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Abstract: Multiple-integral representations of the (skew-)Macdonald symmetric
polynomials are obtained. Some bosonization schemes for the integral represen-
tations are also constructed.

1. Introduction

The Calogero -Sutherland model [1] and its various generalizations [2, 3] have been
extensively studied and these l/r2 type models are known to describe systems with
the generalized exclusion principle in 1 + 1 dimension [4]. The Calogero -Sutherland
model describes a system of non-relativistic particles on a circle under the inverse
square potential. Its Hamiltonian and momentum are

(πγ M.

d) ,£
1 d V π M. β(β-\) Λ b l d

fta-,,)' Pcs = 5 7 %
where β is a coupling constant. This Calogero-Sutherland model is related to many
branches of low-dimensional physics and mathematics: quantum Hall effect [5], 2D
Yang-Mills theory [6, 7], matrix model [8, 9], Yangian symmetry [10, 11], Virasoro
symmetry [21-23], W\+OQ symmetry [12], Laplace-Beltrami operator [13, 14], etc.
One of the recent remarkable developments was the evaluation of some dynamical
correlation functions [9, 15-18]. In these calculations the Jack symmetric polyno-
mials [19, 20] play a central role, because they describe the excited states of the
Calogero-Sutherland model. In the previous works [21-24], the free field realiza-
tion of the wave functions, in other words, the integral representations of the Jack
symmetric polynomials is discussed.

Several years ago, Ruijsenaars constructed a relativistic (or lattice regularized)
version of the Calogero system [25]. That model is integrable, since it has mutually
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commuting hermitian operators Sk (k — 1,2, . . . ,7Vo):

= Σ Π A t e y - ί e x p p Σ T - Π *(«/ - #) , (1-2)
{l,...,#o} /€/
l/l=* y'ί7

where /z(#) = σ(# -f μ)/σ(q) and p G R, μ E C. Here σ(z) denotes the Weierstrass
σ-function defined by

σ(z)=Z Π

m,n£Z
(w,«)Φ(0,0)

where ί2WjW = 2wωι + 2«ω3 and 2ωι and 2ωs denote primitive periods. The relation
to the Calogero -Sutherland model is the following:

NQ

Σ

ι .

y*o-Λ = gι g (L4)

where we set μ = iβp and £?(z) is the Weierstrass p-function given by p(z) =
— 4-ζ(z)9 ζ(z) = 4-σ(z)/σ(z). If we consider the case 2ω\ = L, ω^ — ioo, we have

Thus the system reduces to the model defined by (1.1).
To solve Ruijsenaars' system, we need an explicit formula for the simultaneous

eigenfunctions of 5jt's. When the p-function degenerates to the trigonometric
function, the commuting operators Sk's essentially degenerate Macdonald's oper-
ators [19]. Therefore, the eigenfunctions are given by the Macdonald symmetric
polynomials. (As for definitions of the Macdonald symmetric polynomials, see the
following sections.) In this article, we construct integral representations of the
Macdonald symmetric polynomials and construct some boson realization schemes
of the integral formula. These results are considered as natural deformation theories
of the previous works on the Jack symmetric polynomials [21-24]. We hope that
the general elliptic case may be treated in a similar manner.

This paper is organized as follows. In Sect. 2 we give a short summary of the
Macdonald symmetric functions. In Sect. 3 we derive multiple integral representation
formulas for the Macdonald symmetric polynomials by using two types of maps.
Moreover using the isomorphism between the ring of symmetric functions and the
boson Fock space, we derive the integral representations of the skew Macdonald
polynomials and the Kostka matrix. In Sect. 4 we construct two bosonization
formulas for the integral representation of the Macdonald symmetric polynomials,
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following the idea of the work by Jing [27]. Two cases (β G Z>o and β G C) are
discussed separately. The ^4-type structure and finite temperature calculation method
are used respectively. Section 5 is devoted to discussions.

2. Brief Review of Macdonald Symmetric Functions

In this section we review some basic facts about the Macdonald symmetric func-
tions [19].

