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UNIQUENESS VIA PROBABILISTIC INTERPRETATION FOR THE
DISCRETE COAGULATION FRAGMENTATION EQUATION

BENJAMIN JOURDAIN ∗

Abstract. In this paper, supposing that either the initial data is small or the fragmentation
phenomenon dominates the coagulation, we associate a nonlinear stochastic process with any solu-
tion of the mass-flow equation obtained from the discrete Smoluchowski coagulation fragmentation
equation by a natural change of variables. This enables us to deduce uniqueness for the mass flow
equation and therefore for the corresponding Smoluchowski equation thanks to a coupling argument.

1. Introduction
The discrete Smoluchowski coagulation fragmentation equation describes the evo-

lution of the expected number ct(i) of clusters with mass i ∈ N
∗ when two clusters

with respective masses i and j coagulate at rate Ki,j = Kj,i to form a cluster with
mass i + j whereas a cluster with mass i breaks up at rate Fj,i−j = Fi−j,j when
j �= i/2 and 1

2F i
2 , i

2
otherwise into two clusters with masses j and i − j:

ċt(i) =
1
2

i−1∑
j=1

(Kj,i−jct(j)ct(i − j) − Fj,i−jct(i))

−
∑
j∈N∗

(Ki,jct(i)ct(j) − Fi,jct(i + j)) . (1.1)

Throughout this paper, we assume that

∃κ > 0, ∀i, j ∈ N
∗, Ki,j ≤ κij and c0 ∈ R

N
∗

+ satisfies
∑
i∈N∗

ic0(i) = 1. (1.2)

Since both in the coagulation phenomenon and the reverse fragmentation reaction, the
mass is preserved contrary to the number of clusters, in order to give a probabilistic
interpretation, we are interested in the evolution of pt(i) = ict(i). Multiplying (1.1) by
i and using the symmetry of both kernels K and F , we obtain the so-called mass-flow
equation satisfied by the new variables pt(i):

p0(i) = ic0(i), ṗt(i) =
i−1∑
j=1

(
K̃j,i−jpt(j)pt(i − j) − F̃j,i−jpt(i)

)

−
∑
j∈N∗

(
K̃i,jpt(i)pt(j) − F̃i,jpt(i + j)

)
(1.3)

with modified kernels

K̃i,j =
1
j
Ki,j and F̃i,j =

i

i + j
Fi,j .

In this paper we want to associate with a given solution pt of this equation a stochastic
process t → Xt such that ∀i ∈ N

∗, P(Xt = i) = pt(i). Our final goal is to prove
uniqueness for (1.3) and therefore for (1.1) without upper-bounding the fragmentation

∗ENPC-CERMICS, 6-8 av Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne-la-
Vallée Cedex 2, France (jourdain@cermics.enpc.fr), http://cermics.enpc.fr/∼jourdain/home.html

75



76 THE DISCRETE COAGULATION FRAGMENTATION EQUATION

kernel F . In the pure fragmentation case (K ≡ 0), it is then possible to construct
solutions of (1.1) with increasing total mass

∑
i∈N∗ ict(i) =

∑
i∈N∗ pt(i) [BC]. These

solutions have to be rejected for obvious physical reasons. In the pure coagulation case
(F ≡ 0), it may happen that the total mass decreases after a finite time. Intuitively,
this phenomenon called gelation corresponds to the formation of an infinite cluster.
That is why we are only going to consider solutions with non-increasing total mass.

Definition 1.1. Let T ∈ (0, +∞]. We say that t ∈ [0, T ) → pt ∈ R
N

∗
+ solves (1.3)

on [0, T ) if
1. t →

∑
i∈N∗ pt(i) is non-increasing

2. ∀t ∈ [0, T ), ∀i ∈ N
∗, s →

∑
j∈N∗ F̃i,jps(i + j) is integrable on (0, t) and

pt(i) = p0(i) +
∫ t

0

i−1∑
j=1

(
K̃j,i−jps(j)ps(i − j) − F̃j,i−jps(i)

)

−
∑
j∈N∗

(
K̃i,jps(j)ps(i) − F̃i,jps(i + j)

)
ds.

