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Abstract: We present an algebraic approach to string theory. An embedding of
sl(2\l) in a super Lie algebra together with a grading on the Lie algebra determines
a nilpotent subalgebra of the super Lie algebra. Chirally gauging this subalgebra
in the corresponding Wess-Zumino-Witten model, breaks the affine symmetry of
the Wess-Zumino-Witten model to some extension of the N — 2 superconformal
algebra. The extension is completely determined by the sl(2\l) embedding. The real-
ization of the superconformal algebra is determined by the grading. For a particular
choice of grading, one obtains in this way, after twisting, the BRST structure of
a string theory. We classify all embeddings of ^/(2| 1) into Lie super algebras and
give a detailed account of the branching of the adjoint representation. This pro-
vides an exhaustive classification and characterization of both all extended N = 2
superconformal algebras and all string theories which can be obtained in this way.

Contents

1. Introduction 92
2. A Simple Example 93
3. Classification of sl(l\2) Embeddings into Lie Superalgebras 100

3.1. osp(l\2) embeddings: A reminder 100
3.2. sl(l\2) embeddings 100

4. Decomposition of Lie Superalgebras w.r.t. sl(l\2) 103
4.1. Summary on sY(l|2) representations 103
4.2. Products of 57(112^representations 103
4.3. Superalgebras fundamental representations 105
4.4. s/(l|2)-decomposition of the adjoint representation 106
4.5. Case of osp(2\2) subalgebras and indecomposable products 107
4.6. Example 108

5. The Standard Reduction 110
6. The General Construction 115

6.1. Some general considerations 115
6.2. The invariant action 117



92 E Ragoucy, A Sevrin, P. Sorba

7. Quantizing the Model 120
8. Discussion 123
A. Wess-Zumino-Witten Models 125
B. N = 2 Super iV-Algebras from Lie Superalgebras of Rank up to 4 127
References 129

1. Introduction

By now, there is a plethora of different string theories. One way to categorize
them is according to the gauge algebra on the worldsheet. Taking the Virasoro
algebra as gauge algebra, one obtains the bosonic string, the N = 1 super Virasoro
algebra gives rise to the superstring, the Wn algebra yields ^-s t r ings , . . . . In fact,
it might be that to each extension of the Virasoro algebra, one can associate a
string theory1. Given a gauge algebra, there is still a very large freedom which
consists of the particular choice of the realization or string vacuum. Though all
of these string theories are perfectly consistent in perturbation theory, only a very
restricted set gives rise to phenomenologically acceptable theories. However, as long
as we do not understand the non-perturbative behaviour of string theory, one should
study all classical solutions, hoping that this provides hints to the real structure
of string theory. Some glimpse of a more systematic structure was seen in [1],
where it was shown that the bosonic string is a special choice of vacuum of an
N = 1 superstring; the N = 1 superstring is then a special choice of vacuum of the
N = 2 superstring. Similar patterns, involving other types of string theories were
obtained later on. Though quite a fascinating observation, its relevance remains to
be understood (see e.g. the remarks in [2]). A seemingly unrelated approach was
initialized in [3]. There it was shown that the BRST structure of the bosonic string
is encoded in a twisted N — 2 superconformal algebra. This seems to be a universal
feature of string theories: for any string theory, the BRST structure is given by a
twisted extension of the N = 2 superconformal algebra. This has been worked out in
several concrete cases: the BRST structure of the superstring is given by the N = 3
superconformal algebra [4], the Wn strings by the corresponding twisted N = 2
Wn algebra [4] and strings with N supersymmetries have the Knizhnik-Bershadsky
SO(N + 2) superconformal symmetry [5]. Even topological strings exhibit such a
structure [6]. The main idea here is that one adds both the BRST current and
the anti-ghosts to the gauge algebra. The BRST-charge itself is then one of the
supercharges,

^BRST = Go
+ = ^ §dz (cT + . . . ) , (1.1)

while the Virasoro anti-ghost b(z) is the conjugate supercurrent G~(z). This
automatically ensures that T(z) = {^BRST?&(^)} Together this generates the twisted
N = 2 superconformal algebra. For a string theory with a larger gauge algebra, one
gets in this way some twisted extension of the TV = 2 superconformal algebra. Once
the presence of this twisted N = 2 structure is accepted, one might try to use it to
define the string theory. This gives rise to a very algebraic and systematic approach
to string theory. The obvious way to achieve such a systematics is through gaug-
ing Wess-Zumino-Witten models, which is also known as quantum Hamiltonian

1 See however [7] for a potential counter-example
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reduction. It is well known that the reduction of sl(2\l) gives rise to the N — 2
superconformal algebra. Embeddings of ,s7(2|l) in super Lie algebras yield then
all extensions of the N = 2 algebra which can be obtained through Hamiltonian
reduction. Once a particular embedding is given, the extended N — 2 superconfor-
mal algebra is uniquely determined. However, the particular (free field) realization
(or quantum Miura transform) one obtains for this algebra is determined by a choice
of a grading on the super Lie algebra. As we will see, only a very particular grad-
ing allows for a stringy interpretation. This approach to string theory has the great
advantage that it is almost completely algebraic. The calculations are of an algo-
rithmic nature, enabling one to obtain e.g. the explicit form of the BRST current
in a straightforward way (compare this to the usual trial and error method). This
program has been explicitly carried out for the non-critical Wn strings, based on
a reduction of sl(n\n — 1) [4] and strings with N supersymmetries, based on a
reduction of osp(N + 2\2) [5]. In the former case, only classical arguments were
given, while in the latter, at least for N = 1 and 2, the full quantum structure was
exhibited. As N = 2 superconformally invariant models exhibit a very rich structure,
(for an extensive review, see [8]), the full classification of extended N — 2 algebras
obtainable from Hamiltonian reduction is in itself an interesting result. In the present
paper we start in the next section with the simplest example available: the bosonic
string. We show that the BRST structure is indeed given by a twisted N — 2 alge-
bra and we derive it from the reduction of *s7(2|l). This example exhibits already
many of the complications which arise in the general case. Section 3 classifies all
57(2|1) embeddings in super Lie algebras. In Sect. 4, a detailed study is made of
the branching of the adjoint representation of a super Lie algebras into irreducible
representations of the embedded sl{2\\) algebra. This basically determines the field
content of the extended N = 2 superconformal algebra. The results of Sect. 4 are
applied in the next sections. In Sect. 5 we briefly discuss the reduction using the stan-
dard grading. This yields the so-called symmetric realizations of the extended N = 2
superconformal algebra. In Sect. 6 we determine, given some embedding of Λ7(2|1)
in a super Lie algebra, the grading which will yield a "stringy" reduction. We con-
struct the gauged WZW model which describes the reduction. In the next section the
model is quantized and the resulting string theory is discussed. We end with some
conclusions and open problems. In the appendix we summarize some properties of
WZW models.

2. A Simple Example

Before treating the general case, we illustrate the main ideas with the simplest
example: the bosonic string. We give this example in considerable detail as it
exhibits many of the complications which arise in the general case. The string
consists of a matter, a gravity or Liouville, and a ghost sector. At this point,
we do not make any assumptions about the particular structure of the matter
sector. We just represent it by its energy-momentum tensor Tm which gener-
ates the Virasoro algebra with central charge cm. The gravity sector is realized
in terms of a Liouville field ψL, dφL(z\)dφL(z2) = —z^9 with energy-momentum
tensor 7/,:

\ f^^2 (2.1)
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which has central charge cι = 26 — cm. The energy-momentum tensor for the ghost
system assumes the standard form:

Tgh = -2BdC - (dB)C , (2.2)

and has central extension cgh = —26. The total energy-momentum tensor T = Tm +
TL + Tgh has central charge 0. The BRST current

JBRST = C (τm + 7i + ±Γ,Λ + α5(CδφL) + βδ2C , (2.3)

with

(2.4)

has only regular terms in its OPE with itself: /βRSτ(^i)^BRSτfe) = . Note that
this is a stronger statement than nilpotency of the BRST charge =S|R S T = 0 with

^BRST = ^~§ ^ B R S T (2.5)

The total derivative terms in Eq. (2.3), which have no influence on the BRST opera-
tor, have precisely been added to achieve this [3]. Calling G+ = /BRST and G- = B,
one finds that the current algebra generated by T, G+ and G_ closes, provided a

current U is introduced:

T(zx)T(z2) = 2z-2T(z2) + z

T(zx)G+(z2) = z-2

2G+{z2) + z

T{zλ)G^{z2) = 2zf2

2G_(z2) +

T(Zl)U(z2) = ~Cjψzn +z

U{zx)G±{z2) = ±z-2

xG±(z2\ £/(zi)£/(z2) = ^ Γ 2

2 , (2.6)

where U is a modification of the ghost number current:

U = -BC - (xdφL , (2.7)

and

cN=2 = 6β . (2.8)

Upon untwisting Tχ=2 = T — \dU, one gets the standard N = 2 superconformal
algebra with central extension c^=2 = 6/3.

For the critical bosonic string, cm = 25, we get in this way cN=2 — 9. Taking
the Virasoro minimal models for the matter sector:
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one gets

ί ^ (2.10)

In particular, taking (p,q) = (l,k + 2), we get c^ = 2 = 3A/(£ + 2), i.e. the N = 2
minimal models, a fact which was heavily used in [4].

We now turn to the Hamiltonian reduction and show how to obtain the
above from it. The super Lie algebra sl(2\l) has a bosonic part generated by
a 5w(2)Θ u{\) sector: {eΦ,e=,eo,wo} with [e o,e+] = + 2 e Φ , [eo9e=] = -2e= and
[e±,e=] = eo. The fermionic generators, g±, # ± are 57(2) doublets, while # (g)
has eigenvalue -fl (—1) under adWo. The remaining commutation relations are
easily derived from the 3 x 3 matrix representation2 e Φ = en, e= = e2\, eo =
en - e22, u0 = ~en - e2i - 2e33, g+ = en, g- = ^23? fif+ = 3̂2 and ^_ = e3i. The
WZW model, with action κS~[g] on 5/(211) gives rise to affine currents J' =

£ φ e Φ + ^°e0 + E = e = + U°u0 + F+βf+ + F~g_ + F + ^ + + F ~ ^ _ which satisfy the
OPE's3:

E*(zx)E-(z2) = jz~2

2 +z~2

ιE0(z2) ,

E°(zι)F±(z2) = ±λ-z^F±{z2\ E°(zι)F±(z2) = ±W2

ιl

U\zλ)F\z2) = -\z-}F\z2\ t/0(z1)F±(z2) - +^2\

E*(zx)F-(z2) - +X-z-2

xF+(z2) , ^=(zOF+(z2) = +\z~l

1 - i -4- - + 1
- Z 1 2 (Z2Λ KZ\) KZ2)~ 2*(z2) = --z-2

ιF"-(z2χ E={zx)F^{z2) = --z~ιF (z2) ,

(z2) = \z^

F-(zOF+(z2) = + ^ z " 2 - ^Γ2

1£°(z2) + ^ ^ ( z z ) . (2.11)

