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Abstract: We consider those two-dimensional rational conformal field theories
(RCFTs) whose chiral algebras, when maximally extended, are isomorphic to the
current algebra formed from some untwisted afrme Lie algebra at fixed level. In
this case the partition function is specified by an automorphism of the fusion ring
and corresponding symmetry of the Kac-Peterson modular matrices. We classify
all such partition functions when the underlying finite-dimensional Lie algebra is
simple. This gives all possible spectra for this class of RCFTs. While accomplishing
this, we also find the primary fields with second smallest quantum dimension.

1. Introduction

In two-dimensional conformal field theory, scale invariance means boundary con-
ditions have an impact on the local physics, even far from a boundary [6]. For
example, a conformal field theory must be consistent on the interior of a parallelo-
gram with periodic boundary conditions imposed, i.e. on a torus. In particular, the
corresponding partition function should not be sensitive to changes of the modular
parameter that keep a torus within the same conformal class. The partition function
must be modular invariant.

The local symmetry of the conformal field theory also constrains the partition
function. The chiral algebra of currents determines the conformal blocks [2] of
the torus partition function. That is, the partition function must be a sesquilinear
combination of characters of the chiral algebra. The two constraints together often
determine the field content of a given conformal field theory. This analysis of
conformal field theories is known as the modular bootstrap.

We apply the modular bootstrap program to conformal field theories whose
(maximal) chiral algebras are isomorphic to the current algebra of untwisted affine
Lie algebras at fixed levels. We call such algebras conformal current algebras, and
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the corresponding theories unextended current models. Their partition functions are
described by a permutation matrix that also gives the action of a fusion rule auto-
morphism [27]. For this reason, candidates for such partition functions are known
as automorphism (modular) invariants. We will limit our attention here to the case
where the underlying finite-dimensional Lie algebra is simple.

We actually solve the slightly more general problem of finding, for each simple
Lie algebra X\ and level k, the set of all permutations σ of the alcove P+(Xιtk)
of highest weights (see (3.1) below), which are symmetries of the corresponding
Kac-Peterson modular matrices, i.e. which obey Eqs. (3.8a), (3.8b) below. This is
what we mean by automorphism invariants. Their classification should be of math-
ematical value independent of RCFT. The question of which of these are actually
realized as the partition function of a RCFT is not addressed here.

There are in the literature at least two different meanings of the phrase Wess
-Zumino-Witten (WZW) models. The more general one is any RCFT whose
maximal chiral algebras contain a conformal current algebra such that any character
of the former can be written as a finite sum of characters of the latter. The partition
function for such a RCFT will then be a finite sesquilinear combination of affine
algebra characters. We suggest the term current models for these; when the chiral
algebra equals the current algebra, we will call them unextended current models.
A more restrictive definition are those RCFTs corresponding to a string moving
on a compact Lie group [18] - we retain the term WZW model for these. The
WZW partition function has been computed for each simple, compact, connected
Lie group [13]. In this paper we find all automorphism invariants; our list will
include all possible partition functions for the unextended current models. Many of
these automorphism invariants cannot be found in [13], and some still lack such an
explicit interpretation.

The list of partition functions of unextended current models is presented below,
and proved complete. This result is a major step towards the more ambitious clas-
sification of all modular invariants of current models, including those described by
a chiral algebra that extends the conformal current algebra. The list we find is also
the useful one from the point of view of symmetry. It is often easier to identify
the symmetry of a physical theory, before identifying the details of the dynamics.
In that sense, a list of possible partition functions with a given maximal chiral al-
gebra is the most relevant. Our catalogue gives the complete list for each (simple)
conformal current algebra.

This work follows [17], where the automorphism invariants for algebra
Amχ 0 0 Ams were treated. Our restriction here to simple Lie algebras is con-
venient, but as [17] shows, the generalization to semi-simple Lie algebras should
be possible. It is hoped that classification results like ours will teach us something
about more general classes of conformal field theories, perhaps all rational ones.
The greatest impetus to this program was given by the curious A-D-E classification
of A\ modular invariants [5]. Extension of this work proved difficult: the A2 invari-
ants were only recently classified in [16] (special cases of the A2 classification were
also obtained in [29]). Because we treat all simple Lie algebras here, our work may
reveal new features of these modular invariants families that are universal (previ-
ously, only the level one theories had been classified for all simple Lie algebras
[21,15]).