2.1. Notations and the Scalar Product ( , }qj. Let q, t be independent indeterminates
and Λn.Q(q^ be the ring of symmetric functions in n variables (#1 ,...,#„) over the

field of rational functions in q and t. We sometimes write t = qP. In the limit of
q — >• 1 this β is understood as the coupling constant of the Calogero-Sutherland
model. The ring Λn.Q(q,t} is a graded ring Λn.Q(q^ = ®k^0Λ

k

n.Q(^t}, where Λ*Q(^0

consists of the homogeneous symmetric polynomials of degree &, together with the
zero polynomial. Introduce the homomorphism

Pm,n '• Λw Qfoί) — » Λi Qfof) (m *£ n) ,

f(Xl,...,Xm) H-> /(*!,. ..,*„,(),. . . , 0 ) .

and restricting it, we have

nk . λk Λk
Pm,n /Lm;Q(q,t) ~^ /Ln;Q(q,t) •>

for k ^ 0, m ^ n, which is always surjective, and are bijective for m ^ n ^ k.
Consider the inverse limit

relative to the homomorphism pk

m n and set ΛQ^) = φ^>o^Q(«n We call the

graded ring ΛQ(^) as the ring of the symmetric functions.
There are various bases of the ring ΛQ(?,/) They are indexed by partitions.

A partition λ is a sequence λ = (^1,^2,^3,...) of non-negative integers, such that
Λ i ^ λi ^ and |/l| = X^ Λ,/ < cχo. The nonzero A/'s are called the parts of A,
and the number of parts is the length l(λ) of λ. For two partitions λ, μ, we define
/I + μ = (λ\ + μ\,λ2 + μ2, - •)• The natural partial ordering is defined as follows:

λ^μ&\λ\ = \μ\ and λl + - - + Ar ^ μi + + μr for all r ^ 1 . (2.1)

A partition is identified with the Young diagram. The conjugate partition of λ, whose
diagram is obtained by interchanging rows and columns, is denoted by λ'. xλ stands

for the monomial xλ = x^x\2 - . We give some bases of ΛQ(^O:

(i) mχ = ]Γ *α, (monomial symmetric function).
α : distinct

permutation of λ

(ii) pλ = Phpi2..., (the rth power sum pr = E/*0-

(iii) eχ = eχ}eχ2..., (the rth elementary symmetric function ^r = Σ/1<...</ r^ϊ1

 < ^v)
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We endow ΛQ(^,O with the following scalar product:

(Pλ,Pμ)q,t = δλ#zλ(q,t)9 (2.2)

where
/(A) ι _ aλt

) = Π rmrmr\ . Π -Λ:, λ = (Γ^ - - •) , (2.3)

with mr = #{i λi = r}.
The Macdonald symmetric function is characterized by the following existence

theorem:

Theorem 2.1 [19]. For each partition λ there is a unique symmetric function Pχ —
Pλ(x;q9t) G ΛQ^O such that

(A) Pλ = mλ + Σ UλμMμ, "λμ € Q(^, ί) , (2.4)
μ</ί

(B) (Pλ9Pμ)qtt = 0 if λ + μ. (2.5)

Even though this definition is concise, it is more useful to define the Macdonald
symmetric function by introducing an operator which can be regarded as a natu-
ral deformation of the Calogero-Sutherland Hamiltonian. The following operator is
called the Macdonald operator:

n I fγ. _ r \

J>ι = Σ Π -^-^ T9Λ , (2.6)
i=\ yφ z Xi —Xj J

where TqtX. is the g-shift operator defined by (TqtXιf)(xι,...,xn) = f(x\,...9

qxi,...,xn). The other way to define the Macdonald symmetric functions is the
following:

Theorem 2.2 [19]. For each partition λ (of length ^ n\ there is a unique sym-
metric function Pχ(x\q,t} G Λι,Q(?,0 satisfying the two conditions:

(A) Pλ = mλ+Σ uλμ™μ, uλμ € Q(#,0 , (2.7)
μ<λ

(C)D,PA = £/»-'/ Pλ. (2.8)
i=l

It was shown by Macdonald that D\ can be included in a family of mutually
commuting operators {Dr r = !,...,«}. The operator Dr is defined by

Dr= Σ ^r- i )/2 Π ί f5LZΞ/. Π Γ ί Λ . (2.9)
/c{l,2,..,«} /6/ Xi—Xj iel

\I\=r J31

Theorem 2.3 [19]. The operators Dr (r = l , . . . ,w) commute with each other and
the Macdonald symmetric function Pχ is the simultaneous eigenvector of these op-
erators with the eigenvalues given by the coefficient of Xn~r in Π/Lι(^ + tn~lqλl).
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One can notice that Macdonald's Dr and Ruijsenaars' Sk have a similar structure.
Here we list some particular cases of the Macdonald symmetric function Pχ(q,t)\

