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Abstract: We present the simplest non-abelian version of Sciberg—Witten theory
Quaternionic monopoles These monopoles are associated with Spmh(4)-5tructurcs
on 4-manifolds and form finite-dimensional moduli spaces On a Kéhler surface the
quaternionic monopole equations decouple and lead to the projective vortex equation
for holomorphic pairs This vortex equation comes from a moment map and gives
rise to a new complex-geometric stability concept The moduli spaces of quaternionic
monopoles on Kéhler surfaces have two closed subspaces, both naturally isomor-
phic with moduli spaces of canonically stable holomorphic pairs These components
intersect along a Donaldson instanton space and can be compactified with Seiberg -
Witten moduli spaces This should provide a link between the two corresponding
theories

0. Introduction

Recently, Seiberg and Witten [W] introduced new 4-manifold invariants, essentially
by counting solutions of the monopole cquations The new invariants have already
found nice applications, like e g in the proof of the Thom conjecture [KM] or in
a short proof of the Van de Ven conjecture [OT2] In this paper we introduce and
study the simplest and the most natural non-abelian version of the Seiberg—Witten
monopoles, the quaternionic monopoles

Let (X,¢g) be an oriented Riemannian manifold of dimension 4 The structure
group SO(4) has as natural extension the quaternionic spinor group Spin(4) =
Spin(4) xz, Sp(1)

1 — Sp(1) — Spin'(4) — SO4) — 1
The projection onto the second factor Sp(1) = SU(2) induces a “determinant map”

o Spin(4) — PU(2)

*Partially supported by: AGE-Algebiaic Geometry in Europe, contiact No ERBCHRXCT940557
(BBW 93 0187), and by SNF, m 21-36111 92
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A Spi/1/"(4)—structurc on (X,¢g) consists of a Spi17/'(4)—bundle over X and an
isomorphism of its Sp(1)-quotient with the (oriented) orthonormal frame bundle
of (X,¢y) Given a S/)in/’(4)—structure on X, one has a one-onc correspondence
between S/n'n/'—connections projecting onto the Levi-Civita connection and PU(2)-
connections in the associated “determinant” PU(2)-bundle The quaternionic mono-
pole equations are

DY =0
F(F ) =(¥P).

where 4 is a PU(2)-connection in the “determinant” of the 51)1'1/1/1(4)-structure, D,
is the induced Dirac operator, I'(F; ) denotes Clifford multiplication by the self-
dual part of the curvature, and ¥ is a positive quaternionic half-spinor. The Dirac
operator satisfies the crucial Weitzenbock formula (see Definition 2 2 for notations)

D= ViVt I(F) + id

It can be used to show that the solutions of the quaternionic monopolc equations are
the absolute minima of a certain functional, just like in the Spin®(4)-case [JPW]

The moduli space of quaternionic monopoles associated with a fixed Spin'(4)-
structure ) is a real analytic space of virtual dimension

1
my = ~§(3p] +3e+40)

Here p; is the first Pontrjagin class of the determinant, ¢ and ¢ denote the Euler
characteristic and the signature of X respectively

Note that my, is an even integer iff X admits an almost complex structure

The moduli spaces of quaternionic monopoles contain the Donaldson instanton
moduli spaces as well as the classical Seiberg-Witten moduli spaces, which suggests
that they could provide a method of comparing the two theories (c¢f Sect 8) We
study the analytic structure around the Donaldson moduli space

Much more can be said if the holonomy of (X,¢) reduces to U(2), ic, if
(X,¢) is a Kahler surface In this case we use the canonical Spin‘(4)-structure with
ST =A% A9 and X~ = A% as spinor bundles The data of a Spin(4)-structure
in (X,¢) is then equivalent to the data of a Hermitian 2-bundle £ with det £ = A
The determinant d(l)) coincides with the PU(2)-bundle P(E) associated with £
A positive spinor can be written as ¥ = ¢ + =, where ¢ € A%(EY) and % € AP(EY)
arc FV-valued forms To give a PU(2)-connection in P(E) means to give a
U(2)-connection in E inducing the Chern connection in A%, or equivalently, a U(2)-
connection C in EY inducing the Chern connection in Ky = A0 A pair (C, ¢ + %)
solves the quaternionic monopole equation iff C is a connection of type (1,1). one
of % or ¢ vanishes, while the other is ¢ -holomorphic and a certain projective vortex
equation is satisfied This shows that in the Kéhler case the moduli space decom-
poscs as a union of two Zariski closed subspaces intersecting along the Donaldson
locus The two subspaces arc interchanged by a natural real analytic involution
whose fixed point set is precisely the Donaldson moduli space

The projective vortex equation comes from a moment map which corresponds
to a new stability concept for pairs (&, ) consisting of a holomorphic bundle &
with canonical determinant det& = .# 4 and a holomorphic section ¢ We call such
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a pair canonically stable iff either & is stable, or ¢ #0 and the divisorial component
D, of the zero locus satisfies the inequality

A1(C(Dy)*? 2 K ) ULw,] <0

Our main result identifies the moduli spaces of irreducible quaternionic mono-
poles on a Kéhler surface with the algebro-geometric moduli space of canonically
stable pairs

In the algebraic case, moduli spaces of quaternionic monopoles can easily be
computed using our main result (Theorem 7 3) and Lemma 5 5 The moduli spaces
may have several components Every component contains a Zariski open subset
which comes with a free C*-action Some components consist only of pairs (&, ¢)
with ¢ polystable as a bundle, a component of this type can be obtained from
the corresponding C*-space by adding a Donaldson moduli space at infinity In the
other direction, the component is not compact, but has a natural compactification
obtained by adding spaces associated with Seiberg—Witten moduli spaces The other
components can be naturally compactified by using Seiberg—Witten moduli spaces
in both directions

This compactification process (in the differential geometric context), as well as
the necessary transversality results will be treated in [T], in the final section of
the present work we state the main results concerning the compactification and we
sketch some of the proofs

We like to point out that quaternionic monopoles are the simplest non-abelian
examples of the gencral concept of G-monopoles, where G is a compact Lie group
with a central involution 1 G-monopoles are associated with pairs consisting of a
Spin(4) xz » G -structure on (X, ¢) and a unitary representation ¢ G — U(}V') with
a(1) = —id; Under a certain non-degeneracy condition on ¢, the corresponding
Weitzenbdck formula gives an a priori ¢"-estimate for the spinor component of a
G-monopole This estimation leads to Uhlenbeck-type results Details will appear
in [T]!

