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Abstract: We establish that correlation functions of classical lattice spin models can
be represented by series expansions in terms of self-avoiding random walks. Using this,
we get new upper bounds of critical temperatures of the O(N) symmetric classical
Heisenberg models.

1. Introduction

Based on the idea of Symanzik [20], the authors of [5, 4, 9] formulated the random
walk representations of classical lattice spin systems and used them to derive various
correlation inequalities and bounds for the critical inverse temperatures /3C. We tried
to combine the idea of renormalization group with the random walk representations,
and succeeded in the first step of transformations of block spin type. Namely we could
renormalize the contribution of the smallest loops (self-crossing points) in the expansion
as the changes of the single spin distributions and obtain an improvement of fic for the
O(N) Heisenberg model [10,11], in which the method of blockwise diagonalization of
matrices is used to remove smallest loops from the random walk.

The purpose of this paper is to show that all loops can be removed from the random
walk representations. In other words, we give a self-avoiding random walk representation
of correlation functions of classical lattice spin systems, by which we obtain a new lower
bound of /3C of the O(N) Heisenberg model. It is better than the bound in [11] and is the
most accurate among the theoretical values so far obtained. See the table. For example,
we recover /?c = oo for every N on the one dimensional lattice, and we expect that this
provides us with new methods to solve the long standing conjecture of non-existence of
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the phase transition in the two dimensional Heisenberg models [19]. A brief review of
this paper is in [12] with some extended numerical analysis toward the problem.

In Sect. 2, the correlation function of two spins of the O(N) spin model is represented
in terms of a sum over self-avoiding walks that connect the two spin locations. Each
term consists of the contour integration of determinants which depend on the walk.
Section 3 is devoted to preparations of some mathematical devices about the contour
integration which generalize the splitting arguments of [5, 10]. Applying to each term
the block diagonalization method used in [10, 11] successively along the walk and then
using an inequality of Sect. 3, we obtain bounds of the terms in Sect. 4. As a summary,
we get in Sect. 5 the lower bound of f3c of the O(N) spin model as a function of N and
the connective constant. We also discuss the two limiting cases N —> 0 and N —> oo.

2. Spin Models and Self-Avoiding Walks

Let Abes.!/ dimensional lattice, i.e., a finite subset of Z*\ We consider O(N) symmetric
classical Heisenberg model (JV-vector model) on A with free boundary condition. Its
partition function is given by

where

if \j-k\ =
otherwise

for j,k e A and for the inverse temperature /? > 0. We adopt the convention \j\ =
]C^=i li/* I f° r ^ e n o r m of j £ A in this paper.

Let F\ be the contour given by the map

{
w/* (~oo<t< -1)

Ae f '<5*-4>*/8(-l<*< 1) (2.3)

'* (1 < t < oo)
for A > 0. Then we get the representations:

Lemma 1.

• * • \

" * Y [ ? g i . (2.5)

Here, l,meA, Sj = (Sf\ • • •, SjN)) G R^ and A denotes the diagonal matrix given
by Ajk = cijSjk 0\ * € A).
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Proof. After approximating <J(S2 — 1) by the gaussian function, we perform the Fourier
transformations by the formula

( - (S2 - l)2/2e2) = [ exp f-ia(S2 - 1) - *£) £ . (2.6)
«/-iA+R V 2 / Z7T

Then the lemma follows from Fubini's theorem and the integration with respect to S/ 's,
followed by the replacement of the contour — iA + R by F\. •

Note that the representation of Lemma 1 is valid for all A > 0. We set A large in the
following sections. Now, we develop self-avoiding random walk representations for
< S^a)S^ >. We regard the matrices A and J as the operators acting on the linear
space CA of all the C-valued mappings defined on A. The set of mappings

ek : A 3 j i-> Sjk G C (k G A) (2.7)

forms a basis of the space. Let (•, •) be the bilinear form on CA defined by

Then { ek}keA is the orthonormal basis with respect to (•, •) defined in the obvious
way. The operators A and J arc defined by

= Ajk = akSjk, (2.9)

i = J r
i*=^| i_ f c | | 1 . (2.10)

Let u> be a self-avoiding walk starting from / and ending at m. That is, let a; be a set of
ordered pairs

{ (w(n - 1),LJ(U)) E A2 | n = 1, • • •, \UJ\\ } (2.11)

satisfying

where |CJ Q G N is called the number of steps of the walk u>. Let Qw be the orthonormal
projection to the subspace spanned by { e^o), • • •, e^o^D }:

n=0

We set Pw = Id — Qw - Now we have the following representation of the correlation
function of the O(N) Heisenberg model in terms of the self-avoiding random walk.
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Theorem 1.
<5 /