Our results are stated in Sect. 2, along with a brief outline of the classification
proof. Sections 3 through 7 are devoted to the proof. A short conclusion is given
in Sect. 8.
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2. Statement of the Results

The paper will be devoted to the proof of the following statement, already proved
for the A i series in [17].

Theorem. The complete list of automorphism invariants σ for the current algebra
Xι,kτ where Xι is a simple Lie algebra and έ G N , is given in Tables 1 and 2.

Explicit definitions of all automorphism invariants listed in Tables 1 and 2 are
given by the relevant subsections of Sects. 5,6 and 7. The total number of auto-
morphism invariants for fixed X^ k is given in the third column. These form a group
under composition σ o σ'; this group is given in the final column of the tables.

From Tables 1 and 2, we see that the automorphism invariants can all be de-
scribed solely in terms of the symmetries of the extended Dynkin diagram (con-
jugations and simple currents - see Sect. 3), with the exceptions of Bι2,Dι2,
Z?8,45̂ 4,3 a n d ^2,4? where exceptional automorphism invariants appear. Except
for the #8,4 o n e , these exceptionals stem from Galois transformations, with a
subtle touch of simple currents - this will be discussed in more detail in Sect. 3.

Although scattered in the literature, all simple current automorphism invariants
have been known for some time [3,1,13,30]. The exceptional automorphism in-
variant of i?8,4 was first given in [10], while those of F43 and G2^ were found
in [35]. Finally all the exceptional automorphism invariants of B^2 and A , 2 have

Table 1. Complete list of automorphism invariants for classical simple Lie algebras. The variables
c,p,t for A^k are defined in the text (Sect. 5). For Bit2, respectively A,2,/> is the number of
distinct prime divisors of 2/ + 1, respectively /. The exponents a,b range over {0,1}. We denote a
congruence modulo m by =m. In the last column giving the structure of the automorphism group,
we have denoted by Όm the dihedral group of order 2m

Xιtk conditions # autom. names group

A yc+p+t ΐCaπ \ jrf+P+t
Λ /, k ** x*-' umf \

BιΛ 1 {>,}
Bι,2 2P-1 {σm} D f " 1

Bιtk k ^ 3, k odd 2 {σi,σ/} Di
Bιtk k ^ 4, k even 1

C2,i 1 {ι}
Q,k */= 42,(/,*)Φ(2,l) 2 {σuσj}
Cι,k £/φ42 1 {σx}

DtΛ / = 8 4 6 (σs,σc) D 3

DιΛ /φ 8 4 2 {σuCι} ©!
D4,2 6 {Cj} ΊD3

D4,k k> 2, even 12 {Cj<c} D 6

D4,k k > 1, odd 36 {Cj{σs,σc)} Έ>2

3

Dι',2 / > 4 2P {Ca

λσm} Df
A>4,*>2 KI even, and kl = 8 0 4 {C?σ£j D 2

DιΛ /odd, &Ξ4O 2 {σi,Ci} Di
DιΛ>2 I odd, k=42 4 {£>*} ^>2
Dι,k A:>lodd, /φ 8 4 4 {Cfσ*} D 2

Dι,k>2 k=4l=42 8 {Cf(σS9σc)} D 4

Di>4Λ A : > l o d d , / = 8 4 12 {Cf(σ,,σc)} D 6
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Table 2. Complete list of automoφhism invariants for exceptional simple Lie algebras. The expo-
nents a,b range over {0,1}. A congruence modulo m is denoted by =m. The notation JDm stands
for the dihedral group of order 2m

XlΛ

E6,k

Eβ,k>2

EΊΛ

Eη,k

Es,4

E%,k

^4,3

F4,k

^2,4

G2,k

conditions

k < 3 or k ΞΞ3 0

k=3±l

k = 2 or £ φ 4 2
k > 2 anάk =4 2

Λ;φ4

kΦ3

&Φ4

# autom.

2

4

1
2

2
1

2
1

2
1

names

{C«}

W

{σ\,σeS}

W
{σi,σ/4}

{σ,,σ92}

group

!>!

D 2

ID!