1. Spin’-Structures
The quaternionic spinor group is defined as
Spin’ = Spin xz 2 Sp(1) = Spin x7, SU(2) .,
and fits in the cxact sequences
I — Sp(l) — Spin" "~ SO — 1,

I — Spin — Spin" —*> PUQ2) — 1 (1)
These can be combined in the sequence

1272 — Spin’ % SO x PUQ2) — 1 2)

"'After having completed our 1esults we 1eccived a manusctipt by Labastida and Maimo [LM] in
which 1clated 1deas aic proposed fiom a physical point of view, and physical implications are discussed
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In dimension 4, Spin"(4) has a simple description, coming from the splitting
Spin(4) = SU(2) x SU(2)

SU2)x SU(2) x SU(2)
Z/

Spin'(4) =
with Z/2 = ((—id, —id. —id)) There is another useful way to think of Spin’(4) let
G be the group

G ={(a,h,c) e UR)x U2)x U(2)| deta = deth = det ¢}

One has an obvious isomorphism Spin/’(4) = (G/S', and a commutative diagram with
exact rows

| — Z, — SUQ2)x SUQ)x SUQR) — Spil'"(4) — 1
| | | o)
] — st — G — Spin(4) — 1

Definition 1.1. Ler P be a principal SO-bundle over a space X A Spin'-
structure in P is « pair consisting of « Spin" bundle P" and an isomorphism
P~ Pl x. SO The PU(2)-bundle associated with a Spin/’-struciure is the bundle
P" %, PU(2)

Lemma 1.2. 4 principal SO-bundle admits a Spin"-structure iff there exists a
PU(2)-bundle with the same second Stiefel-Whitney class

Proof This follows from the cohomology sequence
L HY X, Spin) — HY(X, SO x PUQ2)) > HAX,Z)2)

associated to (2), since the connecting homomorphism f is given by taking the sum
of the second Stiefel-Whitney classes of the two factors. [

In this paper we will only use Spi/z/’-structures in SO(4)-bundles whose second
Stiefel-Whitney class admit integral lifts Then we have

Lemma 1.3. Let P be a principal SO(4)-bundle whose second Stiefel-Whitney
class wo(P) is the reduction of an integral cluss

Isomorphism classes of Spin/’(4)—Slrucluray in P are in 1-1 correspondence with
equivalence classes of triples consisting of a Spin‘(4)-structure P/S' ~ P in P, u
U(2)-bundle E, and an isomorphism det P* ~ det E, where two triples are equivalent
if they can be obtained from cach other by tensoring with an S'-bundle

Proof  The cohomology sequence associated with the second row in (3) shows that
Spin/’—structures in bundles whose second Stiefel-Whitney classes admit integral lifts
are given by G-structures modulo tensoring with S'-bundles On the other hand, to
give a G-structure in P simply means to give a triple (2*,2,E) of U(2)-bundles
together with isomorphisms

detXF ~detX ~detE



Quatcrnionic Monopoles 367

This is equivalent to giving a triple consisiting of a Spin‘ (4)-structure P</S' ~ P
in P, a U(2)-bundle, and an isomorphism det P¢ ~detE [J

In the situation of this lemma, we get well defined vector bundles
HE =3FQEY

depending only on the Spin'-structure and not on the chosen G-lifting These spinor
bundles have the following intrinsic interpretation identify SU(2) Xz, SU(2) with
SO(4), and denote by P
n;, Spin'(4) — SO(4)
the projections of Spin’(4) = SU(2) x SU(2) x SU(2)/Z/2 onto the indicated
factors (m = m)2) Using the inclusion SO(4) C SU(4), we can form three SU(4)-
vector bundles P x, €, (i,/) € {(1,2),(1,3),(2,3)}
Under the conditions of the previous lemma we have

H =P, O H =Pl O St =P, .

The PU(2)-bundle P" x5 PU(2) associated with the Spin’-structure P</S' ~ P
has in this case a very simple description it is the projectivization P(E) of the
U(2)-bundle £

2. The Quaternionic Monopole Equations

Let (X,¢) be an oriented Riemannian 4-manifold with orthonormal frame bundle P
The exact sequence (2) in the previous section shows two things first, isomorphism
classes of PU(2)-bundles with second Stiefel-Whitney class equal to w>(P) are
in 1-1 correspondence with orbits of Spin'(4)-structures in P under the action of
H'(X,Z/)2), second, Spin”(4)-connections in a Spin’(4)-bundle P" which induce the
Levi-Civita connection in P correspond bijectively to connections in the associated
PU(2)-bundle P x, PU(2)

Now it is well known that wo(P) = wy(X') is always the reduction of an intcgral
class [HH], so that we can think of a Spin’-structure in P as a triple (X7, 27, F)
of U(2)-bundles with isomorphisms det X ~ det ¥~ ~ det £ modulo tensoring with
unitary line bundles We denote the S/)in/l(4)-conncction corresponding to a connec-
tion 4 € .«/(P(E)) in the associated PU(2)-bundle by A

Remark 2 1 Given a fixed U(1)-connection ¢ in det £, the clements in .oZ(P(E))
can be identified with those U(2)-connections in £, which induce the fixed connec-
tion ¢

Now view a Spi/z/'(4)—structure in P as a Spin‘(4)-structure P*/S' ~ P together
with a U(2)-bundle £ and an isomorphism det P >~ det £ Recall that the choice
of P¢/S' ~ P induces an isomorphism

po A e C @)Y ey,

which extends to a homomorphism

A2 C = Endy(Zfax),
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mapping the bundle A' of real 1-forms into the bundle of trace-free skew-Hermitian
endomorphisms The induced homomorphism

I A2 @€ — Endy(2" 2 27)

maps the subbundles A% 2 @ isomorphically onto the bundles Endy(X*), and iden-
tifies A4 with the trace-free, skew-Hermitian endomorphisms ([H, OT1])

Definition 2.2. Let P x, SO(4)~ P be « sz’n”(4)—srru(‘lurc in P with spinor
bundle # = A" A~ and associated PU2)-bundle P(E) Choose a connec-

tion A € </(P(E)), and let A be the corresponding S/)1'17/'(4)-('0/7/7(’('[1’0/1 in P* The
associated Dirac operator is defined as the composition

Dy A ANy A,
where Vi is the covariant derivative of A and » the Clifford multiplication
Note that the restricted operators
Dy ATy - ANH T

interchange the positive and negative half-spinors
Let s be the scalar curvature of (X, ¢)

Proposition 2.3. The Dirac operator D, ANA) — A%A ) is an elliptic, selfud-
joint operator whose Laplacian satisfies the Weitzenbick formula

. | S .
T= VIV LED + gidy (4)

Proof  Choose a Spin‘(4)-structure P</S' ~ P and a S'-connection ¢ in the unitary
line bundle det P° The connection 4 € .«/(P(FE)) lifts to a unique U(2)-connection
C in the bundle £V which induces the dual connection of ¢ in det £V = (det P )V
In [OT1] we introduced the Dirac operator

Pe. ANE@EY) - A2 EY),

by construction it coincides with the operator 2, A%#) — A°(A), and its
Weitzenbock formula reads

i 5.
Co=ViVit TFeo + gidy
where Fe, = F¢ + %F(id/:'v € A*(End £Y') Substituting
1 .
Fe o= ETI'(F( ndpy + Fy

and using %Tr(F(v) = —%FL we get the Weitzenbock formula (4) for ¢ O
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Consider now a section ¥ € A%(#*) We denote by
(P¥), € A%Endy * @ Endy £Y)

the projection of ¥ = ¥ € 4%End # 7 ) onto the fourth summand in the decompo-
sition

End(# ) = Cid @ Endy * @ Endg £Y % (Endg 2F % Endg EV) .
(YW¥)y is a Hermitian endomorphism which is trace-free in both factors

Definition 2.4. Choose a Spin’(4)-structure in P with spinor bundle # and as-
sociated PU(2)-bundle P(E) The quaternionic monopole equations for a pail
(A W) € A(P(EY) x AN(H) are

{ D =0
(swh)

I(F))=(P¥)

The following result is the analog of Witten’s formula in the quaternionic case
(see [W], Sect 3)

Proposition 2.5. Let W € A% 1) be a positive half-spinor, A € «/(P(E)) a con-
nection in P(E) Then we have

1

1 . -
1D+ SITCED) = (P2 = 1V + 5

1751

1 - 5 1 .
F2 (PPl + = [ s]P) (5)
2 45

Proof  The pointwise inner product (I'(/)'¥, ¥) for a positive half-spinor ¥ sim-
plifies (I'(F)Y, V) = (I'(F)Y. W)= (I'(F;),(Y¥)), since I'(F ) vanishes on
A% ), and since I'(F7) is trace-free in both arguments.

