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Abstract: Any automorphism of the Dynkin diagram of a symmetrizable Kac-Moo-
dy algebra g induces an automorphism of g and a mapping τω between highest weight
modules of g. For a large class of such Dynkin diagram automorphisms, we can de-
scribe various aspects of these maps in terms of another Kac-Moody algebra, the
"orbit Lie algebra" g. In particular, the generating function for the trace of rω over
weight spaces, which we call the "twining character" of g (with respect to the auto-
morphism), is equal to a character of g. The orbit Lie algebras of untwisted affine
Lie algebras turn out to be closely related to the fixed point theories that have been
introduced in conformal field theory. Orbit Lie algebras and twining characters con-
stitute a crucial step towards solving the fixed point resolution problem in conformal
field theory.

1. Introduction

In this paper we associate algebraic structures to automorphisms of Dynkin diagrams
and study some of their interrelations. The class of Dynkin diagrams we consider are
those of symmetrizable Kac-Moody algebras [1]. These are those Lie algebras which
possess both a Cartan matrix and a Killing form, which includes in particular the
simple, affine, and hyperbolic Kac-Moody algebras.

An automorphism of a Dynkin diagram is a permutation of its nodes which leaves
the diagram invariant. Any such map divides the set of nodes of the diagram into
invariant subsets, called the orbits of the automorphism. We focus our attention on
two main types of orbits, namely those where each of the nodes on an orbit is either
connected by a single link to precisely one node on the same orbit or not linked to any
other node on the same orbit. If all orbits of a given Dynkin diagram automorphism
are of one of these two types, we say that the automorphism satisfies the linking
condition. Except for the order TV automorphisms of the affine Lie algebras A$_v

all diagram automorphisms of simple and affine Lie algebras belong to this class.
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1.1. Orbit Lie algebras. In Sect. 2 we show that for any automorphism satisfying the
linking condition one can define a "folded" Dynkin diagram (and associated Cartan
matrix) which is again the Dynkin diagram of a symmetrizable Kac-Moody algebra.
The folded Dynkin diagram has one node for each orbit of the original diagram, and
there is a definite prescription for the number of links between any two nodes of
the folded diagram. If the Kac-Moody algebra corresponding to the original Dynkin
diagram is g, we denote the algebra corresponding to the folded Dynkin diagram by
g and call it the orbit Lie algebra. We show that the folding procedure preserves the
"type" of the Kac-Moody algebra, where the type of a symmetrizable Kac-Moody
algebra can be either "simple", "affine", "hyperbolic", or "non-hyperbolic indefinite".
(However, "untwisted affine" and "twisted affine" are not separately preserved.)

Any automorphism of a Dynkin diagram (not necessarily satisfying the linking
condition) induces an outer automorphism of the associated Kac-Moody algebra g.
This is described in Sect. 3. For simple, affine and hyperbolic algebras the induced
automorphism is unique. In the case of simple Lie algebras, these outer automorphisms
are well known; they correspond to charge conjugation (for g = An (n > 1), D2n+ι
(n > 1), and E^), to the spinor conjugation of U2n (n > 2), and to the triality
of DΔ,. The induced outer automorphisms of untwisted affine Lie algebras are either
the aforementioned ones (inherited from the simple horizontal subalgebra), or certain
automorphisms related to simple currents [2] of WZW theories (i.e. conformal field
theories for which the chiral symmetry algebra is the semidirect sum of the untwisted
affine Lie algebra and the Virasoro algebra), or combinations thereof.

1.2. Twining characters. The automorphism of g induces a natural map on the weight
space of g. We can also employ the action on the algebra, in a less straightforward
manner, to obtain an action, compatible with the action on the weight space, on the
states of any highest weight module of g. We can therefore define a new type of
character-like quantities for these modules by inserting the generator of the automor-
phism into the trace that defines the ordinary character. We call the object constructed
in this manner the Wining character of the highest weight module; its precise defi-
nition is presented in Sect. 4.

Trivially, the twining character vanishes whenever the highest weight is changed
by the automorphism. As a consequence, our interest is in those highest weight mod-
ules whose highest weight is not changed by the automorphism; we call these spe-
cial modules the fixed point modules of the automorphism and refer to their highest
weights as symmetric g-weights. For fixed point modules, the twining character re-
ceives a non-vanishing contribution from at least one state, namely the highest weight
state, but it is far from obvious what happens for all the other states of the module.
Note that the weight of a state does not provide sufficient information for answering
this question. Rather, the action of the automorphism also depends on the specific
way in which the state is obtained from the highest weight state by applying step
operators, as the automorphism acts non-trivially on these step operators.

There is one interesting class of automorphisms for which only the highest weight
state of a fixed point module contributes to the twining character. These are the order
N automorphisms of the affine Lie algebras A^_v In this particular case the Serre
relations among the commutators of step operators conspire in such a way that all
other states in the Verma module (and hence also in the irreducible module) cancel
each others' contributions to the twining character. This statement will be proven in
Sect. 7 (following a route that does not rely on the explicit use of the Serre relations
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and hence avoids various technical complications). Note that these automorphisms
do not satisfy the linking condition. Rather, all N nodes of the Dynkin diagram of

^N-ι l i e o n m e s a m e o r ^ ^ °f t n i s automorphism, and hence each node on the orbit
is connected to two other nodes on the orbit. Correspondingly, there is no associated
orbit Lie algebra (formally one obtains the "Lie algebra" which has the 1 x 1 Cartan
matrix A = (0)).

The main result of this paper, proved in Sect. 5, concerns the fixed point modules
of Dynkin diagram automorphisms which do satisfy the linking condition. We prove
that these modules are in one-to-one correspondence with the highest weight modules
of the orbit Lie algebra g, and that the twining characters of the fixed point modules
(both for Verma modules and for their irreducible quotients) coincide with the ordinary
characters of the highest weight modules of g. Note that we are not claiming that the
orbit Lie algebra g is embedded in the original algebra g. We can show, however,
that the Weyl group of g is isomorphic to a subgroup of the Weyl group of g. This
observation plays a key role in the proof, as it enables us to employ constructions that
are analogous to those used by Kac in his proof of the Weyl-Kac character formula.

In Sects. 6, 8 and 9, we specialize to the case of untwisted affine Lie algebras and
those automorphisms which correspond to the action of simple currents. In Sect. 6
the action of such automorphisms is described in some detail, using the realization of
affine Lie algebras as centrally extended loop algebras. We find that for this special
class of automorphisms the characters of g, and hence also the twining characters, have
nice modular transformation properties. In Sect. 8 it is shown that the modification of
the irreducible characters of g, and hence of the irreducible twining characters of g,
that is required in order to obtain these nice modular transformation properties, differs
from the modification of the irreducible characters of g only by an overall constant.
Finally, in Sect. 9 we comment on those cases where the orbit Lie algebra is one of
the twisted affine Lie algebras B^ rather than an untwisted affine algebra.

1.3. Fixed point resolution. Our main motivation for introducing and studying twining
characters stems from a long-standing problem in conformal field theory, namely the
"resolution of fixed points". Twining characters and orbit Lie algebras constitute
important progress towards solving this problem. This will not be discussed further in
the present paper, except for the following brief explanation of the relation between
the two issues.

The fixed point resolution problem can be divided into two aspects. The first
aspect is the construction of representations of the modular group; the second is the
description of representation spaces of the chiral symmetry algebra whose characters
transform in these representations of the modular group. For theories with an extended
chiral symmetry algebra, one tries to achieve the construction of representations of the
modular group by starting from the modular transformation matrices S and T of the
original, unextended chiral algebra. One then typically finds that certain irreducible
modules appear in the spectrum more than once or appear only in reducible linear
combinations; it follows in particular that the original matrix S does not contain
enough information to derive the matrix 5 e x t of the extended theory. If the extension
of the chiral algebra is by simple currents (the corresponding modular invariants are
often referred to as "D-type invariants"), these reducible modules originate from fixed
points of these simple currents.

By requiring the characters of the extended theory to have the correct modular
transformation properties, one learns that the missing information is supplied by an-
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other matrix 5, which is defined only on the fixed point representations and together
with a diagonal matrix T again generates a representation of the modular group; T is
simply T restricted to the fixed points. By studying the spectrum of T and comparing
it to known conformal field theories, conjectures regarding S could be made for most,
though not all, simple current invariants for untwisted affine Lie algebras. Indeed, it
was found in [3, 4] that in all cases except B^ and C ^ at even levels, T is equal up
to an overall phase to the T-matrix of another untwisted affine algebra. One may call
this the "fixed point algebra" (as we will see in a moment, this is a more appropriate
name than the term "fixed point conformal field theory" that was chosen in [3, 4]).

The second aspect of the fixed point resolution problem is closely related to the
"field identification" in coset conformal field theories. From the point of view of the
modular group, this can be described in terms of an "extension of the chiral algebra
by spin-zero currents". As far as the matrix S is concerned we are then in exactly
the same situation as discussed above. However, if the field identification currents
have fixed points, then there is an additional problem: formally one either obtains a
partition function with more than one vacuum state, or, if one normalizes it, a partition
function with fractional multiplicities for the fixed point states. The solution to the
latter problem is that the various irreducible components of the reducible module that
is associated to the fixed point possess in fact different characters. The difference of
these characters must then transform like a character with respect to the new modular
matrix S.

This implies that for field identification fixed points the characters of the coset
theory are not simply equal to the branching functions of the embedding of affine Lie
algebras, which are merely sums over the characters of the irreducible components.
It may seem that writing down the correct irreducible characters requires additional
information that is not directly provided by the Lie algebras g and h defining a coset
theory £P(g/h). This additional information is contained in the matrix S and in the
character modifications.

As already mentioned, some of the diagram automorphisms introduced above are
closely related to the action of simple currents. Simple currents act as a permutation
on the modules of the chiral symmetry algebra. More precisely, their action is defined
via the fusion rules of the conformal field theory. On the other hand, an action of
simple currents on the Hubert space of states of the theory could so far not be defined,
nor was it required for the purpose for which the simple currents were used, namely
the construction of modular invariants. In the special case of WZW models, simple
currents act by permuting the integrable highest weight modules of the underlying
affine Lie algebra. Since the action of some of the diagram automorphisms on highest
weights is identical to this simple current action, and since the action of diagram
automorphism is defined on individual states, the results of the present paper provide
a natural definition of the simple current action on the entire Hubert space.

In the application to field identification in coset models, this should enable us
to prove that identified fields are really identical as modules of the chiral algebra.
The action on fixed point modules is more interesting still. In this case the module
is mapped to itself, and as the mapping has finite order N, the module splits into
invariant subspaces of eigenvectors with an iVth root of unity as eigenvalue. These
eigenspaces are natural candidates for the irreducible modules. The twining charac-
ters are then natural ingredients for the character modifications. Note, however, that
although the twining characters of untwisted affine Lie algebras are non-trivial, no
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character modifications (for the Virasoro-specialized characters) are required for the
D-type modular invariants of the WZW theories which are associated to the affine Lie
algebras. This already shows that more work will be needed to make all this precise;
we plan to analyze this situation in detail in a separate publication. The effort will be
worthwhile, however, since in this formalism we should be able to derive the char-
acter modifications for a coset theory ^(g/h) in terms of the twining characters of
the Kac-Moody algebras g and h rather than having to introduce them as extraneous
objects as was done in [3, 4].

An obvious candidate for the fixed point resolution matrix S is the modular
transformation matrix S of the orbit Lie algebra g. Indeed, in [3, 4] the relation

o

between the matrix T and the spectrum of the WZW theory based on an affine
algebra g was proved by applying a folding procedure to the weight space metric
(the inverse of the symmetrized Cartan matrix) of the horizontal Lie algebra g. For
all simply-laced algebras and also for Cin+i at even levels this folding procedure is
equivalent to the one discussed here, and consequently S = S in these cases. In other
words, the fixed point algebra is equal to the orbit Lie algebra defined here.

As remarked above, the folding discussed here does not necessarily map untwisted
to untwisted affine algebras. This turns out to be relevant for the remaining cases,
i.e. for B^li and C ^ . Here a "fixed point conformal field theory" could only be
identified for odd levels k = 2p + 1, namely the WZW theory based on C^ at level
p in both cases. For even levels k = 2p, the fixed point spectra for B^+ι and C^
were shown to differ by an overall constant, but they could not be identified with any
known conformal field theory, apart from a few special cases. (These spectra were
denoted as JSfn,p in [3, 4]. Meanwhile, the matrix S has also been constructed in
an indirect manner, using rank-level duality in TV = 2 supersymmetric coset models
[6].) A natural solution now suggests itself, namely that again the fixed point algebra
is equal to the orbit Lie algebra, just as in all other cases. Applying our folding
procedure, we find that the orbit Lie algebra is in fact a twisted algebra, namely Aψ
(for n = 1) or B^\ 1 The fixed points of B^li and C^ at level kv are in one-to-one
correspondence with the representations of B^ at level kv.

The modular transformations for characters of twisted algebras do not always close
within a given algebra. Rather, typically the characters of one algebra are mapped to
those of a different algebra. In fact, Aψ and B^ are precisely those twisted affine
Lie algebras whose characters possess well-defined modular transformations among
themselves, and just as for untwisted algebras, these transformations preserve the
level of a module [1]. Remarkably, the modular matrix S of B%\ respectively Af\
appears to provide the correct fixed point resolution for even as well as odd levels.
Indeed, S at level k is related in the correct way to the matrices S of C^ at level p
(for k = 2p+ 1), respectively Mnφ (for k - 2p). At present we do not have a general
proof that these matrices resolve the fixed points correctly, but we have checked it
for algebras of low rank at low level.

1.4. Organization. Let us briefly summarize how this paper is organized. There are
two main results, which concern the automorphisms of Dynkin diagrams satisfying
the linking condition and the order N automorphisms of the affine A^_ι Dynkin
diagrams, respectively. These two theorems are stated at the end of Sect. 4; the

Here we use the notation of [5]; in the notation of [1], these algebras are called
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former is proven in Sect. 5 (some details are deferred to Appendix A), and the latter
in Sect. 7. In the earlier sections, various concepts which are necessary for being
able to formulate our theorems are introduced, such as the folding of Cartan matrices
(Sect. 2), the induced automorphisms of Lie algebras and the concept of an orbit
Lie algebra (Sect. 3), and the maps induced on Verma and irreducible modules as
well as the concept of their twining characters (Sect. 4). The remaining Sects. 6, 8
and 9 contain further details about the special case of affine Kac-Moody algebras, in
particular about modular transformation properties, which are relevant for applications
in conformal field theory.

2. Folding Cartan Matrices

2.1. Dynkin diagram automorphisms. In this paper we consider symmetries of in-
decomposable symmetrizable Cartan matrices. A symmetrizable Cartan matrix is by
definition a square matrix A = (Aί^)ijeI, where / C Z is some finite index set,
satisfying the properties A™ G Z, A*** = 2, Aiij < 0 for i ^j, A^ = 0 iff A™ = 0,
and that there is a non-singular diagonal matrix D such that DA is symmetric. To
any symmetrizable Cartan matrix there is associated a unique Lie algebra g with an
invariant bilinear form ( | ): g x g - ^ g (see [1] and Sect. 3). The Dynkin diagram
of g is defined as the graph with |/ | vertices which has coincidence matrix 2 H — A,
with H the identity matrix. The Dynkin diagram is connected iff A is indecomposable.

By an automorphism of the Dynkin diagram of g (or of the associated Cartan
matrix) we mean a bijective mapping ώ: I —> I satisfying

for all i, j G I. We denote by N the order of ώ, i.e. the smallest positive integer such
that ωN - id (N is finite since / is finite), and by

Ni:=\{i,ώi,...,ωN-H}\ (2.2)

the length of the ώ-orbit through i. Also, let I denote a set of representatives for
the orbits of ώ. It will be convenient to fix the choice of these representatives once
and for all; for definiteness we choose the smallest representatives of the orbits (for
a given labelling by / C Z),

I := {i G / I i < ώni for 1 < n < N - 1} . (2.3)

We will now show that a large class of automorphisms ώ of symmetrizable Cartan
matrices can be used to "fold" the Cartan matrix A such as to obtain another matrix
A which is again a symmetrizable Cartan matrix. In particular, with the exception of
the automorphism of order N of A$_{, all diagram automorphisms of all simple and
affine Lie algebras belong to this class.

2.2. The folded Cartan matrix. For any given automorphism ώ of an indecomposable
symmetrizable Cartan matrix A and any i G / let us define the integer

N N-l Ni-l

Z=0 1=1
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In the following we restrict our attention to the class of those automoφhisms ώ which
satisfy the relation

Si < 2 for alH G / , (2.5)

to which we will refer as the linking condition. As the last sum in (2.4) is non-positive
and integer, this means that Si is either 1 or 2. Since each contribution to that sum is
non-positive, in the case Si = 1 we have

A***1* = 0 (2.6)

whenever / ^ 0 mod Ni, and accordingly the restriction of the Dynkin diagram of g
to the orbit of i is isomoφhic to the Dynkin diagram of the direct sum of Ni copies
of A\. For Si = 2, there is exactly one m, 1 < m < Ni — 1, such that A^™1^ = —1. In
this situation we have ώ m i = ώ~mi (otherwise Aώ m*'z = A1^™"1 would be negative
as well, leading to a contradiction with the assumption (2.5)). This implies that in
this case Ni and hence also N are even; the restriction of the Dynkin diagram of g
to the orbit of i is then isomoφhic to the Dynkin diagram of the direct sum of Ni/2
copies of A2.