Remark 1.2. If p satisfies the previous definition, according to 1. and (1.2),∑
j∈N∗ K̃i,jps(i)ps(j) is smaller than κi and thus locally integrable w.r.t. s.

The first section of the paper is dedicated to the probabilistic interpretation of
solutions of (1.3). In the second section, we deduce results concerning the dependence
of solutions of this equation w.r.t. the initial condition p0.

Notations. Let N̄ = N
∗ ∪ {∞} endowed with the discrete topology and P(N̄)

(resp. P(N̄ × N̄)) denote the set of probability measures on N̄ (resp N̄ × N̄) endowed
with the total variation metric (which metrizes the narrow convergence topology).
For (p, q) ∈ P(N̄)2 the subset of P(N̄ × N̄) consisting in probability measures with
respective marginals p and q is denoted by Pp,q.
If p ∈ R

N
∗

+ is such that
∑

i∈N∗ p(i) ≤ 1, we extend p to P(N̄) by setting p(∞) =
1 −

∑
i∈N∗ p(i).

2. Nonlinear processes associated with (1.3)
Let pt solve (1.3) on [0, T ). In this section, we want to construct a stochastic

process t → Xt ∈ N̄ such that ∀i ∈ N̄, P(Xt = i) = pt(i). We first remark that pt

solves the linear equation

r0 = p0, ṙt(i) =
i−1∑
j=1

(
K̃j,i−jrt(j)pt(i − j) − F̃j,i−jrt(i)

)

−
∑
j∈N∗

(
K̃i,jrt(i)pt(j) − F̃i,jrt(i + j)

)
. (2.1)

This linear equation is the Fokker-Planck (or Kolmogorov forward) equation as-
sociated with a jump process. More precisely, let (Xt)t∈[0,T ) denote a N̄-valued jump
process with transition rates

λp(t, i, j) = 1{i<∞}(1{1≤j≤i−1}F̃j,i−j + 1{i<j<∞}K̃i,j−ipt(j − i))

starting from X0 distributed according to p0. The intuitive meaning of the transition
rates is the following: when Xt is equal to i the probability for a jump leading from i
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to j to occur on [t, t+∆t] is equal to λp(t, i, j)∆t+o(∆t). Denoting qt(i) = P(Xt = i),
one has

qt+∆t(i) = P(Xt = i and no jump on [t, t + ∆t])
+ P(Xt �= i and a jump leading to i on [t, t + ∆t])
+ P(at least two jumps on [t, t + ∆t])

= qt(i)
(

1 −
∑
j �=i

λp(t, i, j)∆t

)
+
∑
j �=i

qt(j)λp(t, j, i)∆t + o(∆t).

Subtracting qt(i) to both sides, dividing by ∆t and letting ∆t → 0, one obtains
formally that qt(i) = P(Xt = i) solves (2.1).
At this stage, the dynamics of the process Xt is not entirely specified. Indeed, the
successive jump times (τn)n≥1 may accumulate before T and we need to make precise
what happens after. In case of such an accumulation, necessarily limn→+∞ Xτn = ∞
and we set Xt = ∞ on [limn τn, T ). With this choice, one may check rigorously [J] that
qt(i) = P(Xt = i) is a solution of (2.1) such that t →

∑
i∈N∗ qt(i) is non-increasing.

Hence it is enough to prove uniqueness of such solutions to obtain the desired proba-
bilistic interpretation: ∀t ∈ [0, T ),∀i ∈ N̄, qt(i) = pt(i). The jump process X is then
nonlinear in the following sense: its time-marginals pt appear in the definition of the
transition rates.

Remark 2.1. Without fragmentation, uniqueness for (2.1) is easily obtained by in-
duction on i.

