} in DΦ−k
[0,∞) implies tight-

ness in CΦ−k
[0,∞).

The same argument gives tightness for {M1,n}, and we have the following addi-
tional result.

Lemma 3.1. Under the conditions of Theorem 3.1, {M1,n} is tight in CΦ−κ
[0,∞).

4. Characterization of the limit
We need the following additional assumptions.

(S4) There exists δ >0 such that

|σ(x,ν)T z|2−δ

∫

U

|z ·α(x,ν,u)|2µ(du)≥0

∀x,z∈Rd, ν ∈M(Rd).
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(S5) The coefficients σ, c, d, a, b, γ, α, and β are differentiable with respect to the
measure in the sense that, for example, there exists a bounded, continuous
function ∂d on Rd×M(Rd)×Rd such that for ν1,ν2∈M(Rd),

d(x,ν2)−d(x,ν1)=
∫ 1

0

∫

Rd

∂d(x,(1−r)ν1 +rν2,y)(ν2(dy)−ν1(dy))dr.

(S6) For κ given by Theorem 3.1, φ∈Φκ+l+2, ν1,ν2∈M(Rd), and u∈U ,

F1(ν1,ν2)φ
≡d(·,ν2)φ+L(ν2)φ

+
∫

Rd

∫ 1

0

(
φ(x)∂d(x,rν2 +(1−r)ν1,·)

+∂L(rν2 +(1−r)ν1,·)φ(x)
)
drν1(dx) (4.1)

and

F2(ν1,ν2,u)φ
≡φβ(·,ν2,u)+∇φT α(·,ν2,u)

−
∫

Rd

∫ 1

0

(
φ(x)∂β(x,rν2 +(1−r)ν1,u, ·)

+∇φT (x)∂α(x,rν2 +(1−r)ν1,u, ·)
)
drν1(dx)(4.2)

are in Φκ+l for 0≤ l≤2.
For φ∈Φκ+2, the mappings

(ν1,ν2,v)∈M(Rd)×M(Rd)×Φ−κ→〈F1(ν1,ν2)φ,v〉∈R (4.3)

and

(ν1,ν2,v)∈M(Rd)×M(Rd)×Φ−κ→〈F2(ν1,ν2,·)φ,v〉∈L2(U,µ) (4.4)

are continuous.
(S7) For each ν ∈M(Rd), the mappings from x∈Rd to aij(x,ν), bi(x,ν), d(x,ν)∈

R and αi(x,ν,·), β(x,ν,·)∈L2(U,µ) have bounded derivatives with respect
to x up to order q≡κ+2. For each x∈Rd, u∈U and ν ∈M(Rd),
∂aij(x,ν,·), ∂bi(x,ν,·), ∂d(x,ν,·), ∂αi(x,ν,u,·), ∂β(x,ν,u,·) are in Φq, and
there exists a constant K such that

∑

i,j

‖∂aij(x,ν,·)‖2q +
∑

i

‖∂bi(x,ν,·)‖2q +‖∂d(x,ν,·)‖2q

+
∫

U

(∑

i

‖∂αi(x,ν,u,·)‖2q +‖∂β(x,ν,u,·)‖2q
)

µ(du)≤K.

Remark 4.1. If ν1 =ν2 =ν, we write Fi(ν) rather than Fi(ν,ν). Condition (S6) im-
plies smoothness and growth conditions on the coefficients of the differential operators.
Continuity of the mapping

(ν1,ν2)∈M(Rd)×M(Rd)→F1(ν1,ν2)φ∈Φk
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would imply (4.3).

Continuing to restrict the calculations to dimension d=1, by (3.3),

〈φ,Sn(t)〉= 〈φ,Sn(0)〉+〈
φ,M1,n(t)

〉
+

∫ t

0

〈F1(V (s),V n(s))φ,Sn(s)〉ds

+
∫

U×[0,t]

〈F2(V (s),V n(s),u)φ,Sn(s)〉W (duds), (4.5)

where

M1,n
φ (t)=

〈
φ,M1,n(t)

〉

=n−1/2
n∑

i=1

∫ t

0

An
i (s)

(
φ(Xn

i (s))γ(Xn
i (s),V n(s))

+φ′(Xn
i (s))σ(Xn

i (s),V n(s))
)

dBi(s),

√
n(〈φd(·,V n(s))+L(V n(s))φ,V n(s)〉−〈φd(·,V (s))+L(V (s))φ,V (s)〉)

= 〈φd(·,V n(s))+L(V n(s))φ,Sn(s)〉
+
√

n〈φd(·,V n(s))+L(V n(s))φ−φd(·,V (s))+L(V (s))φ,V (s)〉
= 〈φd(·,V n(s))+L(V n(s))φ,Sn(s)〉

+
∫

R

∫ 1

0

〈
φ(x)∂d(x,rV n(s)+(1−r)V (s),·)

+∂L(rV n(s)+(1−r)V (s),·)φ(x),Sn(s)
〉
drV (s,dx)

= 〈F1(V (s),V n(s))φ,Sn(s)〉,
and
√

n
(
〈φβ(·,V n(s),u)+φ′α(·,V n(s),u),V n(s)〉−〈φβ(·,V (s),u)+φ′α(·,V (s),u),V (s)〉

)

= 〈φβ(·,V n(s),u)+φ′α(·,V n(s),u),Sn(s)〉

−
∫

R

∫ 1

0

〈
φ(x)∂β(x,rV n(s)+(1−r)V (s),u, ·)

+φ′(x)∂α(x,V (s),u, ·),Sn(s)
〉
drV (s,dx)

