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Abstract: We present the simplest non-abelian version of Seiberg-Witten theory
Quaternionic monopoles These monopoles are associated with 5/;//7/ί(4)-structures
on 4-manifolds and form finite-dimensional moduli spaces On a Kahler surface the
quaternionic monopole equations decouple and lead to the projective vortex equation
for holomorphic pairs This vortex equation comes from a moment map and gives
rise to a new complex-geometric stability concept The moduli spaces of quaternionic
monopoles on Kahler surfaces have two closed subspaces, both naturally isomor-
phic with moduli spaces of canonically stable holomorphic pairs These components
intersect along a Donaldson instanton space and can be compactified with Seiberg-
Witten moduli spaces This should provide a link between the two corresponding
theories

0. Introduction

Recently, Seiberg and Witten [W] introduced new 4-manifold invariants, essentially
by counting solutions of the monopole equations The new invariants have already
found nice applications, like e g in the proof of the Thorn conjecture [KM] or in
a short proof of the Van de Ven conjecture [OT2] In this paper we introduce and
study the simplest and the most natural non-abelian version of the Seiberg-Witten
monopoles, the quaternionic monopoles

Let (X,cj) be an oriented Riemannian manifold of dimension 4 The structure
group 5(9(4) has as natural extension the quaternionic spinor group Spin11 (4) —
Spin(A) xZ 2 5/7(1)

1 -> 5/7(1) -> Spinh{4) -> 5(9(4) -> 1

The projection onto the second factor Sp(\) = SU(2) induces a "determinant map"

δ Spin'1 {A) -> PU{2)

* Partially supported by: AGE-Algebiaic Geometry in Europe, contiact No ERBCHRXCT940557
(BBW 93 0187), and by SNF, ni 21-36111 92
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A Spinh(4)-structure on (X,g) consists of a S/W7(4)-bundle over X and an
isomorphism of its Sp( 1 )-quotient with the (oriented) orthonormal frame bundle
of (X,cj) Given a Spin1 (4)-structure on X, one has a one-one correspondence
between S/W'-connections projecting onto the Levi Civita connection and PU{2)-
connections in the associated "determinant" 7)/7(2)-bundle The quaternionic mono-
pole equations are

r 04ψ =o

where A is a ,P(7(2)-connection in the "determinant" of the Spinh(4)-structure, 04
is the induced Dirac operator, Γ(F^) denotes Clifford multiplication by the self-
dual part of the curvature, and Ψ is a positive quaternionic half-spinor. The Dirac
operator satisfies the crucial Weitzenboek formula (see Definition 2 2 for notations)

It can be used to show that the solutions of the quaternionic monopole equations are
the absolute minima of a certain functional, just like in the S/?//zc(4)-case [JPW]

The moduli space of quaternionic monopoles associated with a fixed Spin11(4)-
structure ί) is a real analytic space of virtual dimension

mX) = ~-(3p\ + 3<? + 4σ)

Here p\ is the first Pontrjagin class of the determinant, e and σ denote the Euler
characteristic and the signature of X respectively

Note that m^ is an even integer iff X admits an almost complex structure
The moduli spaces of quaternionic monopoles contain the Donaldson instanton

moduli spaces as well as the classical Seiberg-Witten moduli spaces, which suggests
that they could provide a method of comparing the two theories (cf Sect 8) We
study the analytic structure around the Donaldson moduli space

Much more can be said if the holonomy of (X,cj) reduces to U(2), i e , if
(X,y) is a Kahler surface In this case we use the canonical S/?//7ύ(4)-structure with
Σ+ = A00 <]) A02 and Σ~ = A01 as spinor bundles The data of a Spinh(4)-structure I)
in (X,g) is then equivalent to the data of a Hermitian 2-bundle E with det£ = A02

The determinant 0(1)) coincides with the PU (2)-bunάlc P(E) associated with E
A positive spinor can be written as Ψ = φ -f α, where φ G A°(EV) and α G A02(Ev)
are /^-valued forms To give a jPί/(2)-connection in P{E) means to give a
ί/(2)-connection in E inducing the Chern connection in /I 0 2 , or equivalently, a U(2)-
connection C in Ev inducing the Chern connection in Kγ = A20 A pair (C,φ + α)
solves the quaternionic monopole equation iff C is a connection of type (1,1), one
of α or φ vanishes, while the other is re-holomorphic and a certain projective vortex
equation is satisfied This shows that in the Kahler case the moduli space decom-
poses as a union of two Zariski closed subspaces intersecting along the Donaldson
locus The two subspaces are interchanged by a natural real analytic involution
whose fixed point set is precisely the Donaldson moduli space

The projective vortex equation comes from a moment map which corresponds
to a new stability concept for pairs (S,φ) consisting of a holomorphic bundle 3
with canonical determinant det<# = .'/{x and a holomorphic section φ We call such
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a pair canonically stable iff either S is stable, or φή=0 and the divisorial component
Dφ of the zero locus satisfies the inequality

c i ( f v ( / ) v f « ^ ) U [ ( % ] < 0

Our main result identifies the moduli spaces of irreducible quaternionic mono-
poles on a Kahler surface with the algebro-geometric moduli space of canonically
stable pairs

In the algebraic case, moduli spaces of quaternionic monopoles can easily be
computed using our main result (Theorem 7 3) and Lemma 5 5 The moduli spaces
may have several components Every component contains a Zariski open subset
which comes with a free (C*-action Some components consist only of pairs (S\φ)
with & polystable as a bundle, a component of this type can be obtained from
the corresponding (Γ*-space by adding a Donaldson moduli space at infinity In the
other direction, the component is not compact, but has a natural eompaetifieation
obtained by adding spaces associated with Seiberg-Witten moduli spaces The other
components can be naturally compactified by using Seiberg-Witten moduli spaces
in both directions

This eompaetifieation process (in the differential geometric context), as well as
the necessary transversality results will be treated in [T], in the final section of
the present work we state the main results concerning the eompaetifieation and we
sketch some of the proofs

We like to point out that quaternionic monopoles are the simplest non-abelian
examples of the general concept of G-monopoles, where G is a compact Lie group
with a central involution / G-monopoles are associated with pairs consisting of a
Spin(Λ) Xz 2 G -structure on (X,y) and a unitary representation σ G —> U(V) with
σ(ι) — —id; Under a certain non-degeneracy condition on σ, the corresponding
Weitzenbόck formula gives an a priori #°-estimate for the spinor component of a
G-monopole This estimation leads to Uhlenbeck-type results Details will appear
in [T] '

1. Spin11 -Structures

The quaternionic spinor group is defined as

Spin11 = Spin x% 2 Sp( 1) = Spin x% i SU(2),

and fits in the exact sequences

1 -> Sp(l) -• Spin'1 -^ SO — 1 ,

1 -> Spin -> Spin11 -U PU{2) -> 1 (1)

These can be combined in the sequence

1 -> TLjl -> Spin11 -^U SO x PU{2) -> 1 (2)

Άftci having completed oui lesults we icceived a manuscript by Labastida and Maπno [LM] in
which lelated ideas aie pioposed fiom a physical point of view, and physical implications aie discussed
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In dimension 4, Spin'1 (4) has a simple description, coming from the splitting
Spin{4) = SU(2) x SU(2)

S p . M ) = SU(2) x 5*7(2) x SU(2)

with Έ/2 — ((—id, —id, —id)) There is another useful way to think of Spin'1 (4) let
G be the group

G '= {(a,b,c) e ί/(2) x U{2) x ί/(2) | detα = detb = det c}

One has an obvious isomorphism Spinh(4) = G/S\ and a commutative diagram with
exact rows