Next we introduce a |/ | x \ϊ\-matrix A that is obtained from A by folding it in the
sense of summing up the rows of A that are related by ώ and multiplying them by
Si, and afterwards eliminating redundant columns; thus we define

l
1=0

for i , j G I. From the indecomposability of A it is obvious that A is indecomposable
as well. We claim that A is also again a symmetrizable Cartan matrix, i.e. that it
satisfies the following five properties:

a) Ahϊ = 2 for ali i G / ,

b) A™ G z for all i j e ϊ ,

c) A** <0 f o r a l H , j G / , i ^ j ,

( 2 °)
d) A ^ = 0 <=> Aw = 0,
e) there is a non-singular diagonal matrix D

such that B := DA is symmetric.

Let us prove the relations (2.8) consecutively. First, under the assumption that the
linking condition (2.5) holds, we have

A*'* = Si (3 - s < ) = 2, (2.9)

which proves (2.8a). The property (2.8b) is fulfilled because in fact we only add up
and multiply integers, as is made manifest by rewriting (2.7) as

Aώli* . (2.10)
1=0

Next we observe that if i, j G / are different, then i, j G / lie on different orbits of
ώ. As a consequence, ώιi ^ ώmj for all /,m, and hence, as A is a Cartan matrix,
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^ώH,ώmj < Q for a ^ ^ m ^hus m particular the sum on the right-hand side of (2.10)

is also smaller than zero, which proves (2.8c). Further, since all terms in the sum

(2.10) are non-positive, ΛiJ = 0 implies that Aώli>j = 0 for all /. Because of (2.1)

this means that also Aτ>ω 3' - 0 for all /. Since A is itself a Cartan matrix, this in turn

implies that also Aώ ^% vanishes for all /. Thus

Aj4= Σ Aώlj^ = 0, (2.11)
1=0

and hence we obtain the property (2.8d).
Finally, we know that there is a non-singular diagonal matrix D = άmg(di) such

that B := DA is symmetric. This matrix is unique up to scalar multiplication, and
we can choose di > 0 for all i G /. To verify (2.8e), we first show that di = dώi

for all i G I. To this end suppose that we are given a matrix D which has the
required properties. Then we define the "orbit average" D of D as follows. For any
I = 0 , 1 , . . . , N - 1 we set D{i) := diag(4^), and then define D := Σ ^ o " 1 A o T n e

automorphism property of ω implies that Bq) := D^A satisfies

β j f = dώHA^ = dώHAώli>ώli = Bώli>ώlJ . (2.12)

This shows that B^ is symmetric, and hence B := DA = Y^^Q1 B(i) is symmetric as
well. Thus D possesses all the properties required for D, so that by the uniqueness
of D it follows that D oc D. This proves that di = d^% for all i G /, as claimed. Next
we define D as

D = dizg(di), di-^^fdi. (2.13)

Clearly, D is a non-degenerate diagonal matrix with positive diagonal entries. Further,
the entries of B := DA read

M N ~ ι 1 N ~ ι / i A / ~ 1

&i>3 - A. Xhj - ri. V ^ Λΰli,j _ _ V ^ A Λώιi,ώι j _ V ^ r>ώιi,ώι j
B ' SiNt d ι A ~ d% 2s Λ ~ N λ , d ^ A ~N^B

1 ι 1=0 l,lf=0 l,lf=0

(2.14)
This shows that the matrix B is symmetric, and hence completes the proof of (2.8e).
As we will see below, the formula (2.14) encountered in this proof is also interesting
in its own right; it describes the relation between the invariant bilinear form of g and
that of the orbit Lie algebra g that will be defined in Subsect. 3.3.

2.3. Type conservation. Symmetrizable Cartan matrices belong to one of the following
three classes (compare e.g. [1, §4.3]: they are either of finite, affine or indefinite type.
We are now going to show that A as obtained from A by the prescription (2.7) is of
the same type as A.

If A is symmetrizable and the bilinear form given by B = DA is positive definite,
then A is said to be of finite (or simple) type. Now for any vector u = (ui)iej we
have by (2.14) the relation

Σ wwi = ivfc Σ Σ ' Σ Bώli'ώlΊ^ - * Σ Biύu^ > <2 15)
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where uι = uώmi/Ni with m chosen such that ώmi E /. As a consequence, if B is
positive definite, then so is B, and hence A is of finite type as well.

If A is symmetrizable and the bilinear form B is positive semidefinite and has
exactly one eigenvector with eigenvalue zero, then A is of affine type. The components
of the left respectively right eigenvector of A with eigenvalue zero,

= 0 = Y^A^a] (2.16)
2=0 j=0

art thus unique once the normalization of the eigenvector is specified (in (2.16), we
set / = {0,1,... ,r}, which is the conventional labelling in the affine case). Fixing
the normalization in such a way that the minimal value (denoted by αo and άft,
respectively) is equal to 1, the components α̂  and α^ are called the Coxeter labels
and dual Coxeter labels of A, respectively. In the affine case (2.14) implies that B is
either positive definite or positive semidefinite.

Now by (2.16) and the in variance (2.1) of the Cartan matrix, the vector with
ith component α?ώi is also a right eigenvector with eigenvalue zero and hence is
proportional to the vector of dual Coxeter labels, and an analogous statement holds
for the Coxeter labels. The fact that ώ has finite order (together with the positivity of
the (dual) Coxeter labels) then implies that

αώi = α i , α ^ = < (2.17)

for alH € / . It follows that the vectors with entries

άi:=-αi, α,v:=^< forte/, (2.18)

with s = maxjej{sj}, satisfy

YfliA** = Σ Σ * 9 α i Λ ώ l ί J = sΣαiAiJ=o (2.i9)

and2

ί = Σ Σ « ̂ r ^lhJ sv f
jeϊ jeϊ ι=Q

In particular there is an eigenvector of B with eigenvalue zero, i.e. B is positive
semidefinite rather than positive definite. Also, the eigenspace of B to the eigenvalue
zero is one-dimensional, since if v with entries ϋi, i G /, is an eigenvector of B
to the eigenvalue zero, then the vector υ with entries vι = jj:vώii, with I such that

ώιi E /, is an eigenvector of B to the eigenvalue zero, which is, however, unique up
to normalization.

Finally, a symmetrizable Cartan matrix is said to be of indefinite type if it is
neither of finite nor of affine type. Let us show that if A is of indefinite type, then A
is also of indefinite type. By Theorem 4.3 of [1], A is of indefinite type iff

2 The chosen normalization of αV proves to be convenient for the treatment of the affine case In the
general case, with this specific normalization the coefficients α^ are, however, not necessarily integral
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1. there is a vector u with strictly positive components, such that uA has strictly
negative components, and

2. the fact that a vector υ and vA both have positive components implies that υ is
the zero vector.

To show that the first condition is fulfilled for the folded Cartan matrix A, assume
that u is a vector with strictly positive components for which uA has strictly negative
components. Clearly, the vector u' with ίth component ruli = uώi shares these properties
of u, and hence we can assume without loss of generality that Ui = uώi. We then
define ui \—UijSi\ this is positive as well, and also obeys

J2 ύiAiJ = Σ UiAiij < 0 for all j G / . (2.21)

ieϊ i^1

To show that the second condition is fulfilled, we assume that ϋ is a vector such that

vA > 0 and v > 0. (2.22)

Define a vector v by Vi := SiVώii for i G /, where I is chosen such that ωιi G /. Then
υ fulfills the conditions (2.22) with A replaced by A. Since A is by assumption of
indefinite type, υ and hence also v have to vanish. Together, these results imply that
A is of indefinite type as well.

We have thus shown that the matrix A that is obtained by the folding prescription
(2.7) is always of the same type as the Cartan matrix A.

A particularly interesting subclass among the Cartan matrices of indefinite type
is given by the hyperbolic Cartan matrices. These are characterized by the additional
property that any indecomposable submatrix of the Cartan matrix A that is obtained
by deleting any row and the corresponding column of A is of finite or affine type.
Again one can show that if A is hyperbolic then the same is true for A. Namely,
the pre-image (under the folding) of any proper subdiagram of the Dynkin diagram
of A is a subdiagram of the Dynkin diagram of A, which, as A is assumed to be
hyperbolic, is of finite or affine type. But as we have just seen, these diagrams are
mapped to diagrams of affine or finite type, and hence the subdiagram of A has to be
of affine or finite type as well. This shows that also A is hyperbolic.

2.4. Simple Cartan matrices. In the next two subsections we will list all automoφhisms
of all simple and affine Dynkin diagrams explicitly. The numbering of the nodes of the
Dynkin diagrams is taken from [5, p. 43]. Below we write g and g for the Kac-Moody
algebras which have Cartan matrix A and A, respectively (g will be called the orbit
Lie algebra associated to g and ω, see Subsect. 3.3 below).

The non-trivial automoφhisms of the Dynkin diagrams of simple Lie algebras are
as follows. For Ar, Dr and E§ there is a reflection which we denote by 7; it acts as
i —• r + 1 — i for Ar9 a s r - l < ^ r , z i—> z else, for Dr, and as 1 <-> 5, 2 ^ 4 , 3 ^
3, 6 1—> 6 for E^. In addition, for D4 there is the triality ^3, an order three rotation
which acts as2π-*2, 1 1—> 3 1—> 4 1—> 1.
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The algebras g for the cases when g is simple are listed in Table (2.23); this is in
fact a well known list, as g plays an important role in the realization of the twisted
affine Lie algebras as centrally extended twisted loop algebras [1].

ω N g

A2n+U ™>o 7 2 Bn+λ

D4 p3 3 G2

Dn, n>4 7 2 C n _i ( 2 ' 2 3 )

E6 7 2 F4

A2n 7 2 Cn

In this table we have separated the A2n case from the others because in this case we
have sn - 2 (and Si = 1 else), whereas in all other cases all the si are equal to 1.

2.5. Affine Cartan matrices. The relevant automorphisms ώ for affine Lie algebras are
the following. For g = A^\ the automorphism group of the Dynkin diagram is the
dihedral group &n+\ which is generated by the reflection 7 : m n + 1 - i mod n + 1
and the rotation σ n + 1 : i •—> i + 1 mod n + 1 which is of order n + 1. Among the
powers σ^+1, only those need to be considered for which / is a divisor of n + 1 so
that the order is N = (n + 1)//.

For g = D^ the automorphism group is generated by the "vector automorphism"
σ v, the "spinor automorphism" σ s and a conjugation 7. σ v acts as 0 <-> 1, r <-> r — 1
and i h-> i else, and hence is of order two; the map 7 acts as r <-• r — 1 and i ^ i
else. If r is even, σ s acts as i \-> r — i and hence has order two, while for odd r
the prescription i ^ r — i only holds for 2 < z < r — 2 and is supplemented by
O f - ^ r i — > l ^ r — 1 H O , SO that σ s has order 4. If r = 4, then the automorphism
group is larger, namely the symmetric group S%\ it contains as additional symmetries
an order four rotation P4, which acts as 0 1—̂  1 1—> 3 1—> 4 1—̂  0, 2 1—> 2, and an order
three permutation p$, acting like 1 ^ 3 ^ 4 t - > 1, 2 1—> 2 and 0 ^ 0 .

For the untwisted algebras g = B^\ C^p and E^ and for the twisted algebras g =
B^ and C^\ there is only a single non-trivial automorphism 7 which is a reflection.
For g = E^ the automorphism group of the Dynkin diagram is the symmetric group
S%\ it is generated by the order three rotation σ: lι—»5ι—»0ι—»1, 2ι—>4H-»6I—>
2, 3 1—> 3 and the reflection 7 : 1 >-> 5, 2 H^ 4, 3 1—• 3, 6 1—• 6, 0 1-̂  0. Finally, for
g = ^g1^ F 4

( 1 ) , G2

l) and for the remaining twisted algebras, there are no non-trivial
Dynkin diagram automorphisms at all.



50 J Fuchs, B Schellekens, C. Schweigert

g

B2n

C2n

&?

])0)

j)0)

Dll

Dil

£#>

1

AzL

ciL

Dw

Notation of [1]

Notation of [5]

Aψ

Af>

ω

, n + l ) ( n +

7

σv

7

σ

σ

7

PA

P3

σv

7

σs

σ s 7

σ

7

σ

7

σn +i7

7

σ

σs

σ s 7

σn+ι

4n

iV

l ) /^ 7V<n+l

2

2

2

2

2

2

4

3

2

2

2

4

3

2

2

2

2

2

2

4

2

n+ 1

Λ ( 2 ) D(2)

Q(2) β(2)

g

Λ ( 1 )

β(2)

D(2)
^ n - 1

Cn-1

^n-2

C«-i

_g(2)

F 4

( 2 )

B%

B^

&p

Ci2 )

{0}

Ff Df

F4

(2) G f

(2.24)
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Let us remark that the notation has been chosen such that for the untwisted affine
algebras, 7 implements charge conjugation, while σ corresponds, in conformal field
theory terms, to a simple current [2].

We list g for these automorphisms in Table (2.24). In this table we again separate
the cases where all the Si are equal to 1 from the others. Also, there is a single
series of automorphisms which do not obey the linking condition (2.5), namely for
any N > 2 the automorphism of the Dynkin diagram of A^_ι that has order TV;
this series is displayed in the last row of the table. In this case, which will be treated
separately in Sect. 7, there is only a single s, which takes the value zero, and the
prescription (2.7) formally yields a one-by-one matrix with entry zero.

Also, in the table we use the notations of [5, p. 95] for twisted affine algebras; the
relation with the notation of [1, p. 55] is indicated below the table.

2.6. Hyperbolic Cartan matrices. One can, of course, compile an analogous list for
the hyperbolic Lie algebras as well. However, the number of these algebras and their
automorphisms (satisfying the linking condition) is rather large, and hence we refrain
from presenting this list here. Let us just mention that the result that along with g also
g is a hyperbolic Lie algebra may be easily verified case by case. As a by-product,
this provides a check on the completeness of the list of hyperbolic Lie algebras that
has been given in the literature.3

3. Lie Algebra Automorphisms

In this section we show that any automorphism ώ of finite order of the Cartan matrix
A induces an automorphism of the same order of the Kac-Moody algebra g which
has Cartan matrix A. To this end we first sketch how g can be constructed from
the Cartan matrix [1]. Then we show how ώ induces an automorphism ω of g and
investigate to what extent this automorphism is unique.

3.1. Symmetrizable Kac-Moody algebras. To any symmetrizable Cartan matrix A
there is associated a Lie algebra, denoted by g Ξ Q(A) and called a symmetrizable
Kac-Moody algebra, which is unique up to isomorphism [1, Prop. 1.1]. g is con-
structed from A as follows. Denote by n the dimension and by r the rank of the
matrix A. We introduce a complex vector space go of complex dimension In — r.
Next we choose n linearly independent elements H% of go and n linearly indepen-
dent functionals a{i) e g£ (called the simple roots of g), such that a(i)(Hj) = A^j

for i, j = 1,2,..., n. This choice is unique up to isomorphism.
The Kac-Moody algebra g is then the Lie algebra that is generated freely by the

elements of go and In further elements E± = E±a%, with i £ I = {1,2,... ,n},
modulo the relations

[x,y] = 0 for all x , y e g o ,

[x, £ 4 ] = ± a ( ί ) ( x ) Eι± for al l x e g o ,

fovijj,

3 In fact, the classification of hyperbolic Lie algebras presented in [7] turns out to be not quite complete
We thank C Saclioglu for a correspondence on this issue
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where the map adx is defined by ad^y) := [#, y]. Thus the subspace go is an abelian
subalgebra of g; it is called the Cartan subalgebra of g. Also, g has a triangular
decomposition

g = g + e go e g - , (3.2)

where g± are subalgebras and generated freely by the E± modulo the relations in the
last line of (3.1), which are known as the Serre relations.

The algebra g := [g,g] is called the derived algebra of g. It contains all central
elements and has a triangular decomposition

g = [g,g] = g + ω g o θ g - , (3.3)

where go is the span of the elements if\ i = 1,2,..., n. Thus go C go is the Cartan
subalgebra of g, and the derivations, i.e. the generators of a complement of g in g,
span a complement of go in go. We will also denote by g ^ the common kernel of all
the simple roots α ( z ) (and hence of all roots, since any root a is a linear combination
of the a(ι)). gκ is a subspace of go.

By definition, the non-degenerate bilinear form of g satisfies

(H* \x) = di a{i)(x) for all x G g o (3.4)

with di as defined after (2.11), and hence in particular

( ί P I Hj) = ditfj = B™ for i = 1,2,... , n . (3.5)

3.2. Induced outer automorphisms. We are now in a position to construct an auto-
morphism ω of g using any symmetry ώ of the Dynkin diagram of g. We start by
defining ω on the generators E± of g±:

ω(E*±) := Ef . (3.6)

Because of (2.1) this mapping preserves the Serre relations, and hence it provides
automorphisms of both g+ and g_. Further, the automorphism property of ω implies
that it has to act on the Hι as

ω(IP) = ω([El EL\) = [E?\ E^] = Hώi. (3.7)

This way we have constructed a unique automorphism of the derived algebra g of
g. This automorphism has the same order N as the automorphism ώ of the Dynkin
diagram. To show how ω acts on the rest of the Cartan subalgebra of g, i.e. on the
derivations, requires a bit more work. To this end it is helpful to work with a special
basis of go.