= 〈F2(V (s),V n(s),u)φ,Sn(s)〉.
Let H=L2(U,µ). In the terminology of Kurtz and Protter [25], we define a

R×H#-semimartingale Y by setting

Y (a,h,t)=at+Bh(t)=at+
∫

U×[0,t]

h(u)W (duds),

for a∈R and h∈H. Let

Un(t)=Sn(0)+M1,n(t),

and for φ∈Φκ+2, let 〈F (V (s),V n(s))φ,Sn(s)〉 denote the R×H-valued process given
by

〈F (V (s),V n(s))φ,Sn(s)〉=(〈F1(V (s),V n(s))φ,Sn(s)〉,〈F2(V (s),V n(s),u)φ,Sn(s)〉).
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Then (4.5) can be rewritten in the notation of Kurtz and Protter [25] as

〈φ,Sn(t)〉= 〈φ,Un(t)〉+〈F (V (·),V n(·))φ,Sn〉 ·Y (t).

Note that for each φ∈C1(R), h∈H, and 1≤ i≤n,
[
M1,n

φ ,Bh
]

t
=0,

[
M1,n

φ ,Bi

]
t

=
1
n

∫ t

0

(An
i (s))2

(
φ(Xn

i (s))γ(Xn
i (s),V n(s))+φ′(Xn

i (s))σ(Xn
i (s),V n(s))

)2
ds,

and
[
M1,n

φ

]
t
=

∫ t

0

〈(
φγ(·,V n(s))+φ′σ(·,V n(s))

)2
,V n

2 (s)
〉

ds,

where V n
2 (s)= 1

n

∑n
j=1An

j (s)2δXn
j (s).

We should emphasize that we are proving convergence in distribution for {Sn}.
The limit will not “live” on the original probability space. To be precise, for a count-
able dense subset {hj}⊂H, the sequence

{(V n,M1,n,Sn,{Y (hj)},{Bi},{Xi},{Ai})}
is relatively compact in CM(R)×(Φ−κ)2×(R∞)4 [0,∞). Denoting a limit point by

(V,M,S,{Y (hi)},{Bi},{Xi},{Ai})
(even though these are not the V , Y , {Bi}, {Xi}, {Ai} on the original probability
space, they will have the same distribution), M (and hence S) will not be adapted
to the filtration {FY,{Bi}

t } generated by Y and {Bi}. Note that {Y (hi)} determines
Y (h) (and hence Bh) for all h∈H and the Y (h) determine W .

For any limit point, M will be a Φ−κ-valued local martingale with
[
Mφ,Bh

]
t
=0

for every φ∈Φ and h∈H and

[Mφ]t =
∫ t

0

〈(
φγ(·,V (s))+φ′σ(·,V (s))

)2
,V2(s)

〉
ds,

where

V2(t)= lim
n→∞

1
n

n∑

i=1

Ai(t)2δXi(t).

Lemma 4.1. For φ∈Φκ,

E[ei〈φ,S(0)+M(t)〉|W ]

=exp{−1
2
(〈φ2,V2(0)〉−〈φ,V (0)〉2 +

∫ t

0

〈(φγ(·,V (s))+φ′σ(·,V (s)))2,V2(s)〉ds
)}

and

E[ei〈φ,M(t+r)−M(t)〉|σ(W )∨FM
t ]

=exp{−1
2

∫ t+r

t

〈(φγ(·,V (s))+φ′σ(·,V (s)))2,V2(s)〉ds
)},
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which determine the joint distribution of W and M .
Proof: Define

M̃n
φ (t)=

〈
φ,M̃n(t)

〉

=n−1/2
n∑

i=1

∫ t

0

Ai(s)
(

φ(Xi(s))γ(Xi(s),V (s))

+φ′(Xi(s))σ(Xi(s),V (s))
)

dBi(s),

and observe that
[
M1,n

φ −M̃n
φ

]
t

=
1
n

n∑

i=1

∫ t

0

(
An

i (s)φ(Xn
i (s))γ(Xn

i (s),V n(s))+φ′(Xn
i (s))σ(Xn

i (s),V n(s))

−Ai(s)φ(Xi(s))γ(Xi(s),V (s))−φ′(Xi(s))σ(Xi(s),V (s))
)2

ds.

converges to zero. It follows that M1,n and M̃n must have the same limit. Again, to
be precise, one should say that any limit point of

{(V n,M1,n,M̃n,Sn,{Y (hj)},{Bi},{Xi},{Ai})}
will be of the form

(V,M,M,S,{Y (hi)},{Bi},{Xi},{Ai}).
For a σ(W ) measurable random variable Z, exchangeability implies

E[ei〈φ,S(0)+M(t)〉Z]

= lim
n→∞

E[ei〈φ,Sn(0)+M̃n(t)〉Z]

= lim
n→∞

E[E[exp{i 1√
n

(A1(0)φ(X1(0))−〈φ,V (0)〉+M̃φ,1}|W ]nZ]

=E[exp{−1
2
(〈φ2,V2(0)〉−〈φ,V (0)〉2 +

∫ t

0

〈(φγ(·,V (s))+φ′σ(·,V (s)))2,V2(s)〉ds
)}Z]

where

M̃φ,1(t)=
∫ t

0

A1(s)
(

φ(X1(s))γ(X1(s),V (s))+φ′(X1(s))σ(X1(s),V (s))
)

dB1(s).

The proof of the second identity is similar.