Using the Weitzenbock formula (5), we find

. - s
(PP = (Vi )+ (D(F). (P ) + Z!‘f’\z , (6)
which shows that

(PP PP

1 = . 1 1
(DI04 S IEED = (PPl = (VN W )4 S [F P+ 5

The identity (5) follows by integration over X
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3. Moduli Spaces of Quaternionic Monopoles

We denote again by P the orthonormal frame bundle of the oriented Riemannian
4-manifold (X,g). Let £ be a U(2)-bundle with wy(P)=c;(£)(mod2) and ¢ a
Spin‘ (4)-structure in P with determinant L = det £ Endow (X,y) with the corre-
sponding Spinh(4)—s‘[ructure (Lemma 1 3)

We fix an S'-connection ¢ in det £V, and identify .o/(P(E)) with the space
o/ (EY) of U(2)-connections in EY which induce the connection ¢ in det £V

Put
Y oS =/ (EV) x A7)

The natural gauge group is the group ¢ consisting of unitary automorphisms of £V
which induce the identity in det EY % acts on ./ from the right in a natural way
Let «/* C .o/ be the open subset of .o/ consisting of pairs (C, V) whose stabilizer
Gc.wy is contained in the center Z/2 = {£idsv} of the gauge group.

Remark 31 A pair (C, V) does not belong to .«/* iff C is a reducible connection
and ¥ =0

Indeed, the isotropy group of % acting only on the first factor .o/ (EV) is the
centralizer of the holonomy of C in SU(2) The latter is S' or SU(2) if C is
reducible, and Z/2 in the irreducible case [

A pair belonging to .«/* will be called irreducible Note that the stabilizer of
any pair with vanishing second component ¥ contains Z/2.

From now on we also assume that ./ and ¥ are completed with respect to
suitable Sobolev norms L,%, such that ¥ becomes a Hilbert Lie group acting smoothly
on .o/ Let A = .o//9, B* = /"% be the indicated quotients, and denote the orbit-
map [ | «/ — A byn

An element in (4, V) € o/ will be called strongly irreducible if its stabilizer is
trivial or, equivalently, if ¥ 40 Let .o/** C .o/* be the subset of strongly irreducible
pairs, and put A** = ./** /4

Proposition 3.2. % is a Hausdorff space %% C A is open and has the structure of
a differentiable Hilbert manifold The map </ — %% is a differentiable principal
G-bundle

Proof Standard, cf [DK,FU]
Fix a point p = (C,¥) € .o/. The differential of the map ¥ — ./ given by the
action of % on p is the map

DY A su(EY)) — A'(su(EY)) 0 AN @ EY)
f = (De(f),—f¥)
Setting

No(e) = { € A'(su(EY ) 0 ANE @ EY) [ DY =0,

BIl <&},

for ¢ > 0 sufficiently small, one obtains local slices for the action of ¥ on .o/**

and charts 7|y, . Ny(¢) — #* for 4™ [

Note that the curvature F; of a connection in P(E) equals the trace-free part
F of the curvature of the corresponding connection C € ./ (EY)
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Using the identification .«/(P(E)) = </ (E"), we can rewrite the quaternionic

. . . y )
monopole equations in terms of pairs (C,¥) € .«/. Let .o/%" ' o/ be the space of
solutions

Definition 3.3. Fiv « Spin/’-.s'l/‘u('nu'e in P The moduli space of quaternionic
. ; ssih . /sih 5y
monopoles is the quotient ./ = o/5"" |G We denote by .#/** = (/""" 0 .c/*)9,

. o
= (S eRvA )/ the subspaces of (strongly) irreducible monopoles
™ .
The tangent space to /5" at p = (C,¥) € / is the kernel of the operator
D, A'(su(EY)) D ANZT @ EY) — AYsu(XT) D su(EY)) © ANXT @ EY)
defined by
DL((z ) = (I(DE@)) — [P )o + (P, Doy +7(2)P).
where we consider (%) as map (2) X7 — X~ @su(EY) Clearly D)o D) =0,
since the monopole equations are gauge invariant
Using the isomorphism ™" A%(su(X")) — A%, we can consider D) as an op-
erator D) A'(su(EY)) © ANX" @ EY) — AL (su(EY)) © A%(X @ EY)
Let g(X) and e(X) be the signature and the topological Euler characteristic of
the oriented manifold X
A
Proposition 3.4. For a solution p = (C.¥) € /*"", the complex
0 vy 2 g VN 0 gt D o v 0.y —
00— A"Ssu(E")—— A su(EY)Y QA H " —— ATsu(EV)D A A — 0 (¢))
is elliptic and its index is

S@ea(EY) — ei(EYY) — 3(3eX) + 40(X) (1)
Proof  The complex %, has the same symbol sequence as
0 — A%su(EY) R A su(EYy A L»M) Asu(EVY2 A 7 -0,
which is an elliptic complex with index
2(4er(EY) — e (EY)?) — %(O‘(X) +e(X)) + index D¢ .
The latter term is

P 1 1
index D¢ . = 2[ch(EY)er "D A(X )]s = =2c2(EY) + 5c.(EV — Ea()(). O

Remark 35 The integer in (7) is always an even number if X admits almost
complex structures
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Our next step is to endow the spaces ./#/** (.#*) with the structure of a real
analytic space (orbifold)

In the first case (compare with [FU,DK,OTI,LT]), we have an analytic map
o o — A (su(EY)) > A% ) defined by

a(CW)=((F) =T (PP, Pc. V),

which gives rise to a section ¢ in the bundle ./** x4 (A% (su(EY)) < A%A 7))
We endow ./#** with a real analytic structure by identifying it with the vanishing
locus Z(6) of 6, regarded as a subspace of the Hilbert manifold #** (in Douady’s
sense) ([M,LT])

Now fix a point p = (C,¥) € «/*. We put

Spe) ={p+p|pedsuEy A n . DIDY B+ D alp+p)=0. ||p|| <&}

Claim 3.6. For sufficiently small ¢ > 0, Sy(¢) is a finite dimensional submanifold
of </ which is contained in the slice Ny(¢) and whose tangent space at p is the
first harmonic space IHL of the deformation complex €,

To prove this claim, we consider the map
sp A'(su(EY)) oA Ty — im(D; %o > im(D, 'y

given by the left-hand terms in the equations defining S,(¢) The derivative of s, at
0 is the first Laplacian

Al A (su(EY)) = AN A ) — im(D)) > im(D)))

associated with the elliptic complex %,,, hence s, is a submersion in 0 This proves
the claim [

. . b . .
The intersection .7*" NN,(e) = Z(a) N N,(¢) of the space of solutions with
the standard slice through p is contained in S,(¢) and can be identified with the
finite dimensional model

Z(()—) M A//)(‘(:) - Z(O—|5/,(::))
If p & «/* is strongly irreducible, then the map
T 2tatyn 2005 000) — 47

is a local parametrization of ./ at p, hence Z(als,.)) is a local model for the
moduli space around p

Il pe.o/*\ /"% is irreducible but not strongly irreducible, then necessarily
¥ = 0, and the isotropy group ¥, = Z/2 acts on S,(¢) Since ¢ is Z/2-equivariant,
we obtain an induced action on Z(a|s ) In this case nll(”‘»m’ induces a homeo-
morphism of the quotient Z(a|s,.))/Z/2 with an open neighbourhood of p in ./~
and /™ becomes an orbifold at p, if we use the map

H:Z(am) Z(O"s,,(::)) — A

as an orbifold chart
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Remark 37 Using a real analytic isomorphism which identifies the germ of S,(«)
at p with the germ of IHL = T)(S,(¢)) at 0, we obtain a local model of Kuranishi-
type for .#* at p.