To perform the Hamiltonian reduction one has to introduce a grading and con-
strain the strictly negatively graded part of the current. This will give rise to a
gauge symmetry generated by the strictly positively graded subalgebra of the su-
per Lie algebra. Usually one takes the grading to be the one given by ^ad^0 [9],

2 ekι is a matrix unit, i e (ekι)rs = kr
3 We use the metric gab = —2str(tatb)
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which, in our case gives,

E° E= U° F+ F- F 4

grade 1 0 - 1 0 1 / 2 - 1 / 2 1/2 -1/2

The constraint one imposes on the affine current is then simply Π<^J — \{e= +
τ#_ + τ#_), where Π<o projects on the strictly negatively graded part of the Lie
algebra and τ and τ are auxiliary fields needed to obtain first class constraints4.
These constraints follow from the action

& = κS~[g] + i - JstrA (j - | e = - | [ e=,τ] ) - ^ /str[e=,τ]3τ , (2.12)

where

τ = τg+ + τg+. (2.13)

The action has a gauge invariance parametrized by h = cxpη, η G Π>osl(2\l) or

g-^g' = hg,

A —• A' = δΛΛ"1 + hAh~ι ,

τ -> x' = χ-Πi_η. (2.14)

Fixing this symmetry by putting A — 0, we get, upon introducing ghosts c =

c φ e Φ + y + # + + y^g+ G 77>o^/(2|l) and anti-ghosts Z? = Z?=β= + i?~^- + β g_ G
Jf7<o5'/(2|1), the gauge fixed action:

K 1
- - — /str[e=,τ]3τ + - — Jstΐbdc , (2.15)

and the BRST charge

\J*)}' (2 16)

where Jgh — \/2{b9c}. Because of the constraints, the original 57(2|1) affine sym-
metry of the WZW model breaks down to an N = 2 superconformal symmetry.
The generators of the N = 2 superconformal algebra are precisely the generators
of the cohomology J>f*(^f,^HR), where $4 is the algebra generated by {b,J =
J + Jgh,τ>c} and all normal ordered products of these fields and their deriva-
tives. In [10], the computation of this cohomology has been done in general.

4 We use a slightly confusing notation in Eq (2 13), as τ denotes both a Lie algebra valued field and
one of its components. The context should make it clear what is meant by τ
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Applying the results and methods from [10], one obtains

97

TN=2 =
2κ

ι c + 1

κ +

+ F+τ
2.

K

Λ k- - I - 1

-5£ —(τdτ - δττ)

G+ =

G- -

c-,(ΰ -ϊrt).

which satisfies the N = 2 superconformal algebra with cN=2
algebra Λ/ has a natural double grading,

(2.17)

-3(l+2/c). The

(2.18)

where in (m,n), m is the canonical grading used in the reduction and m + n is the
ghost number. The auxiliary fields τ are assigned grading (0,0). In [10] it was proven
that the map X —> Π(otoyX9 where JΓ = TN=2, G± or [/, is an algebra isomorphism.
This is the so-called Miura transform. Performing this map, we get the standard free
field realization of the N — 2 superconformal algebra:

TN=2 = dφdφ -

G+ = -φdφ + Vκ+ ldψ ,

G- — —φdφ + Λ/K:+ ldψ ,

U = φφ- Vκ+ l(dφ - dφ), (2.19)

where dφ(z\)dφ(z2) = zj^2, φ(z\)φ(z2) = z^1 and we introduced some simple rescal-
ings:

dφ =

dφ = (2.20)

This provides us with a realization where G+ and G_ are treated on the same
footing. This is the so-called symmetric realization of the N = 2 algebra: both
G+ and G_ are given by composite operators. In order to obtain a stringy in-
terpretation of the reduction, we want to identify G+ with the BRST current
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and G- with the Virasoro anti-ghost, so a single field instead of a composite.
To achieve this we consider a different grading [11], namely according to the
eigenvalues of ^ad e o +ad M o . We obtain for the gradings of the various
currents:

E° E= U° F+

grade 1 0 - 1 0 3/2 1/2 -1/2 -3/2

We follow quite the same procedure as before, but whenever we refer to the grading
on the Lie algebra, we always imply it to be the grading induced by ^adeo +adM o.
Again we constrain the strictly negatively graded part of the algebra:

Π<0J=^(e= + ψg+). (2.21)

The appearance of the auxiliary field ψ is understood as follows. The current F
is a highest si(2) weight and will become the leading term of a conformal current
[10]. But by the same token, F has a negative grading, so it has to be constrained.
Thus we need to constrain it in a non-singular way, i.e. by putting it equal to an
auxiliary field which is inert under the gauge transformations. The action which
reproduces the constraints is easily obtained:

Sf = κS~[g] + — / stvA {j-^e=-^ψ)+-^-f str ΨdΨ , (2.22)

where

A =A*e^ g + g ,

Ψ = ψg+, Ψ = φg- (2.23)

The gauge invariance is parametrized by h = exp/y, η e Π>osl(2\l) or η — η^e^ +

g -^ g' =

A-+A'= dhh~ι + hAh~ι + hAh~ι

ψf
ψ ^ ψf

 = ψ + η~g_ . (2.24)

One immediately sees that the combined requirements of gauge invariance and the
existence of a non-degenerate highest weight gauge, requires the introduction of
the field \j/ conjugate to φ, even if it was not needed for the constraints. As be-
fore, the gauge choice is A = 0. Introducing ghosts c = c φ e Φ + y+g+ +y~g- G

77>OJ7(2|1) and anti-ghosts b = b=e= + β+g+ + β~g_ eΠ<0sl(2\l), we get the
gauge fixed action:

ygf = κS-[g] -f ^ - J str ΨdΨ +7Γ-J stride , (2.25)

and the BRST charge



Strings from N = 2 Gauged WZW Models 99

Again, the affine symmetry of the WZW model breaks down to an N = 2 su-
perconformal symmetry whose generators are the generators of the cohomology
J^*{S^,ΆHR), where si is the algebra generated by {b,J = J +Jgh9ψ, Ψ,c} and
all normal ordered products of these fields and their derivatives. We are now in
the position to use exactly the same methods, i.e. spectral sequence techniques, to
solve the cohomology, provided we consider the double grading (m,«), where m is
induced by the action of ^adβ0 + adWo and m + n is the ghost number. We assign
grading (0,0) to the auxiliary fields φ and \j/. Applying the methods developed in
[10], one arrives at

TN=2 = [E + ψF U U + -E E

κ+1V κ κ

_d£° _ -dϋ° -dϋ
K 4

1 κ / J _ ± 2 Π Π - -

G+ = -^—[F +E ψ--(E° + U)F +F φψ + dF
1 τ~ K \ K

x r ϋ Q τ ' τ Q \ T X + K i x Ί T • 2 ( 1 + K : ) Λ 7 Λ— o{E — U ) ψ ψdψψ H -dψU

G-=φ,

U=-4 (ύ° + ̂ ψiή , (2.27)

which satisfies the N = 2 superconformal algebra with CN=I = —3(1 + 2k). Again,

the Miura transform is given by the algebra isomorphism X —> Πφ^X, where

X stands for the conformal currents. Together with the OPE's ^0(^1)^0(^2) =

— Uo(z\)Uo(z2) = (κ:+ l)/8z^2 and ψ(z\)ij/(z2) — l/κz^2

ι gives the desired realiza-

tion of the N — 2 algebra. Indeed, identifying B = ψ, C = κψ9 dψL = y/8/(κ+ l)L/o

and dφm = iy/$/(κ + 1)^0? and

Tm = -7:dφmdφm + i * &φm , (2.28)
2 /2(+l)

precisely reproduces, upon twisting, the non-critical string theory discussed at the
beginning of this section with

(V̂ TT A ] (2.29)

It is interesting to note that if we take for the matter sector a reduction of the sl{2)
WZW model, one gets for c in terms of the level κsι^) of the underlying sl{2)
WZW model precisely the previous expression for cm, provided one identifies K + 1
with fCy/(2) + 2. The shift can be understood as an additional ghostcontribution to
the ^7(2) central charge. This is not a stand alone case. This program has been
carried out in a few other cases as well: strings with TV supersymmetries have the
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Knizhnik-Bershadsky SO(N + 2) superconformal symmetry and are obtained from
the reduction of osp(N + 2|2) [5]. Classically, it was shown in [4] that Wn strings
have an N = 2 Wn algebra and they are obtained from a reduction of sl{n\n — 1).
We will now turn to a detailed investigation of this construction. In the next sections
we analyze the embeddings oϊ sl{2\\) in supergroups after which we come back to
the construction of string theories.

3. Classification of s/(l|2) Embeddings into Lie Superalgebras

Let ^ be a Lie superalgebra. We want to classify its sl{\\2) sub-superalgebras. As
sl{\\2) admits an osp{\\2) (principal) sub-superalgebra, the classification of sl{\\2)
embeddings is a subclass of osp{\\2) ones. Let us first recall the two fundamental
theorems concerning the classification of osp{\|2) sub-superalgebra [12,13]:

3.1. osp{\|2) embeddings: A reminder
Principal osp{\\2) embeddings in superalgebras. The only simple superalgebras
that admit a principal osp{\\2)-embedding are the sl(n\nάzl), osp(2n\2n d= 1),
osp{2n\2n), osp(2n\2n + 2), or D{2, l α) superalgebras. They all admit a totally
fermionic simple roots system5.

We recall that the principal o^(l|2)-subalgebra of a superalgebra @ possesses
as a simple fermionic root generator the sum of all the & simple fermionic root
generators. It is maximal in 3? (i.e. the only superalgebra that contains the principal
osp{\|2) in ^ is ^ itself). On the opposite, a superalgebra Jf is regular in ^
when its root generators are root generators for ^ : the regular osp{\\2) in ^ is the
"smallest" subalgebra of $.

Classification of osp{\\2) embeddings. Any osp{\\2)-embedding in a simple Lie
superalgebra & can be considered as the principal osp(l\2) of a regular Ή-sub-
superalgebra {of the type given just above), up to the following exceptions:

• For <& = osp(2n ± 2|2«) with n ^ 2, besides the principal embeddings described
above, there exists also osp{\\2) sub-superalgebras associated to the singular
embeddings osp(2k ± l\2k) Θ osp{2n -2k±l\2n- 2k) with 1 ^ k S V^l

• For <& — osp(2n\2n) with n ^ 2, besides the principal embeddings described
above, there exists also osp{\\2) sub-superalgebras associated to the singular
embeddings osp(2k ± l\2k) θ osp(2n -2k^\\2n- 2k) with 1 ^ k ^ [ ^ ] .

3.2. sl(l\2) embeddings. As already mentioned, any ,s7(l|2) sub-superalgebra pro-
vide an osp(l|2)-embedding. Hence, the classification of ιs

i/(l|2)-embeddings will
also be associated to some of the above ^-sub-superalgebra(s). Let us be precise,
we have:

Theorem 1. Let & be a superalgebra. Any sl(\\2) embedding into & can be
seen as the principal sub-superalgebra of a {sum of) regular sl{p\p± 1) sub-
super algebra{s) of y, except in the case of osp{m\2n) {m> 1), F{4) andD{2, l α)
where the {sum of) regular osp{2\2) has also to be considered6.