Since α ( i ) ( ί P ) = A^ = Aώi^ = a{ώi)(HώJ) and since the W span go, for all
x £ Qlo we have

a{ώi\ω(x)) = a(i\x). (3.8)

Hence the subspace g ^ is mapped by ω bijectively to itself. We can therefore diag-
onalize ω on gκ and choose a basis of n — r eigenvectors Ka, a = 1,2,..., n — r,
such that

ω(Ka) = ζnaKa , (3.9)

where
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ζ:=cxp(~) (3.10)

is a primitive 7Vth root of unity. We can extend the basis of Qκ to a basis of go by
adding further eigenvectors of ω on go, which we denote by Jp, p = 1,2,..., r. We
write

ω(JP) = ζmp JP , (3.11)

and denote the span of all Jp by Qj. Clearly, the restriction of the invariant bilinear
form to Qj is non-degenerate. Moreover, we find that

(Ka\x) = 0 fora l lxec jo . (3.12)

This holds because writing Ka = Σ™=λ κ°-W we have

n n

0 = a(i)(Ka) = J2 rfa(i)(Hj) = ̂  A** rf (3.13)

for alH = 1,2,..., n, so that the invariant bilinear form obeys

V(£P I Ka) = V < (H1 I Hj) = V diA^rf = 0 (3.14)
j 3

for all i = 1,2,... ,n.
Using the fact that the invariant form is non-degenerate on go, we conclude that

there are n — r unique elements Da of go such that

(Da I Kb) = Sab for all 1 < o, b < n - r ,

GDα|L>6) = 0 for all l < α , 6 < n - r , (3.15)

φ α I JP) = 0 for all 1 < a < n - r, 1 < p < r.

The elements Da are linearly independent and span a complement gD of go in go.
We can now study the action of ω on the derivations Da. To this end we first

show that ω(Da) is again an element of the Cartan subalgebra go. Namely, let us
start from the most general ansatz ω(Da) = h + Σa £ £aiiE

a>£, where h G go and

the elements Ea^ are generators of the root space for the root a (thus the number
of possible values of the index ί equals the (finite) dimension of this root space).
Assume now that ξa^ =/0 for some root a > 0 (the argument for a a negative root
is completely parallel) and some ί. The step operator E~a^ is an element of g_, and
hence so is ω~ι(E~a'e). Because of Da e go and the fact that ω is an automorphism
of g, this implies that [Da,ω~ι(E-a^)] and [ω(Da), E~a^] = ω([Da,ω-ι(E~a^)])
are elements of g_, too. On the other hand, we have [Ea>£,E~β>£'] = δ^βδi^h^
with non-vanishing ha^ £ go, so that by inserting the ansatz we made above we
find that the element [ω{Da), E~a>£] of g has a component ξa,eha'£ in go. This is
a contradiction, and hence the assumption that ξa^ ^ 0 is wrong. Thus we conclude
thatω(Da)ego.

We can therefore make the general ansatz

ω(Da) = Σ(U%Db + ζnbVb

aKb) + Σ WPJP

b=l p=\
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Here in the second term we have introduced an explicit phase factor, which will
simplify the discussion below. We now impose the condition that ω preserves the
invariant bilinear form, i.e. require that (ω(Da) \ ω(Jp)) = 0 = (ω(Da) | ω(Db)) and
(ω(Da)\ω(Kb)) = δab for all p = 1,2,..., r, α, b = 1,2,..., n - r. Inserting the ansatz
(3.16), the first of these conditions reads

r

0 = (ω(Da) I ω(JP)) = ζmp ( ] Γ W« Jq \ Jp) (3.17)
q=\

for all p = 1,2,... , r. As the metric on Qj is non-degenerate, this implies that W£
vanishes. The second requirement then amounts to

n—r

6ab = (ω(Da) I ω(Kb)) = ^ U?ζnb(Dc \ Kb) = U£ζnb. (3.18)
c=l

Thus the ansatz (3.16) for ω(Da) gets reduced to

n—r

ω(Da) = ζ~n«Da + Σ Vb

aζnbKb. (3.19)
6=1

The last requirement then constrains the matrix V; we obtain

0 = (ω(Da) I ω{Db)) = Vb

a + Vb, (3.20)

i.e. V has to be an antisymmetric matrix.
To summarize, we have shown that the only freedom we are left with consists

in adding terms proportional to central elements to ω(Da), and that this freedom is
parametrized in terms of an antisymmetric (n-r)x(n — r) matrix. In the particularly
interesting cases where g is simple, affine, or hyperbolic, there is thus no freedom left
at all; in the simple and hyperbolic cases there are no derivations, while in the affine
case no term with the central element K appears (the only antisymmetric one-by-one
matrix is zero) so that just ω(D) = D.

We can restrict the freedom in ω(D) even more by imposing the requirement that
ω has order TV also on the derivations Da. The relation (3.19) implies that

n-r I

ω\Da) = ζ~ln«Da + ] Γ Vb

a(Σ ζtnb~{l~t)na)Kb . (3.21)
6=1 t=\

It follows that ω has order TV if and only if Vb vanishes whenever na = —nb mod TV.
It is also clear that these constraints always possess the trivial solution V = 0.

From the in variance of the bilinear form on go it follows that ω as defined above
is in fact an automorphism of g. The only identity that still has to be shown to this
end is that a{i)(Da) coincides with a{ώi\ω{Da))\ this follows by

α ( i ) (ΰ α ) = j - (IT I Da) = -ί- (Hώi I ω(Da)) = a(ώί\ω(Da)). (3.22)

From now on we will assume that V has been chosen such that ω has in fact order
TV on all of g. We will refer to such an automorphism which respects the triangular
decomposition as a strictly outer automorphism or as a diagram automorphism of g.
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The first of these terms is appropriate because any such automorphism is indeed outer,
as can be seen e.g. by the fact that (compare Sect. 4 below) it induces a non-trivial
map on the representation ring of g, whereas inner automorphisms do not change the
isomorphism class of a representation.

3.3. Orbit Lie algebras. We denote by g the symmetrizable Kac-Moody algebra that
has A as its Cartan matrix and call g the orbit Lie algebra that is associated to the
Dynkin diagram automorphism ώ, respectively to the automorphism ω of g that is
induced by ώ. We would like to stress that g is not constructed as a subalgebra of
g; in particular it need not be isomorphic to the subalgebra of g that consists of
those elements which are mapped to themselves by ω. There does exist, however,
a subalgebra g of g (to be described elsewhere) which is pointwise fixed under ω
and whose Cartan matrix is closely related to the Cartan matrix A of g; namely, the
transpose of the Cartan matrix of g is equal to the matrix (A^that one obtains when
applying our folding procedure to the transpose At of the Cartan matrix A of g.

Later on, we will use this orbit Lie algebra to describe aspects of the action that
ω induces on irreducible highest weight modules of g. To this end, we need to set
up some relations between g and g. In preparation for these considerations, we first
show that there is a close relation between the Cartan subalgebra go of the orbit Lie
algebra and the eigenspace g ^ of ω to the eigenvalue ζ° = 1 in go. This relation
is described by a map Pω which is defined as follows. First consider the subalgebra
g(

o

0) := g(

o

0) Π go of g(

o

0). The elements of g(

o

0) are those elements h = Σ"=ι ViW of
go which are fixed under ω, ω(h) = h, which implies that vι = vώiι for all I. To any
such h we associate the element

ieϊ

of go, where
ϋi := NiVi (3.24)

for all i G /. It is obvious that the map Pω is an isomorphism between g(

o

0) and go.

Moreover, the invariant bilinear forms on g£^ and go satisfy

(h \h') = jj (Pjh) I pjh')) (3.25)

for all h,h' G g^0). To prove this relation, it is sufficient to check it on a basis of g^0).
As a basis, we choose

j N-\ - Ni-l

Λ':=jΰΣ ^ = jvr Σ ^ ( 3 2 6 )
1=0 % 1=0

for i G /. Then we have Pω(hι) = Hι, and we can use (3.5) to find

1 N~l ' 1 1

<Λ< I W ' ) = ^ 2 Σ βώlhώl j = N βίJ = N (Pjhί) ' PjkJ))' ( 3 2 ? )

l,l'=0

Next we show that Pω yields a one-to-one correspondence between central ele-
ments in g(

o

0) and central elements of g. First note that K = Σi=ι KiH% is central
iff
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J Λ K i = 0 f o r a l l j e l . (3.28)

iei

Now (3.28) implies that

] Γ A^NiKi = Nj Sj Σ AJiiκi = ° f o r a 1 1 3 e I> ( 3 2 9 )
ieϊ ίe/

and hence also the element Pω(K) = Σiej &iHl of g, with ki := iV^, is cen-

tral. Conversely, with K also the pre-image P~ι{K) is central. This result shows in

particular that the dimension of g ^ is precisely |/ | — r, where r is the rank of A.

Finally we can continue the range of definition of Pω to all of g(

o

0) such that (3.25)
is still valid: we use again the basis of eigenvectors of ω introduced in Subsect. 3.2.
Given the derivation Da, consider the projection Pω(Ka) G g of the corresponding
central element Ka G g. Since the bilinear form on go is non-degenerate, for each
Da G g(p we can define Pω(Da) to be the unique derivation in go for which

(pω(Da) I Pω(Db)) = 0, (Pω(Da) I Pω(Kb)) = Nδab (3.30)

for all Kb £ g%\ and

(pω(Da) I pω(x)) = 0 for all x e g(j0) (3.31)

(the factor of Â  in the second of the conditions (3.30) ensures that the relation (3.25)
between the invariant bilinear forms on g(

o

0) and go extends to all of g(

o

0) and go).
This completes the definition of p^.

We can use the action of ω to define a dual action, denoted by ω*, on the space
g£ that is dual to go, i.e. on the weight space of g, namely as

(ω*β)(x):=β(ω~ιx) (3.32)

for all /3egJ and all x e go The natural correspondence between g(

o

0) and the Cartan
subalgebra go of g implies a corresponding relation for the dual spaces, the weight
spaces. We therefore have a bijective map

Pω* : & - g: ( 0 ) (3.33)

between the weights of g and the weights λ G go(0), i.e. those weights of g that
are fixed under ω*, ω*\ = λ. We will refer to the elements of go(0) as symmetric
g-weights. For brevity, we will also often denote the pre-image P*~ι(λ) G g* of

λ e g: ( 0 ) by λ.
By duality, the invariant bilinear form on g(

o

0) defines an invariant bilinear form on
gJ(0), and analogously for g. The relation (3.25) between the restriction of the invariant
bilinear form on g(

o

0) and the bilinear form on go therefore implies an analogous
relation between the bilinear form on symmetric weights λ G go(0) and the one on
g-weights: 4

(λ I μ) = N • (P*-'(λ) I P^- 1 ^)) = N-(λ\μ). (3.34)

4 As for Eqns (3 34) and (3 25), the following remark is in order For an arbitrary symmetrizable
Kac-Moody algebra there is no canonical normalization of the invariant bilinear symmetric form On the
other hand, in (3 34) and (3 25) the relative normalization of these forms on g and g has been fixed in a
convenient way This can be in conflict with the conventional normalization as soon as g, and along with
g also g, is simple or affine.
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4. Twining Characters

4.1. The map τω. Let V be a vector space and

R: g^End(V) (4.1)

a representation of a Lie algebra g by endomorphisms R(x): V —» V. Any automor-
phism ω of g induces in a natural manner a map on the g-module (V, i?). Namely,
via

Rω(x) := R(ω(x)) (4.2)

for all x G g, the action of CJ provides another representation Rω of g. This is again
a representation of g in End(V). To describe the structure of the module (V, iί^)
in more detail, we first note that the construction does not change V as a vector
space. However, this identity between vector spaces in general does not extend to
an isomorphism of g-modules, i.e. in general the map does change the (isomorphism
class of the) module.

Here we are interested in the case where ω is a strictly outer automorphism
and where the module is a highest weight module. If the highest weight module
with highest weight A is a Verma module, we denote it by (V, RΛ), while if it is
the irreducible quotient of (V, RA), we write (3@, RΛ)- A natural basis of a highest
weight module consists of eigenvectors of the action of the Cartan subalgebra g o c g .
Both for Verma and irreducible modules, the eigenspaces W(\) C V of weight λ with
respect to the action of Rω(Qo) coincide with the eigenspaces with respect to the
original action -R(go)

Further, recall that the action of ω preserves the triangular decomposition (3.2)
of g, i.e. not only maps the Cartan subalgebra to the Cartan subalgebra, but also the
generators for positive (negative) roots to generators for positive (negative) roots. As
a consequence, (V, R%) is again a Verma module. Moreover, since ω maps g+ to
g+, the sets of primitive singular vectors, i.e. those vectors which are annihilated by
the enveloping algebra U(g+), of (V, RΛ) and (V, R%) coincide. Now an irreducible
highest weight module 3@Λ has a single primitive singular vector, namely its highest
weight vector, and hence the previous observation implies that {S@, R%) is again an
irreducible highest weight module.

To obtain a more detailed description of the relation between (V, RΛ) and (V, R%)
(respectively (3@, RΛ) and (β@, R%)) as g-modules, we note that the highest weight
vector in both modules is the same element of the underlying vector space V (respec-
tively 3$). However, as an element of the module, its associated weight has to be
transformed by the map ω* defined by (3.32), so that in fact the highest weight vector
vh w G V has highest weight A in (V, RΛ), but highest weight ω*Λ in (V, i?£). W e

thus conclude that as a module, (V, RΛ) is isomorphic to the abstract Verma module
VΛ (and hence (3$, RΛ) is isomorphic to the irreducible quotient *9@Λ9 the irre-
ducible highest weight module with highest weight A), while (V, R^) and ( J ^ , R%)
are isomorphic to Vω*Λ and 3@ω*Λ, respectively:

For simple Lie algebras and afίine Lie algebras other than B^ one usually fixes the normalization by

requiring that the long roots have length squared 2 [1, (6 4 2)], while for Bn one normalizes the bilinear

form such that the roots have length squared 1,2 or 4 If one sticks to this normalization, then the factor N

in Eqns (3 25) and (3 34) must be replaced by a different factor N' in the following cases: for g = A2n,

for g = A^ with the order two automorphism 7, and for g = B^n+i o n e ^ a s ^' = 2./V = 4, while for

the order two automorphism of Cn one has TV7 = N/2 = 1, and for the order four automorphism σsj of

D^+ι one needs N' = 2N = 8
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Λ
(4.3)

RΛ) = ̂  ^ $%
Via these isomorphisms, one and the same element v of the vector space V

(respectively ^S~) is identified with an element υ' of VA and another element υ" of
Vω*Λ (respectively of S@A and <9@ω*A). In other words, the automorphism ω induces
maps τω : VA —• V^ and τ ω : J ^ i —• ^ ^ acting as ΐ/ ι-» υ" (for simplicity we
use the same symbol for the map on the Verma module and its restriction to the
irreducible quotient). By definition, this map τω thus satisfies

rω(RΛ(x) v) = Rω*A(ω{x)) τω(v) (4.4)

for all x e g and all υ G VA (respectively 3@A) > i e. the diagrams

vA

I | τ ω and τω I I τω (4.5)

Rω*Λ(ω(x)) ^ j Rω*Λ(ω(x))

commute. As (4.4) generalizes the defining property of an intertwining map, we will
refer to the relation (4.4) as the ω-twining property of τω. Also note that for any
weight λ of the module, the action of τω restricts to an action

WWλ) (4.6)

on the (finite-dimensional) weight space W(λ)

4.2. Twining characters. Of particular interest in applications, e.g. in conformal field
theory, are those irreducible highest weight representations for which ω*Λ = Λ; in the
physics literature they are known as "fixed points" of the diagram automorphism [4].
While τω is generically a map between two different irreducible modules, in this case
it is an endomorphism of a single irreducible module.5 In this situation the following
definition makes sense. For any strictly outer automorphism ω of g let us define the
automorphism-twined characters, or, briefly, twining characters (¥^ω^ of a Verma
module VA and X^ } of its irreducible quotient S@A, as follows. They are (formal)
functions on the Cartan subalgebra go, defined analogously to ordinary characters,
but with an additional insertion of the map τω in the trace. Thus in the case of Verma
modules the twining character ^ ω ) reads

9o -* C,

A ' ^\K) := t r ^

and analogously the twining character X^ of the irreducible module is given by

9o - C,

' Ύ(ω)(h) - tr r e2 ( 4

5 As a consequence, we will always be dealing with a definite representation R, and correspondingly
often simplify notation by writing x in place of R(x)
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These twining characters are majorized by the ordinary characters, and hence in
particular they are convergent wherever the ordinary characters converge. Note that
generically some contributions to the twining characters have non-zero phase, so that
instead of using the term character one might prefer to call these objects character-
valued indices. However, by the identifications (4.16) and (4.17) below, it follows that
the expansion coefficients of the twining characters are still non-negative integers.