Let U(t)=S(0)+M(t) and

〈F (V (s))φ,S(s)〉=(〈F1(V (s))φ,S(s)〉,〈F2(V (s),u)φ,S(s)〉).
Then (Sn,Un) is relatively compact in CΦ−κ×Φ−κ [0,∞), and by the continuity as-
sumptions on F1 and F2 and Theorem 5.5 in [25], for any limit point (S,U), we have

〈φ,S(t)〉= 〈φ,U(t)〉+〈F (V (·))φ,S〉 ·Y (t).
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Specifically, any limit point of {Sn} satisfies (1.10).
To prove uniqueness for the solution to (1.10), suppose that S1 and S2 are solu-

tions and set ξ =S1−S2. Then ξ satisfies

〈φ,ξ(t)〉=
∫ t

0

〈F1(V (s))φ,ξ(s)〉ds+
∫

U×[0,t]

〈F2(V (s),u)φ,ξ(s)〉W (duds). (4.6)

We adapt arguments of Rozovskii [36] to establish that ξ≡0 is the unique solution
to (4.6) and hence establish uniqueness for (1.10).

Lemma 4.2. Suppose that the assumptions (S1)-(S7) hold. Then ξ =0 a.s.
Proof: Let q =κ+2, and for ν ∈M(R), define ρν ≡

∫
Rψ(x)−1ν(dx)<∞. By

LemmaA.6,

2〈v,F ∗1 (ν)v〉−q +
∫

U

‖F ∗2 (ν,u)v‖2−qµ(du)≤ c18ρ
2
ν‖v‖2−q, (4.7)

for all v∈Φ−κ.
Note that ξ(t) takes values in Φ−κ⊂Φ−q. Let {φq

j} be an orthonormal basis for
Φq. Applying Itô’s formula, we have

〈
φq

j ,ξ(t)
〉2 =

∫ t

0

2
〈
φq

j ,ξ(t)
〉〈

F1(V (s))φq
j ,ξ(s)

〉
ds

+
∫

U×[0,t]

2
〈
φq

j ,ξ(t)
〉〈

F2(V (s),u)φq
j ,ξ(s)

〉
W (duds)

+
∫ t

0

∫

U

〈
F2(V (s),u)φq

j ,ξ(s)
〉2

µ(du)ds.

By Proposition 2.1, if (2.1) and (2.3) hold, then (2.6) holds giving E[supt≤T ρV (t)]<∞.
Let τk =inf{t :ρV (t)≥k}. Stopping the processes at τk, taking expectations, and
summing over j, (4.7) gives

E‖ξ(t∧τk)‖2−q =E
∫ t∧τk

0

(
2〈ξ(s),F ∗1 (V (s))ξ(s)〉−q +

∫

U

‖F ∗2 (V (s),u)ξ(s)‖2−qµ(du)
)

ds

≤
∫ t

0

c18k
2E‖ξ(s∧τk)‖2−qds.

Then uniqueness follows from Gronwall’s inequality and the fact that τk→∞ as k→
∞.

Finally, we have our main result.

Theorem 4.2. Under assumptions (S1)-(S7), we have Sn⇒S and S is the unique
solution to the stochastic evolution equation (1.10).

5. CLT for Euler scheme
Now we consider the CLT for the Euler scheme used in [27]. Let ηδ(s)=

[
s
δ

]
δ,

and for some partition {Uk} of U and uk ∈Uk, define ξδ(u)=uk, u∈Uk, k =1,2,.. ..
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Let {(Xn,δ
i ,An,δ

i ),i=1,... ,n} satisfy

Xn,δ
i (t)=Xi(0)+

∫ t

0

σ(Xn,δ
i (ηδ(s)),V n,δ(ηδ(s)))dBi(s)

+
∫ t

0

c(Xn,δ
i (ηδ(s)),V n,δ(ηδ(s)))ds

+
∫

U×[0,t]

α(Xn,δ
i (ηδ(s)),V n,δ(ηδ(s)),ξδ(u))W (duds), (5.1)

An,δ
i (t)=Ai(0)+

∫ t

0

An,δ
i (s)γ(Xn,δ

i (ηδ(s)),V n,δ(ηδ(s)))dBi(s)

+
∫ t

0

An,δ
i (s)d(Xn,δ

i (ηδ(s)),V n,δ(ηδ(s)))ds

+
∫

U×[0,t]

An,δ
i (s)β(Xn,δ

i (ηδ(s)),V n,δ(ηδ(s)),ξδ(u))W (duds), (5.2)

where

V n,δ(t)=
1
n

n∑

i=1

An,δ
i (t)δXn,δ

i (t). (5.3)

In this paper, we only analyze the simplest case in which W is a one-dimensional
Brownian motion, that is, U consists of a single point.

Modifying Theorem 3.3 in [27] in a way similar to the proof of Theorem 2.4 of
the current paper, we have the following result.

Theorem 5.1. Under the assumptions (S1)-(S5), we have

E sup
0≤t≤T




∣∣∣Xn,δ
i (t)−Xn

i (t)
∣∣∣
2λ

+


 1

n

n∑

j=1

|An,δ
j (t)−An

j (t)|λ



2

1t<ηn,δ

m
≤ c(T,m)δλ,

where

ηn,δ
m =inf

{
t :

1
n

n∑

i=1

An
i (t)2 >m2 or

1
n

n∑

i=1

An,δ
i (t)2 >m2

}
.