(1 )^ )>= ]T fl»iZ(u)/Z. (2.13)
o»:/—fm

Here, the summation is taken over all self-avoiding nearest neighbor walks LJ on A
starting from I and ending at m. The weight Z(u) is given by

= I
Jr\

dctfpw(2ii4 J ) P j d e t ( 2 M J)( TTTT f ! ! L ^ , (2.14)

where detf Pu{2iA — J)Pu,) w ^ determinant of Pw(2iA — J)PW as the operator

acting on the space PwCA,i.e., the corresponding minor determinant of 2iA — J.

Remark 1. We frequently deal with operators of type T = PTP in the sequel as well
as in the theorem, where T is an operator on CA and P is an orthonormal projection
like Pa, or Q^. By detT, we always mean the determinant of T which is regarded as the
operator acting on PCA as in the theorem. The operator which acts as the inverse of f
on PCA and 0 on (Id - P)CA is denoted by f~\ i.e., f~l satisfies

f~lf = ff~l = P, (Id - P)f~l = f-\ld - P) = 0. (2.15)

Proof Let D(l\, • • •, ln; m\, • •, ran) be the minor determinant made by eliminating
the l\, • • •, /J/1 rows and m\, • •, raj/1 columns from the matrix 2iA — J. In order to
define determinants of operators on CA

f we number all j E A by {1,2, • • •, |yl|}. Let
AT, be the number of j . If / = ra, we have (2iA - J)^1 = D(lJ)/det(2iA - J) in
(2.5), which corresponds to the self-avoiding walk of zero step from / to /. For / ^ ra,
applying the Laplace expansion along the Ith column to D(l; ra), we have

(2iA - J)^1 = €i€mD(l'9 m)/det(2M - J)

il\l,ra)/det(2iA - J),

where e/ = (—l)^"1 and tki = 1 if iV* < JV/, —1 if Nk > Ni. The summation is
taken over all k\ G A — {/} satisfying \k\ — l\ = 1, because of (2.2). When the term
corresponding to k\ = ra is allowed, it equals /?£)(ra,/;/,ra). Except for the term
k\ = ra, we apply the Laplace expansion along the k\h column to D(k\, /; /, ra):

D(kx,/;/, ra) = ^€k2€k2kl€k2ieklckiiekim(-f})D(k2, khl;kul, ra), (2.16)
k2

where all k2 E A - {l,k\} satisfying \k2 - ki\ = 1 are to be summed. We re-
peat the procedure until no non-zero terms remain except for the terms of type
f^^Dim, kn, • • •, &i, /; kn, • • •, k\, /, ra), which corresponds to the self-avoiding near-
est neighbor walk I —> k\ -+ > kn —>• ra. Note that each of these terms has the sign
plus. Since the lattice A is finite, the procedure terminates after finite iterations. Thus
we get the formula. •

Remark 2. In order to get the representations of the correlation functions in terms of
the self-avoiding random walk, we used only the Fourier transformations of single spin
distributions and the Laplace expansions of determinants. Then the n-point functions of
various lattice spin systems with various boundary conditions have similar representa-
tions. However, we may not apply the method to get a similar formula for lattice gauge
systems.
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3. Integration on r{Al

In this section, we prepare some properties of the integration with respect to the complex
variables {a,j }J^A on F^. We give them for a certain class of functions specified below
for later convenience.

Let S > 0 be an arbitrary but fixed constant. For a function / and a matrix valued
function T defined on the polydisc

{ = {ZJ}S£A G CA | )zj\ <6WJ€ A)},

we introduce norms

!/!*= sup |/(z)|,
3 k

We define a class of analytic functions on D\ ' by

T* = { /CO = Y. c«z* \ca>0Q/ae NA), \f[s = X; caSM < oo }.

Here, N = {0,1,2, • • •} and |a| = 52j€A<Xj,za = Y[jeAzjJ for the multi-index
a = iaj}j6A £ NA. We will need another class of analytic functions defined by

> 0, a e NA, Cj > 0(Vj G ^

for an arbitrary but fixed s > 0. Here, z(5)+a = HjeA zs
j
¥aj. Then the following

proposition holds:

Proposition 1. (i) T$ contains all polynomials with positive coefficients,

(n) f,9eFs=>efj + gJgeFs.