The twining character can be interpreted as the generating functional of the trace
of the map τω restricted to the various weight spaces. Taking the trace separately on
each weight space and extending the definition of the weights as functionals on go to
formal exponentials, e2πlΛ(ft) := exp(2τriλ(ft)), we can rewrite the twining character
^ M in the form

9*ω> = Σ m (^e2 7 r i A , (4.9)
λ<Λ

and analogously for the twining character X^ of the irreducible module. Here m ^ )

denotes the trace of the restriction of τω to the (finite-dimensional) weight space W^\)
of weight λ, and we write λ < A iff A — λ is a non-negative linear combination
of simple roots. Because of the trace operation, the coefficient πiχ can be different
from zero only for λ G g^°\ i.e. only if λ is a symmetric weight. Hence we can
restrict the sum in (4.9) to symmetric weights.

Combining the cyclic invariance of the trace and the ω-twining property (4.4) of
τω, we also learn that

for the character of the irreducible module, and an analogous result holds for the
character of the Verma module.

4.3. Eigenspace decompositions. In the discussion in Subsect. 3.3, the eigenspace g^0)

in go to the eigenvalue ζ° of ω played an important role. Similarly, when analyzing
the properties of twining characters, it proves to be convenient to decompose elements
of go into their components in all eigenspaces g(

o

Z) (to the eigenvalue ζι) of ω. Also,
the map ω* on the weight space has the same order TV as ω, and hence we can
decompose the weight space into eigenspaces g£ ( j ) of ω* to the eigenvalue ζj,

3=0

The elements of the subspaces of go(<7) can be characterized by the fact that for any
I different from -j mod TV, their restriction on g ^ vanishes. To see this, consider
arbitrary elements β e go(<7) and x G g(o}. Then we have

β(x) = (ω*β)(ωx) = ζj+ιβ(x), (4.12)

which shows that β(x) has to vanish whenever j + 1 y 0 mod TV. Conversely, if an
element β of g£ vanishes on all elements of go except for those of g(

o

Z), then by
decomposing any element h G go into its components in the various eigenspaces g(oj)

according to ft = £ ) . ft0) with ω(h(j)) = C jft0), we find that
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(ω*β)(h) = β(ω~ιh) = ζ~ιβ(h{l)) = ζ~ιβ(h), (4.13)

and hence that β G g*{~1 m o d N).

Consider now the twining character in the formulation (4.9), i.e. ^ω\h) =
Σ\<Λ m^ε2πιλ(h), and decompose h G go into its components /ι(j) as above. As
onlysymmetric weights contribute in (4.9), the relation (4.12) can be employed in a
similar manner as above to conclude that

V^ (4 14)
ra(

λ

ω) exp [2πi V λ(/ι0))] = V m(

λ

ω) exp [2τri: '7 r m ^
\<Λ j=Q

Thus we have
(4.15)

and analogously for the twining character X^ of the irreducible module. In other
words, the twining characters depend on h E go non-trivially only through its com-
ponent in the subspace g(

o

0) of the Cartan subalgebra go that consists of fixed points
of ω. Correspondingly, from now on we will consider the twining characters just as
functions on g(

o

0).

4.4. The main theorems. We are now in a position to state the main result of this
paper. Recall that there is a natural mapping P^ (3.23) from g(

o

0) to go, which induces
a corresponding dual map PjJ (3.33) between the respective weight spaces. Let ώ
satisfy the linking condition (2.5), and let A be a symmetric g-weight. Then we have

Theorem 1: a) The twining character ^ ( ω ) of the Verma module ofg with highest
weight A coincides with the ordinary character of the Verma module with highest
weight P ^ " 1 ^ ) of the orbit Lie algebra g in the sense that

2Άω\h) = %£*-HA)(pJh)). (4.16)

b) The twining character X^ of the irreducible g-module with dominant integral
highest weight A coincides with the ordinary character of the irreducible module with
highest weight Pj^—1(yl) of the orbit Lie algebra g in the sense that

X(%\h) = XP*-HA)(Pjh)). (4.17)

As already mentioned, the linking condition (2.5) is in fact satisfied for all diagram
automorphisms of all affine and simple Lie algebras with the exception of the order
N automorphisms of A^_v In these exceptional cases for any value of the level
there is only a single highest weight A on which P*" 1 is defined. These cases can
still be treated with our methods; they are covered by

Theorem 2: In the case ofg = AIJ_ι and the outer automorphism of order N, the

coefficients m^ in the expansion (4.9) for the twining character of both the irreducible
and Verma modules obey

m{^=0 f o r λ ^ Λ , (4.18)
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i.e. except for the contribution from the highest weight vector, all contributions cancel
against each other.

Theorems 1 and 2 will be proven in Sect. 5 and Sect. 7, respectively. In Sect. 7
we will also present the explicit expression for the twining character for A(^_ι

 w * m

respect to the order N automorphism.

5. The Twining Character and the Weyl Group W

Our proof of Theorem 1 proceeds in several rather distinct steps which are inspired
by Kac' proof of the Weyl-Kac character formula (see e.g. [1, pp. 152,172]). An
additional crucial ingredient of the proof consists in the identification of a natural
action of W, the Weyl group of the orbit Lie algebra g, on the twining characters.

5.7. The action of the Weyl group W. We have seen that in the description (4.9) of
the twining character only weights lying in g^0 ) contribute, and that this part of the
weight space of g is isomorphic to g^ via the map p*. Hence we can employ p* to
push the action of W on g£ to an action of W on g£(0).

To describe the Weyl groups explicitly, we denote by Wi the fundamental reflec-
tions which generate the Weyl group W of g, i.e. the reflections of the weight space
of g with respect to the hyperplanes perpendicular to the simple roots a^\ and analo-
gously by Wi the fundamental reflections for g. Now for any fundamental reflection Wi
of W we can find an element of the Weyl group of g, to be denoted by Wi, which acts
on gJ(0) precisely like Wi acts on g£, i.e. which satisfies p ^ ^ u ^λ)) = Wi(p^
for all λ G g£(0). We will denote the mapping which maps iύi to Wi by P ^ ,

p ^ : Wi ι-> Wi, (pw(wi))(λ) := w^X) = P ^ U ^ P * " 1 ^ ) ) ) . (5.1)

Moreover, we will see that Wi commutes with ω*.
Let us first deal with those fundamental reflections Wi for which the integer Si

defined in (2.4) is Si = 1. In this case define

wώH - ( 5 2 )
ι=o

Note that because of s* = 1 we have Aι'ώ % = 0 whenever i ^ ώιi, so that wώii and
wώvi commute, and hence the product in (5.2) is well-defined. The fact that wώii and
wώι>i commute also ensures that w\ = id, and that Wi commutes with the induced
automorphism ω*. This implies in particular that the action of Wi respects the orbits
of α;*. For Si = 1 we also have (α ( z ) | α ( ώ 2)) = 0, so that the action of Wi on g-weights
λ reads

Ni-l

Wi(λ) = λ - J ^ (λ I α ( ώ I i ) V ) α ( ώ l < ) . (5.3)
ι=o

Let us now describe how Wi acts on the positive roots of g. We have

ώi(α ( ώ I i ) ) = wώH(a(ώli)) = -a(ώli), (5.4)
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while Wi maps any positive root which is not on the ω* -orbit of a^ to a positive root
which is also not on that orbit. This can be seen as follows: let β = Σ™=1 Πja^ be a
positive root which is not on the orbit of a^\ Then there is some index j , which is
not on the orbit of z, j =/ ώιi9 for which Πj is strictly positive. Since the only effect

of Wi on β is to add terms proportional to the α ( ώ ι\

n Ni-l

Wiφ) = Σ n i α 0 ) + Σ ξι a(ώlί)' ( 5 ' 5 )

3=1 1=1

the expansion of Wi(β) in terms of simple roots still contains the term rija^K Since
Wi(β) is again a root of g, and since one coefficient is positive, it is again a positive
root of g. Moreover, since rij 4 0 it is clear that it cannot be on the orbit of a^\

To deal with the case si = 2 we first recall that in this case Ni is even and that
the restriction of the Dynkin diagram of g to this orbit is the Dynkin diagram of
Ni/2 copies of the simple Lie algebra A2. As a consequence, in the sequel we can in
fact restrict ourselves to the case Ni = 2. Otherwise we first treat the automorphism

ωNi/2^ ^ j ς h h a s order two and possesses Ni/2 orbits each of which corresponds to
the Dynkin diagram of A2. On the set of orbits of ωNί/2, the automorphism ω induces
an automorphism ω1 of order A^/2; all orbits with respect to this automorphism ω'
have s'j = 1.

For Ni = 2 and Si = 2 we define

Wi := Wi wώi Wi. (5.6)

Clearly, ίύi has order 2, w\ = id. Since Aι'ώι = — 1, we also have (wiWώi)
3 = id and

hence
Wώi = WώiWiWώi = WiWώiWi = Wi . (5.7)

This implies that again Wi and ω* commute. The action of Wi on the roots of our
main interest reads

Wi(a{i)) = -aiώi), Wi(a{ώi)) = -a{ϊ), Wi(a(i) + a{ώi)) = -(a(i) + a{ώi)), (5.8)

while any other positive root is again mapped on a positive root different from
a^\ α ( c i n ) and α ( z ) + a^ώι\ This can be checked explicitly by using arguments which
are completely parallel to those used in the case Si = 1.

Finally, we again compute the action of Wi on weights in go(0). For any such
g-weight we have (λ | a(i)v) = (λ | a(ώi)v) =: I, and hence

Wi(X) = WiWώiWi(X) = WiWώi(λ - la(ι))
(5.9)

= Wi(X - la(i) - 2la(ώί)) = λ-2l (a(i) + a{ώi)).

We can summarize the formulae (5.3) and (5.9) by

Ni-l

Wi(λ) = λ - Si . 2 (λ I a(ώli)V)a(ώli). (5.10)
1=0

Let us check that the prescription (5.10) indeed describes the mapping Έ>w defined
by (5.1). Knowing how P^ acts on go, it is straightforward to determine how PjJ acts
on g£. Let us first compute the action of P^ on the simple coroots ά^ := di ό^ι\ We



Dynkin Diagram Symmetries 63

observe that the invariant bilinear form on the orbit Lie algebra g identifies go with
its weight space gj in such a way that α ( z ) corresponds to Hι. Also, since ω leaves
the bilinear form invariant and (Pωh | Pωh') = N(h \ h'), the identification of go with
g£ corresponds to identifying the maps Pω and P*" 1 up to a rescaling by N. As a
consequence, the dualization of the identity P^QΓ^i Hώ τ) = NiH1 reads

^ £ (5.11)
i V* ι=o

Using the relation (2.13) between di and dι and the fact that PĴ  is a linear map, we
can also compute the action on the simple roots,

Ni-l

P*(ά ( i )) = ^P*(α ( < ) V ) = Si-^2 α ( ώ I < ) . (5.12)
ι=o

With these results, the formula (5.1) for Wi(\) becomes

= P*(λ - (λ I ά^v)ά^)

1=0
N-\ Ni-l /5 ι*\

- Λ ~ AT 2 ^ TVΛ ' ^ ι 2-/ α

1=0 1=0

= λ-sτ ^ ( λ | α ( ώ I < ) V ) α ( ώ I i ) .
/=o

Thus Wi(\) as defined in (5.1) coincides with (5.10), as promised. In short, both for
Si = 1 and for Si = 2 we have shown that we can represent the generators of the Weyl
group W by elements of W which commute with ω*.

Of particular interest is the case where the g-weight on which Wi acts is a Weyl
vector of g, i.e. an element p of g* which obeys ρ(Hι) = 1 for all i G Lin this case
(5.10) reads

Ni-l

Wi(ρ) = ρ-Si Y^a^'K (5.14)
1=0

5.2. W as a subgroup of W. We can now define W as the subgroup of W that is
generated by the elements Wi of W that are defined by (5.10). In this section we show
that W is in fact isomorphic to W, the Weyl group of the orbit Lie algebra g, or in
other words, that the map Pw which maps Wi to Wi as defined in (5.1) extends to an
isomoφhism of the groups W and W. The proof involves a few lengthy calculations
which will be described in detail in Appendix A.

First recall that the Weyl group W can be described as a Coxeter group, namely
as the group that is freely generated by the generators Wi modulo the relations
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(wif = id for all ί e l ,
(5.15)

(wiWj)mij = id for all i,j e I, i^j .

The integers rhij take the specific values rhij = 2,3,4,6 for Άι>jΆj>1 = 0,1,2,3,
while for Aι^A^1 > 4 one puts rhij = oo (and uses the convention that x°° = id for
all x).

We have to show that the generators wι obey exactly the same relations. Above
we have already seen that the vbi square to the identity; thus, denoting by rhij the
order of WiWj in W, it remains to be shown that rhij = rhij. To see this, we first
prove that rhij is a divisor of rhij (and hence a fortiori rhij > rhij). Namely, assume
that (vbiWjΫ1^ G W is the identity element of W; then in particular it acts as the
identity on the subspace g£(0) of g£. Hence by construction also (wiWjY1^ G W acts
as the identity on the weight space of g; this means that it is the identity element of
W, which in turn by (5.15) implies that rhij must a divisible by rhij.

The inequality rhij > fhij automatically proves our assertion for A1^ A^τ > 4.
In the remaining cases, one can show in a case by case study that in fact already
{WiWjY1^ = id, which then concludes the proof of the isomorphism property of pw.
These calculations are straightforward, but somewhat lengthy, and accordingly we
present them in Appendix A.

For later convenience, we also introduce the homomorphism e from W to Z2 =
{±1} that is induced by the sign function e on W,

e(ώ):=€(p^(ώ)). (5.16)

Note that e is typically different from the sign function that W inherits as a subgroup
from the sign function e of W.

5.3. The action of W on the twining character of the Verma module. We now consider
the action of W on the twining characters. As W is a subgroup of W, its action on
the twining character is defined in the same way as the action of W on the ordinary
characters is, i.e. via the action (5.10) on g-weights. In this subsection we show that
the function

with Ψ^ω) the twining character of the Verma module with highest weight Λ, is odd

under the action (5.10) of W, i.e.

w(&r(ω)) = e(w)Φr(ω). (5.18)

Note that here the sign function e on W defined in (5.16) appears, rather than the
sign function e of W. We also remark that, since the only dependence of the twin-
ing character ^ ω ) of the Verma module on the specific highest weight A is by a
multiplicative factor of eΛ, the quantity ^ ( α ; ) is independent of the choice of A. It is
sufficient to check (5.18) for the fundamental reflections Wi which generate W. Thus
in the sequel we consider a reflection Wi with fixed ί G /, for which we have to show
that

( ) ) =-^{ω). (5.19)
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To prove this, we make use of the Poincare-Birkhoff-Witt theorem. To this end we
must first choose a basis J^_ of g_, including some enumeration of the elements
of &-. Let us first deal with the case Si = 1. In this case we choose as the first
Ni elements of J&- the step operators E°!_% for / = 0,1,.. ., Ni — 1 (the root spaces
corresponding to simple roots are one-dimensional so that this prescription makes
sense), and then the step operators associated to all other negative roots in an arbitrary
ordering. The Poincare-Birkhoff-Witt theorem then asserts that the set of all products

(5.20)
forms a basis of the universal enveloping algebra U(g_); 6 here the exponents Ui
and πii can take all values in the non-negative integers in such a way that only
finitely many of them are different from zero. As the elements g^n'm) are linearly
independent, commutator terms that arise when reshuffling the products of generators
of g_ can never give rise to a non-zero contribution to the twining character ^^\
furthermore, an element ?/n'm) = gf <n>m) . vA of the Verma module can contribute to
9^(α;) only if no = ni = . . . = nNi_λ =: n.

The Poincare-Birkhoff-Witt theorem also implies that the contributions to 9^(α;)

stemming from the products 3f/n) and 3ξ(m) in (5.20) factorize, so that we can inves-
tigate their transformation properties under wι separately. First, Wi commutes with
ω* and maps any u;*-orbit of negative roots to some other orbit of negative roots, i.e.
only permutes the orbits that contribute to the second factor. Thus, by the fact that
commutator terms are irrelevant for the trace, the contribution to gr^ coming from
operators of the type δζ ( m ) is invariant under wim On the other hand, the contribu-
tion ( ^ M ) i of operators of the type ^ ( n ) to ^ ( ω ) = e~p-Λ%Λ") c a n b e computed
explicitly as

(^<ω>), = e"" ΣΓ-o exp[n(-α« - α ( ώ i ) - . . . - α^*"" ' " ) ]

e-p (5-21)

Acting on this expression with w^ with the help of (5.4) and (5.14) we obtain

( ω t ) l

Combining the two factors of the product (5.20), we thus arrive at the desired result
(5.19).