H)i

E»,

D,

been recently unveiled in [12], where a construction involving conformal embed-

dings was described, though no closed, direct formula was given. Let us stress that

all but one (namely the E^,4 exceptional) of the automoφhism invariants of Tables

1 and 2 can be fully accounted for in terms of simple currents, conjugations and

Galois transformations. This is somewhat fortunate as they are the main systematic

procedures to construct automoφhism invariants.

Our proof of this theorem relies on three basic steps. See the following section

for terminology.

We first examine the quantum dimensions 3){X) : = -SΌ,A/^O,O for all weights

in the alcove. Let [λ] denote the set of all transforms - the orbit - of λ by the

symmetries of the extended Dynkin diagram; Q)(X) is constant along [λ]. It is well

known that, as a function of λ, Q)(X) takes its minimal value 1 if and only if

λ G [0] (for E^2 there is an additional such λ, hence an additional simple current,

but it plays no role here and will be ignored). Thus Ά\ = [0] is the set of weights

at which @(λ) is minimum. The first step of our proof is to look for the set J2 of

all weights at which Q)(X) takes its second smallest value. In the generic case, we

find that J2 = [co ̂ ] for the fundamental weight α / of X\ which has the smallest

Weyl-dimension, in agreement with the large k limit of the quantum dimensions.

If however the level k is sufficiently small, this simple statement may break down,

as Table 3 shows - a prime example of that is given by the orthogonal algebras

at level 2. In these cases however, the spurious possibilities can be handled by the

norm condition (3.8a) and/or by looking at the sets =2; for / ^ 3, except for B\^

and D12, which require a special analysis. We refer the reader to the text for the

details of these cases. When ^2 — [&>̂ L w e obtain our first conclusion that any

automoφhism σ must map the orbit [ω^] onto itself.

If J2 = [G>^], w e obtain from the first step that the action of σ on α / is of the

form σ(ω f) = C'J(a)f) for some conjugation C' and simple current J. A conju-

gation C always defines an automoφhism invariant, so that replacing σ by C o σ

permits us to assume σ ( α / ) = J(ω^). Requiring that σ commute with the modular

matrix T - the norm of the weights must be preserved - puts various restrictions

on J, depending on the level k and the algebra we consider. Two situations are

then possible. The first is that, for a given simple current J satisfying the norm
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condition, there does exist a simple current automorphism invariant σ' such that
σ'(ωf) = J(ω-f). In this case, the action of/ on a/ lifts to an acceptable solution σr

on the whole of the alcove. This means one may replace σ by σ'~λ o σ, and assume
that σ fixes ωΛ The second situation is when J does not lift to a simple current
automorphism invariant.

The third and final step aims at filling the gaps left by the second step. On the
one hand, we classify the automorphisms which leave α/ fixed. When combined
with the automorphisms which do not leave α/ fixed - these were collected at Step
2 -, they yield the full set of automorphisms. On the other hand, we show that the
possibilities σ{ωf) = / ( α / ) in the second situation in Step 2 cannot be extended
globally to any automorphism invariant. The main tool to obtain these two results
is the explicit computation of fusion products. Indeed a happy feature of a>f is that
it is sufficiently small and simple to allow the calculation of its fusion product with
any other field, and this is what is basically needed though in some cases the fusion
with other small representations is also required.

The first and crucial step of our proof is detailed in Sect. 4, while the other
two are worked out in Sect. 5 for the classical algebras, and in Sect. 7 for the
exceptional ones. A Sect. 6 is inserted that contains the relevant analysis for Bι2

and Di2 For completeness, we include the results (but not the proofs) for the A\
series [17].

3. Notations and Preliminaries

Let X\ be a finite-dimensional simple Lie algebra. The weights are denoted in the
Dynkin basis by λ = (λ\,Λ.2,...,Λ/) := ^ .λ i (o ι with all λ\ integers, where ωι is
the /th fundamental weight. (Our convention for the numbering of the simple roots
is Dynkin's, as used in [22].) The Weyl vector is p = ( l , l , . . . , l ) . The colabels
a/ are defined through the expansion of the highest root ψ in the basis of simple
roots, φ = Σi (2aϊ /α?) «/• P u t ao = l T n e d u a l Coxeter number hw = 1 + p φ =

By Xιfk we will mean the current algebra based on Xι, at a level k G N. The
height is defined by n = k + hv. The integrable highest weight representations of
Xlk are in one-to-one correspondence with the set of dominant weights (also called
the alcove) of X\^ given by [22]

} (3.1)

and have characters denoted by χχ(τ9z, u). For fixed level k, the zero t h Dynkin label
is redundant, so that two notations (λo\λ\9λ29...,λι) and (Ai,Λ,2,...,A/) designate a
single element of P+{Xιk)- For example, the weight (λ\,λ2,...,λι) = 0 corresponds
to kω° : = (£;() , . . . ,0) .