(i) When t = q, Pχ(q,q) is the Schur function sχ,
(ii) When q = 0, Pχ(Q,t) is the Hall-Littlewood function Pλ(t\

(in) limq^ιPλ(q9qP) is the Jack symmetric function Jχ(β\

(v) When # = 1,
(vi)Pλ(q-l,t-l)

Let g t's be the dual basis of /Ys, that is

(Qλ(q9tlPμ(q9t))q,t = δλ9μ. (2.10)

The following proposition is easily proved:

Proposition 2.4. We have the following equation:

9q9t)9 (2.11)

where

Π(X,y) = Π(X,y q,t)= Πf''^00. (2-12)
ι,y WΛ/> # /oo

Here we have used the following notation:

00

(*;<7)oo= ΠO-*?*) f o r α e C . (2.13)
£=0

We remark that Π(x,y) = Π(y9x) is a Taylor series in #/ and ^y in the region

k ̂  l < i.
If we write

Qλ(x;q,t) = bλ(q9t)Pλ(χ 9q9t) , (2.14)

then we have the explicit formula for bχ(q,t). To state it we need the following
notation: For any s — (i,j) G A (z'th row, /h column in the Young diagram /I), let
us define arm-length a(s\ leg-length l(s\ arm-colength a'(s} and leg-colength l'(s)
as follows:

(a(s} = λi — L af(s) — / — 1 ,
(2 15)/ U'1DJ

Theorem 2.5 [19]. 7%e explicit formula for the coefficient bχ(q,t) is

I I _ qa(s}tl(s}+\M" ')=(fiΛ^ = .5ι- '̂.-< ' <2 16)

2.2. TTze Dwα/ Transformation. Let us define an automorphism

<%, : Λ<χq9t) -> ^Q(9,o (2.17)

by fixing the action on pr as

ω^(^) = ( - l ) r - 1 P r (2.18)
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and extending it naturally. We have the following theorem which describes the
duality transformation of the Macdonald symmetric functions.

Theorem 2.6 [19]. For any partition λ, we have

ωqftPλ(q,t) = Qλ>(t,q) (or equwalently ωq,tQλ(q,t) = Pλ>(t,q)) . (2.19)

It is easy to show

*yj) = Π(x,y) , (2.20)

where ω£, acts on the variable y. Hence we have

) . (2.21)

2.3. The Scalar Product (9Yn.qt Next we consider the properties of another scalar
product (,Ynlqίί that will be defined below. We shall work with a finite number of
indeterminates x = (x\9...,xn). We set the parameters q and t as 0 < q < 1 and
0 < t < 1. Define

ij=\

In the region t < \Xi/Xj\ < t~λ (/φy)? ^ is a Laurent series in JQ'S. For f,g e
A,Q(^,O' we define1

1 n dx
(f'tfw = ^^Π^: /σ)^^(^^0

= —(constant term in f(x)g(x)A(x)) . (2.23)

The following proposition is the most fundamental one.

Proposition 2.7 [19]. The operator D\ is self-adjoint with respect to this scalar
product, namely,

(A/,<,,,H/,A0)U,, (2.24)

for 0///,0GΛ,Qte,o

From this proposition we have

Proposition 2.8 [19].

(2.25)

1 For /(*) = f(xι,x2,...), we define /(*) - f ( l / X l , l/x2,...).
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Furthermore we have

Proposition 2.9 [19].

w/zere Γq(x) is the q-gamma function defined by

3. Integral Representation of the Macdonald Symmetric Polynomials

In this section, we construct integral representation formulas for the Macdonald sym-
metric polynomials. We adopt the same idea as that of the case of Jack symmetric
polynomials [21-24].

3.1. Maps <&s, Λ^n,m and an Integral Formula for Pχ(x\q, t). Let us define the map
% and ̂ nm as follows:

f(x) ^ (#,/)(*) = U(XiY f(x) , (3.1)

x y .

= § Π y^- ^fe 7; ̂  0^(^; q, t)f(y) - (3-2)

Here r, m < oo and « can be equal to oo.