Applying the same arguments as those in Section 3, we can prove that the sequence
S̃n≡

√
n(V n,1/n−V n) is tight. Now we characterize its limit points.
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Note that S̃n(0)=0. As in (3.3), we have
〈
φ,S̃n(t)

〉

=
1√
n

n∑

i=1

∫ t

0

{
A

n,1/n
i (s)

[
φ(Xn,1/n

i (s))γ(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))

+φ′(Xn,1/n
i (s))σ(Xn,1/n

i (η 1
n
(s)),V n,1/n(η 1

n
(s)))

]

−An
i (s)[φ(Xn

i (s))γ(Xn
i (s),V n(s))+φ′(Xn

i (s))σ(Xn
i (s),V n(s))]

}
dBi(s)

+
1√
n

n∑

i=1

∫ t

0

{
A

n,1/n
i (s)

[
φ(Xn,1/n

i (s))d(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))

+L(V n,1/n(η 1
n
(s)))φ(Xn,1/n

i (η 1
n
(s))

]

−An
i (s)[φ(Xn

i (s))d(Xn
i (s),V n(s))+L(V n(s))φ(Xn

i (s))]

}
ds

+
1√
n

n∑

i=1

∫ t

0

{
A

n,1/n
i (s)

[
φ(Xn,1/n

i (s))β(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))

+φ′(Xn,1/n
i (s))α(Xn,1/n

i (η 1
n
(s)),V n,1/n(η 1

n
(s)))

]

−An
i (s)[φ(Xn

i (s))β(Xn
i (s),V n(s))+φ′(Xn

i (s))α(Xn
i (s),V n(s))]

}
dW (s)

≡ I1 +I2 +I3. (5.4)

Lemma 5.1. Let ξn
i (t) be processes satisfying

1
n

n∑

i=1

ξn
i (t)2≤K, ∀t, ∀ω.

Then

1√
n

n∑

i=1

∫ t

0

ξn
i (s)(Bi(s)−Bi(η 1

n
(s)))2ds→0, (5.5)

1√
n

n∑

i=1

∫ t

0

ξn
i (s)(s−η 1

n
(s))2ds→0, (5.6)

1√
n

n∑

i=1

∫ t

0

ξn
i (s)(W (s)−W (η 1

n
(s)))2ds→0, (5.7)

1√
n

n∑

i=1

∫ t

0

ξn
i (η 1

n
(s))(Bi(s)−Bi(η 1

n
(s)))ds→0, (5.8)
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1√
n

n∑

i=1

∫ t

0

ξn
i (η 1

n
(s))(s−η 1

n
(s))ds→0, (5.9)

1√
n

n∑

i=1

∫ t

0

ξn
i (η 1

n
(s))(W (s)−W (η 1

n
(s)))ds→0, (5.10)

1√
n

n∑

i=1

∫ t

0

ξn
i (η 1

n
(s))(Bi(s)−Bi(η 1

n
(s)))dW (s)→0, (5.11)

1√
n

n∑

i=1

∫ t

0

ξn
i (η 1

n
(s))(s−η 1

n
(s))dW (s)→0. (5.12)

Proof: Note that

E

∣∣∣∣∣
1√
n

n∑

i=1

∫ t

0

ξn
i (s)(Bi(s)−Bi(η 1

n
(s)))2ds

∣∣∣∣∣

2

≤nE
∫ t

0

1
n

n∑

i=1

ξn
i (s)2

1
n

n∑

i=1

(Bi(s)−Bi(η 1
n
(s)))4ds

≤K

n∑

i=1

∫ t

0

3(s−η 1
n
(s))2ds

≤3Kn

[nt]∑

j=0

∫ j+1
n

j
n

(s− j

n
)2ds

=Kn[nt]
1
n3
→0.

This proves (5.5). (5.6), (5.7) and (5.9) can be proved similarly.
For k =1, 2, ···, let

Mk =
1√
n

n∑

i=1

∫ k
n

0

ξn
i (η 1

n
(s))(Bi(s)−Bi(η 1

n
(s)))ds.

Then Mk is a discrete-time, square integrable martingale with quadratic variation
process

[M ]k =
k∑

j=1

(
1√
n

n∑

i=1

ξn
i (η 1

n
(s))

∫ j
n

j−1
n

(Bi(s)−Bi(η 1
n
(s)))ds

)2

.
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Hence

EM2
[nt] =

[nt]∑

j=1

E

(∫ j
n

j−1
n

1√
n

n∑

i=1

ξn
i (

j−1
n

)(Bi(s)−Bi(
j−1

n
))ds

)2

=
[nt]∑

j=1

∫ j
n

j−1
n

∫ j
n

j−1
n

1
n

n∑

i=1

E
(

ξn
i (

j−1
n

)2
)

(s1∧s2− j−1
n

)ds1ds2

≤K

[nt]∑

j=1

∫ 1
n

0

∫ 1
n

0

s1∧s2ds1ds2

=2K[nt]
∫ 1

n

0

s1(
1
n
−s1)ds1

=
K[nt]
3n3

→0.

This proves (5.8). (5.10) can be proved similarly.
Finally,

E

∣∣∣∣∣
1√
n

n∑

i=1

∫ t

0

ξn
i (η 1

n
(s))(Bi(s)−Bi(η 1

n
(s)))dW (s)

∣∣∣∣∣

2

=E
∫ t

0

(
1√
n

n∑

i=1

ξn
i (η 1

n
(s))(Bi(s)−Bi(η 1

n
(s)))

)2

ds

=
∫ t

0

1
n

n∑

i=1

Eξn
i (η 1

n
(s))2(s−η 1

n
(s))ds

≤K

[nt]∑

j=0

∫ j+1
n

j
n

(s− j

n
)ds

=K([nt]+1)
1

2n2
→0,

which proves (5.11). (5.12) can be proved similarly.

Lemma 5.2. Let

W̃n(t)=
∫ t

0

√
2n(W (s)−W (η 1

n
(s)))dW (s).