1 —> Έ2 —> SU(2) x S£/(2) x SU(2) —> Spinh(4) —> 1

(3)

1 — > Sι — > G — > Spinh(4) — > 1

Definition 1.1. Let P be a principal SO-bundle over a space X A Spinh-
structure in P is a pair consisting of a Spin11 bundle Ph and an isomorphism
P ~ Ph xπ SO The PU(2)-bιmdle associated with a Spinh-structure is the bundle
Ph x() PU{2)

Lemma 1.2. A principal SO-bundle admits a Spin11-structure iff there exists a
PU(2)-bundle with the same second Stiefel Whitney class

Proof This follows from the cohomology sequence

-> H\X,Spinh) -> Hι(X, SO x PU(2)) Λ H2(X,Z/2)

associated to (2), since the connecting homomorphism β is given by taking the sum
of the second Stiefel-Whitney classes of the two factors. •

In this paper we will only use Spin11 -structures in 5(9(4)-bundles whose second
Stiefel-Whitney class admit integral lifts Then we have

Lemma 1.3. Let P be a principal SO(4)-bundle whose second Stiefel-Whitney
class W2(P) is the reduction of an integral class

Isomorphism classes of Spin1\4)-structures in P are in 1-1 correspondence with
equivalence classes of triples consisting of a Spin:(4)-structure Pc/S] ^P in P, a
U(2)-bundle E, and an isomorphism detPc ^ det£, where two triples are equivalent
if they can be obtained from each other by tensoring with an S] -bundle

Proof The cohomology sequence associated with the second row in (3) shows that
Spin '-structures in bundles whose second Stiefel-Whitney classes admit integral lifts
are given by G-structures modulo tensoring with S] -bundles On the other hand, to
give a G-structure in P simply means to give a triple (Σ^,Σ~ ,E) of £/(2)-bundles
together with isomorphisms

detΓ h ~ det IT ~ det£
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This is equivalent to giving a triple consisiting of a Spin1 {A)-structure Pc/Sι ~ P
in P, a ί/(2)-bundle, and an isomorphism detPc ~ det£ D

In the situation of this lemma, we get well defined vector bundles

Jf:± = Σ± ® Ey

depending only on the Spinh-structure and not on the chosen G-lifting These spinor
bundles have the following intrinsic interpretation identify SU(2) Xzi SU(2) with
SO(4), and denote by .

π/; Spiff (4) -• SO(4)

the projections of Spin1'(4) = SU(2) x SU(2) x SU(2)/Z/2 onto the indicated
factors (π = π]2) Using the inclusion 50(4) C SU(4), we can form three SU(4)-
vector bundles Ph xπιι C 4, (i,j) e {(1,2),(1,3),(2,3)}

Under the conditions of the previous lemma we have

Jf+ = Ph x π π (Γ4, . # - = Ph xπ2, (Γ4, Σ+ ® (Σ~ ) v = Ph x π (Γ4 .

The PU{2)-b\xnά\e Ph xό PU{2) associated with the Spin'1 -structure Pc/Sι ~P
has in this case a very simple description it is the projectivization P(E) of the
£/(2)-bundle E

2. The Quaternionic Monopole Equations

Let (X,g) be an oriented Riemannian 4-manifold with orthonormal frame bundle P
The exact sequence (2) in the previous section shows two things first, isomorphism
classes of PV\2)-bundles with second Stiefel-Whitney class equal to w2(P) are
in 1-1 correspondence with orbits of Spinh(4)-structures in P under the action of
H](X,Έj2), second, S/?///7(4)-connections in a S/W7(4)-bundle Ph which induce the
Levi-Civita connection in P correspond bijectively to connections in the associated
P£/(2)-bundle Ph x()PU(2)

Now it is well known that w2(P) = w2(X) is always the reduction of an integral
class [HH], so that we can think of a Sp in '-structure in P as a triple (Σ+\Σ~ ,E)
of £/(2)-bundles with isomorphisms detZ + c± detZ~ ^ det£ modulo tensoring with
unitary line bundles We denote the 5/W7(4)-connection corresponding to a connec-
tion A e .c/(P(E)) in the associated PU(2)-bunάle by A

Remark 2 1 Given a fixed U( 1 )-connection c in det£, the elements in sJ(P(E))
can be identified with those ί/(2)-connections in E, which induce the fixed connec-
tion c

Now view a Spinh( 4)- structure in P as a Sp in (4)- structure Pc /S] ~ P together
with a £/(2)-bundle £ and an isomorphism detP* ĉ  det.β' Recall that the choice
of Pc/S] c^ P induces an isomoφhism

y Λ] ( δ ) ( Γ ^ ( Σ + ) v ^ ) Σ " ,

which extends to a homomorphism
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mapping the bundle Λι of real 1-forms into the bundle of trace-free skew-Hermitian
endomorphisms The induced homomorphism

Γ Λ2®<Γ -> Endo(Γ+ Θ Γ )

maps the subbundles Λ2± X (Γ isomorphically onto the bundles EndoίT1), and iden-
tifies Λ± with the trace-free, skew-Hermitian endomorphisms ([H, OT1])

Definition 2.2. Let Ph xπ SO(Λ) ~ P be a Spin1?(4)-structure in P with spinor
bundle '/{ = # + (b -'/f~ and associated PU(2)-bundle P(E) Choose a connec-
tion A G ̂ /{P{E)\ and let A be the corresponding Spin11{^-connection in Ph The
associated Dirac operator is defined as the composition

where V[ is the covariant deiivatiue of A and y the Clifford multiplication

Note that the restricted operators

interchange the positive and negative half-spinors
Let s be the scalar curvature of (X,g)

Proposition 2.3. The Dirac operator 0A A°(./f) -> A°(Jf) is an elliptic, selfad-
joint operator whose Laplacian satisfies the Weitzenbδck formula

Φ\ = V4*V4- + T(F4)+ ^idy / (4)

Proof Choose a Spirf(4)-structure PL jS] ~ P and a S1 -connection c in the unitary
line bundle detPc The connection A £ stf(P(E)) lifts to a unique ί/(2)-connection
C in the bundle Ev which induces the dual connection of c in d e t £ v = ( d e t ^ ) v

In [OT1] we introduced the Dirac operator

by construction it coincides with the operator IpA A0(3f) -^ A°( /f), and its
Weitzenbόck formula reads

0r =V*V;-
' L , ( 4 'i

where FC\C = Fc + ^/vd£v G ^ 2 ( E n d £ v ) Substituting

Fc = -Ύr(Fc )id/;v + FA

and using ^Tr(Fc) = — \FC we get the Weitzenbόck formula (4) for Jp^ •
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Consider now a section Ψ G A°(./ίJ±) We denote by

(ΨΨ)o e A°(End0

 Σ± ® E n d o ^ v )

the projection of Ψ & Ψ G A°(End^'±) onto the fourth summand in the decompo-
sition

End(Jf ^) - Cid θ End0 Σ
± ® Enά0E

v K (End0 Σ
± ® E n d o ^ v ) .

(ΨΨ)o is a Hermitian endomorphism which is trace-free in both factors

Definition 2.4. Choose a Spinh(A)-structure in P with spinor bundle ~Jf and as-
sociated PU(2)-bundle P(E) The quaternionie monopole equations for a pah
(A, Ψ) G <*/(P(E)) x Λ°(Jf+) are

The following result is the analog of Witten's formula in the quaternionie case
(see [W], Sect 3)

Proposition 2.5. Let Ψ G A°(^+) be a positive half-spinor, A e s^(P{E)) a con-
nection in P(E) Then we have

\\0AΨ\\2 + - | | Γ ( F | ) - (ΨΨ)of = \\VjΨ\\2 + - | | F |

(5)

Proof The pointwise inner product (T(F4)Ψ, Ψ) for a positive half-spinor Ψ sim-
plifies (Γ(FA)Ψ, Ψ) = (Γ(F+)Ψ, Ψ) = (Γ(F+\(ΨΨ)o\ since Γ(F~) vanishes on
^°(-# + ) , and since Γ ( F | ) is trace-free in both arguments.