Proposition 3.1. The actions of &s and Λ^n,m on the Macdonald symmetric poly-
nomial Pχ are as follows:

(i) P(?)+λ(x\,. ..,xr', q, 0 = &sPλ(x\,. . . ,xr; q, t) , (3.3)

Ip p \

(ii) Pλ(xι,...9xn;q9t)= ^ A ^ ^mPλ(x\,...,xmiqίt). (3.4)
w V λ>*λlm\q,t
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Proof. As for (i), we can easily check the conditions (A) and (C) in Theorem 2.2.
The statement (ii) can be proved as follows:

(r -i r o ) * "l ίJV\A Λ ? * λlq,t r T-r *-*//

m\(Pλ,Pλ}'m.q/f^2riv~j

/p. pΛ w

) Γ) \ / J 1

^^ ^O^^ ^O^^ ^O

y; ,̂ 0^(J ;̂ g, t)Δ(y\ q, t)Pλ(y; q, ί

= Pλ(x;q,t). Q.E.D.

Any Young diagram λ can be uniquely decomposed into rectangles:

s2

λ =

where rN > > r2 > r\. Therefore the partition λ is parametrized as follows:

r

where (sr) = (s,s,...9s). For the partition λ9 we assign a set of partitions A(α) (α =
1,...,7V) as follows:

Here we state our main theorem:

Theorem 3.2. Let λ be the partition given by (3.5). We have the following multiple
integral representation of the Macdonald symmetric function Pχ(x\q,t) £

n Λ — C+ Af <& AT->^1) — ^χ ^y rN+ι,rN^SN^v rN,rN-\

a

= Cϊ§ Π Π ~
fl=l y=

n _ r>U — 11

\f <&
2^v r2,r\ &s\

* 9q,t) , (3.7)
fl=1

Proof. Use Proposition 3.1 iteratively. ^5 adds a rectangle and
number of variables. Q.E.D.

(3.8)

τn,m increases the
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Notice that the variable c's have both lower and upper suffices and the upper
suffices should not be understood as the powers of x. Hereafter, we will frequently
use this convention.

3.2. Another Integral Formula for Pχ>(x\t,q). Next we consider another integral
representation of the Macdonald symmetric polynomial P^(x;t,q) that is obtained
from Qχ(x\q,t) by applying the automorphism ωq^t. Let us introduce one more map
defined by

m ry .

/(*) ̂  (Λm/)W - § Π ̂ - Π(x, y)A(y; q, t)f(y) . (3.9)

We can prove the following Proposition 3.3 and Theorem 3.4 in the same way as
Proposition 3.1 and Theorem 3.2, respectively.

Proposition 3.3. The following equality holds:

1
..,xm\q,t) . (3.10)

Theorem 3.4. Let λ be the partition given by (3.5). We have the following
multiple integral representation of the Macdonald symmetric polynomial
Pλ>(x',t,q)e ΛQ(qtty.

pλ,(x 9 t,q) = c^ J^ΛΛ^,^ 2̂< 2̂, A i

N ra dxa

= ^f π π 2^(^y
α=l j=\ έKlXj

N ) Y [ Δ ( X

a q,t), (3.11)
a=\

where Xf = .xf , rχ+\ — oo and

3.3. An Integral Formula for the Skew Macdonald Polynomials. Now let us pro-
ceed to discuss how to obtain an integral representation of the skew
Macdonald polynomials. To this end, let us start with introducing a
boson Fock space OF which is isomorphic as the vector space to Λgfoo [26,
21]. Define the commutation relations of the bosonic oscillators an (n G ZΦ O) as
follows:

1 -q\n\
[an9am] = n _ δn+mβ . (3.13)

Let |0) be the vacuum vector such that an\Q) = 0 for n < 0 and 2F be the Fock space
defined by ̂  = Q(^0[«-ι,«-2,...]|0). Let (0| be the dual of |0) i.e., (0|0> - 1.
Define &* = (0\Q(q9t)[al9a2,...].
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We can construct an isomorphism i between ^ and ΛQ(?,;) as follows:

irJF-^Qfo,,) (3.14)

I/} -> /(*) = (0|C(*)|/> , (3.15)

and an isomorphism * between J5"* and ΛQ(?,O by

(3.16)

*)|0> , (3.17)

where

oo 1 _ /« a \

Σ » p n ' (3 18)