5 This necessary condition is almost sufficient, since only the sl{n\n) superalgebra has a totally
fermionic simple roots system while not admitting a principal osp{\\2)

6 We make a distinction between the osp{2\2) and sl{\\2) superalgebras: these two superalgebras are
isomorphic, but not the associated supergroups The smallest non-trivial representation for osp(2\l) is
4-dimensional, while it is 3-dimensional for sl{\\2)
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This theorem will be proved using some lemmas that we introduce now.

Lemma 1. The principal osp{\\2) sub-super algebra of sl(n\n±l) can be "en-
larged" to a principal sl{\\2) sub-superalgebra.

Proof. It is obvious from the construction of the principal osp{\\2) sub-superal-
gebra, as it has being presented in [12].

Using this lemma, one can immediately obtain a classification of sl{\\2) sub-
superalgebra into sl(m\n) superalgebras:

Lemma 2. For & = sl(m\n\ the osp{\\2) embeddings classify the sl{\\2) ones.

Proof. One already knows that in sl(m\n), the osp(l\2) embeddings are associ-
ated to (sums of) sl(p\p±l) sub-superalgebras. But from Lemma 1, we know
that these superalgebras admit a principal sl(l\2). As two different osp(l\2) sub-
superalgebras cannot be principal in the same sl(l\2) sub-superalgebra, we deduce
that each osp(l\2) is associated to a different sl(l\2).

Lemma 3. Let $ = osp(2n ± 2\2n) or osp(2n\2n). We consider an osp{\\2)-
embedding classified by a singular sub-superalgebra in <$ (see classification of
osp(l\2)-embeddings). Then, there is no s7(l|2) in & that contains the osp(l\2)
under consideration.

Proof. The proof relies on the decomposition of the adjoint of ^ into osp{\|2)
representations Rj. It has been given in reference [13] and in each case7 it is easy
to see that there is no R\β representation in the ̂ -adjoint. As an sl(l\2) decomposes
into R\ ΘR\β under its osp(l\2) sub-superalgebra (see below), Lemma 3 is clear.

Lemma 4. Let ^ be a regular sub-superalgebra of ^ defining an osp(l\2) embed-
ding in <&. Let {α,} be the set of fermionic simple roots of' Jf, and {βj} the set of
simple roots of Jfo> the bosonic part of Jf. We suppose that the principal osp(l |2)
sub-superalgebra of ^ can be enlarged in g to a sl{\\2) sub-superalgebra, and we
denote by B the sl(l\2)-Cartan generator that commutes with sl(2) C sl(l\2).

Then, [B,E±βj] = 0 and [B,F±Oίi] = ±biF±Oίι with 6,-ΦO.

Proof. #f is regular in ^ , thus the root-generators of J f are root-generators (i.e.
eigen-vector under any Cartan generator) of ^ . As B is a Cartan generator, we
deduce that

[B,F±Oίι] = ±btF±Oίί . (3.1)

The same argument for the bosonic part Jfo leads to

(3.2)

Now, denoting by E± and F± the root-generators of osp{\\2) and by F± the
fermionic roots of s/(l|2), we have

[B,E±] = 0 and [B,F±] = F± - F ± , (3.3)

7 Be careful of a misprint about the boundary values for k in reference [13]
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But we can choose E+ = J ^ Eβ} and F+ — Σi α̂« > w n e r e the sums run over all the
simple roots of Jfo and Jf respectively. Applying the formulae (3.1-3.2) to (3.3)
leads to yj = 0 and fr ΦO.

Lemma 5. Let ^ be a ^-regular sub-super algebra which possesses a principal
osp(l 12). If the osp{\\2) can be enlarged {in $) to a 5 /(l|2) sub-super algebra,
then the totally fermionίc simple root basis of J f does not contain an osp{\\2)-
type root {"black roof).

Proof We prove this lemma ad absurdum. Let αo be a "black" simple root of 2tf.
Then, 2αo is also a (bosonic) root (in Jf) . From Lemma 4, we have [B,E2ao] = 0
and [B,Fao] = boFao with Z?o + O. These two commutation relations are clearly
incompatible, as it can be seen from the Jacobi identity (#,F α o ,F α o ) . Thus the black
root αo does not exist if the Λ7(l|2)-generator B does.

Lemma 6. Under the same conditions as in Lemma 5, the totally fermionίc Dynkin
diagram of 3tf does not contain any "triangle" of roots:

_ a3

a2

where ft + O {i — 1,2,3) represent the non-vanishing numbers of lines.

Proof The existence of the triangle implies that oc\ + 0C2, α2 + α3 and (X3 -f αi are
all bosonic simple roots (for Jfo) Then, Lemma 4, with the help of the Jacobi
identities (#,Fα.,Fα.), i — 1,2,3, constrains the ^-eigenvalues 61,62 and 63 of F α i ,
Fai and Fα 3 to satisfy b\ 4- 62 — 0, 62 -|- 63 = 0 and 63 + 61 = 0 . Again, it is in-
compatible with hi + 0.

Note that the proof relies only on the fact that the sum of any couple of roots
in the triangle is a root: thus, this lemma also excludes D{2,1; α) as a candidate for
sl{ 112) classification8.

Gathering Lemmas 5 and 6, we see that for any superalgebra ^, the regular
sub-superalgebras classifying si'(1|2) embeddings possess a totally fermionic Dynkin
diagram without any black root, nor triangle. Looking at the list given at the begin-
ning of this section, it is clear that only the (sums of) superalgebras sl{n\n ± 1 ) and
osp{2\2) obey these rules. The osp{2\2) sub-superalgebra is isomorphic to sl{\\2) but
gives a different decomposition of the fundamental representation (see below). The
only cases where osp{2\2) appears are9 ^ = osp{m\2n) (with m > 1), G(3), F{4)
and D{2, l α). Lemma 1 ensures that the other sub-superalgebras can indeed be
associated to a 5 /(l|2) sub-superalgebra. Moreover, the only case (including excep-
tional superalgebras) where singular embeddings are required (in the classification

8 We recall that although there exists a N = 4 superconformal algebra based onD(2, l α), it is obtained
from the Hamiltonian reduction of D{2, l α) w r t to regular osp{2\2) subalgebra, and not a (possible)
principal 5/(l|2)-embedding

9Note that, for G(3), the classification of osp{\\2) embeddings done in [13], Table 15, mention the
regular osp{\\2) = B(0,1) and not the osp(l|2) principal in osp(2\2) because these two embeddings are
equivalent
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of osp(\\2) sub-superalgebras) have been treated in Lemma 3. So Theorem 1 is
proved for all the simple Lie superalgebras. It extends trivially to sums of simple
Lie superalgebras.

4. Decomposition of Lie Superalgebras w.r.t. sl(l\2)

4.1. Summary on ,s/(l|2) representations. Denoting by E± and H the sl(2) genera-
tors and B the gl(l) generator that commutes with sl(2) in s/(l|2), the states of an

ιs
i/(l|2)-irreducible representation will be classified according to their //-"isospin" j

and "baryon number" b. One can distinguish:

• Typical representations (b,j) with ό φ ± j

For j ^ 1, they are made with the (2/ + 1 ) states of the s/(2)-representation Θj
with a /^-eigenvalue b, together with the states of two ^y-1/2 representations of B-
eigenvalue b ± \ respectively, and finally the states of the 3ij-\-representation with
^-eigenvalue b. Reducing the representation (bj) w.r.t. its sl{2) x gl{\) subalgebra,
we will note:

(b, j) = \b,j) θ

For j —\, the representation (b, I) reads

'2 2' 1

(4.1)

(4.2)

The dimension of a typical representation (bj) is 87.

• Atypical representations (b =j9j) and (b = —j,j) with j ^ 0
For j φ 0, and using the same notations as above, we have

1
(4.3)

The 7 = 0 atypical representation is just the trivial representation.
The dimension of the atypical representations (±y,y) is 4y + 1.
We want to emphasize that the sign of the U( 1) charge in an atypical represen-

tation has no real meaning: the two representations (±j\j) are related by an outer
automorphism of the *s7(l|2) algebra. We will come back later to this point that has
some consequence in the decomposition of the adjoint representation w.r.t. sl(l\2).

Note that if one decomposes the Λ7(1|2^representations with respect to the
osp(l|2)-sub-superalgebra of sl(l\2), the typical representation (b,j) corresponds
to the sum of two (λ?/>(l|2^representations Rj ®Rj-1/2, while the atypical represen-
tation (±j,j) is just a Rj representation. Let us also remark that the two sl(l\2)-
Casimir operators are zero in an atypical representation.

Finally, we want to stress that the product of two 5 /(l|2)-irreducible representa-
tions is not always completely reducible.

4.2. Products of sl(l\2)-representations. Our aim is to decompose the adjoint rep-
resentation of a simple Lie superalgebra ^ into representations of sl{\\2) considered
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as a sub-superalgebra of ^ . Following the techniques used for the decomposition
of ^ into 6tf/?(l|2^representations, we will start by decomposing the ^-fundamental
representation. Then, performing the product of this fundamental representation by
its contragredient, we will obtain the desired decomposition. One will be helped by
the following formulae [14]:

±ij

ι=\j-k\+\ V V

Vj,k^0. (4.4)

If we consider only products of atypical representations we already know that they
are decomposable into a sum of irreducible 5 /(l|2)-representations (since they are
of the type S± introduced in [14]). Thus, we can focus on the sl(2) Θ gl(l) part
to deduce information about >s7(l|2^representations. Then, using the sl{2) x gl{\)
decomposition given above, it is also possible to compute:

UJ) x (-*>*) = U - hi + k)θϋ - ί , y + i - l ) θ θ ( ; - i , \j - k\).
(4.5)

As examples, we have

UJ) x (-JJ) = (0> V) ω (0, V - i) Φ (o, 2/ - 2)e Θ (0,0),

while

ί\ \\ ί 1 1\
) (4.6)

Considering indecomposable products, we have for instance [14] (0, \) x (0, j):
we will come back extensively on this point in Sect. 4.5.