Using the Weitzenbόck formula (5), we find

which shows that

(02

tΨ,ψ)+]-\Γ(Ft)-(ΨΨ)o\
2 = (V}V -Ψ,Ψ)+]-\F+\2 + ]-\(ΨΨ)o\2+~\Ψ\2

The identity (5) follows by integration over X
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3. Moduli Spaces of Quaternionic Monopoles

We denote again by P the orthonormal frame bundle of the oriented Riemannian
4-manifold (X,g). Let £ be a £/(2)-bundle with W2(P) = c\(E)(mod2) and c a
*S/?///(4)-structure in P with determinant L '= detis Endow (X,g) with the corre-
sponding £/W?(4)-structure (Lemma 1 3)

We fix an S1-connection c in d e t £ v , and identify s/{P(E)) with the space
s /((Ev) of £/(2)-connections in Ev which induce the connection c in d e t £ v

P u t ., π i

<Q/ = e c/ £ (£ v ) xA°(Jf+)

The natural gauge group is the group {§ consisting of unitary automorphisms of Ey

which induce the identity in d e t £ v (S acts on $4 from the right in a natural way
Let -c/* C ζ/ be the open subset of ,c/ consisting of pairs (C,Ψ) whose stabilizer
^(c.ψ) is contained in the center Έ/2 = {iidfv} of the gauge group.

Remark 3 1 A pair (C, Ψ) does not belong to ,c/* iff C is a reducible connection
and Ψ = 0

Indeed, the isotropy group of (§ acting only on the first factor .Q/C(EW) is the
centralizer of the holonomy of C in SU(2) The latter is Sι or SU(2) if C is
reducible, and ΊL/2 in the irreducible case D

A pair belonging to ,Q/* will be called irreducible Note that the stabilizer of
any pair with vanishing second component Ψ contains Έ/2.

From now on we also assume that sέ and ^ are completed with respect to
suitable Sobolev norms L\, such that C3 becomes a Hubert Lie group acting smoothly
on rf Let M '= sϊ'jc§, M* .— eo/*/^ be the indicated quotients, and denote the orbit-
map [ ] ,o/ —* M by π

An element in (A, Ψ) G -c/ will be called strongly irreducible if its stabilizer is
trivial or, equivalently, if ^ φ O Let ,?/** c ,</* be the subset of strongly irreducible
pairs, and put M** = ,o/**fg

Proposition 3.2. M is a Hausdorff space .W c M is open and has the structure oj
a difjerentiable Hubert manifold The map ,zf** —> -^** is a differentiate principal
<§-bundle

Proof Standard, cf [DK, FU]
Fix a point p = (C,Ψ) E srf. The differential of the map CS —> srf given by the

action of {f/ on p is the map

D°p .A°(su(Ev)) - •

Setting

Np(ε) = { β £ A

for £ > 0 sufficiently small, one obtains local slices for the action of {§ on J?/
and charts π\Np{ι:) . Λ^(ε) -^ M^ for ,#** D

Note that the curvature F4 of a connection in P(£) equals the trace-free part
of the curvature of the corresponding connection C G <o/c(Ev)
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Using the identification ,o/{P{E)) = ,o/c{Ev), we can rewrite the quatemionic

monopole equations in terms of pairs (C, Ψ) G s/. Let s'/sw C srf be the space of
solutions

Definition 3.3. Fix a Spin11 -structure in P The moduli space of quatemionic

monopoles is the quotient , # = #/sjy[)/& We denote by . #** = {^S]y{) Π ,G/**)/^,

, #* = {^/sιv Π,?/*)/$ the subspaces of {strongly) irreducible monopoles

The tangent space to <o/sw at p = (C, Ψ) G srf is the kernel of the operator

D\} A]{su{E"y))φA°{Σ+ 0 £ v ) -> A°{su{Σ+) ® su{Ev)) Θ A°{Σ~ ®EV)

defined by

j + - [{ψΨ)o + ^

where we consider Λ;(α) as map y(α) Σ+ —> Σ~ 0 su{Ev) Clearly Z)̂  oDj = 0,
since the monopole equations are gauge invariant

Using the isomorphism Γ~' A°{su{Σ+)) -^ A2

+, we can consider Dλ as an op-

erator D)7 A]{su{Ev))(DA0{Σ+ 0 Ev) -> A2

+{su{Ev)) ΘA0{Σ~ ®EV)
Let σ{X) and ^(X) be the signature and the topological Euler characteristic of

the oriented manifold X

Proposition 3.4. For a solution p = (C, Ψ) £ .Q/SIV , ί/ze complex

/Λ' elliptic and its index is

^{4c2{Ev) - C]{EV)2) - l-{3e{X) + 4σ{X)) (7)

Proof The complex r^/? has the same symbol sequence as

(Di 0 ) (^c Φ<~ <• )

0 -> yi 0

1 vw(£ l V ) ^ A1 su{Ev) O A°,^+ > Alsu{Ev)φA°^~ -> 0 ,

which is an elliptic complex with index

2{4c2{Ey) - r i (£ v ) 2 ) - 3-{σ{X) + e{X)) + /We* f , .

The latter term is

index φiΛ = 2[ch{Ev)e^]iΞ)A{X)]4 = -26' 2 (^ v ) + λ-c\{Ey)2 - ^σ{X) . D

Remark 3 5 The integer in (7) is always an even number if X admits almost
complex structures
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Our next step is to endow the spaces =//** (.#*) with the structure of a real
analytic space (orbifold)

In the first case (compare with [FU,DK, OT1,LT]), we have an analytic map
σ rf -> A\{su(Ey)) <^A0(Jf-) defined by

which gives rise to a section σ in the bundle ,p/** Xy (A2

:_(su(Ev)) (£ A°(,#*~ ))
We endow ,//** with a real analytic structure by identifying it with the vanishing
locus Z(σ) of σ, regarded as a subspace of the Hubert manifold -#** (in Douady's
sense) ([M,LT])

Now fix a point p = (C,Ψ) e ?P. We put

Sp(ι:) ={p + β I β e A]su(Ev) )Λ°.# + , D°D,°*/? + D]*pσ(p + /i) = 0,

Claim 3.6. For sufficiently small v, > 0, Sp(ε) is a finite dimensional submanifold
of s-f which is contained in the slice Np(r.) and whose tangent space at p is the
fii st haimonic space Hj 7 of the deformation complex C6p

To prove this claim, we consider the map

sp A\su{Ey)) θ / ( / + ) ^ im(Z^) Θ i m ( ^ ) *

given by the left-hand terms in the equations defining Sp(ε) The derivative of sp at
0 is the first Laplacian

A\ A\su(Ey))^A°(.^)-^ιm(D^)Θιm(DlT

associated with the elliptic complex (6p, hence sp is a submersion in 0 This proves
the claim D

The intersection .^/su Π Np(ε) = Z(σ) Π Np{ι:) of the space of solutions with
the standard slice through p is contained in Sp(ε) and can be identified with the
finite dimensional model

If p G V** is strongly irreducible, then the map

π\z(σ\yι,) Z(σ\Spi,))->•#**

is a local parametrization of . #* at p, hence Z(σ|^(-;)) is a local model for the
moduli space around p

If p e s/"~ \ :(?/** is irreducible but not strongly irreducible, then necessarily
Ψ — 0, and the isotropy group {§p = TLβ acts on Sp(ε) Since σ is Z/2-equivariant,
we obtain an induced action on Z(σ\sp(t,)) In this case 7r|z(a|s,(n) induces a homeo-
morphism of the quotient Z(σ\Sp(ί,))/Z/2 with an open neighbourhood of p in =//*,
and //* becomes an orbifold at p, if we use the map

as an orbifold chart
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Remark 3 7 Using a real analytic isomorphism which identifies the germ of Sp(ε)
at p with the germ of Hj ; = Tp(Sp(ε)) at 0, we obtain a local model of Kuranishi-
type for . # * at p.