Proof. Substituting / G T& into the Maclaurin expansion of ez, we find e* G T&. The
other properties are obvious. D

Let us introduce an integration of functions of the form fh (/ G Tb,h G £s). We
put

for f € fs and A G (1 /2rf, oo). Since / and h are bounded and el a da is a finite (complex
valued) measure on F\, the integral is well-defined. Note also that the expectation value
H/AJ does not depend on the choice of A > 1/2S because of Cauchy's integral theorem.

Proposition 2. Fora G NA, f,g G T* and h G £s, the following relations hold:

(i) ^ (^ 1

(H)
< I/AHflfA]. (3.2)
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Proof To prove the first relation, it is enough to show

Jrx (2io)» 2TT " 2 T ( u ) { }

for any u > 0;

1U r n ^ I' f d(l \' ^
l.h.s. of (3.3) = hm / -— exp \ia

•" l,%(i)u 2

= l h n _ ^ _ / - T = = e x p - v ^ 2
 7 dt

1
" 2«r(ti) '

The case that / is a monomial in (ii) is an obvious consequence of (i). The dominated
convergence theorem leads to the general case because / 6 Ts has non-negative
coefficients.

For the third relation, it is enough to show

(3.4)

where

s and c are non-negative constants and Is is the sth modified Bessel function. In fact,
using (3.4) repeatedly, we get

X5+n+m(c)Z,(c) < X5+m(c)X5+n(c) (3.5)

for n, m G N. The case where / and g are monomials is the multiplication of those
inequalities with appropriate numbers n, m and c. Bilinearity of the inequality in /
and g, the dominated convergence theorem and (3.5) establish the general case. For the
proof of (3.4), we refer to [15]. (See also [10].) •

Let us apply this formulation to the O(N) Heisenberg model. We choose A and S~l

so large that
A > 1/25 > 3vf3 (3.6)

holds. The condition is sufficient for the arguments in the proof of Lemma 3 in Sect.4.
Let 2% A — J be the operator on CA defined in Sect.2, and Q the orthonormal projection
onto the subspace spanned by { e j } j G ^ defined similarly as (2.12), where A is an
arbitrary subset of A. Then we have

Proposition 3. As functions of complex variables Zj = (2iaJ)~1 (j 6 A),

d*-N>2(2iA) €

and the following functions belong to Ts:
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(2iA - J)Jk\ (Q(2iA - J)Q)~l, teNI\2iAm-Nl\UA - J),

detN/2(Q2iAQ)derN/2(Q(2iA - J)Q),

where the determinants and the inverses of the operators Q(2iA — J)Q and Q2iAQ are
considered as those of the corresponding matrices with the index set A. (See Remark
1.)

Proof. As a function of the complex variables ZJ = (2iaj ) ~ l ,

From the relations

(Q(2iA -

d*N'2(2iA)derN/2(2iA - J) = exp [ f £~-i iTr (J(2iA)-')n] ,

and so on, these quantities are the series of the variables ZJ =(2ia)Jl whose coefficients
are all non-negative since the matrices J and Q have only non-negative components.
And we get

l(Q(2iA - J)Q)^\\s < t(Q(2iA - J)Qy%

" (3.7)

iA - J)\6 < 1/(1 - NWI2

and so on, where we have used the relations IST\6 < | S | * | T 1 ; , |Tr T\s < \A\fTls
and i2M|5 = ^—1, |Q |^ = l>il<J|i<$ = 2i//?. Thus we have the proposition under
condition (3.6). •

4. Estimates of Z(u>)/Z

In this section, we estimate Z(UJ)/Z using the formulation of the preceding section. The
result is summarized in

Theorem 2. For every self-avoiding walk w on the lattice A,

M

We prove the theorem in three steps. First, we perform successive block diagonal-
ization of 2iA - J along the walk w. Next, we shift the integral variables {a,} living
on LJ. And finally, Prop. 2 is applied to get the bound. Let B,C,K and KT denote the
operators

B = Pa, (2iA - J)PW, C = Qw (2iA - J)QW, K = Pw JQW

and the transpose of K, KT = Q& JPW. Then we have the first block diagonalization.
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Lemma 2. The representations

Z(u>) =

Z =

hold, where detB and det(C - KTB~lK) denote the determinants of B and C -
KTB~lK in the sense of Remark I.

