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Abstract: We consider the Schrόdinger operator with magnetic field

1 d

7=1

Under certain conditions on the magnetic field B = curl a, we generalize the
FefTerman-Phong estimates (Bull. A. M. S. 9, 129-206 (1983)) on the number
of negative eigenvalues for — A + V to the operator H. Upper and lower bounds
are established. Our estimates incorporate the contribution from the magnetic field.
The conditions on B in particular are satisfied if the magnetic potentials aj(x) are
polynomials.

Introduction

This paper concerns the Schrodinger operator with magnetic field:

v i n R " ' « ^ 3 , (o.i)( ^
7=1 V l OXJ

where / = \/-T, V : W1 —> ]R is the electric potential and a : W1 —> W1 is the mag-
netic potential.

Let N(λ,H) denote the number of eigenvalues (counting multiplicity) of H
smaller than λ (or in general the dimension of the spectral projection for H cor-
responding to the interval (—oo,λ)). In the case a(jc) = 0, i.e., H = //(0, V) =
—Δ + V, a basic theorem of Cwickel, Lieb and Rosenblum states that

N(λ,-A + V) ^ cn\{(x,ξ)el^n xIFT : \ξ\2 + V(x) <λ}\ . (0.2)

See [Si2, p. 95]. Using a sharper form of the uncertainty principle, C. Fefferman and
D.H. Phong were able to refine the classical estimate (0.2). Indeed, it was shown

1 Supported in part by NSF Grant DMS-9596266
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in [F] that, for p > 1 and λ ^ 0, N(λ, -A + V) is bounded by C-NΌ, where No is
the number of minimal (disjoint) dyadic cubes which satisfy

/ 1 V" 1
dx) tc>0 m<W\ (03)

l(Q) denotes the side length of cube Q and C, c depend only on n and p. A lower
bound was also established. See [F, p. 145, Theorem 6]. The results of Fefferman
and Phong are particularly useful in the cases when the right side of (0.2) becomes
infinite [R, Si3, F].

Concerning the case where the magnetic potential a(x) is present, it is known
that estimate (0.2) still holds for H by the diamagnetic inequality, although one can
not expect N(λ,H(a, V)) S N(λ,H(0, V)). See [A-H-S]. A obvious problem is that
this estimate does not involve the magnetic field.

The purpose of this paper is to generalize the Fefferman-Phong estimate to
the magnetic Schrόdinger operators under certain conditions on the magnetic field
B = curia. We establish upper and lower bounds of N(λ,H) for λ ^ 0. The condi-
tions on B in particular are satisfied if the magnetic potentials cij(x\ j = 1,2,...,n
are polynomials. More importantly, our estimates incorporate the contribution from
the magnetic field in an effective way.

To state the main results, we need to introduce an auxiliary function.

Definition 0.4. For a nonnegatίυe function W, the function m(x,W) is defined by

)
W(y)dy<\},

where Q(x,r) denotes the cube centered at x with side length r.

The function m(x, |B|), which behaves like |B| 1 / 2 in scale, plays a crucial role
in this paper. What makes m(x, |B|) so important is the fact that, under suitable
conditions, we can bound the operator 7/(a, 0) from below by c{m(x, |B|)}2, i.e.,

(tf(a,0)/,/) ^ c(m( ,|B|)/,m( , | B | ) / ) . (0.5)

See Theorem 4.1. One may consider the above estimate, which is proved in
[Sh3, Theorem 2.7] for a more general case, as a form of the uncertainty principle.

We also need to introduce a class of functions which satisfy the reverse Holder
inequality. This class has been studied extensively in harmonic analysis. See [St2].

Definition 0.6. Suppose W e Lfoc(ΈLn) (1 < p ^ oo) and W ^ 0 a.e. on 1RΛ We
say W e (RH)p if there exists Co ^ 1 such that

for every cube Q in IRΛ
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We remark that, if W = \P(x)\a, where P(x) is a polynomial of degree k and
α > 0, then W G (RH)^ and

m(x9W)& E \dζP(x)\™& . (0.8)

See [Sh2].
Let

B(x) = curla(x) = (bjk(x))λύjΛύn (0.9)

be the magnetic field generated by a(x), where

We are now in a position to state the main results of the paper.

