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Abstract: We present a direct approach for the calculation of functional determi-
nants of the Laplace operator on balls. Dirichlet and Robin boundary conditions are
considered. Using this approach, formulas for any value of the dimension, D, of the
ball, can be obtained quite easily. Explicit results are presented here for dimensions
D = 2, 3, 4, 5 and 6.

1. Introduction

Motivated by the need to give answers to some fundamental questions in quantum
field theory, during the last years there has been (and continues to be) a lot of
interest in the problem of calculating the determinant of a differential operator, L (see
for example [1,2]). Often one has to deal in these situations with positive elliptic
differential operators acting on sections of a vector bundle over a compact manifold.
In such cases L has a discrete spectrum λ\ ^ Λ2 ^ —• 00. The determinant,
det L = ΠZ^'J *s generally divergent and one needs to make sense out of it by
means of some kind of analytic continuation. A most appropriate way of doing
that is by using the zeta function regularization prescription introduced by Ray and
Singer [3] (see also [4,5]). In this procedure In det L is defined by analytically
continuing the function J ^ λγs In λj in the exponent s9 from the domain of the
complex plane where the real part of s is large to the point s = 0. Introducing the
zeta function associated with the spectrum λi of L,

this is equivalent to defining
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Only a few general methods for the exact evaluation of In det L are available.
Thus, for example, given that the manifold has a boundary, in [6] (see also [7-10])
the determinants of differential and difference operators have been related to the
boundary values of solutions of the operators. When L is a conformally covariant
differential operator, exact results may sometimes be obtained by transforming to a
"more simple" operator L for which In det L is known. Then, the knowledge of the
associated heat-kernel coefficients - nowadays available [11,12] - gives sometimes
the exact value of In det L [13-15]. This approach has been used by Dowker to
find the functional determinants for a variety of sectors of Euclidean space, spheres
and flat balls for dimensions D ^ 4 [16-18]. Similar techniques have proven to be
very powerful in order to obtain estimates of different types [19-21].

As a rule, however, explicit knowledge of the eigenvalues A, is necessary in
order to obtain exact results for In det L. This explicit knowledge of the eigenvalues
is in general only guaranteed for highly symmetric regions of space, such as the
torus, sphere or regions bounded by parallel planes. For these manifolds, detailed
calculations have been performed in the context of Casimir energies and effective
potential considerations (for a summary of results see [22]).

In this paper we want to focus on a class of situations for which the eigenval-
ues of the operator are not known explicitly, but nevertheless the exact calculation
of In det L is possible. The method developed is applicable whenever an implicit
equation satisfied by the eigenvalues is known and some properties (later specified)
of this equation are known. We exemplify our approach by taking L = — A on the
/^-dimensional ball BD — {x G RD\ \x\ ^ R}, together with Dirichlet - or general
Robin - boundary conditions. In dimensions D ^ 5 a part of these results may also
be obtained using the conformal transformation techniques mentioned above. (Here
the restriction D ^ 5 results from the need of the knowledge of the heat-kernel
coefficients aDβ, which has been determined only recently for D = 5 [12].) This
particular method was used by Dowker and Apps for D ^ 4 (this was before as/i
were known) [23]. Here we will apply a direct approach which has already been
shown to be quite powerful for the calculation of the heat-kernel coefficients in the
situations described above [24]. Interesting quantum field theoretical applications of
the results obtained can be found in quantum cosmology [25-29]. For these appli-
cations, the consideration of dimensions D higher than four are of interest, because
the technicalities involved in dealing with higher-spin fields reduce essentially to
the ones for scalar fields in those dimensions. Further applications are in statisti-
cal mechanics, in connection with finite size effects [30], and in conformal field
theory [31].