Next consider the case Si = 2. In this case we choose a different basis M- of g_
in order to obtain a decomposition analogous to (5.20). As the first three elements
of ^5*_ we take the step operators E~Oί%, E~a"x and E~a% ~ α ^ , and then again
the step operators corresponding to all other negative roots in an arbitrary ordering.
A basis of U(g_) is then given by (5.20) with the first factor ^ j ( n ) replaced by

6 The automorphism ω of g extends to an automorphism of the universal enveloping algebra U(g) by
simply defining ω(xxf) = ω(x)ω{x') for all x, x' £ Q as well as ω(l) = 1
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>(no,n,,n') . = ^ i j

The same type of arguments as in the previous case then shows that the contribution

to ^ * ( ω ) from operators of the type <ζ(m) again transforms trivially under Wi. Further,

in order to have a contribution (%^(ω))ι from operators of the type g^n°'ni>n')? w e

need again no = n\ =: n. Now the transformation properties ω(Eι_) = E^_% and

ω(E^) = Eΐ imply that

ω(E-«w-*<ώi)) = ω([Ei, E^]) = [EΪL\ El] = _E-a(ί)-a(ώί). (5.24)

This allows us to compute the contribution ( ^ ( c j ) ) i to the twining character as

e ] X(
n=0 n'=0

Using the transformation properties (5.8) and (5.14) (note the additional factor of
Si = 2 in the transformation law (5.14) of p) we find that this contribution to the
twining character ^ ^ changes sign under the action of Wi. Hence again we obtain
(5.19). This completes the proof of (5.19), and hence of (5.18).

5.4. The action ofW on the irreducible twining character χ^\ In this subsection we

show that the twining character X^ of an irreducible highest weight module with

dominant integral highest weight A is even under the action of W, i.e.

w(XiZ)) = X(%)- (5.26)

Again, it is sufficient to check this for all generators τbi oϊW. Thus for alii e I we
have to show that any weight λ G go(0) contributes in the same way to the twining
character as the weight Wi(λ).

Let us first deal with the case 5̂  = 1. Then the subalgebra ĝ  of g that is spanned

by the generators E^i and Hώlώl\

\ Hώli \l = 0 , 1 , . . . , Ni - 1), (5.27)

is isomorphic to a direct sum of Ni copies of A\ algebras,

Qi ^ Aι Θ Aι Θ . . . Θ AYj. (5.28)

Ni summands

Now consider the decomposition

*Λ = £ft^(L f c ) (5.29)
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of the irreducible module 3@A of 9 into irreducible modules <&@{Lk) of Qi- As the
highest weight A is dominant integral, each of the modules έ%?(Lk) has dominant
integral highest weight, i.e. for any value of k each of the Ni numbers Lk, k =
1,2,..., Ni, is a non-negative integer. Also, according to the representation theory of
A\, any weight of such a module with respect to the subalgebra ĝ  is then a sequence
of Ni integers ίk, k = 1,2,..., A ,̂ and all these weights are non-degenerate.

A module 3@(Lk) of ĝ  can of course only contribute to the twining character if
it is mapped onto itself by τω. For the rest of the discussion we will assume that the
module under consideration fulfills this condition (otherwise no state of the module
contributes to the trace, so that the contribution is trivially symmetric under W). Now
to the twining character only those states can contribute for which t\ = £2 = . = t>Ni
Thus we have to show that the unique state υ in 3@(Lk) with ^i = t-i - = &Ni =•
I > 0 contributes precisely with the same phase to X^ as the unique state υ' with
(!λ = £f

2 = . . . = (!N =: — I, Now v' can be obtained by acting on υ as

v1 = (ElE**... E^Ni~li)1 v . (5.30)

We now combine the identity ωiElE™ ... E*Ni~H) = EΐE**... E*Ni~H and the ω-
twining property (4.4) of the map τω to find that the eigenvalue equation rω(v) = ζkv
implies

τω(v') = TudEiEO*... ΈtNi~li)ιv) = ωdELE? . . . EO"*'1*)1)^) = ζk(v').
(5.31)

Thus v and v' contribute the same phase ζk, which proves our claim (5.26) in the
case Si = 1.

To deal with the case Si = 2 we can again assume that Ni = 2. In this case we
define ĝ  as the subalgebra

Qi := (E±aW±aiώi\ Hι + Hώi) (5.32)

of g, which is isomorphic to A\. The automorphism ω acts on ĝ  as (compare (5.24))

ω(E±a{i)±a(ώi)) = -E±aW±aiώi\ ω{Ei + Hώi) = W + Hώi. (5.33)

Again we decompose the irreducible module 3@A of g into irreducible modules 3@ι
of g ,̂ for which again the weights are non-degenerate. Only states which have the
same eigenvalue for Hι and Hωι can contribute to the twining character. Thus we
have to show that the unique state v with Hιv = Hώiv = Iv (I > 0) contributes the
same phase as the unique state v' obeying Hιvf = Hώιvf = —lvf. Now we have

υ' = (E-aii)-aiύi))2lυ, (5.34)

where the factor of two arises because the Hι- and Hωι-eigenvalues are added up.
Thus only even powers of the step operator E~a % ~a ω% occur. Because of (5.33) the
vectors v and v' therefore contribute with the same phase (which for Ni = 2 is a
sign), and hence the claim (5.26) is again proven.
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5.5. The linear relation between irreducible and Verma characters. In this subsection
we show that the twining character X^ of the irreducible module S@A c a n be written
as an (infinite) linear combination, with complex coefficients, of the twining characters
of certain Verma modules. We first need to introduce some notation; as in (4.9), for
two weights λ,/i G gj we write μ < λ iff the difference λ — μ is a non-negative
linear combination of the simple roots of g, i.e. iff

Λ - μ = ^2 nia(i) w i t h ni e z >o (5.35)
iei

To any such pair of weights we associate a non-negative integer, the depth, by

d p λ ( μ ) : = ^ Π i . (5.36)
iei

Let us assume that Λ is a symmetric weight, λ G g£(0). We claim that for any such
λ we can find complex numbers cχμ with δχχ = 1 such that

^ < ω ) = £ c ~ λ μ χ < r \ (5-37)

where ^ ω ) denotes the twining character of the Verma module with highest weight
λ and Xj^ the twining character of the irreducible module with highest weight μ.
Note that the weights λ, μ need not be dominant integral. (Also, for non-symmetric
weights (¥χ vanishes, so that the assertion is trivially true.)

To prove (5.37) we define inductively a sequence ^ω)[n] of (finite) linear com-
binations of twining characters of irreducible modules,

> (5-38)

such that the coefficient of e^ in 9^{ω) - ^ M [ n ] vanishes for any μ with dpλ(μ) < n
and that

δ£! = c~5 λ ( μ ) ] f o r a11 " ^ dPλ(Aθ (5-39)
At depth zero, there is a single state we have to take into account, namely just the
highest weight vector, and hence we define cψ := δχiμ. Next, suppose that we have

already defined %^ω)[n] for some value of n > 0. Then the difference °^ω) - 9^ω)[n]

is of the form

μ<λ μ<λ
dpλ(μ)=n+l dpλ(μ)>n+l

where d^ are some complex numbers. We then define

rfn] χ(ω)

dpx(μ)=n+l
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This way we only add terms proportional to eu with dpλ(z/) > n + 1 to φ^ω)[n\

so that c[™*l] = c^] = c[χ^λ(μ)] for dpλ(μ) < n. Moreover, all terms proportional to

εμ with άpχ(μ) = n + 1 are removed from the difference ^ { ω ) - %^ω)[n\ because
any irreducible twining character contributes at dp(μ) only through the highest weight
vector, while all other contributions are at higher depths. This shows that the quantities
φΛω)[n\ p 0 S s e s s m e properties stated above. From (5.39) and the properties of the c^
described above it then follows immediately that (5.37) holds, with the coefficients
cλμ given by

ex, := ̂ ( μ ) ] . (5.42)

The weights μ which give a non-vanishing contribution to the sum (5.37) have to
obey further requirements in addition to μ < λ. First note that the twining character
X^ vanishes unless μ e g£(0). Writing λ - μ as in (5.35), the fact that both λ and μ
are fixed under ω* implies that nώi = n^ for all i G /, so that

Λ - μ = Σ niά(i) > ( 5 4 3 )
ieϊ

with λ = P^~!(Λ), μ = P*~ι(μ), and hence μ < λ.
Next, we consider the generalized second order Casimir operator of g, defined as

[1]
2n-r

W2:=2(p\H)+Σ («7 I«/) + 2 Σ Σ E - ί E " ' e - (5-44)
1=1 a>0 t

Here {u1} and {uj} denote any two dual bases of go, the sum over i in the last
term takes care of the possible (finite) degeneracies of roots, and in the first term we
implicitly identify go with its dual space g£ with the help of the invariant bilinear form.
Finally, the g-weight p is a Weyl vector of g, i.e. a weight which obeys p(Hι) = 1
for alii e I (if the determinant of the Cartan matrix A vanishes, then this element is
not unique; in this case we make some arbitrary, but definite choice for p). For any
Weyl vector of g, the projected g-weight p = P^~ι(p) is a Weyl vector of g. With
the above results, we can then relate the eigenvalues of the generalized second order
Casimir operators of g and g. The operator W^ has the constant value

C2(λ) = (λ + 2 p | λ ) = | λ + p | 2 - H 2 (5.45)

(with |μ| 2 = (μ \ μ)) on V\\ taking into account the relation (3.34) between the
invariant bilinear forms of g and g, it therefore follows that

N • \λ + p\2 = \X + p\2 = \μ + p\2 = N • \μ + p\2 (5.46)

for all weights μ which appear in (5.37).
In summary, for any g-weight A all weights appearing in the decomposition of the

twining character of the Verma module VΛ that is analogous to (5.37) are contained
in the subset

B{Λ) :={\ = p*(λ) I λ < Λ, |λ + p\2 = \λ + p\2} (5.47)
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of the weight space of g. Also, we can assume that the elements of B(A) are indexed
by the positive integers, B(Λ) = {λ^ | i e N}, in such a way that Xj < λ̂  implies
that i is smaller than j . Applying the formula (5.37) to all elements of B(Λ), it then
follows that for all λ̂  we have

^ ( ω ) = Σ ^ χ ( χ <5 4 8 >

with complex coefficients c^ .

Moreover, by construction we have ca = 1, and Cij can be non-zero only if λj <
λ ,̂ which due to the chosen ordering in B(Λ) implies that i < j . Hence the (infinite)
matrix c = (c^) is upper triangular so that it can be inverted; its inverse c = (QJ)
is upper triangular as well and obeys ca = 1. This shows that the following kind
of inverse of the formula (5.37) holds: the twining character X^ of the irreducible
module with highest weight A can be written as an (infinite) linear combination

XΛ°= Σ C A ^ M (5 4 9 )
λeB(Λ)

of the twining characters of Verma modules with highest weights in B(Λ), where the
c\ are complex numbers such that CA = 1.

5.6. The character formula. We are now in a position to complete the proof of Theorem
1. Assume that the highest weight A is dominant integral, and let us write the linear
relation (5.49) as

λ e-p-λ^ω) = ( Σ cxe
x+p).^ω\ (5.50)

where we used the fact that ^ ( ω ) = e " p " λ ^ ( ω ) is independent of λ. The results of

the two preceding subsections show that ^* ( α ; ) is odd under the action of W (with

respect to the sign function e inherited from W), while the left-hand side of (5.50) is

even under W. This implies that the sum in brackets on the right-hand side must be

odd under W, which means that c\ = e(w)cμ whenever there is an element w £ W

such that w(λ + p) = μ + p. Thus for all w G W we have

c λ = e(w) c^(λ+p)-p (5.51)

with e(w) as defined in (5.16).
Moreover, as A (and hence also A = p ^ " 1 ^ ) ) is dominant integral, with any

weight λ the weight system of the irreducible module already contains the full W-
orbit of λ. As a consequence, we actually need to know c\ only for a single element
of each orbit of the action of W\ moreover, only weights in g^0 ) contribute. Now
p * " 1 intertwines the action of W on g£ and the action of W on go(0); any orbit of
the VF-action contains a unique representative in the fundamental Weyl chamber of g.
Since the only weight λ in the fundamental Weyl chamber of g with λ < A = p*~1(Λ)
for which λ + p has the same length as A + p is the highest weight Λ itself, we learn
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that B{Λ) contains only a single orbit of W, namely that of the highest weight A.
Together with CA = 1 this implies that (5.50) can be rewritten as

* Λ } = ( Σ e ^ e " ( y l + P ) > ^(ω)' (5.52)
wew

We can now use the fact that any symmetrizable Kac-Moody algebra g possesses
the trivial one-dimensional irreducible module with highest weight A = 0. This weight
is obviously a symmetric weight; also, by definition, τω leaves the highest weight
vector fixed, and hence in this special case the twining character is constant, XQ = 1.
Evaluating (5.52) for this case we find

) ^ M . (5.53)

wew

This allows us to read off the explicit expression

(p)yl (5.54)

wew

for 9^(α;). When inserted into (5.17) and (5.52), this yields the explicit expressions

(5.55)

wew

for the twining character of the Verma module, and

(S 5
( 5 5

for the twining character of the irreducible module.
We now observe that for any h G g(

o

0) we have

(w(A + p)){h) = ([PW(w)](Λ + p))(ft) ( P ^ p ( Λ + P))(h)

with A = P * " 1 ^ ) . When combined with (5.56), this implies that

for all h G Q^\ By the usual Weyl-Kac character formula for the integrable highest

weight module with highest weight A, this means that

X{Λ\h) = XΛ(Pωh). (5.59)

This completes the proof of part b) of Theorem 1. Analogously, part a) of Theorem
1 follows by comparing (5.55) with the formula for the Verma module characters of
g (since ^ ^ is independent of Λ, this result holds for arbitrary highest weights, not
just for dominant integral ones).
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6. Simple Current Automorphisms of Untwisted Affine Lie Algebras

6.1. Centrally extended loop algebras. Let us now specialize to the case where g
is an untwisted affine Lie algebra, which is relevant for applications in conformal
field theory. Among the diagram automorphisms of the untwisted affine Lie algebras,
there is a particularly interesting subclass which corresponds to the action of simple
currents in the WZW models of conformal field theory. From now on we will also
restrict to these specific diagram automorphisms; abstractly, they can be characterized
as the elements of the unique maximal abelian normal subgroup iδ(g) of the group
Γ(Q) of diagram automorphisms; this abelian subgroup is isomorphic to the center
of the universal covering Lie group that has the horizontal subalgebra g c g a s its
Lie algebra. Also, the remark at the end of Sect. 3 shows that in this situation the
Eqns. (3.25) and (3.34) are valid in the conventional normalization of the invariant
symmetric bilinear form.

In the affine case, the rank r of the n x n Cartan matrix A is n — 1. Hence the
space gD of derivations is one-dimensional. However, one usually does not choose
the derivation D in the way we did in the general case, i.e. such that ω(D) = D, but
rather in a way which is suggested by the realization of affine Lie algebras in terms
of centrally extended loop algebras. We will denote the latter derivation by Lo-

in the description of untwisted affine Lie algebras via loop algebras, a basis of
generators of g is given by H^ and E^ together with the canonical central element
K and the derivation Lo. Here m takes values in Z, i takes values in the index set
/ that corresponds to the horizontal subalgebra g of g, and ά is a root of g. The
horizontal subalgebra is a simple Lie algebra; for g = X^ it is given by g = Xr. The
rank of g is equal to the rank r = n — 1 of A, so that it is natural to write the index
set I as 7

J : = / U { 0 } = {0 ) l ,2,. . . ,r} . (6.1)

In this basis the Lie brackets of g read

[E%l,E%'] = e&t&,E«\i, (6.2)

[£«, E~«] = (ά\ Hm+n) + mδm+nfiK,

[Lo, Wm] = -mHί

m, [Lo, £&] = - m £7* ,

together with [ , K] =0. It is implicit in (6.2) that e^a' =0 iί ά-\-άf is not a g-root.
Further, B is the symmetrized Cartan matrix of g,

(6.3)

for i,j G /, with ά w the i th simple root and άv = 2α/(α,α), and we implicitly
identify the Cartan subalgebra of g with the weight space inasfar as we use the
notation (λ,ίΓm) = ΣU ^ A = Σ[ , J = i Gij^H^, with G the inverse of B, for
any g-weight λ. The relation between the inner product ( , •) on g and the invariant
bilinear form ( | •) on g is

7 Note, however, that by construction the index set / is then generically not the set {0,1, ,rankg}
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(h\ti) = (h1h
/) + ξη' + ξ'η (6.4)

for h = h + ξK — ηLo with h G go Note that the normalization of G, or equivalently
the normalization of ( , •) is arbitrary; we fix this freedom such that the highest g-root
θ has length squared 2. Then in particular the level kχ, defined for any vector of
g-weight λ by k^ = 2kχ/(θ, θ), is equal to the eigenvalue kχ of the canonical central
element K.

The step operators associated to the simple roots α ( z ) with i e / are given by

Eι± = E±a % = E^a % and the corresponding Cartan subalgebra elements by Hι =

[E%

+, Eι_] = HQ, while the step operators associated to the zeroth simple root cS® read

E± = ϋ7±f, and the corresponding Cartan subalgebra element is H° = [E+,E^] =

H$. More generally, we introduce the elements H^ as the linear combinations

The level of a weight λ is then related by

r

fc^^αVλ4 (6.6)
i=0

to its Dynkin components λ\ Further, for i e I the Coxeter and dual Coxeter labels
coincide with the expansion coefficients of the highest g-root θ in the basis of simple
roots and the basis of simple coroots, respectively, so that (6.5) may be rewritten as
11% - K δn$ — (0, Hn). We also note that according to (6.6) the component λ° of a
weight is redundant if only weights at a fixed level are considered.