Theorem 0.11. Let n ^ 3. Suppose a e C^R 7 7), V e L^WL") for some p > 1.
Also assume that |B| e (RH)n/2 and

|VB(x)| ^ CI{/W(JC,|B|)}3 , (0.12)

w/zere |B| = |B(x)| = Σjk \bjk(x)\- Then, there exist C = C(n) > 0 and c = c(C0,
Ci, w, ^) > 0, swc/z that, for λ ^ 0, N(λ,H) is bounded by C - No, where No is the
number of minimal {disjoint) dyadic cubes which satisfy

(
±-j\V\Pdx) >c, /(β)<4π (0.13)

and

( V/2

(0.14)

Remark 0.15. In Theorem 0.11, we have implicitly assumed that H has a self-adjoint
realization on L2(IR"). Under the assumption that a e C2(IRW) and F G Z^C(RΛ), we
may define the quadratic form

f \ ^ J ) ^ J ) J (0.16)

for / , g e C0°°(R"). The key estimate (see (0.29) and (0.30) below) of this paper
implies that if Mp < γ(n, p, Co, C\) for \λ\ sufficiently large, then q[f,g] is semi-
bounded from below and closable. In this case, H can be extended to the unique
self-adjoint operator associated with the quadratic form (0.16).

Remark 0.17. Note that the conditions |B| G (RH)n/2 and |VB(x)| ^ C{m(x,|B|)}3

in Theorem 0.11 are dilation invariant. Roughly speaking, these two conditions mean
that the values of |B| do not fluctuate too much on the average and | VB| is uniformly
bounded in the scale {m(x, IBI)}"1. Although some condition on VB seems to be
necessary if n ^ 3, the assumption in Theorem 0.11 is more restrictive than one
would hope. Nevertheless, these conditions are satisfied if the magnetic potentials
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aj(x) are polynomials. This follows easily from the estimate (0.8). Moreover, in
this case, the constants Q, C\ depend only on n and the degrees of polynomials.

Remark 0.18. In Theorem 0.11, the condition (0.14) may be replaced by

ί i Y / < ?

l(Qf[^S\B\"dx\ rg 1 (0.19)

for any 0 < q g oo. Indeed, in the proof of the theorem, we will show that
N(λ,H) ^ Cn 'No, where No is the number of minimal dyadic cubes which satisfy
(0.13) and

l(Q) < inf /

 α

| τ t l . (0.20)
y^J xeg m(x9\B\) v J

Since (0.12) implies that |B(x)| ^ C{m(x, |B|)} 2 [Sh4, Remark 1.8], we conclude
that

/ 1 \ V "
KQf TTΓ* I \*\q dx g KQ)2 C sup{m(x, |B|)} 2 ^ α2C ^ 1

\|β| / Q

if α is small.
Note that, if Q is a cube satisfying (0.13) and (0.20) with λ = 0 and p ^ n/2,

then

Ί 2 ~ "

\ Ίi n f , ,„,, \

Thus,

f i F ^ dx>

Summing over all minimum cubes which satisfy (0.13) and (0.20), and using
Remark 0.18, we obtain the following.

Corollary 0.21. Under the same assumption as in Theorem 0.11, we have

for p ^ n/2, where C depends on n, p, Co and C\.
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Clearly, we may replace the domain W1 in (0.22) by the set { I G R " : V(x) < 0}.
In the case p — n/2, this is the classical Cwickel-Lieb-Rosenblum estimate. We
remark that Corollary 0.21 may be deduced directly from estimates (0.5) and the
diamagnetic inequality.

Corollary 0.23. Let λj9 j = 1,..., denote the negative eigenvalues of H. Under the
same assumption as in Theorem 0.11, we have

= ΓJ
J {xeR»:V(x)<0} \m\

for p ^ n/29 where C depends on n9 p, Co, and C\.

dx (α24)

Corollary (0.23) follows from Corollary (0.21) by a simple integration argument
as in the classical case.

Example 0.25. Let B(x) be a constant magnetic field in 1R3. Using Corollary (0.21),
we get

N(09H)ύ T ^ T / \V\pdx p^3/2.
\Άr 2 {xeR3:V(x)<0}

The following lower bound estimate suggests that the upper bound in Theorem
0.11 is almost optimal.

Theorem 0.26. Suppose a € Cι(Rn)9 V e Llc(Ί^n) and V ^ 0 a.e. on W1. Then,
there exists C2 > 0 depending only on n9 such that, if there exists a collec-
tion of cubes {Qk,k = 1,2,...,7Vo}, whose doubles are poίntwise disjoint, with the
properties

( H <α27)

and

then

V/2
( 1 V

l{Qf — S\B\2dx) ^ 1 ,

N(λ,H) ^ No .