The paper is organized as follows. In Sect. 2 we describe in detail our approach
for the calculation of functional determinants using as an example the Laplace oper-
ator of the three-dimensional ball with Dirichlet boundary conditions. For generality
and because the analytic continuation procedure employed is slightly easier, we start
with the massive Laplacian, performing the limit m —> 0 at a suitable point of our
calculation. The result we find here agrees completely with the one recently given
by Dowker and Apps [23]. After having explained in detail the main ideas, we
apply our approach to an (in principle) arbitrary dimension D and also to general
Robin boundary conditions. We start in Sect. 3 with Robin boundary conditions for
the three-dimensional ball. The Neumann boundary conditions - a special case of
the Robin boundary conditions - cannot be obtained as a limit of the parameter
involved in Robin boundary conditions. An extra consideration, necessary in order
to deal with this situation, is given at the end of Sect. 3. In Sect. 4 we describe
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in detail how our scheme can be applied in dimensions D > 3. Explicit results
are given for dimensions D = 4,5,6 and all the different boundary conditions. The
case D = 2 is briefly considered in Sect. 5. This case is slightly different because
the lowest angular momentum / = 0 needs to be treated in a specific way. In the
conclusions (Sect. 6) we summarize the main results of our investigation. As we
will see in the course of our procedure, the functional determinant is naturally split
up into two pieces. The contributions of each of these pieces and a detail of how
they are obtained are given in three appendixes.

2. Zeta Function Determinant on the 3-Dimensional Ball with Dirichlet
Boundary Conditions

In this chapter we want to concentrate on the 3-dimensional ball with Dirichlet
boundary conditions in order to exemplify our direct approach, which is actually
applicable in any dimension and for completely general Robin boundary condition.
We are thus interested in obtaining the zeta function of the operator (—A + m2) on
the ball B3 = {x e R3; \x\ ^ R} endowed with Dirichlet boundary conditions. The
zeta function is formally defined as

with the eigenvalues λk being determined through

(-A+m2)φk(x) = λkφk(x) (2.2)

(k is in general a multi-index here), together with the boundary condition. It
is convenient to introduce a spherical coordinate basis, with r — \x\ and angles
Ω = (θ,φ). In these coordinates, a complete set of solutions of Eq. (2.2) can be
given in the form 2

Φι,m,n(r,Ω) = r-2jι+ι_(whn r)Yι+3_(Ω) , (2.3)

the J/+1/2 being Bessel functions and the Γ/+3/2 hyperspherical harmonics [32]. The
w/,«(> 0) a r e determined through the boundary condition by

Jl+±(wltnR) = 0. (2.4)

In these notations, using λ^n = w2

 n + m2, the zeta function can be given in the
form

oo oo

ζ(s) = Σ Σ (2/ + 1)(W,» + m 2 ) ~ S • (2-5)
»=0 /=0

Here the sum over n is extended over all possible solutions of Eq. (2.4) on the
positive real axis, and (2/ -f-1) is the number of independent harmonic polynomials
in 3 dimensions.

As it stands, the zeta function in Eq. (2.5) is defined for 91 s > 3/2. The way to
construct the analytical continuation of Eq. (2.5) to the left has been explained in
detail in Ref. [24] for the calculation of the heat-kernel coefficients associated with
the operator (2.2). For this reason our description here will be brief. The starting
point of the consideration is the representation of ζ(s) by the contour integral

oo rlk Ά

ζ(s) = Σ (2/ + 1 ) / — - ( k 2 + m 2 Γ s - In Jl+±(kR), (2-6)
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where the contour γ runs counterclockwise and must enclose all solutions of
Eq. (2.4) on the positive real axis (for a similar treatment as a contour integral
see [25,26,33]). Subtracting and adding the leading asymptotic terms of/v(zv)
for v —> oo, v = / + 1/2, the following representation of ζ(s) valid in the strip
-1/2 < SRs < 1 is found to be valid (for details see [24]),

with the definitions

ζ(s) =
1=0

2

i = - l

(2.7)

ZD(S) =

x — i ln[/v(zv)] - In
Dn(t)

v/2πv(i -tί
(2.8)

+ 2s-2;l/2), (2.9)

Ό2S

Σ β
+j)ζH(2j + 2 5 - l ; 1/2) , (2.10)

and, for i = 1, 2,

p is

- l + / + 2/ + 2S; 1/2)

/ J

a=0
(2.11)