In presence of fragmentation, we are going to suppose either that the initial data
p0 is small or that the fragmentation dominates the coagulation to obtain pt = qt

thanks to the following uniqueness result

Lemma 2.2. Let τ ≤ T . The linear equation (2.1) admits at most one solution t ∈
[0, τ) → rt ∈ R

N
∗

+ such that
∑

i∈N∗ rt(i) is non-increasing and
∑

i∈N∗ supj∈N∗ K̃i,jrt(i)
is locally integrable w.r.t. t on [0, τ). In addition, such a solution satisfies ∀t ∈
[0, τ),

∑
i∈N∗ rt(i) = 1.

Proof: Let rt and r̃t be two such solutions and xt = rt − r̃t. By (2.1)

for n ∈ N
∗,

d

dt

n∑
i=1

|xt(i)| =
n∑

i=1

si

( i−1∑
j=1

Wj,i−j −
∑
j∈N∗

Wi,j

)

with si = sign(xt(i)) and Wi,j = K̃i,jxt(i)pt(j) − F̃i,jxt(i + j). As

n∑
i=1

si

i−1∑
j=1

Wj,i−j =
n∑

j=1

n∑
i=j+1

siWj,i−j =
n∑

j=1

n−j∑
k=1

sj+kWj,k, (2.2)
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d

dt

n∑
i=1

|xt(i)| =
n∑

i=1

i−1∑
j=1

(si+j − si)(K̃i,jxt(i)pt(j) − F̃i,jxt(i + j))

+
n∑

i=1

∑
n+1−i≤j<∞

si(F̃i,jxt(i + j) − K̃i,jxt(i)pt(j))

≤
n∑

i=1

∑
n+1−i≤j<∞

F̃i,j(rt(i + j) + r̃t(i + j))

=
d

dt

n∑
i=1

(rt(i) + r̃t(i)) +
n∑

i=1

∑
j≥n+1−i

j<∞

K̃i,jpt(j)(rt(i) + r̃t(i)), (2.3)

where the last equality follows from (2.1) and (2.2) for si = 1 and Wi,j = K̃i,j(rt(i)+
r̃t(i))pt(j) − F̃i,j(rt(i + j) + r̃t(i + j)).
Integrating the inequality on [0, s] for s < τ , letting n → +∞ we deduce∑

i∈N∗
|rs(i) − r̃s(i)| ≤ lim sup

n→+∞

∫ s

0

∑
i,j∈N∗

1{i≤n,j≥n+1−i}K̃i,jpt(j)(rt(i) + r̃t(i))dt.

As
∑

i,j∈N∗ K̃i,jpt(j)(rt(i) + r̃t(i)) ≤ κ
∑

i∈N∗ supj∈N∗ K̃i,j(rt(i) + r̃t(i)) is integrable
on [0, s], we conclude by Lebesgue’s theorem that rs = r̃s. Integrating the non-
negative right-hand-side of (2.3) over [0, s] and taking the limit n → +∞, we also
obtain

∑
i∈N∗ rt(i) ≥

∑
i∈N∗ p0(i) = 1.

2.1. The strong fragmentation case. We assume that there exist constants
α ∈ (1/2, 1], β > α and κ > 0 s.t.

∀i, j ≥ 1, Ki,j ≤ κiαjα i.e. K̃i,j ≤ κiαjα−1 (2.4)

∀µ ≥ 0, ∃C(µ) > 0, ∀i ≥ 3,

[(i−1)/2]∑
j=1

jµFj,i−j ≥ C(µ)iβ+µ.

Under this assumption denoted by (SF), existence and uniqueness for (1.1) has been
proved by Da Costa [D]. Translated in terms of (1.3) his results imply the first
assertion in the following proposition:
Proposition 2.3. Under (SF), (1.3) admits a unique solution pt on [0, +∞) and
∀t ≥ 0,

∑
i∈N∗ pt(i) = 1. In addition, the jump process X provides a probabilistic

interpretation of pt: ∀t ≥ 0, ∀i ∈ N
∗, P(Xt = i) = pt(i).