Remark 38 The points in &% = . 4"\ .#** have the form [(C.0)], where C is
irreducible and projectively anti-self-dual, ie, (F.)" =0 There is a natural finite
map
T — H(PEY))

into the Donaldson moduli space of PU(2)-instantons in P(E"), which maps &*
isomorphically onto #(P(EY))* if H'(X.Z/2) = 0 In general &* and . #Z(P(EV))*
cannot be identified The difference comes from the fact that our gauge group is
SU(EY), whereas the PU(2)-instantons are classified modulo PU(EY)

*

For simplicity we shall however refer to &*
space
Concluding, we get

as Donaldson instanton moduli

Proposition 3.9. .#/** is a real analytic space /4" is a real analvtic orbifold,
and the points in 4=\ 4" have neighbourhoods modeled on 7Z/2-quotients
N W can be identified as a set with the Donaldson moduli space & of
irreducible projectively anti-self-dual connections in EY with fixed determinant ¢

The local structure of the moduli space . # in reducible points, which correspond
to pairs formed by a reducible instanton and a trivial spinor, can also be described
using the method above (compare with [DK])

Let .#5" C .4 be the subspace of ./ consisting of all orbits of the form
(C,¥)-SU(EY), where C is a reducible connection and ¥ belongs to one of the
summands Let L = det X = detE It is easy to sec that

s Ryl
P ~ U =//Lg,5182 >
S summand

of EV

where 73] denotes the rank-1 Seiberg-Witten moduli space associated to a
Spin‘ (4)-structure of determinant M.

The fact that the moduli spaces of quaternionic monopoles contain Donaldson
moduli spaces as well as Seiberg—Witten moduli spaces suggests that they can be
used for comparing the invariants given by the two theories

4. Quaternionic Monopoles on Kéhler Surfaces

Let (X,g) be a Kihler surface with canonical Spin(4)-structure, in this case
ST =A% A% and = = A% A Spin’(4)-structure in the frame bundle is given
by a unitary vector bundle £ together with an isomorphism det £ ~ A%, A Spinh(4)-
connection A corresponds to a PU(2)-connection 4 in the associated bundle P(E), or
alternatively, to a unitary connection C in £ which induces a fixed S'-connection
¢ in A% Recall that the curvature F'; of 4 equals the trace-free component FC
of F‘('

If we choose ¢ to be the Chern connection in the canonical bundle A2 = K},
then the Spinh(4)-connection in # =X %EY is simply the tensor product of the
canonical connection in 2 = 27 © X~ and the connection C
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A positive quaternionic spinor ¥ € A%(# ) can be written as ¥ = ¢ + 2, with
@ € AYEY), and o € AZ(EY)

Proposition 4.1. Let C be a unitary connection in EV inducing the Chern connec-
tion ¢ in detEY = Ky A pair (C, ¢ + o) solves the quaternionic monopole equa-
tions if and only if F¢ is of type (1,1) and one of the following conditions holds.

. 1
1 =0, éco=0 and iAF+ (@@ @) =0,

1
2 ¢ =0, iAgFe = 5 (2@ 3) = 0 (8)

Proof Using the notation in the proof of the Weitzenbock formula, we have

Cex=0 and

Foo=3TrFe +F)idpy +Fy = F; = F? € A2(su(EY)) By Proposition 26 of
[OT1] the quaternionic Seciberg—Witten equations become

FPP = —Se@a)

PP =502k

iNgFa = =3[9 @ P)o — (22 D)o

5(@ = id,0c

Note that the right-hand side of formula (5) is invariant under Witten’s transfor-
mation (C, ¢ + )+ (C, ¢ — x) Therefore, every solution satisfies F3* = F§* = 0,
and (¢ 2 %)y = (2% @)o =0 Elementary computations show that thls can happen
only if ¢ =0 or » =0. On the other hand, since the Chern connection in Ky is
integrable, we also get F2' = F2? =0 [

Remark 42 The second case in this proposition reduces to the first' in fact, if ¢=0
and € A®(EV) satisfics i4,02=0, we set y =7€AX(E ) =A%(A0 = E)=A%EY),
and we obtain 5(~1ﬁ = (A‘(l& = ¢z =0 Here we used the fact that Ay A2 — A0
is an isomorphism, the adjoint of the Lefschetz isomorphism Ay [LT]. A simple

)0 = (@Yo

calculation in coordinates gives — x (2 2 )y = (4 &

5. Stability

Let (X,¢) be a compact Kihler manifold of arbitrary dimension, £ a differentiable
vector bundle, and let ¥ be a fixed holomorphic line bundle, whose underlying
differentiable line bundle is L = detF

Definition 3.1. A holomorphic paiv of type (E, &) is a pair (&,¢) consisting of a
holomorphic bundle & and a section @ € H(X,&) such that the underlving differ-
entiable bundle of & is E and deté = &

Note that the determinant of the holomorphic bundle & is fixed, not only its
isomorphism type

Two pairs (&,,¢,), i = 1,2 of the same type are isomorphic if there exists an
isomorphism f &} — &, with f*(¢p2) = ¢, and det f = id¢

In other words, (&,,¢,) are isomorphic iff there exists a complex gauge trans-
formation f € SL(£) with f*(¢2) = ¢, such that f is holomorphic as a map
f (5(] — (§2
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Definition 5.2. A holomorphic pair (&, ) is simple if any automorphism of it is
of the form f = ¢idg, where e =1 A pair (8, ) is strongly simple if its only
automorphism is idg

Note that a simple pair (&,¢) with @0 is strongly simple, whereas a pair
(6,0) is simple iff & is a simple bundle

Note also that (&, ¢) is simple iff any trace-frec holomorphic endomorphism f
of & with f(¢) = 0 vanishes

For a nontrivial torsion free sheaf % on X, we denote by p,(F) its slope
with respect to the Kéhler metric ¢ Given a holomorphic bundle & over X and a
holomorphic section ¢ € HO(X, &), we let (&) be the set of reflexive subsheaves
7 C & with 0 < tk(F) < rk(&), and we define

So&) ={T € S(&)| g € H'X. 7))
Recall the following stability concepts [B2]

Definition 5.3.
1 & is @-stable if

max <,u,,(é"), sup ,uq(/?’)> < inf  u(&/F)
’ Feg(6) ' FCSAE)

2 Let /. € R be a real parameter The pair (&, ¢) is i-stable iff

max (,u!,((g;), sup ,uy(f")> <<

£ p(&/7).
Fres(é) (p((g)

n
7eY,

3 (&,9) is called 7-polystable if & splits holomorphically as & = &' & &, such
that @ € H(X,&"), (6, ¢) is a s-stable pair, and &" is a polystable vector bundle
of slope 7.

From now on we restrict ourselves to the case rk(&) = 2.

Definition 5.4.