(0.28)

The paper is organized as follows. In Sect. 1 we give the proof of Theorem 0.26.
This will be done by constructing a certain subspace of L2(WLn) and using the mini-
max principle. To prove Theorem 0.11, we follow the approach of Feίferman and
Phong [F]. Also see [K-Sa]. The key step, which requires the systematic control
over the magnetic field B, is to establish the following trace inequality:

\V\ \g\2dx Z dx+ \S\g\2dx

where

\ ι / p/1
Mp = sup l(Qf l—f\v\Pdx

Q \\Q\Q

(0.29)

(0.30)
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and the supremum is over all dyadic cubes satisfying

α
l(Q) < inf

Note that (0.29) is equivalent to

/ \V\ |(//(a,0)+ \λ\)-ι/2f\2dx ύC MpJ \f\2dx . (0.31)

Let Kλ(x,y) denote the kernel function of the operator (#(a,0) + \λ\)~112. In Sect. 2
we will show that, for any integer k > 0,

This decay estimate is closely related the lower bound (0.5) for //(a, 0).
In Sect. 3 we establish the trace inequality (0.29) by using (0.32) and techniques

from harmonic analysis. The proof of Theorem 0.11, which adapts the argument in
[F, K-Sa], is given in Sect. 4.

In recent years there has been a great deal of interest in the magnetic Schrόdinger
operator H. For references on the spectral theory of H, we refer the reader to a sur-
vey paper by Mohamed and Raikov [M-R]. We remark that in [Sh4], under certain
conditions similar to that in Theorem 0.11, we study the eigenvalue asymptotics of
//(a, V) with nonnegative potential V. In particular, we show that //(a, V) has a
discrete spectrum if and only if l i m ^ ^ ^ m(x, |B| + V) = oo.

We fix some notation. By dyadic cubes, we mean cubes in W1 whose side have
length 2k, and whose vertices are members of the lattice of points of the form
(m\2k,...,rnn2

k) with k, nij being arbitrary integers. Throughout this paper, unless
otherwise indicated, we will use C and c to denote positive constants, which are not
necessarily the same at each occurrence, which depend at most on Q, C\, n and p.

Finally, the author would like to thank the referee for several valuable comments.

1. The Lower Bound

In this section we will give the proof of Theorem 0.26 stated in the Introduction.

Proof of Theorem 0.26. Suppose that there exists a collection of cubes {Qι =
Q(xi,n):l= 1,2,...,JVb} such that, 2Qh Γ)2Qh = 0 for

(i . i )

and

KQifiΛ- J \B\2dx) ^ 1 . (1.2)
\\ϋι iQ, )

To prove N(λ,H) ^ JVo, by the minimax principle, it suffices to show that, there
exists a subspace J f such that dim ̂ f — No and for any g G Jf ,

Σ / \(-7Γ-aj)β dx+fV\g\2dxίλJ\g\2dx,
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i.e.,

ΣI
j=\ IR"

1 d
dx+\λ\J\g\2dxϊ J\V\\g\2dx,

TR" 1RM

643

(1.3)

since λ ^ 0 and V ^ 0.
To this end, we let, for x G Qι = 2Qι,

and

\ ( n 1

\Ql\ Qt U=l 0

φ(χϊ =7*1 f\Σ(χk-yk)fa>
\{2ι\ Q1 I *=i o

+ /(x -

(1.4)

(1.5)

where x = (xux2,...,xn) and j ; = (^1,^2,...,^).
A computation shows that

α/(x) = hU
dΦι

dxj

and

See [I, p. 365].
Note that, by (1.6), for any g e Cι(WLn),

), for 1 ̂  7 ^ n

Qι

(1.6)

(1.7)

Let

Φ1 \ — JΦι

Now, let φι G C^(2Qι) such that ^ Ξ 1 on β/, 0 ^ ^ g 1 and |V^/|

Jf = SpanjVφ φι, I = 1,2,...,iVb}

If g = eiφ'φh then

1

(1.8)

(1.9)

/ dx+\λ\f\g\2dx
R"

= /
R»

< 2

1 3

R"

e,

where we have used (1.1) and (1.2) in the last inequality.
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Also note that, by (1.1),

J\V\\g\2dx*f\V\dx^C2 rΓ2 \Qι\.
R" Qι

It follows that (1.3) holds for g = eiφlφι if C2 = C2(n) > 0 is sufficiently large.
Since ι/r/'s have disjoint supports, we conclude that (1.3) holds for any g £ Jf. This
completes the proof of Theorem 0.26.