Since ∀i ∈ N
∗, supj∈N∗ K̃i,j ≤ κiα, combined with Lemma 2.2 the following

estimate which is adapted from the proof of [D] Theorem 5.2 ensures that (1.3) has
no more than one solution rt such that t →

∑
i∈N∗ rt(i) is non-increasing. We easily

deduce the second assertion in the Proposition.
Lemma 2.4. Under (SF), if t → rt ∈ R

N
∗

+ is such that
∑

i∈N∗ rt(i) is non-increasing
and solves

r0 = p0, ṙt(i) =
i−1∑
j=1

(Lj,i−j
t − F̃j,i−jrt(i)) −

∑
j∈N∗

(
Li,j

t − F̃i,jrt(i + j)
)

,

with ∀i ∈ N
∗, ∀t ≥ 0, Li,j

t ≥ 0 for j ∈ N
∗ and

∑
j∈N∗

Li,j
t ≤ κiαrt(i)



BENJAMIN JOURDAIN 79

then ∀t ≥ 0, κ
∫ t

0

∑
i∈N∗ iαrs(i)ds ≤ I(t) < +∞ with I independent of p0.

2.2. Small initial data. Here we only suppose that the initial data is small in
the following sense:

∑
i∈N∗ ip0(i) =

∑
i∈N∗ i2c0(i) < ∞. By considering n-dimensional

truncations of the infinite system (1.3), one can prove the following existence result
(see [J] p.109):

Proposition 2.5. Let Tp0 = (κ
∑

i∈N∗ ip0(i))−1. The equation (1.3) admits a solu-
tion pt on [0, Tp0) satisfying ∀t ∈ [0, Tp0),∑

i∈N∗
ipt(i) ≤ (κ(Tp0 − t))−1. (2.5)

From now on, we denote by (wt)t∈[0,Tp0) such a solution for the multiplicative coag-
ulation kernel κij and in the absence of fragmentation:

w0 = p0, ẇt(i) = κ

( i−1∑
j=1

jwt(j)wt(i − j) − iwt(i)
∑
j∈N∗

wt(j)
)

. (2.6)

By (2.5) and Lemma 2.2, ∀t ∈ [0, Tp0),
∑

i∈N∗ wt(i) = 1 i.e. wt(∞) = 0.
Since in (1.3), the coagulation kernel is smaller than κij and fragmentation is possible,
one intuitively feels that any solution pt should give less weight than wt to large
integers and that

∑
i∈N∗ ipt(i) should be smaller than

∑
i∈N∗ iwt(i). We are going to

make this intuition rigorous to prove

Theorem 2.6. Let pt solve (1.3) on [0, T ). Then (2.5) and
∑

i∈N∗ pt(i) = 1 hold on
[0, T ∧ Tp0). In addition the jump process X provides a probabilistic interpretation of
pt on [0, T ∧ Tp0): ∀t ∈ [0, T ∧ Tp0), ∀i ∈ N

∗, P(Xt = i) = pt(i).
In order to quantify the comparison between pt and wt, we introduce the following

function f :

Lemma 2.7. The mapping (p, q) ∈ P(N̄)2 → f(p, q) = infρ∈Pp,q

∑
i>j ρ(i, j) is con-

tinuous and there is a measurable choice (p, q) ∈ P(N̄)2 → ρp,q ∈ P(N̄ × N̄) such that
∀(p, q) ∈ P(N̄)2, f(p, q) =

∑
i>j ρp,q(i, j). In addition, for p, q, w ∈ P(N̄).

1. (f(p, q) = 0) ⇔ (∀n ∈ N
∗,
∑n

i=1 p(i) ≥
∑n

i=1 q(i)) ⇒ (p(∞) ≤ q(∞))
2. If f(p, q) = 0 and p(∞) = q(∞) then

∑
i∈N∗ ip(i) ≤

∑
i∈N∗ iq(i).