Here

α=0 ° ZH"

- Γ v 0 /2+2α _ * 2 _ 3 4 _5^ 6

α^O ^ ® ^

and ί = 1/Λ/1 + Z 2 , /̂ = Λ/1 + ^ 2 + ln(z/l + Vl +z2). Equation (2.7) is a very suit-
able starting point for the calculation of the zeta function determinant C;(0); here we
consider, for definiteness, m = 0. In the limit m —> 0 only the j = 0 term survives
in the terms A%(s), n = —1,0,1,2, and one immediately finds

Σ
, =_i

In2 \nR
(2.12)

s=0
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For the part Zv

D{s) some additional calculation is needed. First of all using the
analyticity of Zv

D(s) around s = 0, the derivative Z^ (0) is found to be

Z^'(0) = - \\nlv(mz) - vη
L V V

z=(mR)/v

(2.13)

and, in the limit m —> 0, this reduces to

Z^(0) = lnΓ(v + 1) + v - vlnv ln(2πv) . (2.14)
2 12v

To perform afterwards the sum over v, it is very convenient to use the integral
representation of lnΓ(v -f 1) [34], to find

1 1 1

Performing the sum, this yields

As is seen by studying the asymptotics for t —> 0, the integral is well defined. For the
explicit calculation of Z^(0), Eq. (2.16), it is suitable to introduce a regularisation
parameter and to define

+ j _ 7 , (2.17)

with

Z^(0,0) = Z^(0). (2.18)

The individual pieces of the integral Eq. (2.17) may then be calculated by means
of [34]

and differentiating with respect to /?,

Γ ( v + l ) r

As a result we have

Z^(0,z) = ζH(z- 2; ^ Γ(z - 2)[6 + z - z2] + l-ζH ( z'/~ ) Γ(z),

and thus

(2.21)
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Adding up the contributions from Eqs. (2.12) and (2.21) we end up with

C'(0) = ~ - γ2 In2 - \ζ'R{-2) + \ ζjj(-l) - ^ inΛ (2.22)

in agreement with Dowker and Apps [23].

3. Zeta Function Determinant on the 3-Dimensional Ball with Robin
Boundary Conditions

In order to treat Robin boundary conditions, only very little changes are necessary.
Writing the boundary condition in the form

-Jι+ι/2(coιtnR) + wι,nj(+Xι2(wιnr)\r=R = 0 , (3.1)

the starting point of the calculation, analogous to Eqs. (2.8)—(2.11), is

AR_ι(s)=AD_ι(s), (3.3)

4(s) = -A$(s), (3.4)

and for i = 1, 2,

Af(s) = - — Σ (-jf-(mR)2jCH(-l + i + V + 2s; 1/2)

a (i + a)Γ(s+j+ψ)

xto"a m + ψ) • (3 5 )

Here we need the polynomials

, u)=Σ, zhatX+a =(-\+u)t+ ^-/ , (3.6)
α=0 8 / Z 4

and

a=0

The contribution from the asymptotic terms is

d Λ „

M) 32 24 ' 24 ' 2 ^ v 7 2 ^ v '

ΊJ

(3.8)
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For the rest, things are very similar to the Dirichlet case. We find

f 1 1

u u2

and thus, using Eq. (2.15), we have

4(0)= --CU-2) - 8 l n 2 + 2 5 \ " v l n I1 + v) +U~ Yv) • ( 3 1 0 )

The remaining sum may be done by differentiating with respect to u and integrating
back. As a result

(3.11)

Let us mention that the last equation can also be given in terms of the Barnes
G-function [34].

Putting things together, we arrive at our final result,

(3.12)

which concludes the consideration of the three dimensional case with Robin bound-
ary conditions. The dependence of ζ'(Q,u) on the parameter u is shown in Fig. 1
for R= 1.