2. Estimates of Kernel Functions

In this section we will establish a size estimate for the kernel function of the operator
(//(a,0) + λ)~χl2 (λ>0). This estimate will be used in the next section to prove
the desired trace inequality.

The following lemma may be found in [Shi, Lemma 1.4, p. 519].

Lemma 2.1. Suppose W E (RH)nβ. Then

(a) m(x, W) « m(y, W) if \x - y\ ύ - A ^ '
fit\ Jv* W )

(b) m(y, W) ^ C{1 + |JC - j |m( *

*F) ^ ^(c) m(x,*F) ^ { 1 +

(d) 1 + I* - y\m(x9 W) ^

/or .some &o > 0.

Since

(#(a,0) + A)"1 / 2 = - J α " 1 / 2 (//(a,0) + A + α ) " 1 da , (2.2)
π 0

we shall first estimate the kernel function Γχ(x,y) of (//(a,0) + λ)~ι.
The following theorem is a special case of Theorem 1.13 in [Sh4].

Theorem 2.3. Let a £ C2(IR") and λ ^ 1. Assume that

(wιlm~"d'fsc'{ι+Wιίm<") {2A)

for any cube Q with l(Q) ^ 1, and

|VB(*)| ^Cλ{m{x,\K\ + λ)γ . (2.5)

Then

\h(χ,y)\ ύ Ck l

\x-y\m(x,\B\

for \x - y\ 5Ξ 1 and any integer k >0.

x -
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Theorem 2.6. Let a G C2(RW). Assume that |B| e (RH)n/2 and

|VB(x)| ^ Cι{m(x, |B|)}3, x e R " .

645

(2.7)

for x, y G IRΛ A > 0 αwd any integer k > 0.

Proof. We derive this theorem from Theorem 2.3 by a rescaling argument.

For 0 < ε < y/λ, let

Then

Note that

where g(x) — / ( | ) . It follows that

, 0) + 4

(2.8)

(2.9)

(2.10)

(2.11)4 ) (#)() ^
Hence, if Γ/(jf,jμ) denotes the kernel function for (77(aε,0)-{- ^ ) - 1 , we have

r ^ ^ ) = fi"-2i7(fijc,e^). (2.12)

Finally, note that, |B ε | e (RH)n/2 with a constant Co independent of ε > 0,

" ( J t |Bi| + ? ) = M ? i B ' + A ) (2 13)

where, Bε = (b)k\ and

by (2.7) and (2.13). Thus, by (2.12) and Theorem 2.3, if |x - y\ ^ \,

Ck ε"-2 1

\εx - εy\m(εx, \B \εx - εy\»-2

- y\m(εx, \Bε - y\"~2y\

{l + \x-y\m(x,\B\+λ)}*'\x-y\"-2'

where we have used (2.13) in the last step.
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The proof is then finished since ε can be made arbitrarily small.
Using (2.2), we may write

= / Kλ(x,y)f(y)dy ,

where
1

Kλ{x,y)=-f*-ι>2Γλ+a(x,y)da.
π 0

Theorem 2.16. Under the same hypothesis as in Theorem 2.6, we have

M ^ Ck 1

- y\m(x, |B| + λ)}k \x - y\«~ι

for x, y e IRΛ λ > 0 and any integer k > 0.

Proof It follows from (2.15) and Theorem 2.6 that

J= A

1 ck
x - y\«-2 {l + \x- y\m(x, | λ)}k

\x -

(2.14)

(2.15)

~ {1 + \x - y\m(x, |B| + λ)}k~2 \x - y\»~ι '

where in the second inequality we have used m(x, |B| + Λ, + α) ^ m(x, \B\ -\- λ) and
m(x, |B| + λ + α) ^ y ^

The theorem then follows since k > 0 is arbitrary.

Remark 2.17. By part (d) of Lemma 2.1, we also have

M ^ Ck 1

x-y\m(y,\B\+λ)}k \x - y\n~λ '
(2.18)

3. A Trace Inequality

This section is devoted to the proof of the following trace inequality.

Theorem 3.1. Suppose that a e C2(W) and V e Lf^W) for some p > 1 Also
assume that |B| G (RH)nβ and

|VB(x)| ^C 2 {m(x, |B|)} 3 on R" .