6.2. The derived algebra. We will again first describe how the automorphism ω acts
on the derived algebra g of g and later study the action on the derivation. On the
generators Hι

m and E^, which together with K span g, the diagram automorphism
ω acts as

ω(H*J = H™ , ω(E£) = η& E^t , (6-7)

while it leaves the canonical central element K fixed,

ω{K) = K. (6.8)

Here we use the following notation. In (6.7) the prefactors ηά are signs which are
+1 for the simple roots and can be deduced for all other roots by writing the step
operator for a non-simple root as a (multiple) commutator of step operators for simple
roots and then using the automorphism property of ω to extend the action (3.6) of
ω on the step operators for simple roots. (We have already encountered an example
with ηά = -1 when we calculated ω(EaW+aiώi)) in Subsect. 5.3, cf. Eqn (5.24).)
Also, the index i in principle only takes values in the unextended index set /, and for
i = ώ~ι0 the identity (6.5) is implicit on the right-hand side (note that ώ~ι0 e I for
all ω G iS(g)). However, owing to this same identity and the invariance (6.8) of K,
the relations (6.7) are still valid if one allows for i to lie in the extended index set /,
i.e. including i = 0. Further, in (6.7) we introduced for any g-root ά the number ί^
defined by
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where we denote by Λψ), i = 1,2,... ,r, the horizontal fundamental weights, i.e. the
fundamental weights of the horizontal subalgebra g. Finally, we introduced a map
ώ* on the weight space of g; it is defined by the following action on the Dynkin
components λ 7 of the weight λ:

(ώ*XY = Xώ~lj for j^ώO, (6.10)

while
r

Hence
r r

α; A =/sλ/L(ά;0) + / A Aj) ~ ( / ^ 7 AJ) -Λ(α θ) (o.lz)

Note that α)* is an affine mapping on the weight space of g.
As the components of the simple g-roots ά^ in the Dynkin basis are just the rows

of the Cartan matrix of g, the definition of ώ* implies in particular that

ω*a^ = ά^ωι>> for i =^ ώ~ι0 , ω*(o{ ω 0 ) ) = —θ. (6.13)

By making use of the Serre relations and the invariance property of the Cartan matrix,
it then follows that ώ*ά is a g-root whenever ά is (and hence the notation E^f_
introduced in (6.7) indeed makes sense).

The action of ω* on the roots of g can be described more concretely as follows. We
write any root β of g as a linear combination of simple coroots as β = X^[=1 βiά^ ,
and for simplicity set βo = 0 for all roots β as well as α ( 0 ) V = — θ. With these
conventions we have

4 = (α, Λ(ώ-ι0)) = aώ-lQ , (6.14)

while the action of ώ* on the roots is

3=0 j=l

We can use this result to derive a relation which we will need in Subsect. 6.6; since
for untwisted affine Lie algebras we have CLQ = a^0 = 1, so that (Λ(ώo), θ) = α^0 = 1,
the relation (6.15) implies

( i ( ώ 0 ) , ώ*ά) = -£a + αo = - 4 (6.16)

6.3. The derivation. Let us now describe how ω acts on LQ. The derivation L$ is de-
fined as the unique element of the Cartan subalgebra of g which has the commutation
relations

[Lo,E
τ

±] = τδi,oE°± (6.17)
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and satisfies (Lo | Lo) = 0. Then the automorphism property of ω demands that
[ω(Lo),Eι±] = T<5i,ώθ^±°; this fixes ω(L0) up to a term proportional to the central
element K, ω(L0) = Lo — (4^0), H) + cK. Indeed, using (4^0), α ( ϊ )) = δώo^ for i =
1,2,..., r, and ( % 0 ) , -0) = - α ^ 0 = - 1 , we find that [ω(L0), £?5=] = T < W # ± The
constant of proportionality c can be obtained from the requirement that the invariant
bilinear form is α -invariant, which implies that (ω(L0) | ω(L0)) vanishes,

0 = (α (Lo) | ω(L0)) = (Lo - (Λ(ώOh H) + cK\L0- (Λ(ώOh H) + cK)
(6.18)

= — 2c + (.Λ(ώo Λ )

Hence we obtain

ω(L0) = L0- (4,0), H) + \ (Λ{ώOh 4,0)) K. (6.19)

With this result we can now make the relation between the derivation D that we
used in the general setting and the derivation Lo explicit. To this end recall that D
is uniquely characterized by the relations (3.15) for (D \ •)• To make the definition
concrete, we choose a basis of eigenvectors of ω for the Cartan subalgebra go of the
derived algebra. Thus we introduce vectors

, Ni

where i takes values in /, m = 1,2, ...,Λ^, and ζi = ζN/N\ with ζ as defined in
(3.10), is a primitive 7V]h root of unity. As a basis of go we now choose all hι

m,
except for i = 0 = m, together with the central element K. Rewriting the conditions
(3.15) in terms of the generators ϋ \ we then find that D is characterized by

(D\D) = 0, (£>|iT) = 0 f o r i ^ ά / 0 , (D\Hώl°) = j - for all/. (6.21)

This fixes D to

D = " L o + jj ^

with
N-\ N-\

Γoo : =

Let us also determine the relation between the derivation D = Pω(D) defined by

(3.30) and (3.31) and the element Lo of the orbit Lie algebra g. From Pω(hι

0) = Hι

we learn that D is characterized by

φ\ΰ) = 0, φ\Hi) = 0 foriG/\{0}, 0\K) = N. (6.24)

This fixes D to D = -NL0. Together with D = Pω(D) and (6.22), this relation shows
that

1 N~l - Γ

- Pω(Σ Λ(»1^ H)-^kR (6'25)

1=1
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6.4. The action ofω*. From the action of ω we can also derive the action of its dual
map ω*. First,

(ω*(a™))(Hj) = a(ί)(Hώ~lj) = A^ώ~lj = Aώ^j = a(ώi)(Hj) . (6.26)

It follows that ω*(a^) = a^ω%) + ξiδ, where ξi is some number and 6 is the specific
element

aτa
(i\ (6.27)

with the cLi the Coxeter labels of g, of the weight space g*. (Note that the imaginary
roots of g are precisely the integral multiples of 6.) Also, applying ω to the relation
[D,Eί] = a(ί)(D)Eι

+, we obtain

a(i\D)Ef = ω([D, Eι

+]) = [D, E**] = a{ώi\ϋ)Ef , (6.28)

which shows that a^ι\D) = oSωι\D). To determine the constants ξi, we now apply
ω*(α(z)) to D. By the results just obtained, this yields

(ω*(a(i)))(D) = a(ώi\D) + & δ(D) (6.29)

on the other hand, from the definition of ω* we obtain

(ω*(a(i)))(D) = a{i)(ω-ιD) = a(i)(D). (6.30)

Thus ξiδ(D) = 0, which because of δ(D) •=£ 0 means that ξi = 0. Hence we have

ω*(α(<)) = α ( ώ < ) (6.31)

for all i e I. This implies in particular that

ω*(δ) = Σaί ω*(α(<)) = δ ( 6 3 2 )

Analogously, one derives how the fundamental weights Λ^ G g*, defined by

Λ(i)(Hή = δ{ and it ( i )(L0) = 0, (6.33)

transform under ω*. We find

ω*(Λ(i)) = Λ(ώi) + [G ώ -i O j ί - | < GΪ ( ώ-i0), Aώ-io))] ^ (6.34)

Together with the element δ (6.27), the fundamental weights Λ^ form a basis of
the weight space g*. Another basis of g* is given by δ, hi := Λ@) and by the horizontal
fundamental weights

Ai) = Aw - <τl(θ) (6.35)

with i = 1,2,... ,r. The relation between the components of a weight λ in the two
bases is

M(i) + nχδ = λ = Σ λ * 4 ) + ̂ λ^ + nλ<5, (6.36)
z=0 i=\

i.e. λ i = λ* for i = 1,2,..., r and ̂  = ]Γ[=() a\\\ We also set i ( 0 ) = 0, which will
be convenient in some calculations.
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The horizontal fundamental weights (6.35) transform under ω* as

(i)) = Λ{ώi) - <yl(0) + <(Λ ( 0) - Λ(ώ0)) + Gώ-i0,i 5+ <(Λ ( 0) Λ(ώ0)) + G ώ i 0 , i 5
(6.37)

= Λ(ώΐ) — α -̂4(ώθ) + Gώ-io,i <5.

Using the relations

(δ I Λ ω ) = Λ(i)(K) = 0, (5 I 5) = <5(K) = 0, (6.38)

and the fact that along with ω also ω* is an isometry, we then find that the metric G
on the horizontal weight space obeys

id = (Λ(ί) I Λ ω ) = (ω*A(i) I ω M ω )

G XG yG %G

Applying the analogous relation for the automorphism ω m , we see that

l.l^O^ώH^'j ~ 2^l,lf=0^rώι+mi1ώ
ι/+mj i y / a i 2^1=0 ^rώm01ώ

ι+mj , , , m

(o.4U)

and hence

7 V - 1 Λ Γ - 1

ώm0^ώij + αj ̂  Gώ^o.ώ'ί (6.41)

z=o

7Define now ̂  := ̂ ^ j7=0 Gώι0 ώv{. Summing Eqn. (6.41) over m, we obtain the
system

N-l

atXά + a)Xi = N^2 GώmOtώmO a(a) =: ξ < α j (6.42)
m = l

of linear equations for the Xim These equations have the unique solution Xι = \ ξ a(.
With al = 1, it then follows that

(6.43)

Γo o (6.44)

6.5. The action ofp*. It is straightforward to determine the action of P^ on g£ from
the action of P ω on g o . We only need to observe that the invariant bilinear form
identifies g o with the weight space g j in such a way that & ( ϊ ) corresponds to Hι/di,
and that since ω leaves the bilinear form invariant and (pωh | Pωh') = N(h \ hf), the
identification of g 0 with g£ corresponds to identifying P^ and P * " 1 up to a rescaling
by N. Then in particular for the simple roots we have

and

with Γ()0 as in (6.23).

iV- l

= v̂  G

N-\

ΛT N-l

- x - — V
m=\
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Ni-1

1=0

as already deduced for the general case in (5.12).
For untwisted affine Lie algebras the general relation (2.18) between the Coxeter

labels and dual Coxeter labels of g and of the orbit algebra g can be made more
concrete: because of the normalizations α0 = α0 = 1 and άg = (NO/N)<1Q = αo = 1>
the relations (2.20) and (2.19) tell us that the numbers defined by (2.18) are precisely
the conventionally normalized Coxeter and dual Coxeter labels of g, respectively
(in particular for all untwisted affine algebras they are integral, which for a( is not
manifest in (2.18)). For the generator δ := Σieϊ o>%o^ whose integral multiples are
the imaginary g-roots, this implies

P*(δ) = δ. (6.46)

We can now also determine how the fundamental weights Λ^ G gj are mapped
by P*. As can be checked by considering the action on Lo and on the ftj, we have

p*(Λ(i)) = 2 ^ Λ(ώH) + ξάϊNi δ, (6.47)

where ξ := (1 — 2N)ΓOo/2N3 is a constant that depends only on ω.
Using the relation a\ = ^ α ^ we compute the action of P* on the horizontal

fundamental weights:

Ni-l N-l

1=0 1=0
Ni-l N-l N N-l

1=0 1=0 1=0

With the definition (6.23) of Too and the identity (6.44), this yields the relation

- _ - -» _ 1 * - *-» _^iNjf ^ -

between the metrics of the horizontal part of the weight spaces of g and g.

6.6. The Virasoro algebra. It is natural to consider the extension of the affine algebra
g to the semi-direct sum of g and the Virasoro algebra 'Wir. The Lie algebra 'WIT
is spanned by generators C and Ln, n e Z; C is a central element, and Lo is the
derivation of g described in Subsect. 6.3. The Virasoro algebra has Lie brackets

[Lm, Ln] = (m~n) Lm+n + ^ (m3 - m) C, (6.50)

and its semi-direct sum with g is defined by

(6.51)
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and [C, •] = 0 = [K, •]. It is in fact possible to extend ω to this semi-direct sum,
namely via

ω(Lm) = Lm- (AώO), Hm) + \ (iϊ ( ώ 0), AώO)) <W K (6.52)

and ω(C) = C. It is readily checked (using in particular the identity (6.16)) that ω
defined by (6.7) and (6.52) is an automorphism of the Virasoro algebra and of its
semi-direct sum with g. Note that, just as the extension from the derived algebra g
to all of g, the extension of ω to the semi-direct sum g 0 'Wir is unique.

A symmetric weight satisfies by definition α;*λ = λ, which because of (6.34)

implies in particular that

λ* = λώlί (6.53)

for all i = 0,1,..., r and all I. This identity is certainly a necessary condition for ω*\ =
λ, but in fact it is also sufficient. Namely, for any g-weight λ = ΣI= 0 ^Άi) + nλ<5
with λ* = λώί one has

r
kχ Ξ Σ α*VΛ*= Σ °^NiXi - (6 54)

Furthermore, by an argument analogous to the derivation of (6.44) from (6.42), it can
be deduced from the set of Eqns. (6.41) that the metric on the weight space of g
satisfies the identities

N-l

/ ^ Gώo,ώ™i = \ N a^ Gώo,ώθ (6.55)
m=0

for all i G / which are not of the form ί = ώn0 for some n, and

N-l

/ v Gώo,ώ™o = 2 (N ~~ 2) Gώθ,ώθ (6.56)
m=2

(which is of course non-trivial only for N > 2).
Combining these identities with (6.54), one finds that for any symmetric g-weight

one has ]Γ[=1 Gώo^\ι = \ A^GώO^o, or what is the same,

(4,0), λ) = \ k\ (Λ(ώOh Λ(ώ0)). (6.57)

Now according to (6.32) and (6.34) the weight λ = ]ζ[ = 0 λ M ^ + n\δ is mapped by
ω* to

^ 2 ^ ^ ) A ) i ) δ
*? i = o r (6.58)

= Σ χιΛ(ώi) + n\δ + ( Σ Gώ-io,iλι - \(Λ(ώ-ι0), Λ(ώ-ι0))kl) δ.

The relation (6.57) thus shows that ω*λ = J2l=o χiAώί) + nλδ = λ if (6.53) holds.
Thus (6.53) is a sufficient condition for λ being a symmetric weight.

It follows in particular that the pre-image P* - 1(λ) of a symmetric weight λ is
the unique weight of g that is obtained by restricting to components X1 with i in the
index set /, and with ή^ = n\, i.e.

p ^ " 1 : λ^X = P*"\X), X* = λ* for ieϊ, nχ=nλ. (6.59)



80 J Fuchs, B. Schellekens, C Schweigert

7. The Order N Automorphism of A(^_1

We would like to be able to treat all diagram automorphisms of all affine Lie algebras.
Except for the automorphism of order N of g = A^_λ which rotates the Dynkin
diagram, all of these are already covered by Theorem 1. The remaining exceptional
case is the subject of Theorem 2, which we prove in the present section.

For the automorphism ω of order N of A^_l9 the symmetric weights A obey
A1 = const = 1/fĉ  for i = 0,1,.. ., ]V — 1, so that the level k\ of any dominant
integral symmetric weight is divisible by N. Furthermore, the subspace g ^ of go

that stays fixed under ω is two-dimensional; it is spanned by the two elements K =
ho = Σf=^1 Hι and D = —-^ Σ/ϊίΓ1 ^ ( ^ o ) + ζK, with ξ some number which can
be deduced from (6.22). Now only symmetric weights λ G g£(0) contribute to the
twining character; for these we have

N-l

X(D) = - - Σ((ω*)lλ)(L0) + λ(ξK) = X(-L0+ξK). (7.1)
ι=o

This implies that the twining character of the Verma module obeys

tf\ + τL0) = 9^ω\(t + ξτ)K - TD) , (7.2)

and an analogous formula holds for the irreducible twining character X% . As K
acts as a constant JΪΛ on any highest weight module, the dependence of the twining
character on the variable t is only via an exponential factor,

In the rest of this section we will show that the only non-vanishing contribution
to the trace in (7.3) comes from the highest weight vector, thereby proving Theorem
2. This vector is never a null vector, so that this statement holds both for the Verma
module and for the irreducible module. Thus we have

yM/y. τ\ _ qrr^ίf τ\ - e2πitkΛp2πiτΔΛ ^ A^

where A A denotes the eigenvalue of LQ on the highest weight vector.

To show that only the highest weight vector contributes to the twining character

of the Verma module, we label the positive real roots of AjJ_ι in the following way.

The positive roots of ̂ 4JV-I are δ^1^ := α ( ^ + α ^ + 1 ) + .. .+α ( 7~ 1 ) with 1 < i < j < N.

Then all positive real roots of A$_ ι are covered by

'ά^\θ,ή) for i < j .