Equation (3.12) can be given in an alternative form using the following expres-
sion, first obtained in [35] (see also [22]):

+ ^ ln(2π) + ^p- + ^CΛ(-I) . (3.13)

As is seen, the limit u —> —1/2, corresponding to Neumann boundary conditions,
is not smooth, since a logarithmic divergence appears due to the lnΓ(l/2 + w)
term. This logarithmic divergence might be traced back to the v = 1/2
term in Eq. (3.9). Thus, in order to find the functional determinant corre-
sponding to Neumann boundary condition, the term v = 1/2 has to be treated
separately. In fact, looking in detail at the derivation of Eq. (3.9) starting from
Eq. (3.2), it is seen that the case u = —1/2 has to be treated specifically, be-
cause the behavior of (u/R)Iv(zv) + {zv/R)Ir

v{zv) for z —» 0 is different for
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Fig. 1. Plot of the dependence of ζ'(0,u) on the parameter u for R = 1 and for dimensions D =
3,4,5,6. Notice the divergence that appears for u = 1 — D/2 in each dimension, corresponding to
the case of Neumann boundary conditions.

Probably the easiest way to find the results for the Neumann boundary conditions
is to write

ζ(s, -1/2) = ζ'=\s, -1/2) + lim (ζ(s, u) - ζι=\s,«)),
u—> —1/2

(3.14)

because then we can use all the results for the Robin boundary conditions that we
have derived before. Here ζι=0(s, u) is the contribution from the angular momentum
component / = 0 to ζ(s,u),

kl[β{kR)] . (3.15)

Proceeding with the calculations as for the Robin boundary conditions, one easily
finds

ln(3/2)+ I n ( u + l / 2 ) . (3.16)
s=0

In the limit w —> —1/2, the logarithmic divergence in Eq. (3.16) cancels the di-
vergence in ζ(s,u), Eq. (3.12). Thus the limit w —> —1/2 is well defined and the
functional determinant for Neumann boundary conditions reads

1/2

2 / dxlnΓ(x).
o

(3.17)

This concludes the consideration of the 3-dimensional case: all ordinary boundary
conditions have been dealt with explicitly. As for the Robin boundary condition, an
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alternative form may be presented using

fdxlnΠx)-- — In 2 -\nπ--C/(-\)
o X Π X ~ 8 2 4 Π 4 n π 2 Λ

4. Zeta Function Determinants on D > 3 Dimensional ball

For higher dimensional balls, exactly the same procedure may be employed in order
to calculate the zeta function determinant. The starting point is here (for details
see [24])

oo dk 2 2 - d

ι=0 y 2πί dk / + ^ ~

with the number dι(D) of independent harmonic polynomials, explicitly

Π^ΠZ^Γ ( 4 2 )

It is suitable to introduce the coefficients ea(D) by

D~2 ( D-2\α

dι{D) - E eΛ{D) [l + —^j . (4.3)

A representation which shows the analytic structure around s = 0 may then be given
in analogy with Eq. (2.7) (now one defines v = / + (D — 2)/2)

Us) = Σ Φ(D)Zv

D(s) + DΣ Af{s). (4.4)
/ = 0 z = - l

Here we have used the following definitions. First

sin(τts) S

71 mR/v

I dz (-J - m

x ̂  \\nIv(vz)~vη^\n(V^(l^z^4)-f:^β] . (4.5)
°z L v J

The polynomials D w ( 0 arise from the asymptotic expansion of 7v(vz) [36]. In detail
one has

7 1 Vk

k=\ V J

with the recursion relation

t

uk+ι(t) = \t\\ - t2)u'k{t) +lfdτ(l- 5τ2K(τ) (4.7)
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for the polynomials Uk{t). The coefficient functions Dn(t) are then defined through
the cumulant expansion

[ ^ ] ~ | ^
and are easily found with the help of a simple computer program.

The A?(s) have already been determined in [24] and we give only their final
form for completeness. Introducing

ΣxiJ+2a, (4.9)
a=0

they read

(s) -

x I Σ ea(D)ζH(2j + 2s-l-a;(D- 2)12) \ , (4.10)
. α=l

x \J2 ea(D)ζH(2j + 2s-a;(D- 2)/2)l , (4.11)
Lα=l J

x \Σ eΆ{D%H{-a + i + 2/ + 2s; (D -

Their contributions to the functional determinant are easily determined and are listed
in Appendix A, for the dimensions D = 4,5,6.