1 A holomorphic pair (&,¢) of type (E, &) is called stable if one of the
following conditions is satisfied"

i) & is @-stable
ii) @#0 and & splits in direct sum of line bundles & = &' & &, such that
¢ € HO(&') and the pair (&', ¢) is p,(E)-stable

2. A holomorphic pair (&,¢) of type (E, &) is called polystable if it is stable,
or ¢ =0 and & is a polystable bundle

Note that there is 7o parameter . in the stability concept for holomorphic pairs
of a fixed type The conditions depend only on the metric g and on the slope 1, (£)
of the underlying differentiable bundle £
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Lemma 5.5. Let (8,¢) be a holomorphic pair of type (E, &) with ¢+0 There
exists a uniguely determined effective divisor D = D,, and a commutative diagram

0 — D) & — Dy, — 0,

DT o/
Cy

9)

with a local complete intersection Z C X of codimension 2 The pair (&,¢) is
stable if and only if 1, (Cx(D)) < py,(E)

Proof D = D, is the divisorial component of the zero locus Z(¢) of ¢ which is

defined by the ideal im(¢pY &Y — (v), ¢ is the induced map and Z "= Z(¢) The

set ¥,(&) consists precisely of the line bundles .7 C (x(D), so that
?eil(}i(ﬂ)/‘y((f/’gr) = 2uy(E) — py(Cx(D)) .

Suppose (&, @) is stable If & is ¢-stable, we have 1,(£) < 2u,(E) — py(Cx (D)),
which gives the required inequality If & is not ¢-stable, then Z = (), the exten-
sion (9) splits, and the pair (( x(D), @) is py(£)-stable, ie u, (¢ x (D)) < py(£)

Conversely, suppose 1t,(( x(D)) < 1,(E), and assume first that the extension (9)
does not split In this case & is ¢-stable in fact, if 7' C & is an arbitrary line
bundle, cither 7' C ( (D), or the induced map 7' C & — ¢, % ¥ (—D) is non-
trivial But then .7/ ~ ¥ @ ( y(—D — A) for an effective divisor A containing Z,
and we find

/‘g/(’%/) = Zﬂg(E) — py(D) — :Ug(A) < 2uy(E) — Uy(C x (D))

Furthermore, strict inequality holds, unless Z = () and the extension (9) splits, which
it does not by assumption.

In the casc of a split extension, we only have to notice that a pair (&', ¢) is
/-stable for any parameter 2 > y,(6") [B1] [

Remark 56 Consider a pair (&, ¢) of type (£, ¥) with ¢ =0 and associated ex-
tension (9) & is ¢-stable iff 1, (¢ x(D)) < p,(E), and the extension does not split

Indeed, if the extension splits, then & is not ¢-stable, since

LD = inf (6 7).

6. The Projective Vortex Equation

Let £ be a differentiable vector bundle over a compact Kéhler manifold (X, g) We
fix a holomorphic line bundle .” and a Hermitian metric / in &% Let (&,¢) be a
holomorphic pair of type (£, )

Definition 6.1. 4 Hermitian metric in & with deth =1 is a solution of the pro-
jective vortex equation iff the trace free part FY of the curvature Fy satisfies the
equation

0 Lo
iA4F) + 5 (06" )0 = 0 (")
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Theorem 6.2. Let (&,¢) be a holomorphic pair of type (E, <) with k(&) =2
Fix a Hermitian metric | in &

The pair (&, @) is polystable iff & admits a Hermitian metric h with deth = [
which is a solution of the projective vortex equation If (&,¢) is stable, then the
metric h is unique

Proof Suppose first that / is a solution of the projective vortex equation (V')
Then we have

1 1 1
iAF/I + E((p@h) - E <iAT1.FlI + 2|(/)|2> ldL 5

ie h satisfies the weak vortex cquation (J;) associated to the real function
t = Y2iATr Fy + |@[>) Therefore, by [OT1], the pair (&,¢) is /-polystable for

3
the parameter /. = ("273)' [ tvoly = uy(6) + (”;711)! ool

Let A be the Chern connection of /4, and denote by &’ the minimal A-invariant
subbundle which contains ¢ If & = &, then & is @-stable and the pair (&, @) is
stable

If & =0, hence ¢ =0, then & is a wecak Hermitian—Einstein metric, & is a
polystable bundle, and the pair (&, ¢) is polystable by definition.

In the remaining case ¢’ is a line bundle and @ +0. Let & = &'+ be the
orthogonal complement of &', and let 7’ and /4" be the induced metrics in &’ and
&" We put s = iA,TrF, Then, since h = h' @ h”, the projective vortex equation
can be rewritten as

{ iNFy + Ho¢" ) = Ls + Lol )id,
iAFy = 3(s + 3lolf ider

The first of these equations is equivalent to
AFy + Sy = Tid
1 i - = Zldgr,
) 2 P Hlde

which implies that (&7, —‘\}%) is py(&)-stable by [OT1].
Conversely, suppose first that (&, ¢) is stable We have to consider two cases

Case 1 & is ¢@-stable Using Bradlow’s existence theorem, we obtain Hermitian
metrics in & satisfying the usual vortex equations associated with suitable chosen 7,
and, of course these metrics all satisfy the equation (V') The problem is, however,
to find a solution with an a priori given determinant /.

In order to achieve this stronger result, Bradlow’s proof has to modified slightly
at some points

One starts by fixing a background metric £ such that detk = /. Denote by So(k)
the space of trace-free k-Hermitian endomorphisms of E£, and let .#et(]) be the
space of Hermitian metrics in £ with dets = /. On

er(! = {ke'| s € LE(So(k)))
we define the functional M, .#et(1)] — R by

My(h) .= Mp(k,h) + |lo|17 — [ o]}
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Here M, is the Donaldson functional, which is known to satisfy the identity (‘i—/[

Mp(k,h(1))=2 [, Tr[h~ ' (6 )h(1)iA,F,] for any smooth path of metrics /(1) [Do, Ko]
Since /4~ '(1)h(1) is trace-free for a path in ./Zet(/), we obtain

a4 Mp(k,h(t)) = 2 [ Telh™ " h(1)iA,F)]
dt e ‘

Similarly, for a path of the form A(r) = he", with s € So(h), we get

d

d =h . —-h
m (", ) = <— e"fp,q)> = (5,00")y = [ Tr[s(pp" )o]
=0 h X

d
2 _ =
H(f)Hh/ - d dl‘\/:o

t i[ =0
This means that, putting m,(h) .= iAF/? + %(q)gb/' )o, we always have

4 My(he") =2 [ Tr[s my(he")],
dt|_, X ‘

so that solving the projective vortex equation is equivalent to finding a critical point
of the functional M, (compare with Lemma 3 3 [B2])

Claim 6.3. Suppose (&, @) is simple Choose B > 0 and put

wet(HY(B) = {h e wet(DY| [lmy(h)||1r < B}

Then any h € #et(l)y(B) which minimizes M, on ./ et(1)y(B) is a weak solution
of the projective vortex equation

The essential point is the injectivity of the operator s — A)(s) + %[(q)q'))s]o acting
on LSy(h) But from

(4 3o sl s) = A = ol
h

we sce that this operator is injective on trace-free endomorphisms if (&, @) is
simple ]

Now we can follow again Bradlow’s proof if & is ¢-stable, then there exist
positive constants Cy, C; such that for all s € LSo(k) with ke* € .#et(1)5(B) the
following “main estimate™ holds

sup|s| £ CiMy(ke') + C,
This follows by applying Proposition 3 2 of [B2] to an arbitrary 7 € R with

— DtVol (X
max </té,((§). sup ,ug(j/’)> - Q;)TTM_) <
4 ) ks

inf (87,
Frey (& Solé)

MAS

since Bradlow’s functional .#, . coincides on -#et(!) with M,,.
It remains to be shown that the existence of this main estimate implies the
existence of a solution of the projective vortex equation
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The main estimate implies that for any ¢ > 0, the set
{s € LISy(k)|ke* € det(1))(B). M,(ke') < c}

is bounded in L} Let (s,) be a sequence in LYSy(k) such that ke" € ./Zet(1)}(B)
is a minimizing sequence for M, and let s be weak limit Then /1 := ke’ is a weak
solution of the projective vortex equation, which is smooth by elliptic regularity
(B2]

Finally, we have to treat

Case 2 @=+0, & = &' &”, with ¢ € H(&"), and the pair (&', ¢) is pi,(E)-stable

We wish to find metrics 4’ and 4" in &’ and &, such that for s = iAF; the
following equations are satisfied:

h/ . hl/ — [
iAF, + %((p(f)h') = %sid/;/
iAFy = Y(s+ S|olf)id, .