3. If f(p, q) = 0 then f(p, w) ≤ f(q, w).
Proof: According to Prokhorov Theorem, for (p, q) ∈ P(N̄)2, Pp,q is a compact subset
of P(N̄ × N̄).
Since the mapping ρ ∈ P(N̄× N̄) →

∑
i<j ρ(i, j) is Lipschitz continuous, to obtain the

continuity of f , it is enough to prove the continuity of (p, q) ∈ P(N̄)2 → Pp,q when
the set of compact subsets of P(N̄ × N̄) is endowed with the Prokhorov metric. This
continuity property also yields the existence of a measurable choice (see for instance
[SV] Chapter 12).
To prove it, the only difficulty is to check that when (pn, qn)n denotes a sequence
converging to (p, q) in P(N̄)2 and ρ ∈ Pp,q, then there exists a sequence ρn ∈ Ppn,qn

converging to ρ as n → +∞. Let k ∈ N → (ik, jk) ∈ N̄ × N̄ be a bijection. We define
inductively for k ∈ N

ρ̃n(ik, jk) = ρ(ik, jk) ∧
(

pn(ik) −
∑

l≤k−1
il=ik

ρ̃n(il, jl)
)+

∧
(

qn(jk) −
∑

l≤k−1
jl=jk

ρ̃n(il, jl)
)+
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and obtain suitable probability measures by setting

ρn(i, j) = ρ̃n(i, j) +
(pn(i) −

∑
k∈N̄

ρ̃n(i, k))(qn(j) −
∑

l∈N̄
ρ̃n(l, j))

1 −
∑

k,l∈N̄×N̄
ρ̃n(k, l)

.

Let us now give elements of proof of the numbered properties. The first one is obtained
by inversion of the cumulative distribution function. We deduce the second one by
remarking that for r ∈ P(N̄),

∑
i∈N∗ ir(i) =

∑
n∈N∗(1−r(∞)−

∑n−1
i=1 r(i)) and obtain

the last one by considering the following probability measure on N̄
3 with marginals

p, q, w: 1{q(j)>0}
ρp,q(i,j)ρq,w (j,k)

q(j) .

We are now ready to prove Theorem 2.6.
Proof: To conclude, it is enough to check

∀t ∈ [0, T ∧ Tp0), f(pt, wt) + f(qt, wt) = 0. (2.7)

Indeed by Lemma 2.7 2, (2.7) and wt(∞) = 0 for t ∈ [0, Tp0) imply

∀t ∈ [0, T ∧ Tp0), max

(∑
i∈N∗

ipt(i),
∑
i∈N∗

iqt(i)

)
≤
∑
i∈N∗

iwt(i) ≤ (κ(Tp0 − t))−1.

Combined with Lemma 2.2, this inequality yields ∀t ∈ [0, T ∧ Tp0), pt = qt and∑
i∈N∗ pt(i) = 1.

In [J], (2.7) is obtained by comparing some solutions of linear equations and con-
cluding by a complicated limiting procedure. Here we present a simpler and more
intuitive coupling argument: let (Yt, Ỹt)t∈[0,T∧Tp0) denote a jump process on N̄

2 start-
ing from Y0 = Ỹ0 distributed according p0 and with transition rates λ(t, (i, j), (k, l))
equal to κ times⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(i ∧ j)ρpt,wt(k − i, l − j) if i < k < ∞ and j < l < ∞
(i − j)+pt(k − i) + 1{j=∞}ipt(k − i) if i < k < ∞ and j = l

(j − i)+wt(l − j) + 1{i<∞}(i ∧ j)(wt(l − j) −
∑

m∈N∗ ρpt,wt(m, l − j))
+ 1{i=∞}jwt(l − j) if i = k and j < l < ∞

and 0 otherwise. If jumps accumulate at time s before T ∧ Tp0 then either both co-
ordinates go to ∞ and remain equal to ∞ after or only one coordinate goes to ∞. In
the latter case, this coordinate remains equal to ∞ and the other is chosen continuous
at s and equal to ∞ after a possible second accumulation of jumps.
This way Ỹ is a jump process with initial law p0 and transition rates λ̃(t, j, l) =
1{j<l<+∞}κjwt(l − j). By Remark 2.1, for any t ∈ [0, T ∧ Tp0), the law of Ỹt

is wt. Similarly, using that ∀t ∈ [0, T ∧ Tp0), wt(∞) = 0 and therefore ∀i ∈ N̄,
pt(i) =