Remark 3 8 The points in &* •= JΓ \.0** have the form [(CO)], where C is
irreducible and projectively anti-self-dual, i e , (F^)+ = 0 There is a natural finite
map

into the Donaldson moduli space of P£/(2)-instantons in P(EW), which maps Q*
isomorphically onto # ( P ( £ V ) ) * if H](X,Έ/2) = 0 In general Q* and -#(P(£ V ) )*
cannot be identified The difference comes from the fact that our gauge group is
SU(EV), whereas the Pί/(2)-instantons are classified modulo PU(EV)

For simplicity we shall however refer to £?* as Donaldson instanton moduli
space

Concluding, we get

Proposition 3.9. .//** is a real analytic space .//* is a real analytic orbijokl,
and the points in = ^ * \ . # * * have neighbourhoods modeled on Z/2-cjuotients
,$*\.//** can be identified as a set with the Donaldson moduli space <£* of
irreducible projectively anti-self-dual connections in Ev with fixed determinant c

The local structure of the moduli space . // in reducible points, which correspond
to pairs formed by a reducible instanton and a trivial spinor, can also be described
using the method above (compare with [DK])

Let ._fflsn C , # be the subspace of .ffl consisting of all orbits of the form
(C, Ψ) - SU(Ey), where C is a reducible connection and Ψ belongs to one of the
summands Let L = det Σ± = det E It is easy to see that

H - U ^ z . ^ 5 ® - '

where //$ denotes the rank-1 Seiberg-Witten moduli space associated to a
£/;///(4)-structure of determinant M.

The fact that the moduli spaces of quatemionic monopoles contain Donaldson
moduli spaces as well as Seiberg-Witten moduli spaces suggests that they can be
used for comparing the invariants given by the two theories

4. Quatemionic Monopoles on Kahler Surfaces

Let (X,g) be a Kahler surface with canonical 5/7//?t(4)-structure, in this case
Σ+ = /I 0 0 O /I 0 2 , and Σ~ = Λ0] A Spinh(4)-structure in the frame bundle is given
by a unitary vector bundle E together with an isomorphism det£ ~ Λ02. A Spinh{A)-
connection A corresponds to a />(7(2)-connection A in the associated bundle P(E), or
alternatively, to a unitary connection C in Ev which induces a fixed Sι -connection
c in Λ20 Recall that the curvature F\ of A equals the trace-free component F®
of Fc

If we choose c to be the Chem connection in the canonical bundle Λ20 = Kχ,
then the ,S/;//7/7(4)-connection in J/f = Σ 0 Ev is simply the tensor product of the
canonical connection in Σ = Σ^ Q Σ~ and the connection C
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A positive quaternionic spinor Ψ G A°(Jtfr'Jr) can be written as Ψ = φ + α, with
φ eA°(Evl and xEA02(Ev)

Proposition 4.1. Let C be a unitary connection in Ey inducing the Chern connec-
tion c in d e t £ v — Kx A pair (C,φ-\-a) solves the quaternionic monopole equa-
tions if and only if Fc is oj type (1,1) and one of the following conditions holds.

1 α = 0, dcψ = 0 and iAgFc -\—(φ (& φ)o = 0 ,

2 φ = 0, (\% = 0 and iΛfJF°c - - * (α 0 α)o = 0 (8)

Proof Using the notation in the proof of the Weitzenbόck formula, we have
FCc = \(TrFc + Fc )id£v + FA = FA = Fc e A2(su(Ev)) By Proposition 2 6 of
[OT1] the quaternionic Seiberg-Witten equations become

iAgFA = -\ [(<p<g>φ)0 ~ *(αφα)o]

dcφ = iΛ(ldccc

Note that the right-hand side of formula (5) is invariant under Witten's transfor-
mation (C, <p + α) i—> (C, φ - α) Therefore, every solution satisfies ^ j 0 = T7^2 = 0,
and (φ & α)o = (α <%) φ)o = 0 Elementary computations show that this can happen
only if φ = 0 or α = 0. On the other hand, since the Chern connection in Kx is
integrable, we also get F20 = Fc

2 = 0 D

Remark 4 2 The second case in this proposition reduces to the first' in fact, if φ = 0

and z£A02(Ew) satisfies z7Liyra = 0, we set φ =ϊeA20(EV)=A°(A20 %E)=A°(EV),

and we obtain dcφ = ccφ = ^c^ = 0 Here we used the fact that AfJ A12 —> A01

is an isomorphism, the adjoint of the Lefschetz isomorphism Aωfl [LT]. A simple
calculation in coordinates gives — * (oί Θ α)o = (α ^ α)o = (ψ ® φ)o

5. Stability

Let (X, #) be a compact Kahler manifold of arbitrary dimension, E a differentiable
vector bundle, and let £f be a fixed holomorphic line bundle, whose underlying
differentiable line bundle is L — detE

Definition 5.1. A holomorphic pair of type (E,I/J) is a pair (6%φ) consisting of a
holomorphic bundle S and a section φ e H°(X,S) such that the underlying differ-
entiable bundle of S is E and det $ = If

Note that the determinant of the holomorphic bundle $ is fixed, not only its
isomorphism type

Two pairs (S^φ,), i — 1,2 of the same type are isomorphic if there exists an
isomorphism / 3\ —> if2 with f*((p2) = ψ\ and det / = idy

In other words, {Snφt) are isomoφhic iff there exists a complex gauge trans-
formation / £ SL(E) with f*(φ2) = φ\ such that / is holomoφhic as a map
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Definition 5.2. A holomorphic pair (S\ φ) is simple if any automorphism of it is
of the form f = εicU, where f}k/l = 1 A pair (£\φ) is strongly simple if its only
automorphism is id^

Note that a simple pair (S\φ) with φφO is strongly simple, whereas a pair
(S\0) is simple iff 3 is a simple bundle

Note also that (<f, φ) is simple iff any trace-free holomorphic endomorphism /
of S with f{ψ) = 0 vanishes

For a nontrivial torsion free sheaf J^ on X, we denote by μg{-^) its slope
with respect to the Kahler metric g Given a holomorphic bundle $ over X and a
holomorphic section φ G H°(X,$)9 we let •¥($) be the set of reflexive subsheaves
#" C <ί with 0 < rk(JΓ) < rk(^), and we define

^ ( ^ ) = {& e ^{S) I φ e

Recall the following stability concepts [B2]

Definition 5.3.

1 S} is φ-stable if

max (μίy(<f), sup μq(^')) < _ inf

2 Let λ G 1R feί? # Γβί// parameter The pair ($, φ) is λ-stable iff

max(μίy((f), sup /^(J^7) < / <

3 (#, φ) is called λ-polystable if $ splits holomorphically as $ = S' 0 ^7 /, ŵc/z
φ G H°(X,S)f), (S\φ) is a λ- stable pair, and S" is a poly stable vector bundle

oj slope λ

From now on we restrict ourselves to the case rk(<#) = 2.

Definition 5.4.