For the calculation of Zv

D(s) we go on as for the three dimensional case. We
have found

1 D—\ f ) ( ] \

Z£'(0) = lnΓ(v+l) + v-vlnv--ln(2πv)+ Σ - ^
^ n=\ v

oo / 1 i i \ p-tv D-\ n ( ] \
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This is the suitable starting point for the summation of the angular momentum.
Introducing the regularized version of ZD(S) as in Eq. (2.17) one obtains

D-2 oo p-t^ΪΓ rla / 1 1

D-2

+ \{-ITKKH (Z - α; ̂ ^ ) Γ(z - α)

- ( - l ) α ( α + l)!fo ( z - α - 1; ̂ - ^ ) Γ(z - α - 1) } , (4.14)

which we need at z = 0. The remaining task is the calculation of the integral
term in Eq. (4.14). It may be given by repeated differentiation of Eq. (2.19).
Defining

( 4 1 5 )

and

OOχV+fc-2 -[y+(k-\)β]x

f(k9β9γ9v)=f { ι _ e - β x ) k dx9 £ = 1 , 2 , . . . , (4.16)

we get the recurrence

•I,j8,y,v+1). (4.17)

The first few cases, k = 2,3,4, and a general formula for f(k,β9γ,v) is given in
Appendix B. All terms appearing in Eq. (4.14) and resulting from the integration
may be given in terms of these functions f(k,β9γ9v). In detail this is seen as
follows. First of all one may show that

with the recursion relations

Bf = (k- a)B(Γl) + 4-"," , for k = 1,..., α - 1 ,
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for B(f\ and similar ones for Af> [43],

Af = {-\)\

Af+γ={-\)kk\,

Af = -iAf-χ) - (« - \)Af_-λ), f o r l ί i ϊ k ,

coming from

dk 1 _ ψ A\k)

dtk e< - 1 ~ t{ (e* - iy '
As a result,

D~2 α ^ k + ι
 /IN / D — 2

= Σ e . ( O ) Σ 5 ί α ) Σ f / ' + l ) l , V ) z + Jt-«
α=l it=0 i=\ \ z

Thus we have derived all necessary equations, showing that Z^(0,z) may be given
solely in terms of Γ-functions and Riemann zeta functions and the limit z —> 0 may
be taken. The results are listed in Appendix C for D = 4,5,6.

Adding up the contributions from the asymptotic terms and Z^(0), we have
found the following final results for the zeta function determinants of the Laplace
operator with Dirichlet boundary conditions in D = 4,5 and 6 dimensions,

756

The result for D = 4 agrees with Dowker and Apps [23]. As is clear from our
presentation, any higher dimension D can be treated in exactly the same way without
additional problems (they just get a bit arithmetically cumbersome).

Let us now describe briefly the calculation for Robin boundary condition. There
the starting point is

0 0 dk d r u Ί
ζ(s,u) = Σ dι{D)j — (k2 + m2rs- In -Jv(kR) + kJ'v(kR)\ . (4.18)

/=o y Zni ok L K J
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The relevant asymptotic expansions are (4.6) together with [36]

2πv z L k=ι

The relevant polynomials this time are determined by

where, in analogy to Eq. (4.9), we define

Mn(t9u)=Σzi,at
i+a. (4.21)

a=0

Continuing as for the 3-dimensional case, and in analogy to Eqs. (4.4), (4.5), we
define

( 4 2 2 )

In the limit m -* 0, we obtain

M n i l ' u ) , (4.23)
t e'-ϊj t u + v ntί v

and, realizing that

Afn(l,0) = Dn(l), Mn(l9u)-Mn(l90) = (- l ) w + 1 — , (4.24)

we find, after performing the sum over the angular momentum,

ZR(0) = Z'D(0) + ΣDΣea(D)va (-In (1 + -) + ̂ Σ (-1)"+1- f-T 1 (4.25)
/=0 α=l I V v / n=l « \V/ J