Since the pair (&7, %(p) is j,(E)-stable, there exists by [OT1] a unique Hermitian
metric 4’ in &' solving the second of these equations With this solution the third
equation can be rewritten as

II/IHF/,// =5 — l'AlL/F/,/

Since (/\,(.v — iAyFy) = deg(&"), we can solve this weak Hermitian Einstein equa-
tion by a metric /4", which is unique up to constant rescaling The product /4’ - 4" is
a metric in &' & & = & which has the same mean curvature s as /, and therefore
differs from / by a constant factor We can now simply rescale 4 by the inverse of
this constant, and we get a pair of metrics satisfying the three equations above [J

7. Moduli Spaces of Pairs

Let £ be a differentiable vector bundle of rank - over a Kdhler manifold (X.¢),
and let ¢ be a holomorphic line bundle whose underlying differentiable bundle is
L =detk

Proposition 7.1. There exists a possibly non-Hausdorff complex analytic orbifold
W(E, ) parametrizing isomorphism classes of simple holomorphic pairs of type
(E. ) The open subset .4 (E, ) C .4 (E, <) consisting of strongly simple pairs
is a complex analytic space, and the points in /3 (E, L)\ . 4*(E, L) have neigh-
bourhoods modeled on Z/r-quotients

Proof Since we use the same method as in the proof of Proposition 3 9, we only
sketch the main ideas.

Let # be the semiconnection defining the holomorphic structure of .¢”, and put
o = o/ (E) x AYE), where «/(E) denotes the affine space of semiconnections
in £ inducing / in L =det £ The complex gauge group SL(E) acts on </, and we
write .o/° (</**) for the open subset of pairs whose stabilizer is contained in the
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center Z/r of SL(E) (is trivial) After suitable Sobolev completions, /% becomes the
total space of a holomorphic Hilbert principal SL(£')-bundle over 4** ‘= o/**/SL(E)
A point (0,¢) € 7 defines a pair of type (E, <) iff it is integrable, ic iff it
satisfies the following equations.
F2 =0
{ _() (10)

dp =10

Here F(?Z =5isa (0,2)-form with values in the bundle Endo(£) of trace-free endo-
morphisms Moreover, isomorphy of pairs of type (£, ¢) corresponds to equivalence
modulo the action of the complex gauge group SL(E)

Let 6 be the map ./ — A (Endy(E)) > A°'(E) sending a pair (0, ¢) to the left-
hand sides of (10) We endow the sets .#V(E.¥)=Z(c)N /> |SI(E)
(W(EL)= Z(o) N .o/*/SL(E)) with the structure of a complex analytic space
(orbifold) as follows

AP(E, Y is defined to be the vanishing locus of the section G in the Hilbert
veetor bundle /" X, (4 ZEndy(E) 0 A"E ) over 4" which is defined by &

To define the orbifold structure in . # (£, ¥), we use local models derived from
a deformation complex

Let p=(0.¢) €./ an integrable point The associated deformation complex
&,; is the cone over the evaluation map ety

el,‘z) AO(/(EndQ(E)) — AO‘](E) s

and has the form
Dl)
0 — A"Endo(£)) —> A" (Endo(E)) © AO(E) -
D 5 (J/F)
% A (Endg(E)) O A(E) 5

(compare with [OT1] Sect 4) We define
Spe) = {p+P|peA"Endy(E) > A°E, D;D,; )
+DY; (G(p+ ) = 0IBl < e}

The same arguments as in the proof of Proposition 3 9 show that for sufficiently
small & > 0, S;(¢) is a submanifold of ./, whose tangent space in p coincides

with the first harmonic space H:I}, of the elliptic complex (?2,;) Therefore, we get

a local finite dimensional model Z(O_-!S_,;(::)) for the intersection Z(&) N /\_/,;(::) of the
integrable locus with the standard slice

Na(e) = {p+ Bl eA (Endo(E)) 0 A%E). Dy (f)=0. ||l <&}
through p The restriction

ﬁ|2(6\§/wv,) Z(0:|§,-,(;;)) — N(E, L)
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of the orbit map is ¢tale if [p] € . #/V¥(E, ), and induces an open injection
Z(6|§I;(4,))/Z/r — M(EYL)

if [ple W(E, )\ - 4¥(E, ) We define the orbifold structure of . 75 (E, ¢) by
taking the maps ﬁ|z(ﬁ—‘§_m) as orbifold-charts [

Our next purpose is to compare the two types of moduli spaces constructed in
this paper Let (X, ¢) be a Kéhler surface endowed with the canonical Spin‘-structure
¢ Let £ be a U(2) bundle with det £ = K, and denote by .#*(£') the moduli space
of irreducible quaternionic monopoles associated to the Spin”(4)-structure defined
by (¢, EY) (Lemma 1 3)

It follows from Proposition 4 1 that ./#*(E) has a decomposition

E) = M (E) g Ul (E o

where . #*(£),— (-#/"(E£)y—0) 1s the Zariski closed subspace of .#*(£) cut out by
the equation 2 =0 (¢ = 0) The intersection

-//*(E)*/:() N ~//):’(E)<pﬁ0

is the Donaldson instanton moduli space &* of irreducible projectively anti-self-dual
connections in £, inducing the Chern connection in .# . Put .7,y =.o/ (E)xA(E),
where ¢ is the Chern connection in Ky

Proposition 7.2. The affine isomorphism </, > (C, ) +— (e, @) € o/ induces a
natural real analvtic open embedding

J o UE )y MO(E A )
whose image is the suborbifold of stable pairs of type (E, # v)

Proof  Standard arguments (cf [OT1]) show that J is an ¢tale map which induces
natural identifications of the local modcls B

A point [(0, ¢)] lies in the image of J iff the SL(E)-orbit of (0, ¢) intersects the
zero locus of the map

_ - i
m .o — Au(E)), (Cc, @) AF — 5(<pgo)0

Let (£,¢) be the holomorphic pair of type (E..# y) defined by (J.¢) We can
reformulate the condition above in the following way [(&, ¢)] lies in the image of J
iff there exists a Hermitian metric /7 in & inducing the Kahler metric in % y = det&
which satisfies the projective vortex equation (7)) But we know alrcady that this
holds iff (&, ¢) is stable Morcover, the unicity of the solution of the projective
vortex equation is equivalent to the injectivity of J [

Using the remark after Proposition 4 1, we can now state the main result of this
paper
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Theorem 7.3. Let (X,g) be a Kdihler surface with canonical bundle Xy, and let
E be a U2)-bundle with det E = Ky Consider the Spin/'-.s'rrucz‘ure associated with
the canonical Spin‘ (4)-structure and the U(2)-bundle EY  The corresponding mod-
uli space of irreducible quaternionic monopoles is a union of two Zariski closed
subspaces  Each of these subspaces is naturally isomorphic as a real analytic orb-
ifold to the moduli space of stable pairs of type (E, 4 x) There exists a real
analytic involution on the quaternionic moduli space which interchanges these two
closed subspaces The fixed point set of this involution is the Donaldson moduli
space of instantons in E with fixed determinant, modulo the gauge group SU(E)
The closure of the complement of the Donaldson moduli space intersects the moduli
space of instantons in the Brill-Noether locus