(3.19)

where pn is the power sum pn = x" + #2 H ---- . For example, we have

We will use the following notation. For any symmetric polynomial / £

we assign an operator / £ Q(#,0[fl-ι>α-25 ] and a vector |/) £ J^ such that
ι(/|0}) = z(|/)) = /(*). In the same way, we assign an operator / eQ(#,0

[αι,α2,...] and a vector </| G J^* such that z*((0|/*) = z*«/|) = /(*). For exam-

ple, ϊ(Λ(9,0|0)) = ι(\Pλ(q,t))) = Pλ(x'9q9t) and z*({0|Pl(^,0) - ι*((Pλ(q,φ -
Pι(x,q,t). For a product f(x)g(x\ the corresponding state is /#|0) = /|gf> =
We have the following proposition:

Proposition 3.5.

(i) Lei {/| <E J^

)«*. (3.20)

(ii) Lei (/| £ J^* flwέ/ |gf A> € J^. We have

. (3.21)

Proof. We defined the commutation relations of an so that (i) holds.
(ii) is proved as follows:

,f = ((f\gC*(X)\0), <0|C(jc)|A»ί>f

where we have set (z| = (f\g € ^* (which may be 0), and used (i) and gC*(x) =
C*(x)g. Q.E.D.
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We remark that in this boson language, for example, Proposition 2.4 is a conse-
quence of the completeness condition Σλ\Pλ)(Qλ = l

By Theorems 3.2 and 3.4, we have the following bosonization formulas for the
Macdonald symmetric polynomial P;(x',q, t):

Proposition 3.6. Let λ be the partition given by (3.5). We have

ΓN dx ΓN ί °° 1 — tn a \
" 0.22)

J=} n=ι — n

rN

a
- (3-23)

11=1

— /" a
- X j

n=ι l — q n

ΓN dx rN

^Γ(*;9.θΠ
j 7=1

—

= f Π - -/ftaftOlI exp z - L ( X j Γ (3.24)—

(3-25)

Namely, (0\C(x)Pλ(q, φ) = (Q\P\(q, OC*(jc)|0) =Pλ(x; q, t). Here F± is defined by

"ft ft ^(x°)s° NΠn(X

a+l,X° ,q,t)A(X

a ,q,t), (3.26)

y=ι

x/ "Π ft ^(^)ίo ^Π ΠV+l,# ,t,q)Δ(x? ,t,q) . (3.27)
α=l 7=1 ^TWXj a=l

Let μ and v be two partitions. We define the structure constants f}

μv of the ring

,o by
/>„(*; ,̂ ί)P,(jr; ?, /) = Σ f^,t)Pλ(x; q,t) , (3.28)

Λ

or equivalently,

fμV = /μv(ί» 0 = (Qλ,PμPV)q,t € Q(9, /) . (3.29)

The skew g-function is defined by

Qλ/μ(x; q, 0 = Σ fλ

μv(q,t)Qv(x; q,t). (3.30)
V

This is equivalent to the following condition:

(Qλ/μ,Pv)q,t = (Ql,PμP,)q,t . (3.31)

The skew P-function is given by Pχ/μ = b~^λbμQχ/μ.
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Now we are ready to state the boson representation of the skew g-polynomial.

Theorem 3.7. We have the following boson realization of the skew Q-polynomίal:

Qι/μ(x;q,t) = (Qλ\C*(x)\Pμ) = (Pμ\C(x)\Qι) . (3.32)

Proof. From Propositions 3.5 and 3.6 we have the following:

((Qλ\C*(x)\Pμ),Pv)q,t = ((Qλ\C*(x)\Pμ),(0\C(x)\Pv))q,t

^ (Qλ,PμPv)g,t

This proves the first equality. The second equality can be proved in the same
way. Q.E.D.

As a corollary of this theorem and Proposition 3.6, we obtain integral represen-
tation formulas for the skew (^-polynomial.