The remaining sum may once more be done by differentiating and integrating back,
and we end up with

zf

R(0)=z^(0) + DΣ<
α=l

«=α+2

u

-{-\fa ldxxa~x\nΓ ,
o V 2

+ (-l)Vlnrf^^+«>)l. (4.26)
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The results for the special dimensions D = 4,5 and 6 are not listed, because they
are essentially given in Eq. (4.26) together with Appendix C. Let us only note that

*i(4) = 0, e2(4) = 1 ,

eι(5) = ~h> ^ 5 > = 0' *3(5) = i ,

£?i(6) = 0, e2(6) = -—> e3(6) = 0, e4(6) = — .

The contributions of the asymptotic terms are calculated from

and

A?(s) = -

ff(-l + i + 2/ + 25; (£) - 2)/2)

+ y + g ± i )

^ ) • ( 4 2 8 )

They are collected in Appendix A.
Summing up, we have found the following final results for the functional deter-

minant with Robin boundary conditions:

U' I l n ( 2 ) 1I 1

30 12 3 + 90 + 3
ln(R) uHnjR) ζ'R(-3) ζ'R(-2) ζ'R(-

90 3 3 2 6

o

61 11 u u2 11 u3 u4

46080

71n(2)
+ 720 5760 24 + V2

64 48 32 48
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9479 u 5\7u2 S3u3 19 u4

r'm
32432400 315 + 15120 + 1512 480

u5 log(2) u3 ln(2) a5 ln(2) \n(R) u3 \n(R)

45 ~ "756 36~~ + 60 + 756 + 36

t/5ln(7?) ζ^(-S) ζ'R(-4) ζ'R{-2) ζf

R{-\)

60 60 24 24 60

\fdxx\nΓ(2+x)- lfdxx3lnΓ(2+x)
6 o 3 o

The detailed dependence of £'(0, w) on the parameter u for dimensions D = 4,5,6
is given in Fig. 1, for R = 1.

Finally, we are left with the task of the calculation of the zeta function deter-
minant for Neumann boundary conditions. As we have already seen, the / = 0 term
corresponding to v = (D — 2)/2 has to be treated separately. Employing the same
procedure as for 3 dimensions, one finds

—(C ι = 0 (
ds s=0

α

- 2 In7? -h ln(D/2) + ln((D - 2)/2

which results in the following final results for Neumann boundary conditions,

.,,,. -. 493 611n2 151 inR

• G ( 3 ) C U 2 )
3 2

ί'ίO 3 / 2 ) - 1 9 2 6 1 7 1 3 1 n 2 I in5 9 6 4 7 1 n *ζ5(0, -3/2) - - ^ ^ - - ^ - + in5 -

64 48 32 48

1 3 / 2 3 / 2 / 3 \ 2

— / dxlnΓ(x) - J dxίx- -) lnΓ(x).
1 2 o o V 2/
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7 0 8 7 9 7 9 1181 In 2 6379 lnΛ
+ l 3

ζ 6 ( ° '" 2 ) " "32432400 3780 + l n 3 3780

, ft(5) ,
6060 24 24 60

6 o J o

This terminates the explicit calculation for all kind of boundary conditions and
for dimensions D = 3,4,5,6 (that can be extended immediately to any dimen-
sion D > 6). Once more the results may be given in an alternative form by using
Eq. (3.13), but this makes little difference for numerical calculations.

Finally, we are left with the case D = 2.

5. Zeta Function Determinants on the 2-Dimensional Ball

For the 2-dimensional ball the procedure has to be changed slightly. Here the degen-
eracy of every / ^ l is 2, 1 = 0 has to be counted only once. Due to the presence
of this term / = 0, the starting point Eqs. (2.7)—(2.11) is not valid any more and
may be applied only to / ̂  1. The / = 0 term may be treated as before for the
Neumann boundary conditions. We shall not give any further details for this case
but only write down the final results - which on the other hand have appeared in
part in the literature [37]. We quote them for completeness.