We will also need to select the (anti)symmetric part of the product of rep-
resentations. For brevity, we will note [{bj)]2

s and [(bJ)~\2

A the symmetric and
antisymmetric part of the product (bj) x (bj). Using the rules given in [12] for
sl(2) Θ gl(l) representations, it is easy to deduce:

For m G N

2m m m

[(m,m) Θ (-m,m)}\ = φ(Q,j) φ (2m + \,2j - I) φ (-(2m +\),2j-\),
7=0 7=1 ; = 1
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2m+l

φ
m

(0,y) φ(2m + \,2j
j=o

f
7=0

2m m—\ m—\
[(m,m)®(-m,m)]2

s = φ(0,y) 0 (2m + 1,2/ + \) 0 (-(2m + \\2j + i)
;=0 7=0 /=0

Θ (2m, 2m) θ (-2m,2m),

[(m + i,m + i)θ(-(ι» + i),m + i ) ] |

2m+l m m
= 0 (0J) 0 (2m + 2,2/ - i)0 (-(2m +|),2/-i)

7=0 7=1 7=1

φ(2m+ l,2m+l)φ(-(2m + l),2m+ 1),

together with:
For j e N/2,

j ) x (±j,j)]s

We will also use:

[O"i,Uil)eO2,|y2|)]i = U\,\JI\)]A®[(J2,\J2\) X

[(7i, \h I )θ(y 2, |Λ I )]g = Kii. \h I) x (7i. L/i I )1SΘ[(Λ, IΛ I) x (72, |ΛI )]s

θ(7i, |7i | )x(72, |72 |) (4.7)

4.3. Super algebras fundamental representations. The techniques for the decompo-
sition of the fundamental representations is the same as in [13]. We start with a
superalgebra ^ that we want to reduce w.r.t. a given ιs /(l|2)-subalgebra, defined
through its principal embedding into a ^-subalgebra Jf. Decomposing Jf7 into its
simple parts $?i : $? = φ z ^ , we associate to each type of 3^z and each type
of superalgebra ^ , a >s7(l|2^representation. Then, we sum these different 57(112)-
representations, and eventually complete this sum by trivial representations, in such
a way that the dimension of the ^-fundamental is recovered.
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For y = sl(m\n) superalgebras, we will get a ( ± | , | ) atypical representation for
each sl(p-\-l\p) sub-superalgebra and a ( ± f , f )π representation for each sl(p\p+l)
sub-superalgebra. We use the superscript π to distinguish the ( ± | , | ) representa-
tions coming from these two types of superalgebras. When the trivial representation
occurs, it will be denoted (0,0) if it is in the sl(m) fundamental representation, and
(0,0Y if it is in the sl(n) one. This superscript π will have deep consequences on
the spin structure of the resulting adjoint decomposition. We repeat that the sign of
the U(l) charge is meaningless (see Sect. 4.4)

For ^ = osp(m\2n) superalgebras, we get a sum ( § , f ) θ ( — § , § ) of atypical
representations (here the sign of the (7(1) charge has been fixed by the reality
condition) for each sl(p + \\p) sub-superalgebra and a sum ( | , | ) π Θ (—f, § ) π of
representations for each sl(p\p + 1) sub-superalgebra. Again, the trivial represen-
tation will be denoted (0,0) if it is in the so(m) fundamental representation, and
(0,0)π if it stands in the sp(ln) one.

4.4. sl(l\2)-decomposition of the adjoint representation. The rules given in Sect. 4.2
do not indicate the statistics of the representation. In other words, when we obtain
a representation (b,j) in the adjoint ^ , we have not yet specified whether the 2j,
Sij-x/i and 2j-\ representation are associated to commuting or anti-commuting
generators of Φ. A natural statistics associate (anti-)commuting generators to (half-)
integers j , but there are some cases where it is the opposite. To distinguish these
two (very different) cases, we will note in the adjoint representation with a prime
(JbJ)' the representation with "unusual" statistics, keeping the form (bj) for the
representations with usual statistics.

Then, the rules to distinguish the two kinds of representations are the same as
the ones given for osp{\\2) representations, i.e.

f f c ^ if 71 +72 G Z
(bιjι)x(b2j2)=\ ' , (4.8)

if 7i +72 eZ

1 , (4.9)

1 . (4.10)
i + Z

Using the rules given above, it is now easy to get the decomposition of the
adjoint from the product F x F, where F is the fundamental representation (decom-
posed into ^/(1|2) representations):

For sl(m\n) superalgebras, the decomposition of the adjoint representation will
be (F x F ) - (0,0) when mφn, and (F x F) - 2(0,0) when m = n, the rules for
the product being given in Sect. 4.2, with the property (p, p) = (—p,p).

Note that the choice between (p\,p2) θ (p2,P2) or (/?i, p\)Θ (—p2, P2) leads
to a very different adjoint decomposition. However, these decompositions are equiv-
alent. Indeed, the change {P2, P2) -^ {—P2, P2) correspond to the following changes
(algebra isomorphism) in the s/(l|2)-generators: Y —•> — Y;F+- —> F++\ F++ —>
F+_; F _ _ - > - F _ + ; F_+ -> - F _ _ ; E±-+E±\ H-+H. This is clearly just
a choice of normalisation and thus corresponds to equivalent ,s7(l|2)-subalgebras.
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Note that in the series si(2), osp(l\2), 57(112), the 57(112) superalgebra is the first
(super)algebra possessing an outer automorphism: this explains why these "multiple
adjoint decompositions" have not being encountered when studying osp(l\2) and
sl{2) decompositions of (super) algebras. In the next section, we show explicitly on
an example how things are going on. It should be clear to the reader that "multi-
ple s/(l|2)-decomposition" will occur only where more than one non-trivial atypical
representation is involved in the fundamental representation.

For osp(m\2n) algebras, the adjoint decomposition will be given by the antisym-
metric product of (p, p) representation, plus the symmetric product of (p, p)π, plus
once the products of the (p,p)'s by the (q,q)π's representations.

For the exceptional superalgebras G(3), F(4) and D(2, l α), a direct calcula-
tion has been done. Note that for D(2,1; α), the decomposition of the three 57(1/2)
embeddings are ulated through the transformations α —> 1/α, — (α + 1), — α/α + 1 re-
spectively, which are indeed outer automorphisms of the superalgebra.

4.5. Case of osp(2\2) subalgebras and indecomposable products. Up to now, we
have studied the embeddings of sl{\\2) into superalgebras. However, 57(112) is iso-
morphic to another superalgebra, namely osp{2\2). As they are isomorphic, one
could think that one has not to distinguish them. However, already at the level
of representations, it is clear that these two superalgebras are distinct, since, for
instance, osp(212) has only real representations, while 57(112) has complex ones. This
distinction appears also here when decomposing the fundamental of an osp(m\2n)
superalgebra w.r.t. osp(2\2). If the sub-superalgebra is an osp(2\2) superalgebra
(instead of a 57(112) one) we will get one (0, \)π representation in the fundamental.
Note that the distinction between the two isomorphic superalgebras osp{2\2) and
s/(l |2) is of the same type as the one introduced in [13] to distinguish between the
5-/(2)-decompositon coming from the algebras A\ and C\ (in symplectic algebras),
Z>2 and 241, or D^ and AT, (in orthogonal algebras).

Thus, considering the decomposition of osp(m\2n) superalgebras, we have to
add the cases where one or several osp(212) appear. For each osp(2\2) subalgebra,
we will have a (0, \)π representation in the fundamental of osp(m\2n). Then, the
decomposition of the adjoint representation will be obtained with the same rules as
given in the previous section.

However, note that the product of two (0, \) representations is not completely re-
ducible. More precisely, the symmetric part of (0, \) x (0, \) contains a (0, 1) repre-
sentation, while the antisymmetric part is non-fully reducible: from the 57(2) Θ #/(l)
decomposition this part looks like (^, \) Θ (—^, \) Θ 2(0,0), but one verifies that
one of the two A)(0) generators is obtained from both the "(5,5)" and " ( — \ , \ ) "
parts by application of negative root generators. Thus, apart from a (0,0) represen-
tation, the antisymmetric part of this product is non-fully reducible. Below, we will
keep the notation [(0, \ )ΫA for the indecomposable part (plus a trivial representation),

[(0, £ ) ] | - (0,1) while (0, ±) x (0, i ) = (0,1) Θ [(0, \)]\ . (4.11)

Therefore, when one decomposes osp(m\2n) superalgebras w.r.t. the diagonal of sev-
eral regular osp(212) subalgebras, one will get an non-fully reducible part. Although
this fact seems quite intriguing, one has to recall that most of the representations
of Lie superalgebras are non-fully reducible [14]. Fortunately, the product of (0, l)π
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with an atypical representation is reducible:

(±jj) x (o, M = (±jj + \ J θ ί ±7,7 - ]λ θ (±7 + ̂ ,7J θ (±7 - ^7j

(4.12)

As an example, let us consider the reduction of osp(4\4) w.r.t. 2 osp(2\2). The
fundamental reads

4 = 2 ( 0 , ί ) π , (4.13)

while the adjoint is

• < 4 I 4 )

We have explicitly checked that the decomposition is really the one given in (4.14).

4.6. Example. Let us treat one of the simplest examples where the problem of mul-
tiple sl{2\\) decomposition occurs, namely the reduction si(4\3) w.r.t. the diagonal
sl(2\l) in 2sl(2\l).

We use the notation βij for the matrix basis (eij\ι = δticδji- m m e fundamental
representation, an element of ^/(4|3) will be represented by an 7 x 7 supertrace-less
matrix. We define as the first 5 /(2|l) subalgebra:

= l-(ehi-e2,2); E™ = eU2; E^ = e2Λ ,

(4.15)

and for the second algebra we take:

F ( 2 ) - en A- F(2) -e xi F(2) - e, v F ( 2 ) - e±n
^ 4 - + — w,4> ^ - j — — ^3,7? Γ—i- — w,3? Γ — ^4,7 •>

H{2) = l-{ex, - β4 f 4); Ef = eχ4; E{? = e4,3 ,

Y{2) = ^3,3+^4,4 + 2^,7). (4.16)

Then, the generators of the diagonal ιs
r/(2|l) superalgebra are defined by10 F =

77(1) _ F(2) a n d j5 = 5 ( i ) + β(2)9 w h e r e τ?(O(jg(O)? / = i? 2 are the fermionic (bosonic)

generators of the two sl(2\l) (4.15) and (4.16). Besides the two highest weights built
on the bosonic roots of the sl{\\2) subalgebras E+(0,1) = e\t2 + 3̂,4 and W\(0,1) =

1 0 The minus sign is for later convenience
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3̂,4 — ei,2> the highest weights for the diagonal sl{2\\) are

) = eh4;

W , 0 ) = ^,4 + ^1,3-^,7; W2(P,0) = e3Λ + eΛt2 - e7t5 9

W3(090) = elΛ + e2,2 + e5,5 + e6,6

W4(0,0) = £3,3 + 4̂,4 + 6̂,6 + 7̂,7

We have quoted in parenthesis the eigenvalues (b,j) of the generator w.r.t. 7 and H
respectively. This corresponds to the decomposition 4(O,l)0 2 ( j 5 | ) 0 2 ( - | 5 | ) 0
4(0,0). It is easily obtained using the decomposition of the fundamental obtained
from two regular s/(2|l)-subalgebras in >s7(4|3): 7 = 2{\, \) Θ (0,0) and computing

7 x 7 - 1 .
Now, instead of starting from (4.16) as the second .s7(2|l), we could have chosen:

Y{2) = -\(eXi + 4̂,4 + 2β7,7). (4.17)

Comparing (4.16) with (4.17), it is clear that the two sl(2\\) are isomorphic. How-
ever, apart from £+(0,1) = e\^ + £3,4 and W(0,1) = £3,4 — βi j 2, the highest weights
of the diagonal s/(2|l) become

>r . l | i )=*. : * ( ΐ ΐj—•••

^2(0,0) = β3,3+£4,4 + ^6,6+^7,7,

which gives the decomposition 2(0,1) Θ (1,1) θ (-1,1) θ (§,5) θ (—1» 5) θ 2

( | , ^) θ 2(—^, ^) 0 2(0,0). As announced, this decomposition is obtained from the

fundamental 7 = (£,£) θ (-5 , 5) 0 (0,0)π.
Thus, we see that starting from 2s/(2|l) in s7(4|3), one can take as the decom-

position of the fundamental either 7 = 2(\, 5 ) 0 (0,0), or 7 = (±, i ) 0 (-5, 5) 0
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(0,0)π, depending on the normalization one chooses. The corresponding adjoint
decomposition will be different but equivalent to the first one.