1 A holomorphic pair (<o,φ) of type (E,JZJ) is called stable if one of the
following conditions is satisfied'

i) Sύ is φ-stable
ii) φ + 0 and 6° splits in direct sum of line bundles $ = S'1 0 S°"', such that

φ G H\S') and the pair {Sfφ) is μg(E)-stable

2. A holomorphic pair (β,φ) of type {E,£P) is called poly stable if it is stable,
or φ — 0 and $ is a polystable bundle

Note that there is no parameter λ in the stability concept for holomorphic pairs
of a fixed type The conditions depend only on the metric g and on the slope μg(E)
of the underlying differentiate bundle E
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Lemma 5.5. Let (S,φ) be a holomorphic pair of type (E,Jf) with φφO There
exists a uniquely determined effective divisoi D = Dφ and a commutative diagram

0 —> C\iD) - ^ £ —> l/\-D)?yJz —> 0,

D ΐ Ψ/
(9)

with a local complete intersection Z c X of codimension 2 The pair (£,φ) is
stable if and only if μg(C X(D)) < μg(E)

Proof D = Dφ is the divisorial component of the zero locus Z(φ) of φ which is
defined by the ideal im(φ v £y —> (r'γ), φ is the induced map and Z •= Z(φ) The
set c/\p{S) consists precisely of the line bundles J^ C C°χ(D), so that

^inf μti{SI&) = 2μg{E) - μg{Cχ{D)) .

Suppose (S\φ) is stable If $ is φ-stable, we have μg(E) < 2μfj(E) — μg(C χ(D)),
which gives the required inequality If S is not φ-stable, then Z = 0, the exten-
sion (9) splits, and the pair (C'χ(D\φ) is μίy(£)-stable, i e μCJ(((

λ(D)) < μg(E)
Conversely, suppose μg(CX(D)) < μg(E), and assume first that the extension (9)

does not split In this case £ is φ-stable in fact, if J^7 C S is an arbitrary line
bundle, either #"' c (rχ(D), or the induced map #~7 C SJ —> / z & Jf(-D) is non-
trivial But then :¥' ~ Jf (& (fχ(—D — A) for an effective divisor A containing Z,
and we find

μg(^f) = 2μg(E) - μg(D) - μg(A) ^ 2μg(E) - μg(CX{D))

Furthermore, strict inequality holds, unless Z = 0 and the extension (9) splits, which
it does not by assumption.

In the case of a split extension, we only have to notice that a pair {β\φ) is
/.-stable for any parameter / > μg(So!) [Bl] D

Remark 5 6 Consider a pair (S\φ) of type (E,^9) with φφO and associated ex-
tension (9) 3 is φ-stable iff μg(Cx(D)) < μg(E), and the extension does not split

Indeed, if the extension splits, then S is not φ-stable, since

= inf

6. The Projective Vortex Equation

Let E be a differentiate vector bundle over a compact Kahler manifold (X,g) We
fix a holomorphic line bundle Zf and a Heπnitian metric / in ££ Let (S\φ) be a
holomoφhic pair of type (E, ££)

Definition 6.1. A Hermitian metric in £ with det/z — I is a solution of the pro-
jective vortex equation iff the trace free part F® of the curvature FjΊ satisfies the
equation

° l h

0 = 0 (V)
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Theorem 6.2. Let (3\φ) be a holomorphic pair of type (£, J2O with rk(3) = 2
Fix a Hermitian metric I in ϊ£

The pair (3\φ) is poly stable iff 3 admits a Hermitian metric h with det/z = /
which is a solution of the projective vortex equation If(3,φ) is stable, then the
metric h is unique

Proof S u p p o s e first t h a t h i s a s o l u t i o n o f t h e p r o j e c t i v e v o r t e x e q u a t i o n (V)
T h e n w e h a v e

iΛFh + l-(φφh) = X- \ΊΛΊτFh + ^ | φ

ie h satisfies the weak vortex equation (Vt) associated to the real function
t = \{2iΛΊxFh + \φ\2) Therefore, by [OT1], the pair (3\φ) is /,-polystable for

the parameter λ = ^ ]χ tυol, = μg{$) + ^ | | φ | | 2

Let A be the Chern connection of h, and denote by S' the minimal yί-invariant
subbundle which contains φ If $' = <#, then 3 is φ-stable and the pair ($,φ) is
stable

If i' = 0, hence φ = 0, then h is a weak Hermitian-Einstein metric, 3 is a
polystable bundle, and the pair (3\φ) is polystable by definition.

In the remaining case 3' is a line bundle and φφO. Let 3" = 3f± be the
orthogonal complement of 3\ and let h' and h" be the induced metrics in 3' and
3" We put s = iΛyTrF/Ί Then, since h — h1 Θ h"\ the projective vortex equation
can be rewritten as

ί iΛFh. + [{φψh' )= \{s + ^\φ\i,)idό,

The first of these equations is equivalent to

ΊAFW + -{φφh')= Ud^ ,

which implies that (<f, ^ ) is μίy(<ί)-stable by [OT1].

Conversely, suppose first that (3,φ) is stable We have to consider two cases

Case 1 3 is φ-stable Using Bradlow's existence theorem, we obtain Hermitian
metrics in 3 satisfying the usual vortex equations associated with suitable chosen /.,
and, of course these metrics all satisfy the equation (V) The problem is, however,
to find a solution with an a priori given determinant /.

In order to achieve this stronger result, Bradlow's proof has to modified slightly
at some points

One starts by fixing a background metric k such that det& = /. Denote by So(k)
the space of trace-free ^-Hermitian endomorphisms of E, and let Jϊet(l) be the
space of Hermitian metrics in E with det h = /. On

,Met{l)p

2 = { k e s \ s e L

we define the functional Mφ Jtet(l){ —> IR by
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Here MD is the Donaldson functional, which is known to satisfy the identity ~-f

MD(k,h(t)) = 2l'χΊx[h~\t)h{t)iΛgFh} for any smooth path of metrics h(t) [Do,Ko]

Since h~](t)h(t) is trace-free for a path in ,fίet{l), we obtain

MD(kJί(t)) = 2j Ίr[h~λh(t)iΛgFl]
x

Similarly, for a path of the form h(t) = hef\ with s G So(h), we get

— | | φ | | / = — (etsφ,φ)/Ί = ( — etsφ,φj = (s.φφ1}^ — J Tr[s(φφΊ)o]

This means that, putting mφ(h) .= iΛF® + j(φφh)o, we always have

so that solving the projective vortex equation is equivalent to finding a critical point
of the functional Mφ (compare with Lemma 3 3 [B2])

Claim 6.3. Suppose (S\φ) is simple Choose B > 0 and put

#et(l)ζ(B) •= {h G .#et(l)ζ\ \\mφ(h)\\LP ^ B}

Then any h G ίίet{iy^{B^ which minimizes Mφ on ..'Met^l^iP) is a weak solution
of the projective vortex equation

The essential point is the injectivity of the operator s ι—> A'h(s) + ^[(φφ)s]o acting
on L^Soih) But from

/ / 1 / \ i
(Ahs+-[φφlΊ)s]0, s) = \\dh(s)\\l
\ z I h

we see that this operator is injective on trace-free endomorphisms if (S\ φ) is
simple D

Now we can follow again Bradlow's proof if S is φ-stable, then there exist
positive constants d , C2 such that for all s G L%So(k) with kes G ,Met{l){{B) the
following "main estimate" holds

sup |^| ^ CιMφ(ke") + C2

This follows by applying Proposition 3 2 of [B2] to an arbitrary τ G IR with

sup μg(&')) < ( ^ W < m f {

since Bradlow's functional e $φj coincides on .///et(l) with Mφ.
It remains to be shown that the existence of this main estimate implies the

existence of a solution of the projective vortex equation
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The main estimate implies that for any c > 0, the set