The characters {χχ}λeP+(Xι k) t r a n s f o r m linearly under the action of SL(2,Έ),
defined as follows by its generators (τ,z,u) t—> (τ + l,z, u) and (T,Z,H)>—>

( γ , ^ , M + | ^ ) [23]; these representing matrices (called Kac-Peterson matrices) are
respectively

(^^W (3.2a)



126 T. Gannon, P. Ruelle, M.A. Walton

Su, = i Σ (detw)exp (_2«(P + » ' «P + *)\
wew \ n J

y and / are constants independent of λ and λf, and W is the Weyl group of X\.
The matrices S and T are both symmetric and unitary, and satisfy S2 = (ST)3 = C.
C, called the charge conjugation, is an order 2 symmetry of the Dynkin diagram
of Xι (if non-trivial).

In particular the matrix elements S^χ are all real and strictly positive, and obey
So,λ ^ «Sb,o for all λ G P+(Xik). The quantum dimension 3){X) is defined by

; = ψ = sin[πα.(p + i)/n]

where the product is over the positive roots of Xu and the second equality follows
from the Weyl denominator formula. Note that 3){λ) ̂  1. Those weights λ which
satisfy Θ(λ) = 1 are called simple currents [31]. Except for one single case, namely
^8,2, they are all given [9] by the action λ = J(kω°) of a symmetry J of the
extended Dynkin diagram which does not fix the zeroth node; these / act on weights
by permuting their Dynkin labels. By abuse of language, the same notation J is
used to denote the simple current and the corresponding permutation. The simple
currents permute the weights in the alcove and have the important property that

Sλ,λ< = exp[-2πiQj(λ')]SJU, - exp[-2π/β/(λ)]SA f Λ/ , (3.4)

where the charge Qj(λ) and conformal weight hj are defined by

Qj(λ) = hλ + hj(o) ~ hJ(λ)moά 1 , (3.5a)

, ( 3 . 5 b )

The simple currents were classified in [9] for all simple Lie algebras. Their explicit
form will be given in the text (see Sects. 5 and 7).

The weights in P+(X^k) form a ring, called the fusion ring: the elements are
formal linear combinations over Έ of the weights, and the product λx μ — ̂ Nv

λ v
has non-negative integer structure constants Nv

λ μ called fusion coefficients. These are
defined by the Verlinde formula [34]

c c c*
Lj 2 RLS, RLI n

(3.6a)So,β

They can be computed, at least in principle, by Lie algebraic methods. For example
[22,36,14],

N% μ = Σ (detw)/?^ (3.6b)

= Σ Σ (detw)maltμ(β), (3.6c)

w(λ+β)=v

where w.v = w(v + p) — p, W is the (affine) Weyl group of Xij, and R\ e N

are the Clebsch-Gordan series coefficients of the X\ tensor product λ 0 μ. In (3.6c),
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P(μ) is the set of weights of the Xι representation μ, and multμ(/?) is the multiplicity
of β in μ. It should always be clear from the context whether "λ + μ" refers to the
formal sum of the fusion ring, or the usual component-wise sum.

In this paper, we will classify all modular invariant partition functions

Z= Σ M^'X Xμ' (3.7)
μ,μ'eP+(Xlίk)

for which the integer matrix M defines a permutation σ of the alcove by Mμ>μ/ =
<5μ/?σ(μ). Modular in variance of (3.7) is equivalent to the statement that σ commutes
with the matrices S and Γ, that is,

Tχ,χ> = ^σα),σ(iθ > (3.8a)

Sχ,λ' = ^αxσαo (3.8b)

Any permutation σ of X\^ obeying (3.8a), (3.8b) is called an automorphism in-
variant. Note that they form a group under composition. Since the 0th row of 5 is
the only positive one, (3.8b) implies σ will fix the zero weight (the identity of the
fusion ring)

σ(0) = 0 . (3.8c)

From (3.6a) and (3.8b), σ is an automorphism of the fusion ring:

Kί!l(μ)=nμ (3 8d)
(the converse is not true though). For this reason, the corresponding partition func-
tions are called permutation invariants or automorphism invariants.