To conclude, let us add that doing the folding of sl(4\3) to get11 αs/?(3|4), we
have to apply the rules

5_;,5-/ for Uj = 1,2,3,4 ,

euj = (-)i+J+ι en-j n-ί for ij = 5,6,7 ,

eUj = (-)i+J el2-j,5-i for i = 1,2,3,4; j = 5,6,7 .

These rules are clearly incompatible with the first choice of normalisation (4.16),
since they impose Y = Y^ + Y^ = 0. On the contrary, the second choice of nor-
malisation (4.17) survive the folding procedure. Thus, the decomposition of the
osp(3\4) fundamental must be 7 = (±, \) Θ ( - ± , \) Θ (0,0)π. This is an illustration
of the "sign fixing" of atypical representations that occurs in the osp(m\2n) super-
algebras. Moreover, looking at the sl(2\1 ^representation, one realises that we have
the identities (written below for the highest weights, but true for any generator of
the corresponding s/(2|l ̂ representation):

1.1). Λ (-1.1

From these identities, one deduces that osp(3\4) decomposes as ( 0 , 1 ) Θ ( 1 , 1 ) Θ
( — 1 , 1 ) Θ ( 5 , ^ ) Θ ( — \ , \ ) ® 2(0,0). Once more, this result is easily obtained from
the product

5. The Standard Reduction

Consider an embedding of sl{2\\) in some super Lie algebra ^ . We normal-
ize the 57(2) subalgebra of sl{2\\) such that [eo,eΦ] = +2e^\e§,eJ\ = —2e= and
[eφ,e=] = eo The standard grading is nothing but the sl(2) grading, i.e. given by
^adeo. The action

1 / K K \ K

^ 0 = κS~[g] + — JstrA U - -e= [e=,τ]) - j ^ f str[e=,τ]dτ , (5.1)

where

τ G Πι_ <S (5.2)

1 1 Be careful that the sp(4) subalgebra is in the upper left block instead of lower right block
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has a gauge invariance:

δg = ηg9

δA = dη + [η,A],

Sτ = - / I I I / , (5.3)

and η e Π>o
<£. Gauge invariance requires the introduction of the τ field12. The

constraints and the resulting gauge invariance breaks the original chiral affine sym-
metry of the WZW model to some extension of the N = 2 superconformal algebra.
The generators are precisely the gauge invariant polynomials in Π^QJ and τ and
their derivatives. In order to quantize the model, we take A = 0 as a gauge choice.
Upon the introduction of the ghosts c e Π>o

<& and anti-ghosts b e Π<0

<^, we get
the gauge fixed action:

- KS-[g] + ^ / str[τ, β=]δτ + ^ - / str bdc , (5.4)

and the BRST charge

where Jgh — ^{b,c}. The generators of the extended N = 2 superconformal
algebra are now the generators of the cohomology of ΆHR computed on the al-
gebra $0 which is generated by {Z?,J,τ,c}, with J = J - h J g h , and it consists of
all regularized products of the generating fields and their derivatives modulo the
usual relations between different orderings, derivatives, etc. The calculation of this
cohomology proceeds along exactly the same lines as in [10]. To make this pa-
per selfcontained, we summarize the results. The subcomplex J / ( 1 ) generated by
{b.Π^J} has a trivial cohomology / / * ( J / ( 1 ) ; J ) = <C. The only field with negative
ghost number is b. This implies that the full cohomology H*(s/;£HR) is equal to
the cohomology H*(S/;£HR)9 where we introduced the reduced complex si gener-
ated by {/7^oΛτ,c}. The OPE's close on si. The underlying sl(2) grading implies
the existence of a double grading on si:

J*= Θ J*{m,n), (5.6)

m+neZ

where

X e si(m>n) <£> [eo,X] = 2mX and m + n = ghostnumber(X). (5.7)

We assign to τ grading (0,0). The BRST operator itself decomposes into three parts,
each of definite grading: 1HR = -2(i,o) + (̂1/2,1/2) + <%,i) with

.%2,i/2) = - ^ r § str c[e=, τ], (5.8)

1 2 In a Hamiltonian treatment, they are needed to obtain first class constraints
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and from 12

HR = 0 one gets immediately

4,0) = ^0,1) = {̂ (1,0)̂ (1/2,1/2)} = {%!), ̂ (1/2,1/2)}

= 4/2,l/2) + {%D > %0)} = 0 . (5.9)

The filtration Jm,m e \TL oϊ si:

J*m= Θ Θ •<*(*,/)> (5.10)

leads to a spectral sequence (Endr), r ^ 1, converging to H*(si;£). Each term
in the sequence is given by the cohomology of the previous term with a deriva-
tion that represents the effective action of the BRST operator at that level: Er —
H*(Er-ι;dr-\). The first term in the sequence is then Eo = si, do = =2(i,o) One
readily computes £Ί:

C] , (5.11)

the subsequent term has d\ = =2(i/2,i/2) a n d o n e gets:

£ 2 ~ ̂  [Π k e r f l ί f e + (j + ^[τ, [e_, τ]])] . (5.12)

After this the spectral sequence collapses, and we get

H\S/;ΆHR) ^E2= H*{H*(J,Ά(m\l(lβΛI2)). (5.13)

Of course this is only an isomorphism of the cohomologies as vectorspaces.
In order to get the generators of H*(SJ;£HR) we use a generalized tic-tac-
toe construction, which determines the currents up to a scale factor. Indeed if
X{j,-j) belongs to J + f[τ,[e_,τ]] and has fixed grading (j\—j) we obtain the full
generator Xj

Σ X{m,-m) , (5.14)Σ
2m=0

where X(m-m) are recursively determined from

0 . (5.15)

In this way we get as many BRST invariant currents as there are si(2) irreps present
in the decomposition of the adjoint representation. The OPE's of these currents close:
by construction, the OPE of two generators of H*(SJ;£HR) closes modulo BRST
exact terms. However, as we found that the cohomology is only non-trivial in the
ghost number zero sector and as we computed our cohomology on the reduced
complex si which has no negative ghost number currents we get that the OPE's
of the generators of H*(si; ΆHR) close. The quantum Miura transformation follows
for free from this construction. The map Xj —> X(o,o) is obviously an algebra homo-
morphism. In fact it is also an algebra isomorphism. To see this, one only has to
show that for each Xj, X(o,o) is non-vanishing. Consider for this the mirror of the
spectral sequence, i.e. the one which follows from the filtration

s*'m = Θ Θ All) (5-16)
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A small computation teaches us that E\ — 7/*(j/;<2(o,i)) is non-vanishing only for
grades (y, f ) , m ^ 0. We already know that E^ is non-trivial only at ghost number
0. Combining these statements shows that X(o,o) is always non-trivial. Till now we
only used the underlying sl(2) embedding in ^ . However the full 57(2|1) embedding
is relevant in that it guarantees that the resulting algebra is an extension of the
N = 2 superconformal algebra. So what remains to be shown is that the resulting
conformal algebra has an TV = 2 superconformal subalgebra. That this is the case
follows immediately from the lemma [15]:

Lemma 7. If the conformal algebra i^\ is obtained from the Hamίltonian reduction
based on the algebra homomorphism ί\ : 57(2) —>• ^\ and i^2 from i2 • sl(2) —> ̂ 2?
then f ] C f 2 if any of the following two cases are satisfied:

2. There is an algebra homomorphism j : ^\ —> ̂ 2? such that i2 — j °h-

Obviously 2. is satisfied here. It remains for us to determine the central extension
of the algebra. One takes the energy-momentum tensor, improved by a BRST exact
piece as to get it in a Sugawara-like form:

f L _ _ L s t r e SJ _ ^str([τ,ej\dτ)
8xy 4xx(κ + h)

+—strb[eo,dc] — —strZ><9c-f —-stvdb[eo,c] , (5.17)

where y is the index of embedding and one finds

h), (5.18)

where ccτύ is the expected critical charge of the string, i.e. the value of c for which
the conformal anomaly cancels:

Ccrit = Σ (") ( α y ) (12/ + 127 + 2 ) , (5.19)

where the sum runs over all 57(2) representations 2/ + 1 occurring in the decom-
position of the adjoint representation of ^ , α7 is the multiplicity of a representation
2 / + 1 and the phase (—)(α/) is 4-1,-1 resp., if the representation has a bosonic,
fermionic resp., nature. Finally y is the index of embedding. A particularly useful
expression for it is given by

Σ ()ia)J(J + 1)(2/ + 1) (5.20)

Summarizing, we arrive at the following picture. One starts with an embedding of
sl{2\\) in some super Lie algebra ^ . The adjoint representation of ^ decomposes
into irreps of sl{2\\) as

adjoint(^)= © nibJ)(bJ), (5.21)
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with W(6,y ) G N, the multiplicities. Performing the reduction in the way we discussed
above yields an extension of the N = 2 superconformal algebra with central charge
given in Eq. (5.18). The embedded 5"/(2|l) then gives rise to the N = 2 supercon-
formal algebra. For the remainder we get that every si(2\l) irrep (JbJ\ b + ±j,
gives rise to a set of 4 conformal currents (Z,//+,//_, Y) which form a primary,
unconstrained N = 2 multiplet of conformal dimension j and charge 2b. The OPE's
of the untwisted N = 2 generators 7V=2, G± and U with these currents follow from
N = 2 representaiton theory:

TN=2(zi)Z(z2) = hz^Z{z2)+z-2

xdZ{z2),

) = (h +(h

G±{zλ )7(z2) = [h + I + 1 ) Zf2

-1 (V(z2) +
 l-dZ(z2)\ ,

G_(z,)//+(z2) = - (h - I ) zΓ2

2Z(z2) + ZΓ21 (V(z2) - ^

t/(z,)Z(zi) = ^ ' Z ί z j ) , ί/(z!)77±(z2) = (q± l)Z-2

ιH±(z2) ,

£/(z,)F(z2) = hz^Z{z2) + qz~2

x Y{z2), (5.22)

where j = h and q = 2b.
For a typical s/(2|l) representations (7,7) or (—7,7), we get 2 conformal currents

which form a primary chiral or anti-chiral N = 2 multiplet of conformal dimension 7
and charge 27 or —27. E.g. for (7,7), we get currents Z and H-, whose OPE's follow
from Eq. (5.22) by putting b =j (or q = 2A) and setting Y = \dZ and #+ = 0.
Similar statements hold for the (—7,7) case, where q = —2h and one puts H- = 0
and 7 = - i 3 Z .