{s e LζS0(k)\ke> £ Met{l){{B\ Mφ(kes) < c}

is bounded in L% Let (s,) be a sequence in L^So(k) such that keSi e J4et(l)%(B)
is a minimizing sequence for Mφ, and let s be weak limit Then h \— kes is a weak
solution of the projective vortex equation, which is smooth by elliptic regularity
[B2]

Finally, we have to treat

Case 2 φφO, 3 = 3' eD <f", with φ £ H°(3f), and the pair (£\φ) is μίy(£>stable

We wish to find metrics h' and h" in 3' and 3"', such that for s = iAF\ the
following equations are satisfied*

ti h" = l

ΊAFh, + \{φcf)= {siάfii

Since the pair (3\-γ=φ) is μfJ(E)-stab\e, there exists by [OT1] a unique Hermitian

metric h' in 3' solving the second of these equations With this solution the third

equation can be rewritten as

iΛfJFh» = s - iΛCJFh,

Since Jγ(s — iΛflF/Ί>) = deg(^ ;/), we can solve this weak Hermitian-Einstein equa-
tion by a metric h/f, which is unique up to constant rescaling The product h' h" is
a metric in S' ^ S" — £ίJ which has the same mean curvature s as /, and therefore
differs from / by a constant factor We can now simply rescale h" by the inverse of
this constant, and we get a pair of metrics satisfying the three equations above D

7. Moduli Spaces of Pairs

Let £ be a differentiable vector bundle of rank r over a Kahler manifold (X,cj),
and let ^} be a holomorphic line bundle whose underlying differentiable bundle is
L =

Proposition 7.1. There exists a possibly non-Hausdorff complex analytic orb [fold
• MS(E, H?) parametrizing isomorphism classes of simple holomorphic pairs of tγpe
(E, I/J) The open subset - //SS(E, I/J) C , Φίs(E, J/J) consisting of strongly simple pairs
is a complex analytic space, and the points in ,ίis{E,^?) \ , # s s ( £ , Jf) have neigh-
bourhoods modeled on ΈIr-quotients

Proof Since we use the same method as in the proof of Proposition 3 9, we only
sketch the main ideas.

Let λ be the semiconnection_ defining the holomorphic structure of y\ and put
T/ = £/;(£) x A°(E), where s/-(E) denotes the affine space of semiconnections
in E inducing λ in L = det/s The complex gauge group SL(E) acts on .<?/, and we
write -c/s (c/ s s) for the open subset of pairs whose stabilizer is contained in the
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center TLjr of SL(E) (is trivial) After suitable Sobolev completions, ,Q/SS becomes the
total space of a holomorphic Hubert principal SL(E)-bundle over Mss '= sϊssfSL(E)

A point (δ,φ) £ s/ defines a pair of type (E,Jf) iff it is integrable, i e iff it
satisfies the following equations.

Here F®2 = δ2 is a (0,2)-form with values in the bundle Endo(£) of trace-free endo-
morphisms Moreover, isomorphy of pairs of type (E,<Sf) corresponds to equivalence
modulo the action of the complex gauge group SL(E)

Let σ be the map .<?/ —> A02(End0(E)) QA0l(E) sending a pair (δ,φ) to_the left-
hand sides of (10) We endow the sets . #7(£, £f) = Z(σ) Π JSS/SL(E)
( //χ(E,Jf) = Z(σ)Γ\t°/\/SL(E)) with the structure of a complex analytic space
(orbifold) as follows

./fχ(E,Jf) is defined to be the vanishing locus of the section σ in the Hubert

vector bundle -Ώ/SS Xsut) (^O2Endo(£) θ A01 E) over Mss which is defined by σ
To define the orbifold structure in ,Π\(E, Jf), we use local models derived from

a deformation complex
Let p = (δ, <p)G,ζ/ an integrable point The associated deformation complex

CJp is the cone over the evaluation map ev*φ

ev%

and has the form

Dί] D]

—^ A0](Enά0(E)) Θ A°(E) —^

(compare with [OT1] Sect 4) We define

SPir.) = {p + β\βe A 0 ] E n d o ( £ ) O A°E,

The same arguments as in the proof of Proposition 3 9 show that for sufficiently
small ί) > 0, Sβ(κ) is a submanifold of si, whose tangent space in p coincides

with the first harmonic space Hy- of the elliptic complex (&β) Therefore, we get

a local finite dimensional model Z(σ|^_(r)) for the intersection Z(σ)Γ\Nβ(ε) of the

integrable locus with the standard slice

through p The restriction

π | Z ( ί |
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of the orbit map is etale if [p] £ JPχ(E,^f), and induces an open injection

if [p] e Φf\{E, <f) \ , 0^{E, <f) We define the orbifold structure of . WX{E, Sέ>) by
taking the maps π|Z(^ι_ } as orbifold-charts D

Our next purpose is to compare the two types of moduli spaces constructed in
this paper Let (X,cj) be a Kahler surface endowed with the canonical Spin1 -structure
c Let E be a U(2) bundle with det£ = Kx, and denote by , # * ( £ ) the moduli space
of irreducible quaternionic monopoles associated to the £/?/;/( 4 )-structure defined
by ( c , £ v ) (Lemma 1 3)

It follows from Proposition 4 1 that ,#*(£) has a decomposition

. /Γ{E) = . #*(£) 7 = 0 U JΓ{E)φ^ ,

where -//*(E)y=Q {..//*(E)φ=0) is the Zariski closed subspace of ,iΓ{E) cut out by
the equation α = 0 (φ = 0) The intersection

is the Donaldson instanton moduli space £/* of irreducible protectively anti-self-dual
connections in E, inducing the Chern connection in .'/{x. Put stfy-§ ~.9/c(E)xA°(E),
where c is the Chern connection in Kλ

Proposition 7.2. The ciffine isomorphism p/α=o 3 ( C φ ) ^ (dc,φ) £ ^/ induces a
natural real analytic open embedding

J /r(E)^0 ^ ,M\E^A)

whose image is the suhorbifold of stable pairs of type (E, Jί γ)

Proof Standard arguments (cf [OT1]) show that J is an etale map which induces
natural identifications of the local models

A point [((5, φ)] lies in the image of J iff the SL(£)-orbit of (δ, φ) intersects the
zero locus of the map

m rf -> Ά\su(E)\ (dc, φ) ^ ΛgF°c - l-(φφ)0

Let (S\φ) be the holomorphic pair of type (E,Jΐx) defined by (o\φ) We can
reformulate the condition above in the following way [(S\φ)] lies in the image of J
iff there exists a Hermitian metric h in S inducing the Kahler metric in Jίx — det<f
which satisfies the projective vortex equation (F) But we know already that this
holds iff (S\φ) is stable Moreover, the unicity of the solution of the projective
vortex equation is equivalent to the injeetivity of J D

Using the remark after Proposition 4 1, we can now state the main result of this
paper
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Theorem 7.3. Let (X,g) be a Kάhler surface with canonical bundle JΓX, and let
E be a U(2)-bundle with dεtE = Kγ Consider the Spin1-structure associated with
the canonical Sput (4)-structure and the U(2)-bundle Ev The corresponding mod-
uli space of irreducible quaternionic monopoles is a union of two Zariski closed
subspaces Each of these subspaces is naturally isomorphic as a real analytic orb-
ifold to the moduli space of stable pairs of type (E, :Jf x) There exists a real
analytic involution on the quaternionic moduli space which interchanges these two
closed subspaces The fixed point set of this involution is the Donaldson moduli
space of instantons in E with fixed determinant, modulo the gauge group SU(E)
The closure of the complement of the Donaldson moduli space intersects the moduli
space of instant ons in the Brill-Noether locus