Then, for g e Q ( R " ) and λ ^ 0,

7=1
— a. λj\g\2dx\, (3.2)
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where

( 1 Y"
Mp = swpl(Q)2 — f\V\Pdx)

and the supremum is over all dyadic cubes Q with the property

l(Q) < inf -=

*zQm{x9\Έ\) + >/ϊ

and C depends on Co, C\, n, p and α (to be chosen later).

It is not hard to see that (3.2) is equivalent to

f\V\\(H + λ)-V2f\2dxϊC MpJ\f\2dx. (3.3)
R" R«

To show (3.3), we note that, by (2.18),

I/OOI dy
•λrmf{χ)\ ύC$

m(y, |B| + λ)\x - y\}k\x - y\"~ι

\f(y)\dy
I co ϊx_

m(y,\B\+λ)

_c j \f(y)\dy
{m{y,\B\+λ)\x-y\γ\x-y\»-

where c$ > 0 is a small constant to be determined later.
The desired estimate of Γ2(|/|) is fairly straightforward.

Lemma 3.4. Under the same assumption as in Theorem 3.1, we have

j\V\\T2f\
2dx^C M^\f\2dx.

R" R"

Proof. Note that, by part (d) of Lemma 2.1,

dy
I {m(y, |B| + λ)\x - y\}k\x - y\"~ι ~ m(x, |B| + λ)

>Λ "~= m(y,\K\+λ)

Thus, by the Cauchy inequality, T2f(x) is bounded by

,1/2

C J , \f(y)\2dy

c 0

\χ-y<-m(.y,\B\+λ)
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It follows that

J\V(x)\\T2f(x)\2dxSCj\f(y)\2dy
JR" JR."

Z Shen

\V(x)\dx

\χ-y\i:
mix, |B| + λ){m(y, |B| + λ)\x - y\}k\x - y\« - 1

We will show that

\V(x)\dx

l*-^l = m(.y, |B|+Λ)
mix, |B| + λ){m(y, |B| + λ)\x - y\}k\x - y\»n-\ =

Clearly, this gives the estimate in the lemma.
To see (3.5), note that, if / is an integer and 2'~ι > c0,

I
\V(x)\dx

\x-y\t
2' mix, |B| + λ){m(y, |B| + λ)|x - y\}k\x - y\»~ι

ιm(y,\B\+λ)

I
\x-y\ε

\V(x)\dx

m(x,\B\+λ)

(3.5)

(2') + " ^ *ω

where 2s(>0 is the ball centered at y with radius C2ι/m(y, |B| + λ) and we have
used part (c) of Lemma 2.1 in the last inequality.

Now, fix y9 we may cover E(y) by a collection of cubes {Qι — β(x/,r/)} with
n = l/m(xh |B| + λ) such that x/ G E(y) and {β(x/,r//5), / = 1,2,...} are disjoint.
Then

E{y)

- 2

J
I Qι

(2')2k° {m(y, |B| + λ)}2

7 )

G R" : |x -
C2<

m(y, |B| + λ)

(2t)2k°+n{m(y, |B| + A)}2"" ,
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where we have used the fact that, for x e

649

m(y, |B| + λ)

C2<

Thus,

r

J

 2*

m(y,\B\+λ)

m(y, |B| + λ) "

\V(x)\dx

k

Equation (3.5) then follows easily if we choose k sufficiently large and sum up
the above estimate over t. This completes the proof of Lemma 3.4.

It remains to show that

/ |Γ,/|2| V\ dx^C Mpj I/I2 dx, (3.6)

where

Our approach to T\f will be similar to that in the case of — A + V, where the
corresponding operator is

-c f

See [F, K-Sa].
Let

V "

where the supremum is over all dyadic cubes such that x E Q and

l(Q) < inf
eQ

Clearly, |F(JC)| g F + (JC). We will show that

\Txf\
2V+dx ύ \f\2dx .

(3.8)

(3.9)

(3.10)
JR." JR."

Note that

By duality, it suffices to show that

/ \T(gV+)\2dx S
IR"

\g\2V+dx, (3.11)
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where

S 0^- (3.12)

Lemma 3.13. Let

Q

where the supremum is over all cubes Q such that x e Q and

Then, for 0 < q < oo,

R" R"

Proof. Without loss of generality, we may assume that / ^ 0 a.e.

Let )8 > 0 and

E = {xel&n:\Tf(x)\ > β}.