Then W̃n⇒W̃ and W̃ is a one-dimensional Brownian motion independent of W .
Proof: It is clear that W̃n is a sequence of martingales and

[
W̃n

]
t
=

∫ t

0

2n(W (s)−W (η 1
n
(s)))2ds

=
1
nt

nt∑

j=1

[
2n2t

∫ j
n

j−1
n

(W (s)−W (
j−1

n
))2ds

]

→2n2t

∫ 1
n

0

sds= t.



THOMAS G. KURTZ AND JIE XIONG 349

By (5.10), we have

[
W̃n,W

]
t
=

∫ t

0

√
n(W (s)−W (η 1

n
(s)))ds→0,

and the lemma follows by the martingale central limit theorem

Note that

X
n,1/n
i (s)−X

n,1/n
i (η 1

n
(s))

=σ(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))(Bi(s)−Bi(η 1

n
(s)))

+c(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))(s−η 1

n
(s))

+α(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))(W (s)−W (η 1

n
(s))) (5.13)

and

A
n,1/n
i (s)=A

n,1/n
i (η 1

n
(s))exp

(
γ(Xn,1/n

i (η 1
n
(s)),V n,1/n(η 1

n
(s)))(Bi(s)−Bi(η 1

n
(s)))

+D(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))(s−η 1

n
(s))

+β(Xn,1/n
i (η 1

n
(s)),V n,1/n(η 1

n
(s)))(W (s)−W (η 1

n
(s)))

)
,

where D =d− 1
2 (γ2 +β2). (5.5)-(5.7) then justify the replacement of A

n,1/n
i (s) and

X
n,1/n
i (s) by A

n,1/n
i (η 1

n
(s)) and X

n,1/n
i (η 1

n
(s)) in the calculations below, where the

notation ≈ means that the difference converges to zero in probability.
Lemma 5.3. Let ψ :R2→R be bounded and continuous and have bounded, continuous
first derivative ∂2ψ with respect to the second variable. Then

∫ t

0

1√
n

n∑

i=1

A
n,1/n
i (η 1

n
(s))

〈
ψ(Xn,1/n

i (η 1
n
(s)),·),V n,1/n(s)−V n,1/n(η 1

n
(s))

〉
dW (s)

≈
∫ t

0

〈α(·,V (s))∂2ψ(∗,·)+β(·,V (s))ψ(∗,·),V (s)⊗V (s)〉dW̃n(s).

Proof: Note that

∫ t

0

1√
n

n∑

i=1

A
n,1/n
i (η 1

n
(s))

〈
ψ(Xn,1/n

i (η 1
n
(s)),·),V n,1/n(s)−V n,1/n(η 1

n
(s))

〉
dW (s)

=
∫ t

0

1√
n

n∑

i=1

A
n,1/n
i (η 1

n
(s))

1
n

n∑

j=1

A
n,1/n
j (s)

(ψ(Xn,1/n
i (η 1

n
(s)),Xn,1/n

j (s))−ψ(Xn,1/n
i (η 1

n
(s)),Xn,1/n

j (η 1
n
(s)))dW (s)

+
∫ t

0

1√
n

n∑

i=1

A
n,1/n
i (η 1

n
(s))

1
n

n∑

j=1

(An,1/n
j (s)−A

n,1/n
j (η 1

n
(s)))
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ψ(Xn,1/n
i (η 1

n
(s)),Xn,1/n

j (η 1
n
(s))dW (s)

≈
∫ t

0

1
n

n∑

i=1

A
n,1/n
i (η 1

n
(s))

1
n

n∑

j=1

A
n,1/n
j (s)∂2ψ(Xn,1/n

i (η 1
n
(s)),Xn,1/n

j (η 1
n
(s))

α(Xn,1/n
j (η 1

n
(s)),V n,1/n(η 1

n
(s)))dW̃n(s)

+
∫ t

0

1
n

n∑

i=1

A
n,1/n
i (η 1

n
(s))

1
n

n∑

j=1

A
n,1/n
i (η 1

n
(s))β(Xn,1/n

j (η 1
n
(s)),V n,1/n(η 1

n
(s)))

ψ(Xn,1/n
i (η 1

n
(s)),Xn,1/n

j (η 1
n
(s))dW̃n(s).

The conclusion of the lemma then follows.

Theorem 5.2. For φ∈Φκ, define

M̃φ(t)≡
〈
φ,M̃(t)

〉

=
∫ t

0

〈(α∂1β)(·,V (s))φ,V (s)〉dW̃ (s)

+
∫ t

0

〈α(·,V (s))∂2∂3β(∗,V (s),·)+β(·,V (s))∂2β(∗,V (s),·))φ(∗),V (s)⊗V (s)〉dW̃ (s)

+
∫ t

0

〈(α∂1α)(·,V (s))φ,V (s)〉dW̃ (s)

+
∫ t

0

〈α(·,V (s))∂2∂3α(∗,V (s),·)+β(·,V (s))∂2α(∗,V (s),·))φ′(∗),V (s)⊗V (s)〉dW̃ (s),

where ∂1 and ∂3 are derivatives with respect to the corresponding variables and ∂2

refers to the operator defined in (S5). Then M̃φ is a martingale satisfying [W,M̃φ]t =0.
Let S̃ be a limit point of {S̃n}. Then S̃ is the unique solution of

〈
φ,S̃(t)

〉
=

〈
φ,M̃(t)

〉
+

∫ t

0

〈
F1(V (s))φ,S̃(s)

〉
ds+

∫ t

0

〈
F2(V (s))φ,S̃(s)

〉
dW (s).