Proof Operating Pu+Qu = Id to 2iA — J from both sides and diagonalizing blockwise
by the triangular matrices Id — KTB~l and Id — B~lK, we obtain

2iA - J = B + C - K - KT

= (Id - KTB~l)(B + C- KTB-lK)(Id - B~lK), (4.2)

or equivalently

_( I 0\ (B 0 Wl -B~lK
-\-KTB~l 1M0 C-KTB-lK){0 1

on (PUJCA) 0 (QUJCA) in the block matrix notation used in [10, 11]. For B~\ recall
Remark 1 and Prop. 3. Since the determinants of the first and the third factors of (4.2)
are 1, we have

dct(2iA - J) = detB det(C -KTB'lK). U

Next, we diagonalize C — KT B~x K blockwise by triangular matrices successively
along LJ. For n - 0 ,1 , • • •, |CJ|, Qn denotes the orthonormal projection to the one
dimensional subspace Cew(n> of CA. Let the operator Cn and the function Vn be given
inductively by

Vn = (ew(n), J{B~X + (Id + B-1 J )C-+ \ ( / d + JB-1)) Jew(n^, (4.3)

2iau(n)-Vn '

(4-5)

Then we have the following lemma.

Lemma 3.

det(C - KTB~lK) = J J (2iaw(n) - Vn). (4.6)
n=0

Proof. Put #1 = Qw — Qo, which is the orthonormal projection to the subspace spanned
by { e^d), • • •, e^d^D }. Then we have

Co = C - KTB-lK = QMiA - J - JB~lJ)QM

= (2^(0) - (e^o), JB~l Jeu(O)))Qo -Kx-Kj

= ( Ci ~K*
\ -Kf 2iau(0) - (eu(o), JB '/e^o
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where C\ = R\(2iA - J - JB~lJ)Rx, K\ = RX(J + JB~1J)QQ and its transpose
ifjF = Q0(J + JB~lJ)R\. Let us perform the block diagonalization of Co by the
triangular matrices Id — KfC^~l and Id — C f ^ i :

O o " V -KfCi1 1 A 0 2taw(0) - V o / l o 1 )1 A 0 2taw(0) -

= (I, - ^ C f 1 ) ^ ! + Qo(2iaa,(o) - %))(/d - CrlKx), (4.7)

where Vb = (ewm, J(B~l + (/d + JB"1 J)C1~1(^ + «/^"1))</ea)(0)) and Cf1 denotes
the inverse of the operator C\ in the sense of Remark 1. It is given by the expansion
C^x = (2iATlR\ YOZLo ( ( J + JB-xJ)(2iA)-lRi)n. Note that each component of
C^~l belongs to Ts. In fact, B~l is in T& componentwise, so the expansion consists
of powers of the variables ZJ = (2ia,j)~~l with non-negative coefficients. Furthermore

= <J(1 - 2i//M)/(l - 4i//?J) < oc (4.8)

holds because of (3.6), where we used the estimate (3.7). We get Vb G J7^ and \Vb\s <
$i/2f326/(l-4vf36) < S'1 < |2iaa,(0)| under the condition (3.6) similarly. So, 2iau,(0)-
Vb does not vanish on Dy1'. Thus we can invert (4.7), and obtain

From (4.7), we also have

detCb = (2taw(0) - Vb) detCi. (4.9)

We make a similar procedure with a;(l) instead of u;(0), and so on. In general, we
put Rn = Rn-i — Qn-\ (n = 15 2, • • •), which is the orthonormal projection to the
subspace spanned by { ewM, • • •, e^^}. Then we have

Cn_i = Rn-i(2iA - J - JB'lJ)Rn-i (4.10)

(4.11)

where Cn = iJn(2t-4 - J - JB~lJ)Rn, Kn = i?n(J + JB~lJ)Qn-i and its
transpose i f j = Qn-\(J+ JB~lJ)Rn. Weagain perform the block diagonalization of
Cn-\ by the triangular matrices:

It follows from (4.10) that | C n - i | ^ and |V^-i|a have the same bounds as %C\%& and
!VbI<$ respectively. Hence, 2iaUJ(n^\) — Vn-\ does not vanish. Then we get (4.3), (4.4)
and

detCn-i = (2io(ll(n-i) - Vn-i)detCn. (4.12)

This completes the proof of the lemma. •
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As the second step, let us shift the integration variables living on the walk LJ. Let
the operators Cn , and the functions Vn be defined inductively by

Vn = (e»inh J(B~l + (Id + B-lJ)C-kld + JB~1)) Jewin)), (4.13)

, (Id + C^</(/<* + B-lJ))Qn(Id + (/, + JB-l)jC-*{)
22aw(n)

<?M+ i=0, (4.15)

where n = 0 ,1 , • • •, ||u; ||. Then we have the following lemma.