One more subtlety has to be mentioned here. In the case that 7 = 0 or 7 = 1/2,
the conformal multiplets are not complete. Indeed in the first case, 2 fields of confor-
mal dimension 1/2 and one of conformal dimension 0 (which only appears through
its derivative in the algebra) are lacking, while in the second case one scalar is
missing. This is due to the fact that neither scalars nor dimension 1/2 fermions
can be generated through Hamiltonian reduction. By redoing the previous analysis
in N = 1 superspace, see e.g. [16], one does generate dimension 1/2 fermions, but
the scalars are still missing. However, we can repair this situation by reversing the
Goddard-Schwimmer scheme [17]. They showed that dimension 1/2 and 0 fields
can always be decoupled from the conformal algebra. This transformation turns out
to be invertible and so can be applied here.

Finally, we did not take into account in Eq. (5.21) that for multiple osp(2\2)
embeddings, the adjoint is not fully reducible in terms of .s /(2|l) representations.
Presumably, this will give rise to a new type of N = 2 representations. The study
of those will be reported elsewhere.
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6. The General Construction

6.1. Some general considerations. We leave the standard reduction behind us and
introduce a different grading which will allow for a stringy interpretation of the
reduction. We choose an embedding of »s7(2|l) in some super Lie algebra ^ . The
adjoint representation of <& decomposes into a number of irreducible >s7(2|l) repre-
sentations, see Eq. (5.21). From the example in Sect. 2, we expect 2b to be identified
with the ghost number of the resulting currents. So it is quite natural to focus on
the case where only 57(2|1) representations with b — 0 occur. One finds that this
happens for

1. sl(m\ή)

A principal embedding of ,s7(2|l) in psi(2j + 1|2/) Θqsl(2j\2j + 1), which in
its turn is regularly embedded in sl(m\n) with /?, q ^ 0, j e ^N, m = p(2j +
1) + 2qj and n = 2pj + q(2j + 1).

2. osp(m\2n)

The diagonal embedding of osp(2\Σ) in k osp(2\2) which in its turn sits regu-
larly embedded in osp{m\2n). However, only for k = 1 is the adjoint represen-
tation fully reducible. So we only take k = 1 into account.

To show this, one uses the results of Sect. 4 from which it followed that the
sl(2\l) decomposition of the adjoint of ^ follows from the products (0,1/2)0
(0,1/2), (0,1/2) 0 (±jJ),(jJ) ® (±*,Jfc) and (-jj) 0 (±k9k). Excluding the cases
where non-fully reducible representations occur, we find

0, 0 0 (±jj) = (±jj + 0 Θ (±

UJ)®(-Kk) = φ (y-*,/). (6.1)

From this it follows that b = 0 if only (0,1/2) 0 (0,1/2) and (jj) 0 (-7,7) occur.
For the fundamental representation of sl(m\ή) this implies that only the regular
embedding of psl(2j + 1|2/) θ qsl(2j\2j + 1) should be considered for which the
fundamental representation decomposes as

"* + " = X/,./) θ qUJT (6.2)

From the last equation we get that m = p(2j + 1) + qlj and w = q(2j + 1) + p2j.
A similar analysis applies to the case of osp(m\2n). The exceptional algebras
0 = G(3), F(4) or D(2,l,α) follow from direct inspection. For both G(3) and
F(4), one finds always 57(2|1) representations with Z?Φ0. We take a grading
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given by13 ^ad^0 + /adWo, where / is some positive integer which will be deter-
mined now. An 5"/(2|l) irrep (0,y) decomposes into w(l)Θs/(2) irreps as (0,y) =
\0J) Θ I - \j - \) Θ \\j - \) θ |0,y - 1). After the reduction we expect that for
each sl{2) irrep. there will be one conformal current. The conformal current as-
sociated to the 10,7), with conformal dimension j + 1, should be such that, after
twisting, we can identify it with a total (including matter, ghost and gravity con-
tributions) symmetry current of the string theory. Furthermore we want to identify
the anti-ghost corresponding to this symmetry with the current which is associated
to the I — \j— \) irrep. In order to achieve this we want the highest weight of
\- \j — \) to be of negative grading so that its constraint puts it equal to an
auxiliary field. We can achieve this by choosing / in the grading as / > j m a x — ̂ ,
where ymax is the largest value of j appearing in the decomposition of the ad-
joint of ^ . For14 osp(2\2) ^ osp(m\2n) one gets / = 1 and for sl{2\\) -> psl(2j+
l\2j) ®qsl(2j\2j + 1) --> sl{p(2j + 1) + 2qj\2pj + q(2j + 1)) we get that / = 2/\
For generic15 values of 7, we get that the sl{2\\) irrep (0,y) is 8/ dimensional. If j
in (0,y) is an integer then one finds that 4/ — 1 elements of the representation have a
strict positive grading. This gives us both the dimension of the gauge group and the
number of constraints. Subtracting this from the original number of affine currents,
we are left with 2 currents. However we still have to introduce auxiliary fields of
the τ and the φ,φ type. No fields of the τ type are needed as ϊl^\βTl ιm^e=β — 0.
We only have one affine current which is both a highest sl{2) weight and nega-
tively graded, so one set of φ,φ fields has to be introduced. In total this leaves
us 4 currents, the correct number of degrees of freedom. If j is a half integer we
get a slightly different counting. The gauge group has now dimension 4/. Again we
have to introduce one set of φ,φ fields to account for the negatively graded highest
sl{2) weight state and we also have that Π-\/2Πimade=^ contains two elements,
requiring the introduction of two τ fields. Doing the counting gives us that again, as
it should be, 4 currents are left. We thus come to the following picture. Performing
the reduction with the above grading will yield for each sl(2\l) irrep 4 conformal
currents which form a standard N = 2 unconstrained multiplet. After twisting, we
identify the current associated with \\,\) component of the embedded sl{2\\) itself
with the BRST current. From standard N = 2 representation theory, it follows that
after twisting, each total current of the string theory, associated with the |0,y) com-
ponent of (0,y) is the BRST transform of the corresponding anti-ghost, which is
associated to the | — \j— \) component of (0,y). We briefly return to the general
case where also representations with b φ 0 occur. One expects that the b = 0 sub-
sector will have a direct "stringy" interpretation. However, in order that the BRST
structure closes one needs here the introduction of extra N = 2 multiplets with a
non-vanishing ghost number. It remains obscure how elementary objects with ghost
number greater than one can ever arise in a string theory. So, for the moment we do
not discuss the b + 0 case. We will come back to this case in a future publication.

1 3 Our normalizations are such that for a highest weight state of an .s7(2|l) irrep, t(b,j), l

2jt{bJ) and [uo,t(bj)] = ^t{bJ)

1 4 Here and elsewhere, we use the symbol —> for a principal embedding, and t-> for a regular
embedding

1 5 We do the counting here for generic representations (0,j), the case (0,0) has to be done separately
We leave it to the reader
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6.2. The invariant action. From now on, we only use the grading discussed above
and furthermore, we only consider the cases where sl(2\l) representations occur
which are fully reducible and which have b = 0. The action

^ o = κS~[g] + — JstvA (j - ^e= - ^[e=,τ]) - ^ /str[e=,τ]δτ , (6.3)

where

A G

τ G ΠιΠimaάe+% (6.4)
is gauge invariant:

δτ = -ΠιΠimaάe+η, (6.5)

and η G Π>^. However, as we just discussed (and in the example in Sect. 2), we
have to face the possibility that constraints of the form

+ , (6.6)

arise. In order to avoid this we introduce an extra term in the action of the form

( 6 7 )

where Ψ G 77 <o ϋkerade ^ Of course the action is now not invariant anymore. Ob-

viously one gets non-invariance terms of the form / s t r ^ 1 ^ ) . These can easily be

cancelled by adding a new field Ψ, where Ψ G Π>oΠkQraάe= & which transforms as

δΨ = Πkeτaάe= η . (6.8)

We modify the action to <9*o + ^i? where 6^o is given in Eq. (6.3) and

Sfx = — — r s t r ^ ^ + ^ ^ ΓstrΨdΨ . (6.9)
2πxJ 2πxJ v J

The resulting action is still not quite invariant. Indeed varying ^ o + £f\ under
Eqs. (6.5) and (6.8), yields

+ Seλ) = ^ / strA[η, Ψ] . (6.10)

We can further rewrite this using η = ΠkQraάe= η + 77 i m a d e + η and A = 77kerade= A +
Π[made A. The terms proportional to ΠkQΐaύe_A can be cancelled by modifying the
transformation rule of Ψ while terms proportional to ΠkQΐaάe= η are cancelled by
adding extra terms proportional to Ψ to the action. However, this will leave us
with, among others, a term proportional to

/str(77 i m a d e + A[Πimaάe+ η, ψ])9 (6.11)
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which cannot be cancelled without the introduction of new fields. Introducing new
fields would disrupt the balance of degrees of freedom which could only be restored
by the introduction of a larger gauge symmetry. We will get around this problem
by modifying the definition of Ψ which will be allowed to have a component in
the image of ade=. We will do this in such a way that Ψ still has the same number
of degrees of freedom as if it belonged exclusively to the kernel of ade+ and such
that the highest weight gauge remains non-singular, i.e. /7<o^kerade J=¥0. We split
Π>og in two parts: 77> 0^ = %Θ^\ and similarly for Π<0<g : Π<0^ = # 0 Θ #1
such that # 0 J-^ i and #i_L^0 The action

— —
2πx 2πx J --^- ΓstrA[Ψ9Ψ]9

2πx
(6.12)

where Ψ G ̂ o and Ψ £ ^o is invariant under

δA = dη + [η,A]

δΨ = Π9o(η + [

δΨ = Π9-Q[η9Ψ], (6.13)

provided the conditions

» ! , (6.14)

and similarly for ^o a n d ^ i , are satisfied. The full gauge invariant action used for
the reduction is then simply £f — ^ 0 + ^\ > where ^Q is given in Eq. (6.3) and
ίf\ in Eq. (6.12). It remains now for us to determine <̂o as a function of the choice
of ^ and the embedding.

1. osp(2\2) as a regular subalgebra16 of osp(m\2n).
The adjoint representation of ^ decomposes into (0,0), (0,1/2) and (0,1) represen-
tations of 5 /(2|l). The grading we consider is given by the action of ^adeo + adMo.
It turns out that the conditions (6.14) are satisfied provided one chooses:

and similarly = ^kerad e +
and #i = 77imade=

(6.15)

In order to show this,

it is sufficient to realize that the elements of ^o have charge b = 1/2 and their
grading is either 1/2 or 1. This already implies that [^o>^o] = 0. So condition one,
three and four are satisfied. Furthermore, all strict positively graded elements of ^
have either charge b = 1/2 or b = 0. Finally the only charged elements with grades
1/2 or 1 belong necessarily to ^o From this the third condition follows.