By the Whitney decomposition [Stl, p. 167], there exists a collection of disjoint
dyadic cubes {Qh I =1,2, . . . } such that E = (J/ Qi and 5g/ Π (

We will show that, for y > 0 small,

|{̂  e Qι : \Tf(x)\ > 2β, Mf(x) ^ yβ}\ S Cy^\Qt\ . (3.14)

This implies the estimate in the lemma. Indeed, summing over all cubes Qu we
obtain

|{JC e R* : \Tf(x)\ > 2β}\ S \{x e W : Mf{x) > yβ}\

^ | > β}\ .

We then multiply both sides of this inequality by qβq~λ and integrate in β over
(0, oo). The estimate in the lemma follows by choosing y small and bringing the
second integral in the right side to the left.

To show (3.14), we fix Q = Q\ — Q(xo,ro). We need to consider two cases.

We begin with the case when
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Let / = /i + f2, where fx = fχ6Q. Let z e 5g Π (Rw\£). For any
write

651

7\/2)(x) - Γ(/2)(z)

\K m(x,\B\+λ)

fijy)dy
\y-x\»-ι

Note that, by (3.15) and part (a) of Lemma 2.1, m(w, |B| + λ) « m(x0, |B| +
if w G 5β. Thus, for/i,

- ^ l^ \y-A - \z-A ^
m(z, |B

εcnc0

m(z, |

if ε is small.
It follows that

^ CMf{x) .

Similarly,

λ) ~ m(x, |

f(y)dy

S CMfix) .

To estimate I3, note that

x — z\

< c

^ CMf(x).

\y-x\~2Ί(Q)

\y~x\< m(x,\B\+λ)
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This, together with estimates for I\ and I2, shows that

\Tf2(x)\ ^ |7X/2)(z)| + CMf(x) S \T(f)(z)\ + CMf(x)

^ β + Cγβ ^ 3j8/2

if Mf(x) ^ γβ, and y is small.
Thus,

\{xeQ: \Tf{x)\ > 2β, Mf(x) ^ γβ}\

S \{x e Q : |Γ(/0(*)| > β/2, Mf{x) ^ γβ}\

>cnβ}\

JR."

n

k n-\

6Q

\n-\

^ TSΓ \Q\

where we have used the weak-type ( l , ^ γ ) estimate for the fractional integral

(-zl)~ 1 / 2 (see [Stl, p. 119-120]) in the third inequality.
Next, we consider the case when

m(x0, |B| + λ) '

In this case, we bisect Q repeatedly, stopping at Ik = Q(xk,n) iί

εc 0

< m(xk9 |B| + λ) '
(3.16)

We then obtain Q = \JkIk. Since 4 is a maximal element among subcubes which
satisfy (3.16), by part (a) of Lemma 2.1,

- Cmfe,|B|+A) '

Note that, if x G Λ and |.y - x\ < co/m(x, |B| + A),

\y-xk\ ^ \y~
co

λ)
y/nrk S

Ceo

/I)

(3.17)

. (3.18)

Now let 4 = Qixk,Cco/m(xk, |B| + A)). By (3.16), (3.17) and (3.18), \Ik\

C4c0

/(4) - m(xk, |
< inf

= nfχ~)(x) for * e/* .
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It then follows from the weak type ( l ,^rγ) estimates of the fractional integral

(-Δ)-1'2 [Stl, p. 119] that

\{xeQ:\T(f)(x)\ >2β,

£ h : (-A)-V\fχTk)(x) > c β, Mf(x) £ γβ}\

where we have assumed that {x e 4 : Mf(x) ^ yyβ} φ 0.
The proof of Lemma 3.13 is now complete.
Let

M*yf{x) = sup --^— J 1/001 φ , (3.19)

where the supremum is taken over all dyadic cubes with the property

inf C^° . (3.20)
yeQ m(y, |B| + A) V ;

Lemma 3.21. For 0 < # < oo, we have

Proof. The lemma follows from

|{x G Rw : Mf(x) > β}\ S cn\{x e IRW : M**fix) > 2~nβ}\ . (3.22)

We omit the details. See [K-Sa, p. 215] for a similar estimate.
Finally, we have to show

\2dx ύCMpf \f\2V+dx . (3.23)

Lemma 3.24. Suppose that Q is a dyadic cube which satisfies (3.9). Then

i ( l V/P

— / V+(x)dx ί C sup — / \V(xψdx , (3.25)

where the supremum is over all dyadic cubes Q' which contain Q and satisfy (3.9).
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Proof. Let c{Q) denote the supremum in the right side of (3.25) and

/ \VP

γ ' v \ c,^ I Γ IT/Y,,\IPΛ,,r+00 = sup l -
QfCQ,χeQf \\y I Q'

Q' dyadic

Then, for x G β ,

By the maximal theorem,

ύ C c(Q).