∑
j∈N∗ ρpt,wt(i, j), one checks that Y is a jump process with initial law p0 and

transition rates λ(t, i, k) = 1{i<k<+∞}κipt(k − i). Hence the law rt of Yt solves the
linear equation

r0 = p0, ṙt(i) = κ

( i−1∑
j=1

jrt(j)pt(i − j) − irt(i)
∑
j∈N∗

pt(j)
)

.

According to Lemma 4.2 [J] and Lemma 2.7 1,

∀t ∈ [0, T ∧ Tp0), f(qt, rt) = 0 and f(pt, rt) = 0. (2.8)
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As we want to prove that Ỹt is bigger than Yt the coupling (Y, Ỹ ) is constructed in
order to minimize the jumps (∆Ys, ∆Ỹs) = (Ys − Ys− , Ỹs − Ỹs−) bigger for the first
coordinate than for the second. Since the law of (Yt, Ỹt) belongs to Prt,wt , using the
last equality and Lemma 2.7 3, one obtains

f(pt, wt) ≤ f(rt, wt) ≤ P(Yt > Ỹt) ≤ P(∃s ≤ t, Ys− ≤ Ỹs− < ∞ and ∆Ys > ∆Ỹs)

≤ E

(∑
s≤t

1{Ys−≤Ỹs−<∞ and ∆Ys>∆Ỹs}

)

= κE

(∫ t

0

1{Ys−≤Ỹs−<∞}Ys−f(ps, ws)ds

)

≤ κ

∫ t

0

∑
i∈N∗

iws(i)f(ps, ws)ds

Since (2.5) holds for wt on [0, Tp0), Gronwall’s lemma implies that ∀t ∈ [0, T ∧ Tp0),
f(pt, wt) = 0 and f(rt, wt) = 0. We also obtain f(qt, wt) = 0 by combining the last
equality, (2.8) and Lemma 2.7 3.

3. Dependence on the initial data for (1.3)
For p, q ∈ P(N̄), let ‖p− q‖ =

∑
i∈N̄

|p(i)− q(i)|. The probabilistic interpretation
of solutions of (1.3) enables us to prove the following result by a simple coupling
argument.

Theorem 3.1. Let p0 and p̃0 be two probability measures on N
∗, and pt (resp. p̃t)

solve (1.3) with initial data p0 (resp. p̃0) on [0, T ) (resp. [0, T̃ )).
1. Under (SF), ∀t ∈ [0, T ∧ T̃ ), ‖pt− p̃t‖ ≤ ‖p0− p̃0‖eI(t) where I(t) is the bound

given in Lemma 2.4.
2. If

∑
i∈N∗ ip̃0(i) ≤

∑
i∈N∗ ip0(i) < +∞, then for Tp = (κ

∑
i∈N∗ ip(i))−1,

∀t ∈ [0, T ∧ T̃ ∧ Tp0), ‖pt − p̃t‖ ≤ Tp̃0‖p0 − p̃0‖
Tp̃0 − t

.

For the choice p̃0 = p0, we easily deduce:

Corollary 3.2. Uniqueness holds for (1.3) on the time interval [0, Tp0) if
∑

i∈N∗
ip0(i)

< +∞ and on [0, +∞) under (SF).

Proof of Theorem 3.1: For (p, q) ∈ P(N̄)2, let us define ρ̄ ∈ Pp,q by

∀(i, j) ∈ N̄
2, ρ̄p,q(i, j) = 1{i=j}(p(i) ∧ q(i)) + 2

(p(i) − q(i))+(q(j) − p(j))+

‖p − q‖ .