: _ 0V . (7.5)

with 1 < i 4-3 < N and n £ Z> 0.
The outer automorphism acts on the positive roots as

ω*(a%j)) = o£+ι>j+l) (7.6)

here (as well as in some formulae below) for convenience the upper indices are
considered as being defined only modiV. Hence for any fixed n there are exactly
N — 1 orbits of length TV, which can be written as
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{oξ>j) \i-j = cons t } , (7.7)

where const e {1,2,..., iV — 1}. It follows directly from the definition (7.5) that

N-l

a%+k>i+k+l) = (0,0, Nn +1) (7.8)

for 1 < Z < j\Γ — 1. Thus the horizontal projection of the sum of the roots of each

orbit vanishes, and the grade of Σ/ϊo"1 ω*l(an^) *s n^ + 3 ~ i-

On the step operators ΈL%

n (n > 1) associated to lightlike roots, ω acts as Ή.%

n »—>
Hι

n

+ι for 1 < i < N - 2, while it sends H^~ι to - Σ*=~ι Hk (compare (6.5) and
(6.7)). Thus the linear combinations

N-l

hp

n:=Σ(ζ-™-l)Hί, (7.9)
. 7 = 1

with n > 1 and p = 1,2,..., TV — 1, and with ζ" = exp(2πi/7V) a primitive A^th root
of unity, obey

JV-2 iV-1

3=1

i.e. they are eigenvectors of ω to the eigenvalue ζp.
According to the Poincare-Birkhoff-Witt theorem a basis for U(g_) (the subal-

gebra of the universal enveloping algebra U(g) that is generated by the step operators
corresponding to negative roots of g = A^_t) can be described as follows. Consider
an arbitrary, but definite ordering of the generators of g_, starting, say, with the step
operators corresponding to lightlike roots. Then for any sequences n = (n(m, j)) and
n' = (n'(m,j, /)) which take values in the non-negative integers and for which only
finitely many elements are different from zero, we denote by [n, n'] the element

oo N-l N-l

m=l j=l 1=0

of U(g_). Here it is to be understood that the products are ordered according to the
chosen ordering of the basis of g_. The Poincare-Birkhoff-Witt theorem asserts that
the set

{ [ n y j l n , n ; } (7.12)

is in fact a basis of U(g_).
To compute the contribution of the state v = [n, n7] VA to the twining character,

we consider the standard filtration of U(g_); thus we denote by \JP the subspace of
U(g_) that is spanned by all elements of U(g_) which can be written as the product
of p or less elements of g_. Now under ω, the generator [n,!!7] is mapped to
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oo N-l N-l

α fln, n']) = J J [ J J ( ζ j h j _ m ) n { r n ^ J J (£r"(m+1>z+5"+Y'(™Λ,0] , (7.13)
m=l j=l 1=0

and hence ω maps the subspace Up bijectively to itself.
Moreover, for any p elements xι of g_ and any permutation π of {1,2,... ,p} we

have
XχX2 ...Xp~ Xπ{l)X>κ(2) - Xπ(p) € U p _ i (7.14)

(it is sufficient to check this statement only for π a transposition, in which case it
follows from the properties of the commutator). Now both [n, n'] (7.11) and α;([n, n'])
(7.13) are elements of \JP with

but not of l)p-\. In computing the trace of τω we are therefore allowed to reorder
the factors in ω([n, n;]) without changing the value of the trace, since reordering only
introduces terms in Up-\. This shows that a state [n, n'] VA with [n, n'] of the form
(7.11) can only contribute to the twining character if the number n'(ra, j , I) is constant
on any orbit, or in other words, if it does not depend on / at all. Correspondingly,
we will write n'(m, j) from now on. To proceed, it is convenient to drop the trivial
dependence of the twining character of the Verma module on the central element and
shift ^ M by £~TAA\ thus we define

%\θ,τ). (7.16)

We will show that
^(ω\r) = 1. (7.17)

To see this, first note that a vector [n, n'] vΛ in the Verma module VA which fulfills
the conditions formulated in the preceding paragraphs gives a contribution of ηqn to
9 ^ M ( τ ) , where q = exp(2τriτ),

ζj)n(mJ) and n := ̂ n ( r a , j ) m + ̂ n ; ( m , ^ - ( i V m + i ) . (7.18)
ra,j m,j m,j

The function (¥r^(τ') just keeps track of the contributions (7.18) from all states in VA.
It is convenient to combine the contributions from all powers of any fixed generator
of g_; thus any hJ

m yields a contribution of a factor of

1 + ζjqm + (ζjqm)2 + . . . = (1 - ζjqm)~ι (7.19)

to ^ω\τ), while any orbit characterized by j and m contributes a factor of

1 + qNm+j + (q

Nm+ή2 + . . . = (1 - q

N™+iyl . (7.20)

Thus
oo N-l

= J J J J [(1 - ζ>qmχi - qNm+i)]. (7.21)
m=0 j=l



Dynkin Diagram Symmetries 83

By arranging the terms in the first product differently this can be rewritten as

oo ΓjV-1 N-l N-l

= Π i Π [^ -qNm+j) Π d - cf<iNm+j)] Π o -
m=0 [ j=l j'=l j=\ J

(7.22)
For any fixed m and j the term in the square brackets evaluates to

JV-l N-l

TT (1 - ζi'qNm+J) = q

N(N™+J) TT (q-Nm-j _ ^
M ίi (7-23)

_ N(Nm+j)^ -N2m-jN _ ^ _ γ _ N(Nm+j) ̂

Inserting this identity into (7.22), we find

oo Λί-1

[(1 - ζjqNm)(l - qN(N™+^)] = {^ω\qN))~x . (7.24)
ra=0 j=l

This functional equation for ̂ ω ) implies that 9^(ω)(g) is constant. Evaluating the
function for q = 0 we thus find ^^(q) Ξ 1, as was claimed in (7.17).

According to the definition (7.16) of ^ ( α ; ) ( τ ) , it then follows immediately that
the twining character of the Verma module is given by (7.4), and hence the proof of
Theorem 2 is completed.

8. Modular Transformations

One important property of the untwisted affine Lie algebras (and of the twisted affine
Lie algebras Aψ and B^) is that at any fixed value kv of the level, the set of
irreducible highest weight modules with dominant integral highest weights carries a
unitary representation of the twofold covering SL(2,Z) of the modular group of the
torus. To be precise, this representation does not act on the characters X as we used
them in the previous sections, but rather on the so-called modified characters X. From
Table (2.24) we read off that if ω is a simple current automorphism, which is the case
we are considering, then also the characters of the orbit Lie algebra g - and hence
the twining characters as well - give rise to a unitary representation of 5L(2, z).

The modified characters are defined as

XΛ'.= eraAδXΛ> (8.1)

where δ = J^[= 1 (Xioί^ is the element of the weight space that was defined in (6.27),
and where for any integrable highest weight A of g the number SA is the so-called
modular anomaly

Λ ' ~ 7 3 " ^ ' 7.V • -V ^ ^ ) ^ Z )

(t/,ί
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For later reference, we also remark that using the strange formula (p, p)/(0, θ) =
gv dimg/24 and the eigenvalues

C2(Λ) = (A + 2p, A) = (Λ + p, A + p) - (p, p) (8.3)

of the second order Casimir operator W2 of g, one can rewrite the modular anomaly
as

C2(Λ) /cvdimg c
SΛ " (θ,θ)(kv+gv) " 24(/cv + <?v) ^ " 24 ' ( * }

Here in the last step we implemented our convention that (θ, θ) = 2, and introduced
the central charge c := kv dimg/(/cv + g v) of the Virasoro algebra and the conformal
weight ΔΛ := C2(Λ)/2(kv + gv) of the highest weight A.

In the present section we treat the case where also the orbit Lie algebra g is
an untwisted affine Lie algebra; the alternative case that g = Bff will be described
in Sect. 9. The modular anomaly of the twining character of g is not the one of
the ordinary character of g, i.e. exp(—SAS), but rather the pull back of the modular
anomaly of the g-character. Defining 6 := P*(δ) and

_ _ ^ > (8.5)

we can introduce modified twining characters by

X ^ := e - ^ X ^ . (8.6)

They are related to the modified characters of the orbit Lie algebra g by a relation
analogous to (4.17):

f{) ^ = exp [δ P *- M (P* (δ))(h)] XΛ(Pωh)

= exp [5P*-iΛ $(pωh)] XΛ(Pωh) = 1ίλ{Pωh).

We will now show that the difference between the modular anomaly of the twining
character and the one of the usual character is not as big as one might expect. In fact,
they differ by a constant which only depends on the level of the weight A. First,
the relation P*(δ) = δ (6.46) shows that the two modifications differ only in the
value of the modular anomaly; closer inspection shows that the difference §A — SA
is only a function of the level of the weight Λ. Since when analysing the modular
transformation behavior one has to restrict oneself to weights at a fixed level, this
shows that the modular anomalies differ only by a constant. This constant is precisely
the "shift" of the conformal weights that was observed in [4].

More precisely, the relation between §A and SA is as follows. For affine g the
relation (2.18) between the dual Coxeter labels of g and g implies that the dual
Coxeter numbers # v = ΣiejCίi of g and gv = Y?i=0 α^ of g are related by

Ngv=gv. (8.8)
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Further, for any symmetric g-weight λ of level kχ, the level of the weight λ =
is given by

%eϊ

To compare §A and SΛ, we also need a relation between the second order Casimir
operators of the horizontal projection of the weights A and A. Thus consider two
symmetric weights λ, μ G g£(0). The scalar product (λ, μ) = Σ [ 7=1 (5ijλίμj of their
horizontal components can be written as

Further, we have

i,jEΪ\{0} m,n=0
Σ

jeϊ\{0}

N-lN-l

N-lN-λ

Σ Σ
m=0 n=\

N-l

m,n=\

(8.10)

(8.11)

which owing to the relation (2.18) between the dual Coxeter labels of g and g can
be rewritten as

λ° = kv

λ- Σ ^vA' = λ° (8.12)
ieϊ\{0}

Inserting this identity into the right-hand side of (8.10) and using the formula (6.49)

for G, we can express the scalar product (8.10) entirely in terms of the horizontal
subalgebra of the orbit Lie algebra. We obtain (compare [4])

(8.13)

where kχ and ky

μ are the levels of the g-weights λ and μ, respectively.
Then in particular, the quadratic Casimir eigenvalue of a symmetric highest g-

weight A at level kv can be written as

( Λ i + 2p) = 7 V ( ϊ , ϊ + 2^) + Γ o O r ^ v + 2 ^ v ) . (8.14)

(In [4], this formula was obtained in a different guise, which is obtained from the
present one by (8.8) and the identity

(8.15)

where d and d are the dimensions of the simple Lie algebras g and g, respectively.)
Dividing (8.14) by 2(A:V + gv) and using (8.8) and (8.9), we then obtain a simple
relation between the conformal dimensions of primary fields of the g and g WZW
conformal field theories (at levels kv and kv, respectively), namely
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Δ Λ = Λλ + ̂  Γoofcv (1 + ̂ ) , (8.16)

(8.17)

),

or, equivalently, using (8.15)

This shows that the two modular anomalies in fact only differ by a (level-dependent)
constant:

SΛ = ΔΛ-^ = AA-l-A+^k-{d-d) = sΛ + ^k-(d-d). (8.18)

The analysis above reproduces in particular the results concerning the fixed point
conformal field theories that have been obtained in [4]. Note that in [4] the fixed point
theory has been found by looking for those affine Lie algebras § for which a relation
of the form (8.18) between the conformal dimensions of the symmetric weights of
g and the weights of § exists. Equation (8.18) shows that the orbit Lie algebra g,
which was defined by a folding procedure of the Cartan matrix, fulfills precisely
these requirements. Also note that from the explicit formulas (2.7) and (6.49) it is
by no means manifest that the symmetrized Cartan matrix of the horizontal orbit Lie

algebra is the inverse of the quadratic form matrix G as defined in (6.49), which
coincides with the result obtained in [4] for the quadratic form matrix of §; that this
is nevertheless true can thus be seen as a non-trivial check of the identification of g
with §.

9. Twisted Orbit Lie Algebras

When comparing the list of orbit Lie algebras in (2.24) with the list of "fixed point
conformal field theories" as presented in [4], for the cases involving the simple current
automorphisms of order two of g = C ^ or B^+\ some additional explanations are in
order. In these cases the orbit Lie algebra is g = B%\ while in [4] the fixed point
theory was conjectured to be the C$ WZW theory at level t if the level of g is
kv = It + \. For even level the spectrum could not be matched with any known
conformal field theory apart from a few special cases. Based on a level-rank duality
of N = 2 superconformal coset models, an S'-matrix for the spectra at even levels
was conjectured in [6].

In this section we explain how these observations fit together. For odd levels
A:v = It + 1 of g, we show that the 5-matrix of g = B^ at level kv = kw coincides
(up to sign factors which are related to certain shifts appearing in the application to
fixed point resolution) with the ^-matrix of § := C™ at level t = (/cv - l)/2. For
even levels kv = It we prove the conjecture of [6] related to level-rank duality. Note
that the level of Bψ is defined with a conventional factor of two [1],

άfλ\ (9.1)

ieϊ
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as compared to the formula (6.6) of the untwisted case; this cancels the factor of 1/2

that according to (8.9) is present in the relation between kv and kv.

The modular S'-matrix of g = B^ at level kv is given by the Kac-Peterson
formula

(kv +gv)M

Such a formula holds for all untwisted affine Lie algebras, while among the twisted

algebras it is valid only for B^ (here and below we employ the convention that the

twisted algebra Aψ is denoted by B^ and hence is included in the B^ series; also

recall that in [1] these twisted algebras are denoted by A^). The notation used in (9.2)

is as follows. For g = B%\ g is the unique diagram subalgebra isomorphic to C n ,

while for untwisted affine Lie algebras it is the horizontal subalgebra generated by the

zero modes. The summation is over the Weyl group W of g, and λ is the projection
of the g-weight λ to g. In the prefactor of the sum, Λ+ is the set of positive roots of
g, M is the translation subgroup of the Weyl group of g, and M* its dual lattice. We
also note that the dual Coxeter number of B^ is gv = 2 n + 1 , and that the translation
lattice M of the Weyl group of B^ is isomorphic to the root lattice of the simple
Lie algebra Bn. Moreover [1, Corollary 6.4.], if we normalize the invariant bilinear
form of g such that the longest roots have length 2, the restriction of this invariant
bilinear form to Bff is twice the normalized form of Cn.

For concreteness, from now on we consider g = Bffl as the orbit Lie algebra of

g = B^li The case g = C^ is very similar.

9.1. Odd level Let us first treat the case of B^ at odd level kv = 21+ 1. We start by
showing that the pref actors in the Kac-Peterson formula for § = C$ at level i and
g = Bff at level 2p + 1 coincide. The powers of i are identical because § = Cn = g,
i.e. the horizontal algebras coincide. Further, for B^\ M is the root lattice L of
Bn, while for C^ it is the coroot lattice Lv of C n ; these lattices are proportional
because Bn and Cn are dual Lie algebras. To determine the relative normalization,
we notice that the simple coroots of Cn are 7 W = 2 7 W with length squared 4 for
i = 1,..., n — 1, and 7 ( n ) V = 7 ( n ) with length squared 2, while the simple roots of Bn

are β^ with length squared 2 for i = l , . . . ,n— 1, and β^ with length 1. Hence

Finally for C^ we have kv + gv = i + (n + 1) = ί + n + 1, while for B%\ kv + gv =
(2£+l)+(2n+l) = 2(^+n+l). Taking these results together, we find that the prefactors
coincide as claimed.

Furthermore, the terms in the exponent coincide as well. As already seen, the
denominators differ by a factor of two; this is cancelled by a factor of two in the
numerator from the different normalization of the invariant bilinear form. Finally, the
Weyl groups of Bn and Cn are isomorphic so that also the summation is the same
for both cases. Thus we conclude that the formulae for the 5-matrices coincide.

= L(Bn) = ± Lv(Cn) = ± M(Cn),

V
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However, we still have to determine the precise relation between the weights in
the two descriptions. Now clearly, the mappings of the symmetric integrable highest
weights of g to those of g and the mapping to weights of § that was considered in [4]
are different. But even the restrictions of these maps to the isomorphic subalgebras
g = Cn and § = Cn do not coincide; rather, the two mappings are related as follows.

A weight λ = (λ°, λ 1 , . . . , λn + 1) of g = B%lx is symmetric if λ° = λ1. The mapping

of symmetric g-weights to weights of g = B^ reads

λ^λ:=(\\\\...,\n+ι), (9.4)

or in other words, λι := λ ΐ+1 for i = 0,1,..., n. The restriction of this mapping to the
diagram subalgebra g = Cn of B^ is then given (in the conventional labelling of the
Cn Dynkin diagram, i.e. with the n t h node corresponding to the long simple root) by

\^l:=(\n,\n-\...,\ι), (9.5)

i.e. by \ ι := λn" 2 + 1 for i = 1,2,..., n. On the other hand, the mapping to weights of

§ = Cn described in [4] is

A ̂  X := (λ
2, λ 3 , . . . , λn, i (λn+ι - 1)), (9.6)

i.e. ^ := λί+ι for i = 1,2,..., n - 1 and ln := \ (λn + 1 - 1). Extending this map to the

afflnization § = C^} of § at level p one has A* = λ\ with A as defined in (9.6), for
i = 1,2,..., n, supplemented by

n n

A° = £- ΣX = \ ((kv - l) _ 2j^A* - (Λn+1 - 1)) = \ (A° +A1) = A1. (9.7)
i=2

These relations, as well as the analogous mapping from g = C^ to B^\ are displayed
in Fig. 1.