Lemma 3.24 is proved.
It follows from (3.25) that

- 5 - / V+(x) dx^C inf V+(x) , (3.26)

i.e., V+(x) is an A\ weight on cubes satisfying (3.9). Thus, if E C Q and Q satisfies
(3.9),

|/7| 1
/ V+(x)dx ^ 1̂ 1 inf V+(x) ^ \E\ inf V+(x) ^ — —r / V+(x)dx .
E

 xeE X(ΞQ C \Q\ Q

Hence,

fE V+dx ^ 1 \E\
( 3 2 7 >JQ V+dx ~ C \Q\

Let

dx, (3.28)

where supremum is over all dyadic cubes with the property

Lemma 3.29. We have

f \Mdy(fV+)\2dx ύC-Lj \f\2V+ dx .
R» IR"
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Proof. Let j be an integer. Suppose Qf's are the maximal element among all dyadic
cubes which satisfy

a n d

Then Qj are disjoint for a fixed j and

It follows that

where

Thus,

{x € R" : M^( /F+) (x ) > 2^} = U βy

e WLn :

E) =

( 3 3 0 )

(3.31)

RΛ
S 4 Σ

j,k

\f\vux

\f\V+dx

V+(Qjk) v+(Qf)

W

where we have used the notation

Now, note that, if c0 is small,

= fV+(x)dx.
E

By (3.26),



656 Z Shen

It follows that

\M*{fV+)\2dx ZC LΣl T ; ^ / \f\V+dx 1

ύC L $ \Mv+(f)\2V+dx,
R"

where

Mv+(f)(x)= sup _ ί _ / | / | F + r f v . (3.32)
Q3x V \Q) Q

Q dyadic

The lemma then follows from the L2 inequality for the dyadic Hardy-Littlewood
maximal function in the space L2(IR", V+dx). We remark that in the dyadic case,
the doubling condition on the measure is not needed.

We now are in a position to give the

Proof of Theorem 3.1. We may assume that λ > 0. By Lemma 3.4 and M\ ^ Mp,

J

By duality, the desired estimate of Tχ{\f\) follows from

/ \T{gV+)\2dx ύC Mpj \g\2V+dx . (3.33)
R" RΛ

See (3.11). By Lemma 3.13, Lemma 3.21 and Lemma 3.29,

/ \T(gV+)\2dx^ C J \M(gV+)\2dx ^ C J \Mdy(gV+)\2dx
R " R M R "

^ C L J \g\2V+dx.
R"

Finally, note that

L = sup l\Q) I -LjV+(x)dx
Q \\Q\Q J

sup IJ-J\v\Pdx)

( l V
g Csup /(β')2 iτ«i / I V\pdx =C Mp,

Q' \\Q\Q' J

where Q and Q' are dyadic cubes satisfying (3.9). The proof is complete.
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4. The Proof of Theorem 0.11

In this section we give the proof of Theorem 0.11 stated in the Introduction.
We begin with a lower bound for the operator //(a, 0).

Theorem 4.1. Under the same hypothesis as in Theorem 0.11, we have, for g G

2

dx.

Theorem 4.1 follows from [Sh3, Theorem 2.7] by a rescaling argument similar
to that in the proof of Theorem 2.6. We omit the details.

Definition 4.2. Let M be a collection of dyadic cubes in IRΛ For g, Q' G ̂ , we
say that Q' is a descendent of Q if Q' is maximal with respect to the property
of being properly contained in Q. We shall say Q branches if Q has at least two
descendent s.

The proof of the following lemma can be found in [F, pp. 156-157].

Lemma 4.3. Suppose $ is a collection of dyadic cubes in IRΛ Let J o be the
subset of & consisting of (i) the maximal cubes in £%, (ii) the branching cubes in
^ , (iii) the descendents of branching cubes in M. Then the number of cubes in ^o
is bounded by Cn N, where N is the number of minimal cubes in $.

We also need a lemma which may be found in [K-Sa, p. 224].