For Dirichlet boundary conditions we have

^+2ζR(l)+
12

The zeta function determinant for general Robin boundary conditions reads

ζJj(0) = ^ + ^ l n Λ + 2 ζ i ( l ) f
[2 5 Ό

Finally, the results for Neumann boundary condition is

& ( 0 ) = ^ f
12 3

And this concludes the list of examples of zeta function determinants on the ball
that we had promised to consider.

6. Conclusions

In this paper we have developed a systematic approach for the calculation of func-
tional determinants of (elliptic differential) operators, which is very useful in all
cases when the basis of functions - constrained by the equations corresponding to
the boundary conditions - is known. Using our approach we have calculated the zeta
function determinant of the Laplacian on the ball for Dirichlet, Neumann and the
general Robin boundary conditions. Explicit results for dimensions D ^ 6 have been
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given. All necessary formulas to iterate the calculation of ζf(0) and to obtain it in
any dimension, by means of a simple computer program, have been given explicitly.

An extension of the present work to higher-dimensional bundles, such as those
for spinors and vectors, is envisaged. This should allow to establish connections
with recent work dealing with mixed boundary conditions [38-40].

Comment. Using a different approach, based on work by Moss [41] and Voros [42],
Dowker has also considered the calculation of heat-kernel coefficients and ftinc-
tional determinants for the Laplace operator on the ball with Robin boundary con-
ditions [43]. We are indebted to him for interesting and fruitful correspondence
during the course of the present work.
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A. Appendix: Contributions to the Zeta Function Determinant
from the Asymptotic Terms

In this appendix we list the contributions of the asymptotic terms to the zeta function
determinant for Dirichlet and Robin boundary conditions.

A.I. Dirichlet Boundary Condition. For Dirichlet boundary conditions we find

(Asym)D(D = 5) = ^ _ + _ | _ _ JL ta 2ta 2 +

UZ? • 6) 4 0 0 9 1 IMZJ _ 6) - 2594592Q + 756 + ^ 6 T?Ϊ20 Ώ

ζ'R(-4) ft(-3)
1224 12 24 '

A.2. Robin Boundary Condition. For Robin boundary conditions the final results
read

(AsymMZ) = 4) = - ^ - ±-Qy + 1 In2 - 1 inR - &-3) + Ift(-2)

u 5 9 I T l c !

30 " Ϊ2 M - 3" - 3™
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(AsymHD = 5) = -JgL + _£_ + J L l n 2 _ JZ_ l n / ?

11 1 2 1 2 1 3 1 3 1 4

" i^ 4 - A " ' l n 2 + I"4 ln2 - ̂ "2
12 12 6 24

243079 1 1 1
(Asym) Λ φ = 6) = y ^ ^ ^ + 3360T " 756 l n 2 ~ Ϊ 5 Ϊ 2 0 C Λ ( 3 )

1 517 2 41 3 ! 3 3

3 Ϊ 5 M + 15120" + Ϊ 5 Ϊ 2 M + 36^" ~ Ϊ6Q1

B. Appendix: Detail of the Calculation of Z^(0)

Using the recurrence relation (4.17), the function f(k,β,γ,v) for k = 2,3 and 4
read,

βJ\'

f(3,β,γ,v) = f
oo χv+\ e-{y+2β)x

f

*β

+ yβ(1 + ί)ζ(V + H)1' (22)
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oo χv+2e-(γ+3β)x

dx

Γ(v + 3)Γ / Λ _ / Λ / y_

6 - + 3 l i

For the general formula one has

, Σ (-D

where

o y

J ) C

(2.3)

(2.4)

Γ ( i )

C. Appendix: Contribution of Z/>(ί) to the Zeta Function Determinant

In this appendix we list the contributions of ZD(s) to the zeta function determinant

for dimensions D = 4,5 and 6. They are

74//

4;(0) - -

131 7

7Γ

7 1

360 + 360 ̂
.2 1 25,,,

60480 3360 15120
C Λ ( 3 ) + Ϊ 0 C i ( " 5 ) " Ϊ 2 C * ( ~ 3 ) " 6 0 ^ ( " 1
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