Finally, we can also extend the map (9.5) to the afflnization C^ of g; this yields

a weight μ of C^ with μ1 = λτ for i = 1,2,..., n and zeroth component

n

-1 } - 2 Σ λ ' = \(λn+1"1} (9 8)
i=\

Combining these formulae, we learn that the C^-weights X and μ are related by

jS* = X1^ (9.9)

for i = 1,2,..., n. This means that X and μ are mapped to each other by the non-trivial
(simple current) diagram automoφhism of Cf£\

We can now use the relation between S'-matrix elements involving fields trans-
forming into each other under a simple current automoφhism that was found in [2]
to relate the S'-matrix § proposed in [4] to the S-matrix S of the orbit Lie algebra
g. We obtain
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λ1 λ2 λ3 λ 4 λ 5 A"-1 λ n λ n + 1

g=βf
b

g = ϋn λ 2 λ 3 λ 4 λ 5 λ

Fig. la-c. a Relation between symmetric weights ("fixed points") of B^+ι and weights of the orbit Lie

algebra B^ b Relation between symmetric weights of Cf^ and weights of the orbit Lie algebra B^

c Map between weights of B^ and weights of Cf^ at odd levels
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o o ; , (9.10)

where A j = £Λ(n) is the weight of the simple current of C^ and Q(A) := Σ ? = 1 j A^

is the so-called monodromy charge of A with respect to the simple current, which

coincides modulo 2 with the conjugacy class of the Cn-weight A. Thus the two mod-
ular ^-matrices coincide up to sign factors, as claimed. These sign factors factorize
into a global sign and signs associated to each row and column of the 5-matrix.

To compare this result with the description of the fixed point theory § in [4], we
note that there the S'-matrix § was only defined up to a one-dimensional representation
of the modular group; this allows for a global sign between § and the S'-matrix of
g. Further, the second type of sign factors which depends on the representations can
be compensated in the process of fixed point resolution by interchanging the role of
the two fields into which the fixed point is resolved, so that they cannot be noticed
in the fixed point resolution procedure at the level of representations of the modular
group either.

9.2. Even level. Consider now B^lx at even level &v = 2£. It will be convenient to
describe the symmetric weights of B^λ in terms of an orthogonal basis of the weight
space of Bn+ι. Thus for the weight λ with Dynkin components X1 we introduce the
numbers

n

k = k(X) := ] Γ Xj + n + 2 - i + \\n+ι (9.11)
j=i

for i = 1,2,..., n + 1, which are the components of λ + p in the orthogonal basis. We
have l\ > I2 > ... > ln+ι > l Furthermore, that the weight λ is symmetric means
that λ° = λ1, and hence the level can be written as

n n

2έ = λ° + Λ1 + 2 J2 χj + λn+1 = 2 Σ X°+ χn+l' ( 9 1 2 )

3=2 j=ι

This relation shows that for symmetric weights λn + 1 must be even at even level, so
that all the numbers k are integers, and it also implies that for a symmetric weight
the number l\ = Σ ^ = 1 ^

 + \^n+X +n+\ = £ + n + l is independent of λ. A symmetric
weight can therefore be characterized by a subset MBn+λ (λ) of n numbers out of the
set M ^ n : = { l , 2 , . . . , ^ + n}.

Let us now compute the weight with respect to the subalgebra g = Cn of the orbit
Lie algebra g. For a Cn-weight μ = (μι) the components of μ + p in the orthogonal
basis read

n

πii = mi(μ) = y^ μ +n+\ — i (9.13)
j=i

for i = 1,2,..., n. As μ has level ί, we have n + ^ > m i > m 2 > . .

1. Thus these weights are again characterized by a subset of n elements of

which we denote by Mcn(μ)- The relations (9.4) and (9.5) between a symmetric

B^lλ -weight λ and the associated weights λ of B^ and λ of Cn then imply that

πiiiX) = Σ™t\~lλJ' + n + 1 — i for i = 1,2,...,n, and hence
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n

rriiCX) + L-MW = Σ Aj + \\n+x + n + 1 = i + n + 1. (9.14)

This means that the sets Mcn and M^n+1 obtained from a weight λ are related by

M C n (λ) = {̂  + n + 1 - i I i G MB n + 1(λ)} . (9.15)

With this information, we can express the S-matrix of g as follows. In the prefactor
JV in (9.2), we now have kw +gy = 2£ + (2n+\) = 2(1+ n+ \). Comparing this with
the corresponding number £ + (n+ 1) in the prefactor for the S-matrix of C^ at level
£, we see that

^ (0^y/2 (9.16)

With the known S'-matrix of C^ at level £, we then find

q<EMCτι(μ)

where

for allp,g G ^ n

This result will now be compared with the conjecture for the S'-matrix obtained
from level-rank duality. By level-rank duality, symmetric weights of Bnl{ at level
2£ are mapped to a pair of so-called "spinor non-symmetric simple current orbits" of
weights of D^P at level 2n + 3 [6]; the latter are simple current orbits which contain a
Z^-weight v with z/ ^ vι~x. Again we characterize the weights v by the components
of v + p in the orthogonal basis, i.e. by

ni(y) := Σ i f ^ + \ ί^"1 + ̂ ) + ̂  " i for i = 1,2,... ,^ - 2,Σ-if ^ + \
= \ (v£-1 + ι/) + 1, n<(i/) = \\ (v£-1 + ι / ) + 1 n < ( i / ) = \ (i/~l + i / )

To characterize pairs of simple current orbits, we choose the unique representative of
each pair of orbits which has z/ — z/"1 G 2Z>o and z/° > vι\ for this representative,
all rii are positive integers and n\ > ni > ... > ri£ > 0. In fact, r^ > 1 because of

yi y j / - i Moreover, as z/ is spinor non-symmetric and at level 2n + 3, the integer
π\ obeys

n, = ^ ^ + I ( ^ - 1

+ ^ ) + £ - l

i=i
= \ (2n + 3) + \ (yx - u°) + i - 1 < n + i + ^ ,

implying that ni < n + L It follows that we can characterize each pair of spinor
non-symmetric orbits by a subset MD£(U) of ί elements of M^+n.

In terms of this subset, the level-rank duality between symmetric weights λ of

B^lx at level 2£ and these orbits of L^-weights reads [6]

MΏι{y) = {£ + n + 1 - j I j 0 MBrι+ί(λ)} . (9.21)
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Combining the results (9.15) and (9.21), we find that the weights with respect to C^

and to D^p that are associated to a symmetric weight of B^+λ are related by

MDt (i/) U MCn (λ) = Mi+n , (9.22)

where ύ denotes the disjoint union.

In [6] it was conjectured that, up to a phase, the S-matrix for the fixed point

resolution for B^+i is

SA,Λ' = 2ί/2~\£ + r - \Tί/2 det ^Mpq , (9.23)
peMD£(Λ),
qeMD£(Λ')

with ^Mvq as defined in (9.18). It is not difficult to verify that this matrix indeed
coincides, up to sign factors, with the 5-matrix (9.17) of g; to see this one has
to employ Jacobi's theorem on determinants of submatrices of an invertible square
matrix, together with the identities

and the fact that ^M is symmetric (compare [6]).
We have thus completed the proof of the conjecture for the 5-matrix that was

derived using level-rank duality. The conjecture for the S'-matrix given in [6] was
based on a resolution of fixed points at the level of representations of the modular
group. As we have remarked at the end of the previous subsection, any such conjecture
is not sensitive to both a global sign of the 5-matrix and to multiplying corresponding
rows and columns of the 5-matrix with the same sign. When comparing S and S,
we therefore did not pay attention to such sign factors.

Appendix: W as a Subgroup of W

In Subsect. 5.2 we have already seen that m^ is a divisor of m^ . In this appendix
we show that m^ is a divisor of m^, or in other words, that

(Wiΰj^^id, (A.I)

in the cases where mi<7 G {2,3,4,6}, i.e. when Άi'jΆj'i e {0,1,2,3}. Together, it
then follows that m^ = m^ also in the cases; this completes the proof that the Weyl
group W of g is isomorphic to the subgroup W of W.

Recall that the generators Wi are defined by (5.2) and (5.6) for si = 1 and Si =
2, respectively. We will deal with the various cases separately; the corresponding
restriction of the Dynkin diagram of g to the orbits of i and j is depicted in Fig. 2.

Consider first the case m^ = 2. Then we have

N-l

0 = A** A™ = siSj ^ Σ A^A*1'** . (A.2)
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Fig. 2. The foldings of Dynkin diagrams with Aiύ A^1 < 3

As i / ώιj for all /, all terms in the sum are non-negative; this implies that

Aω %JAω i>τ = 0 for all /, V. Assume now that there is a value of / such that Aώ M

is different from zero (i.e. negative). Then the fact that ώ is an automoφhism of

A implies that also Aι>ω J < 0; since A is a Cartan matrix, it follows that also

j\ώ j,ι < o j^ i s i n t u r n i m pi i e s that the term Aώ %^ Aώ ^% gives a positive con-

tribution to A^Ai*1, which is in contradiction with (A.2). Thus we learn that Aώ ι>j

has to vanish for all /. Using again the fact that ώ is an automorphism of the Cartan

matrix, we then find that also Aω %>ω j vanishes for all values of / and /', which
implies that wώiiWώι'j = wώvjWώii. This relation implies that also WiWj = WjWi,
which shows that rhij = 2 = rhij in this case. (We also see that for Ni = Nj the
restriction of the Dynkin diagram of A to the orbits of i and j consists of Ni copies
of the situation A\ Θ A\ of Fig. 2, and analogously for Ni ^ Nj.)

In the remaining cases Aι^A^1 G {1,2,3}, we need either A1^ = — 1 or A^τ =
— 1. Since the labels i and j appear symmetrically in the definition of rhij, we can

assume without loss of generality that A1^ = — 1. The relation A1^ = S{ Σι=o~ ^ M

for A then implies that Si = 1. Moreover, for any representative cjm j of the orbit of

j , the Cartan matrix element Aω hώrnj is different from zero only for a single value

of /, for which it is equal to —1.
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Let us first deal with the case Sj = 2. Then the product

A** A" = 2 Σ A^A*1'" (A3)
1,1'

is even, so that the only case we have to analyze is when it is equal to two, and
hence m^ = 4. As in Subsect. 5.2 we can assume that N = 2; then Sj = 2 implies
that Nj = 2. Assume now first that Ni = 1, i.e. ώi = i\ this implies that A^τ =
2(Aw + Aώw) = 2(A^ + Aj>ώi) = 4A™. Thus if A™ is non-zero, it is in fact < -4,
which implies that A%ύ' A?'% > 4. This does not belong to the cases we are investigating
here, and hence we can assume that Ni = 2.

Now SJ = 2 means that A>>ώi = Aώ™ = - 1 , while si = 1 tells us that A^ώi =
Aώ%'% - 0. Further, because of A%^ = Ahj + Aώι^ = - 1 , we can assume without loss
of generality that Aώι^ = 0 and A1^ = — 1. The automorphism property of ώ then
implies that A^ώj = 0 and Aώiiώj = - 1 . As A is a Cartan matrix, we then also have

Λj,ώί _ Q = Aώj,it T o determine the matrix elements A™ = Aώj>ώi (which because of
AίJ ^ 0 are non-zero), we observe that A™ = 2(A™ + Aώ^) = 2A^ must be > - 3
in order to yield AiijAjii < 3; thus Aj^ = Aώj>ώί = - 1 , and we are in situation A4

of Fig. 2.
Having found these Cartan matrix elements, we know that

WiWjWi = WjWiWj , WώiWώjWώi = WώjWώiWώj ,
(A.4)

WjWώjWj = WώjWjWύj

and
WiWώj = wώjWi, WjWώi = wώiWj , WiWώi = wώiWi. (A.5)

Applying these relations repeatedly, we obtain

(WiWώίWjWώjWj)2 = WώiWiWώjWjWώj WiWώiWjWώjWj

= WώiWώjWiWjWi WώjWώiWjWώjWj

= WώiWώjWjWiWj WώjWώiWύjjWjWώj

- WώiWώjWjWiWj WώiWώjWώiWjWώj

= WώiWώjWcoiWjWi WjWώjWCJiWjWώj

ώ i

= WώjWώiWώjWjWi WώjWjWώjWώiWώj

= wώjWώiwώjWjWώj WiWjWώiWώjWώi (A.6)

= WώjWώiWjWώjWj WiWjWώiWώjWώi

= Wώj Wj WώiWώj Wi Wj Wi WώiWώj Wώi

= WώjWjWiWώiWώj WjWώiWώjWiWώi

= WώjWjWiWώiWώj WώiWjWώjWiWώi

= WQJJ WJ Wi Wώj Wώi Wojj Wj Wojj Wi Wώi

= WώjWjWώjWiWώi WώjWjWώjWiWώi

= (WjWώjWjWiWώi)
2 .
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Thus the generators vbi := WiWώi and Wj := WJW^JWJ of W satisfy (vbiWj)2 =

{wjWi)2, or what is the same,

(WiWj)4 = id, (A.7)

which is the relation we need, since A1*3A^% = 2.
Let us now turn to the case Sj = 1. As the number t of those values of I for which

Aώ j>ώTnί is non-zero is the same for any representative ώmi of the orbit of i, we then
find that

7 V - 1

Aj>*= Y^Aώlj^ <-t, (A.8)
z=o

which shows that t can only have the values 1, 2 or 3. Note that we still have
A1*3 = —1, so that Ni - Nj/t for each of these values of t. We can now classify the
possible situations through the restriction of the Dynkin diagram of g to the orbits of
i and j . For t = 1, we have Ni = Nj, and the restriction of the Dynkin diagram to
the two relevant orbits consists of Ni disconnected copies of the Dynkin diagram of
either A2, B2 = C2, or G2, according to whether A1'3 A3'1 is 1, 2 or 3. These algebras
have also been used to denote the corresponding folding in Fig. 2. For t = 2, there is
only one possibility which satisfies all required constraints, namely that one has Ni
disconnected copies of the Dynkin diagram of A3, such that the middle node lies on
the orbit of i while the two extremal nodes lie on the orbit of j . Finally, for t = 3
there are Ni disconnected copies of the Dynkin diagram of D4, with the middle node
lying on the orbit of i and the three extremal nodes on the orbit of j ; this corresponds
to the last case in Fig. 2.

We will deal with the different values of t consecutively. All cases with t = 1 can
be treated simultaneously. In these cases the orbits of i and j have the same length.
We can therefore label the simple reflections in W associated to the elements of these
orbits as follows. We define τ\ := wώii for I = 1,..., Ni, and then set r[ := wώvj, with
V chosen such that r[ commutes with all rι for I ^ V. With this notation we have

nr'm = r'mn forlorn, ( n r ί ) Λ y = id. (A.9)

Moreover, it follows from s^ = Sj , = 1 that for all Z,ra the reflections of the same
"type" commute, π r m = rmrι and r jr^ = rf

mr[. Using these relations, we find that

Nd-1

(Wiw^ = (UZf'ri ' ΠίnLo V ^ Γ - = Π taW)*" = id (A. 10)
z=o

as required.
Next consider the case t - 2. Then we have Ni commuting copies of A3. By

similar arguments as in the t = 1 case, we can restrict our attention to just one of these
copies, and we can assume that the labelling is such that the relevant representatives
of the orbits of i and j are i and j themselves together with ώj. Then we have the
relations
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WjWώj = WΰjjWj , WiWjWi = WjWiWj , WiWΰjWi = wώjWiWΰj , (A.ll)

which imply in particular

(WiWjWώj)2 = WiWjWdϋjWiWώjWj = WiWjWiWώjWiWj = WjWiWjWώjWiWj

~~ 01) 0 I) 0 1) . 1 /I /?/1 /?/1 •""" 01) ' 0 I) 0 I) 0 II 0 11 0 I ? ^ ~ ' Ϊ / I 0 I) . 0 I) ' 0 I) . O I) 0 I )— (JLJ q (JU'i (JU { ) η (JU q (JU 9 (JU n ^~ (JU *i (JUo (JU/ i o LC/7 (JU η (JUo ^ ~ (JU n (JU / ) q (JUo LU / 1 7 (JU 0 (JUo

= (WjWώjWi)2 .

(A. 12)

Thus tDi := Wi and Wj := WjWώj satisfy (WiWj)2 = (WjWi)2, i.e. (WiWj)4 = id as

required by A1^ A^τ = t = 2.

Finally, for £ = 3 the calculation is similar, though somewhat lengthier. There are

Ni commuting copies of D4, and we can restrict ourselves to one of these copies,

with the labels of its nodes being i for the middle node and j, ώj and ώ2j for the

others. The associated simple reflections of W satisfy WiWώmjWi = wώmjWiWώmj

for m = 0,1,2, and wώijWώmj = wώmjwώij for /, m = 0,1,2; repeated use of these

relations yields

(WiWjWώjWώ2j)3 = WiWjWώjWiWώ2jWi WjWώjWiWώjWjWώ2j

= WΰjWiWΰjjWjWiW^j WiWώjWiWjWiWώ2j

- WώjWiWjWώjWiWώjWώ2jWiWώjWjWiWώ2j

= WώjWjWiWjWώjWώ2j

= Wj Wώj Wi Wώ2j Wj Wi Wj Wώj Wi Wj Wώ2j Wi

= WjWώjWiWώ2jWiWj WiWώjWiWjWώ2jWi

= (WjWώjWώ2jWi)3 .

Thus Wi := Wi and Wj := WjW^jWώ2j satisfy (WiWj)3 = (vjjWi)3, i.e. (WiWj)6 = id,

which is again the required Coxeter relation for Ahj A7'2 = t = 3.
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