Corollary 3.8. Let λ be the partition given by (3.5) and μ be another partition
μ = (σ^f ) + ••• + (σf 1 ). We have the integral representation formulas for Qχ/μ

(x',q,t) G ΛQ(g,o as follows:

(3-35)

Π .FΓ(Z;,,,)F,-(»;?,,,Π<Z-,B;,,,, x » ,3.36,,

Remark. More generally, one can directly prove that the skew Macdonald poly-
nomial can be written in the integral transformation Λ^n,m of Eq. (3.2) or in the
power-sums pn as follows:

,t) ι, (3.37)

for all m ^ l(λ). Here PJx) = Pμ (i) and pn = n1^^.
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3.4. The Kostka Matrix. As another application of the bosonization constructed
in the last subsection, we will give integral representations of the Kostka matrix
Kλμ(q,t\ Let

)= ΠO -qa(s)tl(s)+ί), (3.38)

h'λ(q,t) = Π 0 - 0β(s)+V(s)) = hλ(t9q) . (3.39)

So, we have

,t) = hλ(q,t)/tiλ(q,t). (3.40)

Let us define

Mλ(x;q9t) = hλ(q9t)Pλ(x'9q9t) = h'λ(q,t)Qλ(x'9q9t) . (3.41)

The ^-analogue of the Kostka-Foulks polynomial Kχμ(q,t) introduced by Macdonald
is defined by

Mμ(χ 9q9t) = ΣKλμ(q,t)Sλ(x9t) , (3.42)
λ

where Sχ(x\t) is the dual base of the Schur function sχ(x) with respect to the scalar
product ( , )o,f. Further let us define the dual base of Sχ(x\t) with respect to the
scalar product { , }qtt by Sχ(x;q,t).

We have the following:

Proposition 3.9. For a partition λ, we have

/(A) f a i 7W ( a \
W = § Π ϊ±xj Π (1 -*Ay) Π exp Σ "̂Ί 1°) > (3'43)7=1 -ώTΓLJCy ί<y y =1 \Λ > 0 « /

/(A) Jχ. . /(A) / 1 _ /» Λ \

1^(0) = f Π 5̂ ^ Π (i -*/*/)• Π exp Σ V-^711 ) 1°) ' (3 44>7=1 2πwc/ J

 t<j j=ι V«>o 1 n J J

/(A) Jr. /(A) / 1 fl \

l^(?,0) = f Π ̂ -̂  Π (1 -*//*;)• Π exp Σ Γ^^Γ |0) ' (3'45)

7=1 ^TCZΛΓy i<j j=\ \n>Q L ~ <1 n /

l(λ} fa i '(A) / fl \

(̂  = / Π 5-^*7' * Π (1 - ^A ) <0| Π exp Σ ^^ , (3.46)
7=1 2πiXJ i<j 7=1 \/ι>0 w /

/(A) Jv . /(A) / I -t» a \

<^(OI = § Π 2^*,' * Π (1 -V*/) <o|Π exp Σ V^-*/ ) . (3 47)7=1 ^TTDCy /<y y =1 \ r t >o 1 « /

/(A) fa. l(λ) / i \

<*(ί'01 = ^ Π ̂ 7^ ' Π (1 ~XjM* (0|Π exp Σ r^-n -χj ) (3 48>7=1 ^τu*Λ/ /<y y =1 \«>o i — q n j
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Proof. An integral representation of the Schur polynomial is well known [26]:

7<A> dv
**(*) = / Π ̂ ~yjJ Π (1 - Λ/JV) Π(1 -^M Γ1 (3.49)

7=1 ^π*>7 /<7 ij

Therefore (3.43) and (3.46) are correct states. Since (sχ sμ)\t=q = δ^μ, we have

(3.50)

Note that S iOc O is independent of q. Using the above identity and Proposition 3.5,
we can show the following:

(Sλ(t),Sμ)θ9t = (Sλ(t)\Sμ) = δλ,μ ,
4=0

(Sλ(q9t)9Sμ(t))qtt = (Sλ(q,t)\Sμ(t)) = δλ,μ . Q.E.D.