The union JΪSJί of all rank \-Seib erg-Witt en moduli spaces associated with
splittings E = E' φ E" corresponds to the subspace oj stable pairs of type ii)

8. Compactification, transversality, and applications

In this final section we indicate the main steps in proving the existence of a natural
Uhlenbeck-type compactification of the moduli spaces of quatemionic monopoles,
full details will appear in the Habilitationsschrift [T] of the second author

Let (X,g) be a closed oriented Riemannian 4-manifold endowed with a Spin11 (4)-
structure I) = (Ph,Ph/Sp(\) - ^ P) We denote the associated P£/(2)-bundle
Ph x()PU(2) by δ(l))

An ideal monopole of type I) is a pair ([Λ\Ψ'],{x\9. . ,x/}) consisting of a
monopole [A\ Ψf] G J/-γ{\) ) for a Spinh(4)-structure l/ and an element {x\, ,x/} £
SιX in the /th symmetric product of X with

1 = 1(1)) = (pι(δ(l

The set of ideal monopoles of type i) is

the union being over all isomorphism classes of S/W7(4)-structures 1/ with

P\W)')) ^ P\W)))

Theorem 8.1. There exists a metric topology on ///'{,(I)) such that the moduli

space //'{(I)) C / //"((I)) becomes an open subspace with compact closure Jf\{\))

The proof of this theorem is long and technical, it is based on

a) Local estimates for quaternionic monopoles in terms of the curvature of the
connection component

b) A regularity theorem for /^-solutions
c) A removable singularities theorem

The techniques of the proofs are similar to the ones which have been devel-
oped to prove the analogous results in the instanton case [DK], however, since
the monopole equations are not conformally invariant, several new difficulties arise
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In the present paper we state the main technical results and sketch the proof of
the fundamental removable singularities theorem, for a complete proof we refer the
reader to [T]

a) Let EQ be the trivial SU(2)-vQctor bundle over the closed standard 4-ball
B and put Σ^ = B x H ± , where M± are copies of the quaternionic field H
A Clifford map is an IR-linear isomorphism

The choice of a Clifford map defines a metric g ι on B such that y becomes the

Clifford multiplication of a Spin(4)-structure in (B,g<) Let yo be a Clifford map

inducing the standard flat metric go on B

Theorem 8.2 {Estimates in a Coulomb gauge) There exist a positive eonstant
v. > 0 and a neighbourhood N of yo in the C63 -topology with the following
properties For any Clifford map y £ TV, any interior domain D C B, and any pos-
itive integer /, there is a constant C;_DJ such that for each solution (A,Ψ) of the
quaternionic monopole equations for the triple (B,Eo,y) satisfying

(i) d;{A = 0,

(ii) \\Ay ^ ε , ||<F||,4 ^ε

the following estimates hold

|M!|,zφ ) rίC,DI(\\A\\L^\\Ψ\\Li),

\\Ψ\\L](D) gC., o,,( |M| | i4 + | | ¥ ' | | Δ J )

The proof can be reduced to a problem on the (closed) sphere S4 endowed with
a metric g0 of non-negative sectional curvature, such that the upper hemisphere is
isometric to the flat ball (B,CJQ) Let y0 be a fixed extension of yo to a Clifford map
on (S4,g0) Each y e N can be extended to a Clifford map y which is close to y0

and gives rise to two first order elliptic operators

0, A\Σ+ ®EV)->A°(Σ- ^ ; £ v ) ,

(% =d$+dt ^ 1 ( ° i

Here Σ± are the half-spinor bundles of the standard 5/7//7(4)-structure, E is the
trivial SU(2)-b\mά\Q, and A\ denotes the space of 2-forms which are self-dual with
respect to the metric associated with y

Essential points needed in the proof of Theorem 8 2 are the injectivity of the
operators Jp~:{) and δyQ, which follows from corresponding Weitzenbock formulae,
elliptic estimates, and standard bootstrapping arguments D

Combining Theorem 8 2 with the Gauge fixing theorem of K Uhlenbeck
(Theorem 2 3 7 in [DK]) one gets two important consequences

Corollary 8.3 (Estimates in terms of the curvature) There exist a positive constant
c and a neighbourhood N of yo in the &-topology with the following properties
For any y G N, any interior domain D d B, and any positive integer /, there is a
positive constant C.^DJ such that any solution (A, Ψ) of the quaternionic monopole
equations for the triple (B,EQ,)}) satisfying \\F4\\L2 ̂  ε, is gauge equivalent to a
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solution (A, Ψ) for which the following estimates hold

\\A\\Ljφ) S C . Λ / | | ^ | | , 2 , \\Ψ\\ι:.(D} rg C^DJWF^I

The following global-compactness result is the analogon of Proposition (4.4.9) in
[DK]

Corollary 8.4. Let (Ω,g) be an oriented Riemannian manifold endowed with a
Spin1''(4)-structure, and let (Aπ,Ψn)ne^ be a sequence of solutions oj the quater-
nionic monopole equations If every point I G Ω admits a geodesic ball Bx with

for all large enough n, then there is a subsequence (/zv)veN cind gauge transforma-
tions uλ G ̂  such that u*(A,h,Ψ,h) converges in the ^°°-topology on Ω

b) The next important step is the following delicate regularity result for L4-small
approximate /^-solutions

Proposition 8.5 (Regularity of L\-solutions) Let y be a Clifford map on S4 which
is sufficiently {βλ-close to y0 and let g be the associated metric

There are positive constants a, b, c, d, depending on % such that any pair
(A, Ψ) e L\(AX su(2)) x L](Σ+ ® Ey) satisfying

(i) dΐ{A) = 0,

(ii) \\A\\Li Sa, \\Ψ\y Sb,

(iii) \\^4Ψ\\L2 S c, \\Γ*(F+)-(ΨΨ)0\\L2 ^ d,

for which Ip;,^ und (^") ~ ( ^ ^ ) ϋ cire smooth, is also regular Moreover, there
exist positive constants e, f, depending on % such that the following estimates
hold

\\A\\L2 S e(\\ Φ;,ΛΨ\\L2 + IIΓ?(F+) - (ΨΨ)oy),

L2 ̂  flippy

The analogous statement in the instanton case is Proposition (4 4 13) in [DK],
the proof of Theorem 8 5, similar to the one in [DK], also uses the continuity
method, but some of the arguments are more difficult [T].

c) Now put B =B\ {0}, S .= S4 \ {0}

Theorem 8.6 (Removable singularities) Let y be a Clifford map on the ball
Let (AQ,ΨQ) be a solution oj the quaternionic monopole equations for the triple
(Bφ,Eo\B ,y\β ) with JB. \F4{)\

2 < OG Then there exists a solution (A,Ψ) oj the
monopole equations for the triple (B,E0,y) and an isomorphism u ' Eo\B —> ^ol^
such that ιι*((A,Ψ)\B.) = (A

Proof It suffices to prove the theorem for a Clifford map which is close to the
standard one 70 Indeed, this can be achieved by constant rescalings of the metric,
under which the monopole equations are invariant If 7 is close to 70» m e n it extends
to a Clifford map 7 on S4 which is close to 70.