Lemma 4.4. Suppose Q\, ..,Qk are pairwise disjoint dyadic subcubes of a dyadic

cube Q in IRΛ Then there are {not necessarily dyadic or disjoint) cubes I\9...9Im

such that Q\ U ) = 1 Qj = UΓ=i Jι a n d ™ ύCn-k.

For λ 5̂  0 and α > 0, let si — j/( |B|,α, X) denote the collection of dyadic cubes
Q in IRW which satisfy

1{Q) < inf = .
χeQm(x,\B\)+y/\λ\

Clearly, if Q e si, so does any dyadic subcube of Q.
We now give the

Proof of Theorem 0.11 Let J* be the collection of all dyadic cubes Q in si with
the property

(4.5)

Suppose that Q\,Q2,...,Qχ0 are the minimal cubes in ^ . We will show that
there exists a subspace Jf of L2(Kn) of codimension less than or equal to CnNo,
such that, for any g G J^9

7 = 1 JR."

Id " 2

g (4.6)
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By the minimax principle, (4.6) implies that

N(λ,H) ^ CnN0 S CnN0 for λ ^ 0,

where No is the number of minimal (disjoint) dyadic cubes satisfying (0.13) and
(0.14) in Theorem 0.11. See Remark 0.18.

As in [F], we need to introduce some additional cubes QNO+\,QNO+2> - >QMO
to consist of (i) the maximal cubes in &, (ii) the branching cubes in &, (iii) the
descendents of branching cubes in ̂ . It follows from Lemma 4.3 that Mo ^ CnNo

Now, let
Mo

Eo = RΛ\ U Qj,
7 = 1

Ej = β A U Qfc, y = l , 2 , . . . , M 0 . (4.7)

Then Ej are disjoint and K/1 = Uyl'o^y
Let Vj = Fχ^. The same argument as in [F, pp. 157-159] shows that

ί i \/P

KQ)2\TQ^\Vj\pdx\ ύCcx (4.8)

for 0 ^ j ^ Mo and any cube Q in s$. Furthermore, if 1 ύ j ύ M)> (4.8) holds for
any dyadic cube in IRΛ Indeed, if β C β y , then Q e stf since g, £ J / . If g y c g,
(4.8) follows from the fact that supp Vj C Qj. Here we have assumed that p ^ n/2,
since Theorem 0.11 becomes stronger as p decreases.

To prove (4.6), we first estimate the integral over EQ. By (4.8) and Theorem 3.1,
we have

j\V\\g\2dx^CcA Σ
Eo I j=1

1 d
dx+\λ\j\g\2dx\ (4.9)

for g e Cί(R Λ ).
To deal with the case 1 ̂  y ^ Mo, we use Lemma 4.4 to obtain

F• — \\ Tj

^j — U ^ '
k=\

where IJ

k are cubes (not necessarily dyadic or disjoint) of IRΛ Also the number of

cubes in {IJ

k : 1 ̂  j ^ Mo, 1 ̂  ^ ^ ntj} is bounded by CnNo

Thus, as in [K-Sa], if x G // and

we have
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Hence, since (4.8) holds for any dyadic cubes, we may use the trace inequality
for {-Δ)-χl2 [K-Sa, Theorem 2.3] to obtain

/ \V\ \f\2dx^ C J \Vj\ \(-
E, IR"

S Ccx f \Vf\2dx .
E,

Finally, for each Qj, we construct hJ and ΦJ as in the proof of Theorem 0.26,
such that

a(x) = hJ(x) + VΦ7(x) for x G Qj .

See (1.3-1.7).

We define

Je~iφ g(x)dx = 0 for y = 1,2,

Then, Jf is a subspace of ^(IR7 2) of codimension less than or equal to CnN0. If
g e 3^ Γ) Domain(//), we have

/ I V\ \g\2 dx=J I V\ \ge~iφJ | 2 dx ύ Ccx J \V{ge~ίφJ ) | 2 dx
Ej Ej Ej

1=1 Ej

1 d dΦJ\

i dxi dxi /
dx

ί δxi

S
l=\Ej

1 d
aι)g

I OX]

where we have used |h7(x)| ^ Cm(x, |B|) on Q} in the last inequality. This, together
with (4.9), yields that

$\V\\g\2dx
IR"

1 d

I OX]
dx+ $ \m{x,\Yί\)g\2dx+\λ\ $ \g\2dx\

IR" IR"

The desired estimate (4.6) then follows from Theorem 4.1 by choosing c\ sufficiently
small.

The proof of Theorem 0.11 is complete.
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