We remark that we obtain another expression of these states by using another integral
representation of the Schur polynomial [26],

Sλ,(x) = (-i)Wf Π ̂ ~y} Π (i - Λ/^)
7=1 ^Kiyj i<j

Since Kλμ(q,t)= (Sλ(q,t)9Mμ(q9t))qtt9 by using Propositions 3.5, 3.6 and 3.9,
we can show the following theorem:

Theorem 3.10. Let λ, μ be partitions; μ = (^)-\ ----- H(σ^). Kostka matrix
Kχμ(q,t) is represented as follows:

Kλlί(q,t)=(Sλ(q,t}\Mμ(q,t))

PM

j-*J> Π f- Π (1 -*A)ιx 2πίJ=ι ιxj y=1 /<y

(3.52)



Integral Representations of Macdonald Symmetric Polynomials

4. Bosonizations of the Integral Formula

661

In the last section, we introduced the Fock space of the boson field to discuss
how to obtain integral formulas for the skew Macdonald polynomials. One may
notice, however, the bosonization is something partial compared with the case of the
Schur polynomials [26] and the Hall-Littlewood polynomials [27], because we only
bosonized the variable x =xN+l. We consider some total bosonization schemes of
the integral representation formula for the Macdonald symmetric polynomials which
was obtained in the last section.

4.1. Firstly we treat the case of β G Z>0. In this case, we can bosonize the integral
formula by using a similar method to the Jack symmetric polynomial's case dis-
cussed in our previous paper [24]. Let us introduce the following bosonic oscillators
having A -type like symmetry:

f o

~~ n ~-

for Aab = 0 ,

for Aab = -l , (4.1)

1 — tn 1 — t~n

Y^n + γ^Tn } <W->0

and [αg,β*] = βAab, where n,m E Z and a,b e {!,...,#+!}. Here, Aab = 2δa>b -
$a,b+ι _ $a,b-\ |s me cartan matrix of AN+\ type. Let us define ^-type boson fields
as follows:

φ"(z) = φa

&0

= Σ — *" + Q" ,—n

-
n

(4.2)

The normal ordering : : is defined as moving φ^o to the right of φ^Q. The operator
product expansion (in the region \w/z < q^~l) is given as follows:

φa(z)φb(w)

f o

log

log ( (-zw) Π (1 -<f™/ή (1 -
*=o

for Aab = 0 ,

for Aab = -l ,

for Λβ6 = 2 .

(4.3)

For α = (α1,...,^"1"1), let |α) = expί^^^ijα0^ ^^β^ίlO), where |0)

satisfies a%\0) = 0 (α = 1,.. . ,7V + 1 and n ^ 0). This α) satisfies a%\<x) = 0
(α = 1,...,^ + 1 and n > 0) and αg|α) = αβ |oc). We also introduce (α| as the dual
of α), i.e. {α|α;} = <5α>α/.
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We can state our result as follows:2

Proposition 4.1. Let λ be defined by (3.5). We have the following A-type bosonίc
realization of the Macdonald symmetric function for β £ Z>o :

(4-4)

where a" = β(ra+l - ra + \) + sa, (rN+2=0), 3." = of + βΣ"=ΐ Λabrb, and
= oo (after calculation).

Proof. First we remark that for β £ Z>0 (t = </),

Λ(*;«,O - Π Π (i - ?V*7λ Π(x,y 9q9t) = π Π i — i — (4 5)
ιΦ7*=0 ι,7 £=0 A -# *ι.V/

A straightforward calculation of the operator product expansion shows that this
integrand agrees with that of Theorem 3.1. Q.E.D.

4.2. Next we construct another bosonization scheme which is applicable for the
case of β G C. We utilize Jing's boson field which was introduced to consider
the Hall-Littlewood symmetric function P(x\t) having one parameter t [27]. No-
tice that in this case we will not utilize an A$ structure but derive a bosoniza-
tion formula for P(x;q,t) using finite temperature calculation regarding the pa-
rameter q as playing the role of temperature. Let us introduce an N copy of
boson oscillators aa

n (a = 1,2,..., TV), whose commutation relations are given as
follows:

[a:,abj = n-δn+m,()δ
ab. (4.6)

Let & be the Fock space of these boson fields: & = Q(q,t)[aa_l,a
a_2,...]\0). Normal

ordering : : is defined as moving aa

n to the right of a°_n (n > 0). We define the
grading operator LQ as

N oo

£o = ΣΣO-'>-X> (4.7)
α=l «=1

which satisfies [Lo,α^] = — naa

n. We introduce boson fields as follows:

'H)-*Λ Φ-(z) - Σ (i - *")—*" - (4.8)
n «> n

Σ

Here we state another bosonization formula:

1 We use the convention J^?=1 Of = Φ\Φ2 @n for non-commuting (P/'s.
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Proposition 4.2. Let λ be defined by (3.5), and let β e C. We have the following
bosonizatίon formula for the Macdonald symmetric function:

V^ VN N r° 1 — t N ra dx?
Pλ(X;q,t) = C+(q,t)(q;qf^r° (tq;qfe«r Π ra\ Π 7— j § Π Π ̂ ~

= = i - t = = έπiX

ql« Π :̂ (*;) : Π e^-^ , (4.9)
σ=l y=l fl=l7=l /

= oo.