Now the technique which was developed in [DK] for the instanton case can be
adapted to the situation at hand
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Consider a small positive number R In a first step we cut off the solution
(AO,ΨQ) towards the boundary of B to get an approximate solution (AR,ΨR) on
the punctured sphere S9 with L2-small curvature, whose restriction to BR \ {0} is
a solution, and which vanishes outside BR Replacing the pair (AR, ΨR) by a gauge
equivalent one if necessary, we can estimate the L4-norm of the connection com-
ponent in terms of the L2-norm of its curvature (use the analogon of Proposition
(4 4 10) in [DK] for the quaternionic monopole equations)

In a second step we keep R fixed and apply the same procedure for any r
with 0 < r <C R towards the origin we cut off with a suitable function supported
in S4 \ Bj and then apply a gauge transformation in order to bring the connection
into the Coulomb gauge and to control its L4-norm in terms of the L2-norm of
the curvature (use the Gauge fixing theorem on the sphere, Proposition (2 3.13) in
[DK]) The L2-estimates in the Regularity theorem give a uniform bound for the
L2-norms of the obtained family (ARl, Ψ Rl), of approximate solutions Hence, for a
suitable sequence r, —> 0, the sequence (ARίι, ΨR^JI^ converges weakly in L\ to a
pair (A, Ψ) which is a weak L2-solution of the quaternionic monopole equations in
a neighbourhood of 0. This pair must be smooth by the Regularity theorem Indeed,
the associated sections Φ^A1? and Γ:(F\) — (ΨΨ)Q vanish in a neighbourhood of
the origin and are smooth away from the origin D

Now consider again a compact Riemannian manifold (X,g) The Weitzenbόck
formula provides an a priori r^°-bound for the spinor component on the space of
solutions of the monopole equations Using the decomposition \FA\

2 = \F^\2 + \F^\2

and the second monopole equation, it follows that there exists a positive constant C
such that for every quaternionic monopole (A,Ψ) the following pointwise a priori
estimate holds

The integral of the first term on the right is a topological invariant k(l)) of the
S/W^ 4)-structure If now (An,Ψn)ne^ is a sequence of quaternionic monopoles,
the sequence of measures associated with \F4ιι\

2dvolg is uniformly bounded, hence
it has a subsequence converging to a measure whose total volume is bounded by
/c(I)) -f C Volcj Using Corollary 8 4 and the same arguments as in [DK], Sect 4 4 3
one shows

Theorem 8.7. For every sequence (An, Ψn)neN °J solutions (An, Ψn) of the quater-
nionic monopole equations associated with the Spinh(4)-structure I) there exists
a Spinh(Aystructure \) and a pair ((A',Ψ'),{x\, ,x/}) consisting of a solu-
tion of the quaternionic monopole equation for I) and a set {JCJ, ,X/} C l
such that the following holds There is a subsequence (»V)VGN cmd isomorphisms
Plh\x\{xu Λι} -^PhW\{Xu ,v/} over the frame bundle P\χ\{λu Λι} such that the
sequence uf((A/h,Ψ/h)\x\{χ^ . r / } ) converges to (A\Ψf)\x\{xu ΛΊ}

From here, Theorem 1 1 follows immediately, as in the instanton case (see [DK],
Sect 4 4 1)

The moduli spaces ,//J(I)) are in general not smooth, e g. they have Z/2-orbifold
singularities along the Brill-Noether locus (Ψ = 0), and the addition of ideal so-
lutions usually introduces further singularities On the other hand, the S^action
(ς, [A, Ψ]) \-+ [A,ζϊ Ψ] extends naturally to the Uhlenbeck eompaetifieation, and this
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action is free away from the union of the compactified Brill-Noether locus and the
subspace of ideal abelian solutions

The singularities in the points [A,0] with A irreducible can be removed by
performing a real blow up (in the sense of [GS]) of the subspace (Ψ = 0) in
the direction of the spinor component of the configuration space, one replaces the
spinor-component Ψ by a pair (Φ, /) consisting of a spinor Φ with \\Φ\\i2 = 1 and a
real number t The new configuration space is weakly contractible and the induced
action of the gauge group {3 becomes free, therefore, the //-classes of Donaldson
can easily be defined on its ^-quotient

We introduce modified quaternionic monopole equations by

ί
\

and we denote by ίίχ{\)) and ,M\{\)) the corresponding moduli space of solutions
and its Uhlenbeck compactification

The induced S1-action on ,fίx(\)) is free away from the abelian locus Jί{χ(\))ab

consisting of (possibly ideal) solutions [A,(Φ,t\{x\,. ,x/}] with A reducible and
tΦ contained in an Λ-parallel summand

The following theorem, for which we refer to [T], is the basis of all further
developments

Theorem 8.8. There exists a natural {§ x S]-eqw'variant perturbation oj the mod-

ified quaternionic monopole equations (SW ) such that for any sufficiently small

generic perturbation-parameter σ the corresponding moduli space of solutions

M\(\),a) has the following properties

i) The complement .Mg

x(\),σf .= Jίx(\),σ)\.i'lκ(\),σ)ah of the abelian locus
is smooth of the expected dimension

ii) ./¥χ{\),σ) has a natural Sι-equivariant Uhlenbeck compactification </?χ(l),σ)

iii) The S]-action on , Mx{\), σ) is free away from the subspace of {ideal) abelian
solutions

iv) The closed subspace #'(,(1), σ) \ . #J(I), σ)* admits an S] -invariant neigh-
bourhood which can be explicitely described

v) The equation t = 0 defines an Sι-invariant subspace in ,#^(l), σ) which

fibers over a deformation M, ( ι^(ί), σ) of the compactified Brill-Noether locus inside
the compactified Donaldson moduli-space

We believe that Theorem 8 8 can be used in the following two directions

a) To relate the Seiberg-Witten invariants to Spiiί-polynomials [PT] On request
of the referee we describe briefly our approach to this problem

Let -^(i),σ) (;^(l),σ)) be the S'-quotient of the subspace t = 0 in e//^(I),σ)

(,//;((!), σ)) This space fibers over the corresponding deformation of the (com-
pactified) Brill-Noether locus with complex projective spaces as fibres Under the
assumption that ^γ(l), σ) contains no abelian solutions, Donaldson's /./-classes de-
scend to &x(l), σ), can be extended to ^x(t),σ), and associated Spiiΐ -polynomials
can be defined To relate these polynomials to Seiberg-Witten classes, one first
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forms the S]-quotient of <£x(\),σ) and then orients the (smooth) complement of
the abelian and the ideal locus (Theorem 8 8 i)) The restrictions of the /(-classes

to . #•[(!), σ)\.iϋ

λ (I), σ)ah descend to the Sι -quotient [. #^(i), σ) \ , £x(\), σ)cώ]/S]

The subspace -^(1), σ) is a smooth hypersurface provided the Brill-Noether lo-
cus contains no reducible connection Consider now a standard neighbourhood //

(Theorem 8 8 iv)) of ,£x(\),σ)ah/Sι in [£γ(l),σ)/Sι] Π {t ^ 0} and triangulate
its complement to obtain a chain with boundary y/x(l),σ)U d'0 Since dif fibres
in a natural way over a disjoint union of perturbed Seiberg-Witten moduli spaces,
one should be able to get an explicit formula relating Seiberg-Witten invariants and
Spin1 -polynomials 2

b) To define invariants for differentiable 4-manifolds

Here it seems to be more appropriate to perform a complex blow up of the locus
(Ψ = 0) in the spinor direction of the configuration space The new configuration
space will not be weakly contractible, the stabilizers (under the action of the gauge
group) of the non-abelian points in the locus (Ψ — 0) will still be Z/2, and S] will
act trivially on this subspace

However, by a careful examination of the local models of these points, one can
prove that, for a generic perturbation σ, the obtained moduli space ,ifx{\\σ) is
smooth also along the non-abelian part of the blown up (perturbed) Brill-Noether
locus The next step is now the definition of universal classes on the Uhlenbeck

compactification . ίί\ (I), σ)

We plan to come back to this project in [OT6]

2 We aie awaic of the fact that Pidstiigach and Tyuiin have independently pioposed a similai piogiam
which aims at piovmg the equivalence of Seibeig-Witten invariants and Donaldson mvaiiants
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