Lemma 4.

exp

/ We obtain the lemma from Lemma 3 by changing the integral variables. From
(4.3), (4.4), and (4.5), it is obvious that Cn+\ and Vn do not depend on the complex
variables {a^co), • • •, <Mn)}- Let us consider the integration with respect to aw(0) for
fixed { aj}jeA-{a;(0)} G ^i"1 '"1- We shift the integral variable a^o) = aw(0) - Vo/2i,
and then deform the contour of integration with respect to aw(o> from F\ — Vo/2i to
F\. Note that the deformation can be made by avoiding the singularity aw(0) = 0 as in
the proof of the above lemma. It follows from Cauchy's integral theorem that

ZM = [def N»B exp(V2) (2iau(0)r
(N+2)/2 U (2iau(n) - Vn) ~(N+2)/2 ] ,

n=l
(4.17)

where we put the notation a^o) back to a^o). Next, using Fubini's theorem, we
consider the integration with respect to aw(i) for fixed {a>j}jeA-{u(i)} € r j 7 1 ' " 1 . We
perform the shift aW(i> —>• a^\) + Vi/2i, followed by the deformation of the contour of
integration. Note that Vb is changed by this shift. After performing these operations
on variables { a^(0), <Mi) * * > <M|u>|)}» we get the representation for Z(u>). The same
procedure also yields the denominator. •

To finish the proof of the theorem, we apply the inequality (2) to the expression
(4.16). It is seen from (4.13), (4.14), (4.15) that Vn E Ts and Vn contains the term
/?2/2iaU)(n+i). Extracting these terms from Vb, •, Vj^i-i, we have the decomposition

1̂ 1 1̂ 1
exp ( £ Vn/2) J\(2iau(n)r

N'2 = hf,
0 0n=0 n=0

where / G Ts and

h =exp ( 5
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thanks to Prop. 3. Using (2) for the above / , h and

M

we get

n=0

[ A / I

~ N \

Remark 3. The shifts of those integration variables may be interpreted as a renomaliza-
tion of the single spin distributions. The integrand eta>, which comes from the Fourier
transformation of 8(Sj — 1) is replaced by exp(ia,j + (32/4iaj), which absorbs the
complicated effects of the interaction.

Remark 4. A slightly stronger bound holds in Theorem 2. In fact, we note that Vn

contains the terms

Extracting these terms from VQ, •
last step of the above proof:

•, Vju,|_ i, we can get the following bound as in the

Z i u V Z < '

"" N m=l

where r(m, UJ) = JK n E {0,1, • • •, m — 1} |u;(m) — u;(n)| = 1 | , i.e., the number of

times the self-avoiding walk u visits the nearest neighbor points of w(m) before the
hmth step.

5. Lower Bounds of/3C

In this section, we discuss lower bounds of the inverse critical temperatures of the O(N)
symmetric Heisenberg models. From Theorem 1 and 2, we get

0<

Here the summation is taken over all self-avoiding walks starting from / and ending
at m on A. This is a bound of the correlation function of the O(N) spin model by
the generating function of self-avoiding walks that connect the two spin locations with
activity IN/2(P)/I(N-2)/2(P)- It is a generalization of the case TV = 1[6] to all TV. If all
the self-avoiding walks in Z^ connecting I and m are taken into account in the sum-
mation in (5.1), the bound is uniform in A. Then the above inequality also holds for the
thermodynamic limit taken under the free boundary condition. Let iiu be the connective
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constant in the ̂ /-dimensional lattice defined by log fa = lim^oo Z"1 logs}', where s"
is the total number of self-avoiding nearest neighbor walks in Z^ of length / starting
from the origin (see e.g. [17]). Then the correlation function decays exponentially when
the activity IN/I^P)/hN-2)/i(P) is smaller than the inverse of the connective constant

lfi~l. Since the critical inverse temperature pc is defined as the maximum number of
those /? below which the correlation function exhibits exponential decay, we have:

Corollary 1. For the v-dimensional O(N) symmetric Heisenberg model,

pc > inf { p > 01 iiu INI2{P)lhN-2>iiW > 1 }• (5.2)

Let us apply the corollary to one-dimensional cases. The connective constant fi\ is
1. The inequality IN/I(P) < hN-D/iiP) holds for every p > 0 and N e N. So we
recover the fact pc = oo.