The union  #5" of all rank 1-Seiberg—Witten moduli spaces associated with
splittings E = E' & E" corresponds to the subspace of stable pairs of type ii)

8. Compactification, transversality, and applications

In this final section we indicate the main steps in proving the existence of a natural
Uhlenbeck-type compactification of the moduli spaces of quaternionic monopoles,
full details will appear in the Habilitationsschrift [T] of the second author

Let (X, g) be a closed oriented Riemannian 4-manifold endowed with a Spin(4)-
structure by = (P",P"/Sp(1)-=> P) We denote the associated PU(2)-bundle
P" xy PU(2) by d(b)

An ideal monopole of type b is a pair ([4",¥'],{x|,. .,x;}) consisting of a
monopole [4", V'] € A//“\/,(l)/) for a S/)i//’(4)-su'ucture b’ and an element {x;, ,x;} ¢
S'X in the /™ symmetric product of X with

1 . -
= 1) = (pi(3(D)) = pi(a(D))
The set of ideal monopoles of type b is

145y = T1- 741 ) x sy
Iy

the union being over all isomorphism classes of Spin/’(4)-structures b’ with
PrO) = pi(dh))

Theorem 8.1. There exists a metric topology on 1 #5.(h) such that the moduli

space #4(h) C 1 #45.(h) becomes an open subspace with compact closure 45 ()
The proof of this theorem is long and technical, it is based on

a) Local estimates for quaternionic monopoles in terms of the curvature of the
connection component

b) A regularity theorem for L2-solutions

¢) A removable singularities theorem

The techniques of the proofs are similar to the ones which have been devel-
oped to prove the analogous results in the instanton case [DK], however, since
the monopole equations are not conformally invariant, several new difficulties arise
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In the present paper we state the main technical results and sketch the proof of
the fundamental removable singularities thecorem, for a complete proof we refer the
reader to [T]

a) Let £y be the trivial SU(2)-vector bundle over the closed standard 4-ball
B and put ZJt — B x H*, where H are copies of the quaternionic field H
A Clifford map is an R-linear isomorphism

o Ap — Hompy (2.2, )

'

The choice of a Clifford map defines a metric ¢ on B such that 7 becomes the
Clifford multiplication of a Spin(4)-structure in (B, g.) Let 7 be a Clifford map
inducing the standard flat metric gy on B

Theorem 8.2 (Estimates in a Coulomb gauge) There exist a positive constant
¢ >0 and a neighbourhood N of 7o in the €3-topology with the following
properties For any Clifford map € N, any interior domain D € B, and any pos-
itive integer 1, there is a constant C.p such that for each solution (4,¥) of the
quaternionic monopole equations for the triple (B, Ey,7) satisfving

(i) ;4 =0,

(i) 4l 2 e, W] =¢
the following estimates hold

< Cop (Al + [Pl

IA

Cooal Al +11¥1].)

| '{/HL}(D)

The proof can be reduced to a problem on the (closed) sphere S* endowed with
a metric ¢, of non-negative sectional curvature, such that the upper hemisphere is
isometric to the flat ball (B,¢9) Let 7, be a fixed extension of = to a Clifford map
on (S%,g,) Each 7 € N can be extended to a Clifford map 4 which is close to %,
and gives rise to two first order elliptic operators

D: ANXTREY) = ANZT B EY),
ds = di t-d A'(s11(2)) — A%(s11(2)) O A2 (s1(2)) .

Here Xt are the half-spinor bundles of the standard Spin(4)-structure, E is the
trivial SU(2)-bundle, and Az+ denotes the space of 2-forms which are self-dual with
respect to the metric associated with 9

Essential points needed in the proof of Theorem 8 2 arc the injectivity of the
operators  [J: and 0, which follows from corresponding Weitzenbock formulae,
elliptic estimates, and standard bootstrapping arguments [

Combining Theorem 82 with the Gauge fixing theorem of K Uhlenbeck
(Theorem 2 3 7 in [DK]) one gets two important consequences

Corollary 8.3 ( Estimates in terms of the curvature) There exist a positive constant
¢ and a neighbourhood N of 7o in the 63-topology with the following properties
For uny 7 € N, any interior domain D € B, and any positive integer [, there is a
positive constant C, p; such that any solution (4, V) of the quaternionic monopole
equations for the triple (B, Eq,7) satisfving [|[Fy|;2 < ¢, is gauge equivalent to a
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solution (A, V) for which the following estimates hold

- . !
[l 20y = CopallFallizs P P

Li(D) = C”D.IHF”

The following global-compactness result is the analogon of Proposition (4.4.9) in
[DK]

Corollary 8.4. Let (Q,¢g) be an oriented Riemannian manifold endoved with a
nin' (4)-structure, and le i P dnen ! sequence of solutions of the quater-

Spin" (4)-structure, and let (A,, ¥, )en be a sequence of solutions of the ter

nionic monopole equations If every point x € Q admits a geodesic ball B, with

[ =
B,

for all large enough n, then there is a subsequence (n,)yen and gauge transforma-
tions u, € G such that (A4, , WV, ) converges in the €>-topology on Q

b) The next important step is the following delicate regularity result for Z*-small
approximate L7-solutions

Proposition 8.5 (Regularity of L3-solutions) Let % be a Clifford map on S* which
is sufficiently ¢'-close 1o % and let § be the associated metric

There are positive constants a, b, ¢, d, depending on %, such that any pair
(A, W) € LX(A'su(2)) x LI(XT = EV) satisfying

(i) di(4) =0,
(i) |4l £ a, P £ b,
(i) | 24Pl < e [T(F])— (PPl < d,
for which - ¥ and (F[)— (¥ V), are smooth, is also reqular Moreover, there
exist positive constants e, f, depending on %, such that the following estimates
hold
2) .

4] pF T — (PPl

p = e(] Pra |

i
Ly < 1 2ia e

The analogous statement in the instanton case is Proposition (4 4 13) in [DK],
the proof of Theorem 85, similar to the one in [DK], also uses the continuity
method, but some of the arguments are more difficult [T].

¢) Now put B* .= B\ {0}, S* .= S*\ {0}

Theorem 8.6 (Removable singularities) Let 7 be a Clifford map on the ball
Let (Ay, Wo) be a solution of the quaternionic monopole equations for the triple
(B®, Eo|pe,7|pe) with jb,, |Fy,|> < oc Then there exists a solution (A,¥) of the
monopole equations for the triple (B.Ey,y) and an isomorphism u - Eg|ge — Eg|pe
such that w* (A, V)|ge ) = (Ao, o)

(kg

Proof 1t suffices to prove the theorem for a Clifford map which is close to the
standard one 7}y Indecd, this can be achieved by constant rescalings of the metric,
under which the monopole equations arc invariant If ;' is close to 7, then it extends
to a Clifford map 9 on S* which is close to 9.