We will denote the trivial permutation by σ\. At present three main methods of
systematically constructing non-trivial automorphism invariants are known: conju-
gations, simple currents and Galois transformations can be used. (In principle, these
constructions are independent, but they sometimes overlap, as has recently been
discussed [12].) Any symmetry of the Dynkin diagram which fixes the zeroth node
is called a conjugation; they act on weights by permuting their Dynkin labels, and
as such always define automorphism invariants.

Simple currents provide a large stock of automorphism invariants [31,20]. Let
N be the order of a simple current J. When Nhjφ) is an integer coprime with TV,
we can define a simple current automorphism invariant by setting [32]

σj(λ) = J\λ), with ahm ΞΞ Qj(λ)moά 1 . (3.9)

It can be checked that σj indeed commutes with T and S, and is a permutation of
the alcove.

Incidentally, many special cases of (3.9) were written down first by [3,1,13].
Let us also mention that, when two independent simple currents exist, a different
kind of simple current automorphism than (3.9) sometimes exists, called an integer
spin simple current automorphism [30]. For simple X/, this kind of automorphism
only exists for the Dι series (it is denoted by συsc in Table 1), so that we refrain
from giving the general description and merely refer to the Z)/-Subsect. 5.4 for its
precise definition.

By [λ] we mean the orbit of λ under all the conjugations Q and simple currents
Jj. These orbits play an important role in this paper.
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Another way to construct modular invariants is by Galois transformations. We
see from (3.2b) (in fact this holds for any RCFT [7]) that the matrix elements S^χi
lie in a cyclotomic extension of the rationals Q(ζjv) = Q(exp2πz/7V), for some
algebra-dependent integer N. Its Galois group is isomorphic to Gal(Q(ζ#)/Q) —
TL*N, the group of invertible integers modulo N. It is immediate from (3.2b) that
any element g of the Galois group induces a permutation λ\—>g(λ) of the alcove
through its action on S,

g(Su) = εg(λ)Sg(λU, = εg(λf)Slg{λf), (3.10)

where εg(λ) = ±1 is a sign that only depends on g and λ. The images g(λ) and
g(λ'\ the Galois transforms of λ and λ', can be quite explicitly computed in the
following way. Let ga with a G TL*N be a Galois transformation. Then ga(λ) is the
unique weight in the alcove such that p + ga(λ) = ^a,λ(a(P + λ)) + ncca λ f° r s o m e

Weyl transformation wOtχ and some a%λ G «gv, the co-root lattice. Also the sign
appearing in (3.10) is given by εga(λ) = ε'ga detwa?/u where ε"ga does not depend
on λ and is of no relevance here (it has however been computed in [7]).

Under some conditions, Galois transformations directly define automorphism in-
variants by setting M^χt = δχi^χy This is the case whenever g fixes the identity,
<7(0) = 0, and commutes with T [11]. For instance, the charge conjugation C = S2

always corresponds to g_\. More generally, suppose that g is such that g(0) = J(0)
for some simple current J, and that g commutes with T. (A general argument
of [11] shows g2 = 1 follows automatically from [g,T] = 0.) Then the following
defines an automorphism invariant:

if β,α) = £g(o),
(3.11)

if(λ) (O)\g(λ)

The proof is simple. The extreme l.h.s. and r.h.s. of the equalities

exp[2πίβ/(A)]S0,A = Sm,λ = Sg(0U = εg(0)εg(λ)S0,g(λ), (3.12)

imply
exp[2πίβ/(λ)] = εg(0)εg(λ). (3.13)

The same Eq. (3.12) with λ replaced by J(λ) shows that Qj(J(λ)) = Qj(λ) mod 1.
Thus Qj(λ) can only take the values 0 and ^ modulo 1, and J is a simple current
of order 2, J2 — id. Moreover acting with g2 = 1 on So,^ o n e obtains Qj(g(λ)) =
β/(/l) mod 1. That σg obeys (3.8a,b) can now be verified.

Equation (3.11) appears to be new. We will call the corresponding σ generalized
Galois automorphisms since they reduce to pure Galois automorphisms if g(0) — 0.
In Sect. 6.3 we will show that the Bι2 and £>/j2 exceptional invariants have precisely
this form.