16Again we discard the case where a sum of OJ/?(2|2)'S is embedded In that case we have to deal
with ^/(2| 1) representations which are not fully reducible, a pathology we want to avoid
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2. sl(2\l) as a principal subalgebra of sl(2j + l|2y) or sl(2j\2j + 1).
One can verify that already for 7 = 3/2, the second of the conditions (6.14), gets
violated if one chooses ^o = ΠkQΐade= Π>0^. However, if we choose

^ o = Πkeraάe, ΠkQΐade= Π>0 9 , (6.16)

where ef

= is e= restricted to the sl(2j + 1) subalgebra of sl(2j+l\2j) or j/(2/ |2/+l),
we find that conditions (6.14) are satisfied. Indeed, take first the case of si(2j + 1|2/)
and parametrize it by (4y + 1) x (4/ + 1) matrices where the first 2j + 1 rows and
columns are of a bosonic nature, while the last 2/ rows and columns are fermionic.
With this, one gets

2/+1 2/

eo = Σ 2(y - /? + l)eA P + Σ 2

V 2j-\
e= — Σ eP+l,/? + Σ £2y+/H-2,2y+/?+l ,

/ι=l 7 7 = 1

2;

L̂ = Σ ^ + I , P >

27+1 2y

^o = -2y" Σ ep,p - (2y + 1) Σ ey+\+p,y+\+P > (6.17)
/7=1 /?=1

where e r ? s is a (4y + 1) x (4j + 1) matrix unit: (β r s)^/ = δr,kδs,ι According to
the previous discussion, we choose the grading given by the action of ^adeo +
27*adWo and we find that Π>0^ is generated by e^i with k < I. @o is generated
by {e2y+i,2/+i+/»/> Ξ {l,2,...,2y'}}, and we have e.g. Ψ = Σ p ί 7 ΨPe2j+i,2j+i+p-
With this one verifies that the conditions (6.14) are satisfied. In particular, we have
again that [^o?^o] = 0. The reduction of the adjoint representation is

adjointC?/(27 + l|2y)) = © (0, p). (6.18)

The discussion for ^ = sl(2j\2j + 1) is completely analogous. We represent ^ by
(4j + 1) x (47 + 1) matrices of which the first 27 rows and columns are bosonic,
while the last 27 + 1 rows and columns are fermionic. We have

V ( \\ 27+1
eo = Σ 2 7 - / ? + o eP>P + Σ 2(7 - P + l)e2j+Py2j+p ,

P=\ \ λ) P=i

27-1 2j
e= = Σ β p+l,p + Σ e2j+p+l,2j+P •>

p=l p=\

e= = λ^ e2j+p+\,2j+p ,
p=\

27 27+1

wo = -(27 + 1) Σ eP,P - V Σ e2j+P,2j+P (6.19)
p=\ p=\
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77>o^ is now generated by ekj with 1 ̂  k < I ̂  2/ or with 2/ + 1 ^ i < / ̂
4/ + 1 or 2/ + 1 g fc ̂  4/ + 1 and 1 ̂  / ̂  2/. ^ 0 is generated by {e4j+\,p, p G
{1,2,...,2/}} and the adjoint representation decomposes as in Eq. (6.18).

3. ΛY(2|1) as a principal subalgebra of psl(2j + l\2j) ®qsl(2j\2j + 1).
This case follows immediately from the previous one. The grading is still given
by the action of ^adeo + 2/adMo and ^o is taken as in Eq. (6.16), but now e'= is
e= restricted to the psl(2j+ l)φqsl(2j + 1) subalgebra of ̂ . The adjoint of 0
decomposes as

2/
adjoint(/^/(2y + 1|2/) Θqsl(2j\2j + 1)) = (/? + <?) φ (0,r). (6.20)

/ = 1

4. J / ( 2 | 1 ) as a principal subalgebra of psl(2j + 1|2/) θ qsl(2j\2j + 1), which
in its turn is regularly embedded in sl(p{2j + 1) + 2qj\2pj + #(2/ + 1)).

Again, we choose the action of ̂ adeo + 2yadWo as the grading. The choice of ̂ o
is exactly as in the previous case, i.e. one takes Eq. (6.16), with e'= as e= re-
stricted to the psl{2j + l)(Bqsl(2j + 1) subalgebra of the regularly in ^ embedded
psl(2j + \\2j)® qsl(2j\2j + 1 ) algebra. To show this, one only has to show this to
be true for the part of Φ which does not belong to the regularly embedded p sl{2j +
\\2j) Θqsl(2j\2j + 1) subalgebra. The psl(2j + 1|2/) θqsl(2j | 2/ + 1) subalge-
bra follows from the previous one. Those generators fall (using a slightly abusive
notation) either in a ((±jj), (TjJ)) of an sl(2j + l|2/)<g>.s/(2/+ 1|2/) subalge-
bra, while being a scalar for the other factors of psl(2j + 1|2/) θ qsl(2j\2j 4- 1), or
in a ((±jJ),(Tj,j)π) representation of an .$7(2/ + 1|2/) θ sl(2j\2j + 1) subalgebra.
An explicit parametrization of these two subcases, as we did under case 2, quickly
shows that the choice of ̂ o is consistent with Eqs. (6.14). The adjoint representation
decomposes as

adjoint(j/(p(2/ + 1) + 2qj\2pj + q(2j + 1)))

= (p + q)ώ(0>r)Θ(p(p-l) + q(q-l))®(0,r)Θ2pq®(0,ry . (6.21)
r=\ r=0 r=0

7. Quantizing the Model

Our starting point is the action y 0 + ^ i , where 5̂ o is given in Eq. (6.3) and Sf\
in Eq. (6.12). The gauge invariance Eq. (6.13) is fixed by the choice A — 0. We
introduce ghosts c G Π>^ and anti-ghosts b G Π<Q

(^ and obtain the gauge fixed
action:

5V = ftf-fo] + -^ J stτ[τ,e=]δτ +^-fstrΨdΨ+^f stτb'dc , (7.1)

with the BRST charge Άm\

where ,/gh = ̂ {Z?, c}. The conformal currents are obtained as the generators of

the cohomology H*(srf,ΆHR), where stf is the algebra generated by {b,J =
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J -|-./g h,τ, Ψ, Ψ,c}. Every field has a double grading (m,n), where m is the grad-
ing used in the reduction and m + n is the ghost number of the field. The fields
τ, Ψ and ?F have grading (0,0). Again the BRST operator decomposes into pieces
of definite grading. A novel feature which appears here is the fact that in gen-
eral there will be more than 3 pieces! A similar situation occurred in the con-
struction of topological strings from Hamiltonian reduction [6]. We decompose
1HR as SLHR = £ψ + % o ) + -2(1/2,1/2) + % i ) , where Άψ is the Ψ dependent part
of &HR and the remainder of the decomposition is as in Eq. (5.8). If *F has gradings
—1/2, — 1,...,—«max, then Qψ decomposes as

The nontrivial action of ΆHR on various fields is tabulated below:

ψ

ψ

J -

J

-\\.e=,τ\

1

b -> Π<0J

2

c^ -cc, (7.4)

where [A,B] stands for

EX Y] = (-){ΛB\XAYB)fϊBtc , (7.5)

with (X^7 5), a regularized product. Using Eq. (7.4), one shows that the cohomology
H*(S#,£IHR) is isomorphic to H*(S/9ΆHR), where si is a reduced complex generated
by {IJ^QJ,T, Ψ, Ψ,C}. The double grading introduced before, carries over to the
reducecΓ complex:

Si= 0 0 sfip,-p+m) (7-6)
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We introduce a filtration, which in the case of nmax ^ 1 is given by

otherwise
(7.8)

The rest is now quite standard. One sets up a spectral sequence (Er,dr),r ^ 1,
which in the first case collapses after two steps: E2 = £Όo, and in the second case
after 2nmax steps: i?2«max =^oo The actual computation is quite involved. As an
example we explicitly compute the sequence for the case of a regular osp(2\2)
embedding. In that case one deals only with (0,0), (0,1/2) and (0,1) irreps of
57(2|1). As explained, we have that the grading is given by the action of ^adeo +
adMo, and the choice for ^ 0 and ^S\ is given in Eq. (6.15). From this one gets that
^o has elements of grade 1/2 and 1 only and so it follows that ΆHR = <%,o) +
=S(i/2,i/2) + =2(o,i)? where we absorbed the Ψ dependent parts of appropriate grading
in J(i,o) and J(i/2,i/2) Using Eq. (7.4) one finds:

Ex = H*(E0; do) = H\J : % 0 ) ) = ^( Πι c) 0 ^ / ( ^ ) 0 J/( Π± Ψ) 0 s/(τ)

0^(^kerade+ ^^0 (j-^[Ψ9Π-\ Ψ] + [L O Π^ J, Π_X ψ]) ) , (7.9)

where L is defined by

L o ad e = = Πim a d e + , ad e = o L = 77 im a d e = . (7.10)

Subsequently we get

E2 = Eoΰ=H*{Eλ;dλ) = H*{Eλ;Ά{hA))

Πi0 (j + ^[τ, [e=,τ]] - | [ 7 I , IF,77_1 f ]

+ (7.11)

The full generators are then obtained by a generalized tic-tac-toe construction.
Finally for (0,1/2) and (0,0) multiplets, we introduce scalars and fermions to
complete the superconformal representations through a reversed Goddard-
Schwimmer mechanism as was explained in Sect. 5.

However, one more point remains to be clarified. As advertised before, we would
like to identify the generators (which are already BRST invariant) i7kerade Π<0

(Ψ + [τ, Ψ]-\- contributions arising from the inverse Goddard-Schwimmer mech-
anism) with the anti-ghosts. An anti-ghost is a simple field, while the previous
expression contains composite terms albeit of a very simple nature. This problem
was solved in [5] through the introduction of a similarity transformation generated
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by S = expi? with

R oc — : § (Ψ[τ, Ψ] + contributions arising from the

inverse Goddard-Schwimmer mechanism) . (7.12)

8. Discussion

In this paper we classified all possible embeddings of si(2\l) into super Lie al-
gebras. This classification is equivalent to the classification of all extended N — 2
superconformal algebras which can be obtained from Hamiltonian reduction. While
a specific embedding fixes the conformal algebra, including the value of the cen-
tral charge, completely, the particular realization of that algebra is only determined
once a grading on the super Lie algebra has been chosen. The canonical grading,
which is just the sl(2) grading inherited from the embedding, yields the standard or
symmetric realizations. Twisting or modifying the grading by adding a multiple of
the ι/(l) charge to the .$7(2) grading results in realizations which allow for a stringy
interpretation. After the reduction we are left with the N = 2 superconformal cur-
rents together with a set of N = 2 multiplets each of which generically contains four
currents which yields some extension of the N = 2 superconformal algebra. The cur-
rents fall generically (we will see that chiral and antichiral multiplets do not have to
be considered) into unconstrained N — 2 multiplets each containing four currents,
say Y(x), H+(x\ H-(x) and Z(x) of conformal dimensions h + 1, h + 1/2, h + 1/2
and h. Twisting amounts to replacing Y(x) by X(x) = Y(x) + \dZ{x). The OPE's
of the twisted N — 2 subalgebra itself were given in Eq. (2.6). The OPE's of
T = TN=2 + \dU, G± and U with X(x),H+(x), H-(x) and Z(x) follow imme-
diately from Eq. (5.22). We give the most significant ones:

Γ(z, )X(z2) = (h + 1 - I ) z^X(z2) + z^dX(z2) ,

T(zλ)H-(z2) = (h + 1 - I ) zf2

2//_(z2) H-z^aff-fe) ,

G+(z, )H-(z2) = [h + I ) z^Z{z2) + z^X(z2),

U(Zι)X(z2) = (h + I ) zΰ2Z(z2) + qzύιX(z2) , (8.1)

If now, G- and all fields of the //_ type are realized as single fields, something
which was achieved in this paper, then we can view the above system as a string
theory. Indeed Ά,

Ά=^.§dzG+(z), (8.2)

is the BRST charge, satisfying =22 = 0. The G_ current and all currents of the //_
type are the anti-ghosts. The total symmetry currents (matter + gravity + ghosts)
are the energy-momentum tensor T = 7V=2 + \dU and the currents of the X type.
One notices that w.r.t. the twisted energy-momentum tensor X has become primary,
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this in contrast with the situation of Y vs. 7#=2. One verifies from Eq. (8.1) that
they are indeed the BRST transform of the corresponding antighosts:

Γ = [ J , G _ ] + X = [Ά9HJ\±. (8.3)

However, one more restriction follows. We saw that U has, in leading order, the
interpretation of a ghost number current. So we should consider those reductions
where in Eq. (8.1) only q = 0 appear. This is equivalent to restricting to those
57(2|1) embeddings where in the decomposition of the adjoint representation, only
sl(2\l) irreps (bj) with b = 0 occur. They were classified in Sect. 6. The question
which obviously arises is: given an sl{2\\) embedding, which string theory do we
describe? It is straightforward to see that for the two main cases we obtain the
following pattern:

I. sl(2\l)^psl(2j+l\2j)Θqsl(2j\2j+\)^sl(p(2j+l)+2qj\2pj+q(2j+l)).
The matter sector of the string theory corresponds to the reduction:

sl{2) -> psl(2j + \)®qsl(2j + 1) - * sl(p(2j + l)\q(2j + 1)). (8.4)

II. osp(2\2) ^ osp{m\2n).
The matter sector is now given by the reduction

sp(2) ^ sp(2n) ^ osp(m - 2\2n). (8.5)

A very interesting open question remains: which string theories arise from the reduc-
tion of Z)(2, l,α)? One would expect N = 2 strings. However in [5] it was shown
that the standard N = 2 strings arise from the reduction of osp(4\2) which turns out
to be isomorphic to £>(2, l,α) with α = 1. Presumably, one will get a new type of
N = 2 string. In view of the very particular properties of N — 2 strings [18], this
case definitely needs further investigation. Work in this direction is in progress [19].

Explicitly worked out examples of the general method developed in this pa-
per can be found in the literature. In [4] e.g., classical Wn strings were obtained
from a reduction based on sl{2\ 1) —• sl(n\n — 1). The quantum structure can now
also be obtained following the strategy developed in the previous section. In [5],
Λf-extended superstrings were obtained from the reduction osp(2\2) ^ osp(N + 2|2).
One can now wonder whether, in the case of an embedding where the adjoint rep-
resentation decomposes into sl(2\ 1) irreps (b,j), where b is not necessarily zero,
some stringy interpretation can still be given. Similarly, another point of interest
is the occurrence of non-fully reducible representations in the decomposition of the
adjoint representations for certain osp(2\2) embeddings. An immediate consequence
of this is that there must exist non-fully reducible N = 2 superconformal repre-
sentations. One might wonder whether such representations might provide clues to
the open problem of finding an off-shell description of certain N — 2 non-linear
σ-models [20]. These questions are presently under study and the results will be
reported elsewhere. Finally, a most interesting point would be to push the present
work further and address questions such as "What is the spectrum of these string
theories?" Using the recent results in [21] it should be possible to obtain at least
the partition function explicitly.
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A. Wess-Zumino-Witten Models

We briefly review WZW models. Given a super Lie algebra with generators {ta; a G
{l,...,dβ -\-df}}, where dβ (dp) is the number of bosonic (fermionic) generators,
we denote the (anti Commutation relations by

[ta,tb] = tatb - {-iamtbta = f^c , (A.I)

where for ta,(a) — 0 (1) when ta is bosonic (fermionic). We always use that Xta —
taχ9 where X is not Lie algebra valued. The adjoint representation is

Ml Ξ fba

The Killing metric gab is defined by

fdcafC

db(-fC) = -kab , (A.3)

with A, the dual Coxeter number. This is fine for Lie algebras, but for super algebras
the dual Coxeter number might vanish. More generally we have then

str i fe) = [ta]
β

a[tb]
a

β(-)ia) = -xQab , (A.4)

where x is the index of the representation. In the adjoint representation one has
x = h. A contraction runs from upper left to lower right, e.g. AaBa. Raising and
lowering indices happen according to this convention (implying QacQbc = <5£):

Aa = gabAb, Aa=Abgba. (A.5)

We tabulate some properties of the (super) Lie algebras which appear in this paper:

algebra bosonic dβ dp
subalgebra

osp(m\2ή)

D(2,l,α)

sl(m\m)

sl(m\n)

0(3)

/(4)

JO(W) Θ jp(2n)

j/(2)θJ/(2)θJ/(2)

sl(m) 0 j/(m)

j/(w) + j/(/i) + flf/(l)

gf2 θ ψ(2)

50(7) θ J/?(2)

\m{m - l) + «(2«-r

9

2(m 2 -l)

m2 + n2 -\

17

21

- 1) 2mn

8

2m2

2mn

14

16

^ m — « — 1

0

0

m — n

1
4
1
2
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The WZW action κS+[g] is given by

κS+[g] = ̂ J £J

(A.6)

and satisfies the Polyakov-Wiegman identity,

S+[hg] = S+[h] +S+[g] - ^Jstτ(h-ιdhdgg-}). (A.7)

The functional S~[g] is defined by

S-[g] = S+[g-1]. (A.8)

Using the equations of motion

} , (A.9)

which are solved by putting g = g(z)g(z), where dg(z) — dg(z) = 0, one gets the
conserved affine currents

Λ = -^g~ιdg,

Jz = ^Sgg-[ , (A.10)

which generate the affine symmetries

δJl = ψηa + {-γmfa

bcn
hJl, (A.11)

where

dηa = dήa = O. (A. 12)

From

SJz

aω =^~§ dwJz

b(w)ηb(wyz

a(z) , (A.13)

we get the OPE of an affine Lie algebra of level κ\

J?(z)Jz

b(w) = -^ga\z - wΓ2 + (z~ wT\-)ic)ffJe

z(yv) + ••• , (A.14)
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and similarly for Jf. The Sugawara construction for the energy-momentum tensor is
given by

T = 1—^- strΛΛ , (A. 15)

and it satisfies the Virasoro algebra with the central extension given by:

κ{dB-dF)
c= f—. (A.16)

κ + h

B. N = 2 Super i^-Algebras from Lie Superalgebras of Rank up to 4

Table 1. sl{m\n) superalgebras up to rank 4

0 SSA in ̂  Fundamental of ^ Adjoint of ^

( M ) π (0,1)

si{\\2) (i,i;

(0, l)φ 2(1, i ) / Θ2(-i, i ) / Θ 4(0,0)

(0,2)0(0,1)

Θ(-j, j ) ' 0 2(0,0)0 2(0,0)'

( i , i ) 0 2(O,O)π (O,l)0 2 ( i , i ) 0 2(-i, 1)0 4(0,0)

Table 2. osp{2m + 1|2«) superalgebras of rank < 4

osp{\\2n)

osp{3\2)

osp(3\4)

osp(5\2)

SSA in #

0

o^(2|2)

J/(1|2)

o^(2|2)

J/(2|1)

Fundamental of ^

(0,1 )π 0(0,0)

(O,l)π0(O,O)0 2(O,O)π

(0, \ f 0 3(0,0)

Adjoint of ^

(0,1) 0 (0, \)

(0,1) 0(0, j) 0 2(0, \)'

0 3(0,0)0 2(0,0/

(0,1)0 3(0,1)0 3(0,0)
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Table 3. osp(2m + \\2n) superalgebras of rank 4

E Ragoucy, A Sevrin, P Sorba

SSA in <9 Fundamental of 0 Adjoint of

ftsp(3|6)
0(0,0)0 2(0, Of

osp(2\2) (0, i f 0 4(0, Of 0 (0,0)

2osp(2\2) 2(0, i )

(0, i f 0 3(0,0) 0 2(0,Of

0(0,0)0 2(0, Of

0, i f 0 5(0,0)

(- i i f 0 3(0,0)

(0,1)0(1,1)0(-1,1)

(-\,\y θ 4(0,0) 0 2(0,0/

010(0,0)0 4(0, Oy

(-A-, \)r θ 4(0,0)
0,1) 0 3(0, i ) 0 2(0, i y

06(0,0)0 6(0, Oy

0 ( - \9 \ y 0 4(o, o) 0 2(0, oy

(0,1)0 5(0, i ) 0 10(0,0)

Table 4. 05/>(2m|2«) superalgebras up to rank 4

SSA in 0 Fundamental of < Adjoint of

αs/?(4|2) oψ(2|2) (0, i f 0 2(0,0)

osp(2\2) (0, i f 0 2(0,0) 0 2(0, Of

2osp(2\2) 2(0, i f

( i i f 0 ( - i i f 0 2(0,0)

(2,2)θ(-i,i)02(O,Of

(0, i f 0 4(0,0)

(0,1) 0 2(0, i) 0(0,0)

0 4(0,0)0 4(0,0y

i ii , i ) 0 2(-i, i) 0 2(0,0)

i i02(^,^)0 2(-^,^) 0 4(0,0)

(0,1)0 4(0, i) 0 6(0,0)

osp(2\4)

<Mip(2|2)

(\,\)π®{-\,\)π (0,1) 0(1,1)0 (-1,1) 0(0,0)

(0, i f 0 2(0, Of (0,1) 0 2(0, i y 0 3(0,0)

( ,̂ \)π 0 (-3, \)π 0 2(0,0f (0,1) 0 (1,1) 0 (-1,1)

02(i,iy 0 2(-i,iy 0 4(0,0)

(0, i f 0 4(0, Of (0,1) 0 4(0, i y 0 10(0,0)
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Table 5. The exceptional superalgebras
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SSA in sl(l\2) decomposition

G(3) sl(2\l)

F(4)

osp(2\2)

sl(2\l)

sl(l\2)

osp(2\2)

D(2,l;α) osp(2\2)

(-§,§/0(0, o)

8(0,0)

(0,1) Θ (1,1) 0 (-1, \) Θ 4(0,0) Θ 2(1,1/ Θ 2(-l , £/ θ 2(0,1

§£(0,1) 0 2(1,1) φ 2(-l, 1) θ (§, 1 ) 0 (-§,£) 0 4(0,0)

(0,1) 0 (±1(1+2α),£) 0(0,0)

(0,1) 0 (±1(2+ α)/α,£) 0(0,0)

(0,1)0 0(0,0)
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