Now the technique which was developed in [DK] for the instanton case can be
adapted to the situation at hand
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Consider a small positive number R In a first step we cut off the solution
(Ag, Vo) towards the boundary of B to get an approximate solution (A4g, W) on
the punctured sphere S® with L?-small curvature, whose restriction to Bz \ {0} is
a solution, and which vanishes outside B; Replacing the pair (4, ¥») by a gauge
equivalent one if necessary, we can estimate the L*-norm of the connection com-
ponent in terms of the L?-norm of its curvature (use the analogon of Proposition
(44 10) in [DK] for the quaternionic monopole equations)

In a second step we keep R fixed and apply the same procedure for any r
with 0 < r < R towards the origin we cut off with a suitable function supported
in $*\ B, and then apply a gauge transformation in order to bring the connection
into the Coulomb gauge and to control its L*-norm in terms of the Z?-norm of
the curvature (use the Gauge fixing theorem on the sphere, Proposition (2 3.13) in
[DK]) The L7-estimates in the Regularity theorem give a uniform bound for the
Lf—norms of the obtained family (4g,, ¥r, ), of approximate solutions Hence, for a
suitable sequence r, — 0, the sequence (A4g,,, ¥r.,, )ien converges weakly in L% to a
pair (4,¥) which is a weak Li-solution of the quaternionic monopole equations in
a neighbourhood of 0. This pair must be smooth by the Regularity theorem Indeed,
the associated sections s 4V and I";,(Ff,* ) — (¥YY¥), vanish in a neighbourhood of
the origin and are smooth away from the origin [

Now consider again a compact Riemannian manifold (X,¢) The Weitzenbock
formula provides an a priori %"-bound for the spinor component on the space of
solutions of the monopole equations Using the decomposition [F4[> = [, | + |F |?
and the second monopole equation, it follows that there exists a positive constant C
such that for every quaternionic monopole (4, ¥) the following pointwise a priori
estimate holds

Fi> < (F P —IF 1)+ C

The integral of the first term on the right is a topological invariant £(ly) of the
Spin”(4)—structure If now (4,,V,)sen 1s a sequence of quaternionic monopoles,
the sequence of measures associated with |F; |°dvol, is uniformly bounded, hence
it has a subsequence converging to a measure whose total volume is bounded by
k(h)+ C Vol, Using Corollary 8 4 and the same arguments as in [DK], Sect 443
one shows

Theorem 8.7. For cvery sequence (A,, W,)pen of solutions (A,,¥V,) of the quater-
nionic monopole equations associated with the Spin"(4)-structure y there exists
a Spin/'(4)-struclure Y and a pair ((A',P), {x), ,X;}) consisting of a solu-
tion of the quaternionic monopole equation for b and a set {x1, xpCcX
such that the following holds There is a subsequence (ny)yen and isomorphisms
P//]|X\{\|A = P g, gy over the frame bundle Pl ., such that the
sequence w (A, Vo )l . .vy) converges to (A, W)\ v, oy

From here, Theorem 1 | follows immediately, as in the instanton case (sec [DK],
Sect 441)

The moduli spaces . #% () are in general not smooth, € g. they have Z/2-orbifold
singularities along the Brill-Noether locus (¥ = 0), and the addition of ideal so-
lutions usually introduces further singularities On the other hand, the S'-action
(,[A4,¥]) — [4, L_'% Y1 extends naturally to the Uhlenbeck compactification, and this
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action is free away from the union of the compactified Brill-Nocther locus and the
subspace of ideal abclian solutions

The singularitics in the points [4,0] with 4 irreducible can be removed by
performing a real blow up (in the sense of [GS]) of the subspace (¥ =0) in
the direction of the spinor component of the configuration space. one replaces the
spinor-component ¥ by a pair (@,¢) consisting of a spinor @ with ||@||;>- = 1 and a
real number ¢ The new configuration space is weakly contractible and the induced
action of the gauge group ¥ becomes free, therefore, the u-classes of Donaldson
can easily be defined on its ¥-quotient

We introduce modified quaternionic monopole equations by

P = N
{ @,J: 07 ) (SWD)
I'(F)=t(PD)

and we denote by /ff(,(l)) and //Ai{ (Iy) the corresponding moduli space of solutions
and its Uhlenbeck compactification

The induced S'-action on ./7}( D)) is freec away from the abeliun locus ./;';‘{,(I))a/,
consisting of (possibly ideal) solutions [A4,(®,1),{x;,. ,x;}] with 4 reducible and
t® contained in an A-parallel summand

The following theorem, for which we refer to [T], is the basis of all further
developments
Theorem 8.8. There evists a natural G x S'-equivariant perturbation of the mod-
. oo . ) -
ified quaternionic monopole equations (SW ) such that for any sufficiently small
generic perturbation-parameter o the corresponding moduli space of solutions

250, @) has the following properties

i) The complement . 45(h,a)* .= #5.(0,0)\ - 45,0V of the abelian locus
is simooth of the expected dimension
i) . /Y b, 0) has a natural S'-equivariant Uhlenbeck compactification Vil ho
X % /! < X
iii) The S'-action on ./ S (h,0) is free away from the subspace of (ideal) abelian
solutions
iv) The closed subspace #%(bh,a)\ . #%(h,a)* admits an S'-invariant neigh-
bourhood which can be explicitely described
v) The equation t =0 defines an S'-invariant subspace in A/;'f(,(l),o‘) which
fibers over a deformation 4.1 5, (h, ) of the compactified Brill-Noether locus inside
the compuactified Donaldson moduli-space
We believe that Theorem 8 8 can be used in the following two directions

a) To relate the Seiberg—Witten invariants to Spin‘-polynomials [PT] On request
of the referee we describe briefly our approach to this problem

Let .2(h,a) (#%(h,a)) be the S'-quotient of the subspace ¢ = 0 in .4 (h. o)
(A,//Af{,(l),a)) This space fibers over the corresponding deformation of the (com-
pactified) Brill-Noether locus with complex projective spaces as fibres Under the
assumption that (b, ) contains no abelian solutions, Donaldson’s p-classes de-

scend to 29 (), ), can be extended to 2 (l), ), and associated Spin‘-polynomials
can be defined To relate these polynomials to Sciberg—Witten classes, onc first
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1deal ideal
abelian

abelian

forms the S'-quotient of ://A'f(,(l),o) and then orients the (smooth) complement of
the abelian and the ideal locus (Theorem 8 8 1)) The restrictions of the p-classes
to /% (h,a)\ /?K([),o‘)ah descend to the S'-quotient [. //,'A"({,(l),a)\A/ii,(l),a)m]/S'
The subspace 2 (l),a) is a smooth hypersurface provided the Brill-Noether lo-
cus contains no reducible connection Consider now a standard neighbourhood ¥

(Theorem 8 8 iv)) of 5/2:(,/((1),(7){,,)/5' in [.2/%(h,0)/S'] N {t = 0} and triangulate
its complement to obtain a chain with boundary 71'(1),0) Ud#  Since ¢ fibres
in a natural way over a disjoint union of perturbed Seiberg—Witten moduli spaces,
one should be able to get an explicit formula relating Seiberg—Witten invariants and
Spin‘ -polynomials 2

b) To define invariants for differentiable 4-manifolds

Here it seems to be more appropriate to perform a complex blow up of the locus
(¥ = 0) in the spinor direction of the configuration space The new configuration
space will not be weakly contractible, the stabilizers (under the action of the gauge
group) of the non-abelian points in the locus (¥ = 0) will still be Z/2, and S' will
act trivially on this subspace

However, by a careful examination of the local models of these points, one can
prove that, for a generic perturbation ¢, the obtained moduli space J?K»(l),o-) is
smooth also along the non-abelian part of the blown up (perturbed) Brill-Noether
locus The next step is now the definition of universal classes on the Uhlenbeck

compactification . /7,( (h,o)
We plan to come back to this project in [OT6]

i ~ . . .
= We are awarce of the fact that Pidstiigach and Tywin have mdependently proposed a similar program
which aims at proving the equivalence of Sciberg-Witten invariants and Donaldson mvaiiants
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