(5.14)

Proof: Recall that I1, I2, I3 are defined by (5.4). It is easy to see that I1→0.
Note that

I2 =
1√
n

n∑

i=1

∫ t

0

A
n,1/n
i (s)φ(Xn,1/n

i (s))

[
d(Xn,1/n

i (η 1
n
(s)),V n,1/n(η 1

n
(s)))−d(Xn,1/n

i (s),V n,1/n(s))
]
ds

+
1√
n

n∑

i=1

∫ t

0

A
n,1/n
i (s)

[
L(V n,1/n(η 1

n
(s)))φ(Xn,1/n

i (η 1
n
(s)))

−L(V n,1/n(s))φ(Xn,1/n
i (s))

]
ds
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+
√

n

∫ t

0

(〈
d(·,V n,1/n(s))φ+L(V n,1/n(s)φ,V n,1/n(s)

〉

−〈d(·,V n(s))φ+L(V n(s)φ,V n(s)〉
)
ds

≡ I21 +I22 +I23,

By Lemma 5.1, it is easy to show that I21→0 and I22→0, and by the definition of
F1 in (4.1),

I23 =
∫ t

0

〈
F1(V n(s),V n,1/n(s))φ,S̃n(s)

〉
ds

which converges to the second term on the right of (5.14).
Similarly

I3 =
∫ t

0

1√
n

n∑

i=1

A
n,1/n
i (s)φ(Xn,1/n

i (s))

[
β(Xn,1/n

i (η 1
n
(s)),V n,1/n(η 1

n
(s)))−β(Xn

i (s),V n(s))
]
dW (s)

+
∫ t

0

1√
n

n∑

i=1

A
n,1/n
i (s)φ′(Xn,1/n

i (s))

[
α(Xn,1/n

i (η 1
n
(s)),V n,1/n(η 1

n
(s)))−α(Xn

i (s),V n(s))
]
dW (s)

+
∫ t

0

〈
F2(V n(s),V n,1/n(s)φ,S̃n(s)

〉
dW (s)

≡ I31 +I32 +I33.

By (5.13) and Lemma 5.3, we have

I31≈
∫ t

0

1√
n

n∑

i=1

A
n,1/n
i (s)φ(Xn,1/n

i (s)
(

∂1β(Xn,1/n
i (s),V n,1/n(s))(Xn,1/n

i (η 1
n
(s))−X

n,1/n
i (s))

+
〈
∂2β(Xn,1/n

i (s),V n,1/n(s),·),V n,1/n(η 1
n
(s)))−V n,1/n(s)

〉)
dW (s)

≈
∫ t

0

〈(α∂1β)(·,V (s))φ,V (s)〉dW̃n(s)

+
∫ t

0

〈α(·,V (s))∂2∂3β(∗,V (s),·)+β(·,V (s))∂2β(∗,V (s),·))φ(∗),V (s)⊗V (s)〉dW̃n(s)

and

I32≈
∫ t

0

〈(α∂1α)(·,V (s))φ,V (s)〉dW̃n(s)

+
∫ t

0

〈α(·,V (s))∂2∂3α(∗,V (s),·)

+β(·,V (s))∂2α(∗,V (s),·))φ′(∗),V (s)⊗V (s)〉dW̃n(s).

Then I31 +I32 converges to
〈
φ,M̃

〉
and I33 converges to the third term on the right

of (5.14).
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Uniqueness of the solution follows from Lemma 4.2 giving the desired result.

Finally, we combine the results of Sections 4 and 5.

Theorem 5.3. Let S∗n(t)=
√

n(V n,1/n(t)−V (t)). Then S∗n⇒S∗ where S∗ is the
unique solution of the stochastic evolution equation

〈φ,S∗(t)〉= 〈φ,S(0)〉+
〈
φ,M(t)+M̃(t)

〉
+

∫ t

0

〈F1(V (s))φ,S∗(s)〉ds

+
∫ t

0

〈F2(V (s)φ,S∗(s)〉dW (s), (5.15)

φ∈Φκ.

Remark 5.4. Comparing (5.15) to (1.10), we see that the difference lies in the
additional martingale driving term M̃ . M̃ arises directly from the discrete-time ap-
proximation of the driving Brownian motion W through the limit in Lemma 5.2.

Appendix A. Proof of monotonicity.
We can represent Φ−q as the space of equivalence classes of (q+1)-tuples v =

{(v0,v1,··· ,vq)}, where vj ∈Lq≡L2(R,(1+x2)2qdx), such that

〈v,f〉=
q∑

k=0

∫

R
(1+x2)2qvk(x)

dk

dxk
(f(x)ψ(x))dx. (A.1)

The (q+1)-tuples u and v are equivalent if the right side of (A.1) does not change
when v is replaced by u. Then

‖v‖2−q =inf

{
q∑

k=0

‖uk‖2Lq
: u=(u0,... ,uq)∼v

}
. (A.2)

By the Riesz representation theorem, for each v∈Φ−q, there exists a unique φ≡θqv∈
Φq such that

〈v,f〉= 〈φ,f〉q =
q∑

k=0

〈(φψ)(k),(fψ)(k)〉Lq .

It follows that

v∼{(φψ,(φψ)′,··· ,(φψ)(q))}
and

‖v‖2−q =
q∑

k=0

‖(φψ)(k)‖2Lq
.