We finish this section with a lemma which will be repeatedly used throughout
the paper. It is a slight generalization of a result proved in [17].

Lemma 1. Let σ be an automorphism invariant for Xίtk. If σ fixes all ω* G
P+(X^k% then σ is the trivial permutation on

To prove this, it suffices to show that any Sχiμ/So>μ can be written as a poly-
nomial P'λ in the ratios Sω^μIS^μ for all ωι G P+iX^k)- This is true because from
(3.8b) and the fact that the identity 0 and all ωι are fixed by σ, one obtains
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Sλ,σ(μ) — $λ,μ for all λ, μ, so that if σ φ l , two columns of S would be equal and
S would be singular. We do know from [17] that Sχίμ/So,μ can be written as a
polynomial Pχ in the ratios Sωi^μ/S^μ for all 1 ^ i ^ I. The problem is that if k
is small, not all ωι may lie in P+(Xjjk) (we use (3.2b) to extend the definition of
S^μ outside the alcove).

Suppose v ^P+(X/^) ? for some weight v. Then either v lies in a wall (boundary
of an affine Weyl chamber), in which case

Sv,μ = 0, VμeP+(Xltk)9 (3.14a)

or there exists a βv G P+(Xιtk), a wv G W, and an element αjf of the co-root lattice
such that p + v = wv(p 4- βv) + notf, in which case

SVtμ = (detwv)Sβv,μ , Vμ e P+(Xι,k) (3.14b)

All that we need to verify is that whenever d( > k, either v = ω z satisfies (3.14a),
or it satisfies (3.14b) with βv — 0 or ωJ for some j . This is automatic whenever
aY = k + 1, or when P+(X/5^) contains only weights of the form 0 and ωJ.

This leaves only EΊ^ with v = ω 3, and £8 )4 with v = ω 5 . It suffices to show
that β v φ 2 ω 6 , respectively ω 1 + ωΊ,2ωι or 2ω7. But p + v and p + βv must have
the same norm modulo 2«, and checking the norms, we find that βv cannot take
these values, so that Lemma 1 is proved for all k.

4. Quantum Dimensions

In this section we use quantum dimensions to find a weight ω^ at each level which
must be fixed (up to extended Dynkin diagram symmetries) by any automorphism
invariant σ.

Recall the definition of quantum dimension 2{λ), given in (3.3). The positive
roots α are explicitly given in e.g. [4]. Let Ά\ be the set of all weights λ G P+(Xιtk)
with the smallest value of 2(λ\ let ^2 be those with the second smallest value,
etc. We know that for all λr e [λ],@(λ) = @(λf).

By (3.8b), (3.8c), we find that @(λ) = 3>(σλ\ hence

σΆm = J m , Vm= 1,2,... (4.1a)

Fuchs [9] found the set Ά\ for any Xιχ. in all cases except one, Ά\ — [0]; the only
exception is £8,2? where Ά\ = [0] U [ω7]. He proved this by regarding Q)(X) as an
analytic function of / real variables λ\,...9λι, defined by the expression in (3.3).
These λ are to lie in the convex hull

P+(Xι,k) •= ( έ ^ ω ' μ , € R έ and ΣW = k\ •
I i=0 i=0 J

It was found in [9] that, for all i = 1,..., /,

J?-0(A) = o = » - ξ - ® 0 l ) < 0 , V, = l , . . . , / . (4.1b)

Though (4.1b) is not strong enough for our purposes, this basic idea will be a
critical step in our analysis.
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The main result of this section is the determination of J 2 for all X\^.

Proposition. (A) for X{ = Au I ^ 1 and k ^ 2 : J22 = [ω1],

(B) for Xι=Bl9l ^ 3 and k ^ 4 : J 2 = [ω1 ],

(C) for Xi = Cu I ^ 2 and k = 1 or I + k ^ 6 : J 2 = [ω1],

(D) /or X, = D ^ 4 am* £ 6 , * ^ 3 : J22 - [ω1],

(E) for Xi =EΊ,Es,F4 and G2,k ^ 5 : ^ 2 = [ ω 6 ] , ^ 1 ] , ^ 4 ] and [ω1] respec-
tively.