Proof. To calculate the trace, we apply the Clavelli-Shapiro trace technique [28].
We introduce the boson oscillators ba

n, which satisfy the same commutation relation
as aa

n and commutes with aa

m, and take the following combinations (n > 0):

aa anha

a — n ha άa — aa + s

"' n ~ nn~ l-qn

Clavelli and Shapiro's argument tells us that

(4 π)

where Θ is an operator in aa

n, and Φ is defined as the operator obtained from G by
replacing aa

n with άa

n. Then we obtain

:eφ(z}\ =
«>o

(λ — t" Λa" ha

_ Σ ( l _ / " ) ^ z - " e χ p ^ ( , / ) g V ) , (4.12)
"

and

= ̂ -«: - exp (- Σ (, - ,)*V) »p (- Σ ίί^a^) . (4.13)
V «>o n J V «>o A ~ ̂  w /

We have the following OPE's: in the region q < \Z2/z\\ < 1,

2^)oo for fl = Λ ?

(4.14)
.eφ\zι}+φz2}. for
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and in the region w/z\ < 1,

—— for a = b ,

:eΦ
a(z)-φ_(w). for

By using these equations, (#;#)oo a~^a (tq\q)ooa~ιraΊτ^(' - •) in (4.9) becomes

)oo (?*?/*?; g)oo * *

;<7,0 Π Π 7j — £ £ . (4.16)
α=l α=l /J=l U — *i/*/J

»</'

For each α and a permutation σ, we change the integration variables cf — > Jc£(/).

Then by using the identity [19]

Σ Π = Y (4.17)
σ65B \^i<j^n xσ(i) ~ xσ(j) k=\ L~l

where 5Λ is the «th symmetric group, the integrand agrees with that of
Theorem 3.1. Q.E.D.

5. Discussion

In this paper we have obtained integral representations of the (skew-)Macdonald
symmetric polynomials (Theorems 3.2, 3.4 and Corollary 3.8) and their boson real-
izations (Propositions 4.1, 4.2 and Theorem 3.7). The two maps in Proposition 3.1
have played an essential role in our derivation.

Our first physical motivation for this study is the calculation of the correlation
functions of the Calogero -Sutherland model. The results obtained in this paper and
ref. [21-24] will help us to do it. In particular skew Jack symmetric functions will
be useful for higher point correlation functions. Of course, concerning the analysis
for the Calogero-Sutherland model, the Macdonald symmetric polynomials are un-
necessary, but sometimes calculation for ^-deformed quantities is more transparent
than the original ones. We have also constructed free boson realizations for the inte-
gral representations. These realizations will also help us in calculation for correlation
functions. However, in comparison with the case of the Jack symmetric polynomi-
als, these free field expressions are ad hoc in the sense that they merely give the
desired integrands of the integral representations (see the next paragraph). Another
motivation is to solve the Ruijsenaars model, i.e. model with elliptic potential. At
present this problem still seems to be difficult.

For mathematical interest, we would like to mention the relation between free
field realizations and symmetry algebras. In the case of the Jack symmetric poly-
nomial [21-24], this polynomial is realized on the boson Fock space as the state
obtained by the action of screening currents :eα±^z): on the vacuum. This state is
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the singular vector of the WN algebra. On the other hand, in the free boson real-
ization, the WN algebra is the commutant of these screening currents :eα±(^(z):. So
we have the following natural question: in the case of the Macdonald symmetric
polynomials, what algebra appears as the commutant of the vertex operators : e^°^:
used in Sect. 4?

After finishing this work, we learned that Frenkel and Reshetikhin constructed
certain ^-deformations of the Virasoro and JF-algebras [29] by utilizing the free bo-

son realization of the quantum affine algebra Uq(sl^) studied in ref. [30]. It seems in-
teresting to clarify the connection between our vertex operators introduced in Sect. 4
and the ^-deformed algebras.
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