In particular, the infimum in (A.2) is achieved. For each u={(u0,u1,··· ,uq)}∈Φ−q,

〈u,v〉−q =
q∑

k=0

〈
uk,(φψ)(k))

〉
Lq

does not depend on the choice of the (q+1)-tuple in the class of u. Note also, that
since Φq+2 is dense in Φq, {v∈Φ−q :θqv∈Φq+2} is dense in Φ−q.
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Lemma A.1. Suppose that f and its derivatives up to order q are bounded. Then for
γ,φ∈Φq+1,

q∑

k=0

∫

R
(1+x2)2q(fγ′ψ)(k)(φψ)(k)dx

=
∫

R
(1+x2)2qf(γψ)(q+1)(φψ)(q)dx+O(‖γ‖q‖φ‖q)

=−
∫

R
(1+x2)2qf(γψ)(q)(φψ)(q+1)dx+O(‖γ‖q‖φ‖q),

and hence for γ =φ,

q∑

k=0

∫

R
(1+x2)2q(fφ′ψ)(k)(φψ)(k)dx=O(‖φ‖2q).

In addition

sup
γ∈Φq

∑q
k=0

∫
R(1+x2)2q(fγ′ψ)(k)(φψ)(k)dx

‖γ‖q

≤
√∫

R
(1+x2)2q|f(φψ)(q+1)|2dx+c19

∑

1≤i,j≤q

√∫

R
(1+x2)2q|f (i)(φψ)(j)|2dx

(A.3)

Proof: Let f1 = fψ′

ψ and note that if f and its derivatives are bounded, then f1 and
its derivatives are bounded. Then

q∑

k=0

∫

R
(1+x2)2q(fγ′ψ)(k)(φψ)(k)dx

=
q∑

k=0

∫

R
(1+x2)2q(f(γψ)′−f1γψ)(k)(φψ)(k)dx

=
q∑

k=0

∫

R
(1+x2)2q(f(γψ)′)(k)(φψ)(k)dx−

q∑

k=0

∫

R
(1+x2)2q(f1γψ)(k)(φψ)(k)dx

=
∫

R
(1+x2)2qf(γψ)(q+1)(φψ)(q)dx+

q−1∑

l=0

(
q

l

)∫

R
(1+x2)2qf (q−l)(γψ)(l+1)(φψ)(q)dx

+
q−1∑

k=0

∫

R
(1+x2)2q(f(γψ)′)(k)(φψ)(k)dx

−
q∑

k=0

∫

R
(1+x2)2q(f1γψ)(k)(φψ)(k)dx

=
∫

R
(1+x2)2qf(γψ)(q+1)(φψ)(q)dx+O(‖γ‖q‖φ‖q).



354 STOCHASTIC EVOLUTION EQUATION FOR FLUCTUATIONS

Integrating the first term in the fourth expression above by parts gives

−
∫

R
(1+x2)2qf(γψ)(q)

(
(φψ)(q+1) +

4qx

1+x2
(φψ)(q)

)
dx

−
∫

R
(1+x2)2qf ′(γψ)(q)(φψ)(q)dx

+
q−1∑

l=0

(
q

l

)∫

R
(1+x2)2qf (q−l)(γψ)(l+1)(φψ)(q)dx

+
q−1∑

k=0

∫

R
(1+x2)2q(f(γψ)′)(k)(φψ)(k)dx

−
q∑

k=0

∫

R
(1+x2)2q(f1γψ)(k)(φψ)(k)dx

=−
∫

R
(1+x2)2qf(γψ)(q)(φψ)(q+1)dx+O(‖γ‖q‖φ‖q).

Since ‖γ‖q≥‖(γψ)(j)‖Lq
, (A.3) follows by the Cauchy-Schwartz inequality.

Finally, if γ =φ, we can add the two identities to obtain

q∑

k=0

∫

R
(1+x2)2q(fφ′ψ)(k)(φψ)(k)dx=O(‖φ‖2q).

Write F1 =F11 +F12 and F2 =F21 +F22, where

F11φ=
1
2
aφ′′+bφ′, F21φ=αφ′. (A.4)

For ν ∈M(R), let ρν =
∫
Rψ(x)−1ν(dx).

Lemma A.2. For v∈Φ−q such that φ=θqv∈Φq+2,

2〈v,F ∗11v〉−q =−
∫

R
a(x,ν)(1+x2)2q|(φψ)(q+1)(x)|2dx+O(‖v‖2−q),

where |O(‖v‖2−q)|≤ c20‖v‖2−q with c20 independent of ν.
Proof: By definition,

〈v,F ∗11v〉−q = 〈φ,F ∗11v〉= 〈F11φ,v〉= 〈F11φ,φ〉q

=
q∑

k=0

∫

R
(1+x2)2q(φψ)(k)(

1
2
aφ′′ψ)(k)dx

+
q∑

k=0

∫

R
(1+x2)2q(φψ)(k)(bφ′ψ)(k)dx, (A.5)

where the third equality follows from the fact that F11φ∈Φq. By Lemma A.1, the
term involving b is bounded by a constant times ‖φ‖2q≡‖v‖2−q.
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For the term involving a, let a1 = aψ′′

ψ and a2 = 2aψ′

ψ . Then

q∑

k=0

∫

R
(1+x2)2q(φψ)(k)(aφ′′ψ)(k)dx

=
q∑

k=0

∫

R
(1+x2)2q(φψ)(k)(a(φψ)(2)−a1(ψφ)−a2(ψφ′))(k)dx

=−
q∑

k=0

∫

R
(1+x2)2q(φψ)(k+1)a(φψ)(k+1)dx+O(‖φ‖2q)

=−
∫

R
a(1+x2)2q|(φψ)(q+1)|2dx+O(‖φ‖2q),

where the second equality follows by integrating by parts and applying Lemma A.1.