One easily checks that
∑

i�=j ρ̄p,q(i, j) is equal to

1 −
∑
i∈N̄

(p(i) − (p(i) − q(i))+) =
∑
i∈N̄

(p(i) − q(i))+ =
1
2
‖p − q‖ = inf

ρ∈Pp,q

∑
i�=j

ρ(i, j).

We set τ equal to T ∧ T̃ under (SF) and equal to T ∧ T̃ ∧Tp0 otherwise. Let (Xt, X̃t)
be a jump process on N̄

2 starting from (X0, X̃0) distributed according to ρ̄p0,p̃0 and
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with transition rates λ(t, (i, j), (k, l)) equal to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃k,i−k if i = j and 1 ≤ k = l < i

(K̃i,k−i ∧ K̃i,l−i)ρ̄pt,p̃t(k − i, l − i) if i = j and i < k, l < ∞∑
m∈N∗(K̃i,k−i − K̃i,m)+ρ̄pt,p̃t(k − i, m) if i = j = l and i < k < ∞∑
m∈N∗(K̃i,l−i − K̃i,m)+ρ̄pt,p̃t(m, l − i) if i = j = k and j < l < ∞

λp(t, i, k) if i �= j and j = l

λp̃(t, j, l) if j �= i and i = k

and 0 otherwise. In case of accumulation of jumps, the process behaves like the one
introduced in the proof of Theorem 2.6. Since by Proposition 2.3 or Theorem 2.6,
∀t ∈ [0, τ),

∑
i∈N∗ pt(i) =

∑
i∈N∗ p̃t(i) = 1, one easily checks that Xt (resp. X̃t) is a

jump process with transition rates λp (resp. λp̃) starting from X0 with law p0 (resp.
p̃0) and according again to Proposition 2.3 or Theorem 2.6, for any t ∈ [0, τ), the law
of Xt (resp. X̃t) is pt (resp. p̃t). The coupling is constructed in order to minimize for
any i ∈ N

∗ the total jump rate leading from (i, i) to (k, l) with k �= l:

∑
k �=l

λ(t, (i, i), (k, l)) =
∑

m,n∈N∗
m �=n

(K̃i,m ∨ K̃i,n)ρ̄pt,p̃t(m, n) ≤ 1
2
κiγ‖pt − p̃t‖ (3.1)

where γ is equal to α under (SF) and to 1 otherwise. As the law of (Xt, X̃t) belongs
to Ppt,p̃t ,

‖pt − p̃t‖ ≤ 2P(Xt �= X̃t) ≤ 2P(X0 �= X̃0) + 2P(X0 = X̃0 and Xt �= X̃t)

≤ ‖p0 − p̃0‖ + 2P(∃s ≤ t : Xs− = X̃s− and Xs �= X̃s)

≤ ‖p0 − p̃0‖ + 2
∑
i∈N∗

E

(∑
s≤t

1{Xs−=X̃s−=i and Xs �=X̃s}

)

≤ ‖p0 − p̃0‖ + κ

∫ t

0

‖ps − p̃s‖
∑
i∈N∗

iγP(Xs− = X̃s− = i)ds

≤ ‖p0 − p̃0‖ + κ

∫ t

0

‖ps − p̃s‖
∑
i∈N∗

iγ p̃s(i)ds

where the penultimate inequality is a consequence of (3.1). The conclusion follows
from Gronwall’s Lemma combined with the estimate given in Lemma 2.4 under (SF)
and with (2.5) otherwise.

Remark 3.3. Being a little more cautious, one can prove by this approach [J] that
there exists a unique couple (T , (pt)t∈[0,T )) with T ≥ Tp0 and pt solution of (1.3)
on [0, T ) such that

∑
i∈N∗ ipt(i) is locally integrable but not integrable on [0, T ). In

addition uniqueness holds for (1.3) on the time interval [0, T ). In case the coagulation
kernel is subadditive: Ki,j ≤ κ(i + j), T is equal to +∞.

Acknowledgment. I thank Christophe Giraud for suggesting me to look at
results concerning the dependence of solutions of (1.3) on the initial data rather than
only considering uniqueness.
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