For the cases v > 2, the precise values of the connective constants have not been
known, yet. But it is rigorously known that ^2 < 2.69576, //3 < 4.756, ̂ 4 < 6.832
[1], and it is expected that fi2 = 2.638, /z3 = 4.683,/i4 = 6.775 [18]. The numerical
values using Corollary 1 and the above upper bounds and expected values of \iv are
listed in Table 1, and they are in good agreement with experimental results except for
two dimensional cases.

The following properties of the modified Bessel functions can be obtained readily
((5) is proved in the appendix):

(i) Is(x)/Is-i(x) < x/2s, (s > 0, x > 0), (5.3)

(ii) /,(*)//,_!(*) < *^ (s > 1/2, x > 0). (5.4)
s — 1 + Vs2 + x1

Summarizing these arguments, we have the following bounds.

Corollary 2.

(t) pc> N/ii,,, for all AT,

(ii) pc>^N/^l-\) + O(\\ AT->oo,

(iii) pc = 00 for v = 1.

Finally, we mention the two limiting cases N —> 0 and TV —> 00, briefly. For these
limits, we vary N and /? while p = P/N fixed, and investigate N < S^l)S^ >. This
is equivalent to examine < S^S$ > under the normalization S(S2 — N) instead of
S(S2 - 1) and p instead of /? in (2.1), (2.2) and (2.5). From (5.1) and (5), we have

It is known that in the limit N -» 0 the left-hand side converges to the right-hand
side in these inequalties[17]. Hence, our bound is sharp in this limit. The self-avoiding
random walk representation in this paper may be considered as a generalization of the
relation between the O(N) spin model with N = 0,1 and the self-avoiding walks. For
the N -» 00 case, it follows from (5.1) and (5) that
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N-+oo

where the right-hand side decays exponentially if and only if f) < ^ / ( / / J — 1). Thus in
the present method, we unfortunately could not confirm the well-known result /? = oo
for v = 2, which was suggested, e.g. by Ma [16] by the 1/iV expansion. As is seen from
our numerical results, accuracy of our results decreases as N increases.

As a conclusion, we could not prove our long standing conjecture f3c(i/ = 2, N >
3) = oo [19] in the present framework, even if we used the better bound (4.18). If the
conjecture is true after all, we believe that this could be proved by taking more effects of
Vn into our considerations, or by simplifying (renormalizing) walks at longer distance
scales.

Table 1. Comparison of our results with MC Simulations

V

1

2

3

4

N
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

A>
0.7500

1.3000

1.8753

2.4000

0.3000

0.5714

0.8333

1.0909

0.1875

0.3636

0.5357

0.7059

0.1364

0.2667

0.3947

0.5271

01
1.2705

2.4632

3.5581

4.6141

0.3415

0.6838

1.0232

1.3606

0.2018

0.4038

0.6053

0.8063

0.1435

0.2871

0.4305

0.5738

0.3720

0.7368

1.0921

1.4412

0.2078

0.4135

0.6177

0.8206

0.1453

0.2901

0.4343

0.5782

0SAWX
oo

oo

oo

oo

0.3895

0.7996

1.2186

1.6418

0.2134

0.4301

0.6482

0.8669

0.1474

0.2959

0.4448

0.5940

0SAW2
OO

oo

oo

oo

0.3989

0.8201

1.2508

1.6862

0.2168

0.4372

0.6589

0.8813

0.1486

0.2984

0.4487

0.5991

0c

oo

oo

oo

oo

0.4407

1.06

0.2217

0.4542

0.6930

0.9360

0.1503

0.6090

fo, fix, 02'- the lower bounds obtained in [5,10,11] respectively.

0sAWi- the lower bounds obtained by Corollary 1 where the upper bounds of connective

constants/x2 < 2.69576, A*3 < 4.756 and M4 < 6.832 [1] are used.

0sAW2'- the lower bounds obtained by Corollary 1 where the expected values of connective

constants /*2 = 2.638, M = 4.683 and /i4 = 6.775 [18] are used.

pc: data obtained by Monte Carlo simulations except for that of the 2 dimensional Ising

model which is exactly soluble. Data are taken from [2,3,7,8,13,14,21].

Appendix

Here, we prove the inequality (5.4). Substituting Is(x) = YlZ^(x/2)2n+i /n\r(n+s+l),
we see

f(x) = - (s -
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^ X(x/2f ^ *-

n=0 " •* v " " ' n=0

where we have used
bn

< +
2 26n

for 6n > 0 in the n-th term. Choosing bn = s + 2n + 2, we get

\< !r( l)( 2 ) ( 2 + 2) - °"
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