Lemma A.3. There exists a constant c21 such that for ε>0, v∈Φ−κ such that φ=
θqv∈Φq+2, and ν ∈M(R),

∫

U

‖F ∗21(ν,u)v‖2−qµ(du)

≤ (1+ε)
∫

R
(1+x2)2q

∫

U

|α(·,ν,u)|2µ(du)|(φψ)(q+1)|2dx+c21(1+ε−1)‖v‖2−q.

Proof: Noting that

‖F ∗21(ν,u)v‖−q = sup
γ∈Φq

〈F ∗21v,γ〉
‖γ‖q

= sup
γ∈Φq

〈φ,F21γ〉q
‖γ‖q

,

by (A.3),

‖F ∗21(ν,u)v‖2−q≤
(√∫

R
(1+x2)2q|α(x,ν,u)(φψ)(q+1)|2dx

+c19

∑

1≤i,j≤q

√∫

R
(1+x2)2q|α(i)(x,ν,u)(φψ)(j)|2dx

)2

.

Consequently, there exists a constant c22 such that

‖F ∗21(ν,u)v‖2−q≤ (1+ε)
∫

R
(1+x2)2q|α(x,ν,u)(φψ)(q+1)|2dx

+c22(1+ε−1)
∑

1≤i,j≤q

∫

R
(1+x2)2q|α(i)(x,ν,u)(φψ)(j)|2dx2,

and integrating with respect to µ, the boundedness of α(i) in L2(U,µ) implies the
existence of c21.

Lemma A.4. For v∈Φ−κ,

2〈v,F ∗12v〉−q≤ c23ρν‖v‖2−q.
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Proof: Assume that φ=θqv∈Φq+2. As in Lemma A.2,

〈v,F ∗12v〉−q = 〈F12φ,φ〉q .

Write

〈F12(ν)φ,φ〉q = 〈d(·,ν)φ,φ〉q +〈G1(ν)φ,φ〉q (A.6)

where

G1(ν)φ=
∫

R
(∂d(x,ν,·)φ(x)+

1
2
∂a(x,ν,·)φ′′(x)+∂b(x,ν,·)φ′(x))ν(dx).

The boundedness of the derivatives of d implies that the first term on the right of
(A.6) is O(‖φ‖q) uniformly in ν. Note that

|φ(x)ψ(x)|2≤
∫

R
|(φ(y)ψ(y))′|2(1+y2)2dy

∫

R
(1+y2)−2dy,

so

|φ(x)ψ(x)|≤O(‖φ‖1).

Similarly, letting K1 =supz
|ψ′(z)|
ψ(z) and K2 =supz

|ψ′′(z)|
ψ(z) ,

|φ′(x)ψ(x)|≤ |(φ(x)ψ(x))′|+K1|φ(x)ψ(x)|≤O(‖φ‖2)

and

|φ′′(x)ψ(x)|≤ |(φ(x)ψ(x))′′|+2K1|φ′(x)ψ(x)|+K2|φ(x)ψ(x)|≤O(‖φ‖3).

Consequently,

‖G1(ν)φ‖q =
∫

R
(‖∂d(x,ν,·)‖q|φ(x)ψ(x)|+ 1

2
‖∂a(x,ν,·)‖q|φ′′(x)ψ(x)|

+‖∂b(x,ν,·)‖q|φ′(x)ψ(x)|)ψ−1(x)ν(dx)
≤ c31ρν‖φ‖3≤ c31ρν‖φ‖q = c31ρν‖v‖−q.

Combining this inequality with the estimate on the first term gives the result.

Lemma A.5. There exists c24 such that for v∈Φ−κ,
∫

U

‖F ∗22(ν,u)v‖2−qµ(du)≤ c24ρ
2
ν‖v‖2−q. (A.7)

Proof: To bound ‖F ∗22v‖−q, note that

‖F ∗22v‖−q = sup
γ∈Φq+2

〈γ,F ∗22v〉
‖γ‖q

= sup
γ∈Φq+2

〈F22γ,φ〉q
‖γ‖q

≤ sup
γ∈Φq+2

‖F22γ‖q

‖γ‖q
‖φ‖q.

Then ‖F22γ‖q≤ c25(u)ρν‖γ‖q by the same argument used to estimate G1 in Lemma
A.4, and c25 can be selected to be integrable with respect to µ.
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Combining the previous lemmas we have

Lemma A.6. For v∈Φ−κ,

2〈v,F ∗1 (ν)v〉−q +
∫

U

‖F ∗2 (ν,u)v‖2−qµ(du)≤ c18ρ
2
ν‖v‖2−q. (A.8)

Proof: Selecting ε>0 so that (1+ε)2≤ (1+δ) for δ in (S4),

2〈v,F ∗1 (ν)v〉−q +
∫

U

‖F ∗2 (ν,u)v‖2−qµ(du)

≤2〈v,F ∗11(ν)v〉−q +(1+ε)
∫

U

‖F ∗21(ν,u)v‖2−qµ(du)

+2〈v,F ∗12(ν)v〉−q +(1+ε−1)
∫

U

‖F ∗22(ν,u)v‖2−qµ(du)

≤−
∫

R

(
a(x,ν)−(1+ε)2

∫

U

|α(x,ν,u)|2µ(du)
)

(1+x2)2q|(φψ)(q+1)(x)|2dx

+(c20 +c21(1+ε)(1+ε−1)+c23ρν +(1+ε−1)c24ρ
2
ν)‖v‖2−q

≤ c18ρ
2
ν‖v‖2−q,

since the first term in the third expression is less than or equal to zero by (S4).
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