For the levels missed by the proposition, we have listed in Table 3 the sets Άm

for small m. Together with the Γ-condition (3.8a) and the selection rule (4.1a), the
proposition and Table 3 give us the following valuable facts.

Corollary. An automorphism invariant σ necessarily satisfies:

(A) σωι e [ω1] for AuCi or E6, any k,

(B) σωβ e [ω6] for E7, any k,

Table 3. Quantum dimensions for small k. Here are listed those exceptional cases missing in the
proposition, and the order on the orbits of the weights, up to [α/], induced by their quantum
dimensions

Xi

Λ,

Bι

c2c2c 3

D,

E6

EΊ

FΛ

G2

k

1

1
2
3

2
3
2

1
2
2

1
2

1
2
3
4

1
2
3
4
1
2
3
4

1
2
3
4

[0] = [ω1]

[0] = [ω1]
[0]
[0]

[0]
[0]
[0]

[0] = [co1]
[0]
[0]
[0] = [ω1]
[0]

[0] = [ω6]
[0]
[0]
[0]

[0] U [co7]
[0]
[0]

[0]
[0]
[0]
[0]

[0]
[0]
[0]
[0]

a-i

[α)ι]U U[o) w ]U[2ω']

[ω2]U[2ω']

[ω'lU Ufω']
[ω'jU Ufω'"1]

[ω2]

[ω']U[ω2]U[ω6]
[2ω7]

W]
[ω8]
[2ω7]

[ω1]
[ω'jUfSω4]

[co1]

[ω']U[ω2]U[3ω2]
[ω2]U[2ω']

[co1]

[ω1]

[ω1]

[co6]

[ω 2]
[2ωι]

[2ω4]
[ft>2]U[o>4]

[2ω2]

[co6]

[ω1]
[ω']U[ω6]

[co3] [co4]



Automorphism Modular Invariants of Current Algebras 131

(C) σω1 G [ω1] for B\ and Dh any

(D) σω4 = ω4 for F4, any

(E) σω 1 — ω 1 and σω2 = ω2 for E% and G2 respectively, any &=t=4.

In what follows, we will denote by ω^ the weight singled out by the proposition
and corollary - so ω^ — ω1 for all but EΊ,F4,G2. Note that in all cases ω? is
the weight of Xι with second smallest Weyl dimension. This is of course not a
coincidence, and happens because, for fixed λ, lim^-^oo @(λ) is the Weyl dimension
of λ.

The remainder of this section is devoted to the proof of the proposition.

Step 1. The first step in the proof of the proposition will be to analyse (3.3), in
order to come up with a small list of candidates λ G P+(X^k) for belonging to Ά2.

Choose any constants a = Σi=o cii(o\ b — Σi=o £;&>*+0, a^b\ G IR. Suppose
that for all t £ [to,t\], a + bt e P+(Xι,k). Then for to ^ t' ^ t\, an easy calculation
gives

0 .^ ( + b)\tt @(a + ) % Σ 3
dt2 JU-f }n2 to sin2[π(α + bt' + p) φ]

(4.2a)

This means that Q)(a + bt) will attain its minimum at one of the endpoints t — t^t\\

for all to<t' < tu @{a + bt')> min{^(α + bt0), 9>{a + btλ)} . (4.2b)

This implies the following rule. Suppose
/

Σ miay = 0 , rriiEZ, (4.2c)
ί=o

and not all mi = 0. If λ G Ά2 and both λ ± m φ J i , then

/I, < I/Wfl for some 0 ^ z ^ /. (4.2d)

To prove this, we take a weight λ of P+(Xιik) and consider the family λ(t) = λ + mt.
With /o = maxi:mι>o(—λi/mi) and ίi = minz:m/<o(—λi/mi), the weights A(0 belong
to P+(Xi9k) for all ί G [ίo,ίi]. Note that A(0 will belong to P+(Xιyk) if t G [/0,ίi]
is integer. If both ±1 G [̂ 0,̂ 1], one obtains from (4.2b) a contradiction to λ G ̂ 2
unless i ( ± l ) G J i . Thus unless one of λ±me£\, we must have 0̂ > — 1 or
t\ < 1, implying (4.2d).

Writing αi7 = gcd(αV,αY), a special case of (4.2d) is that, for each choice of

0 S i < j ύ I
α)α) α

either Xt < — or λ, < — , (4.2e)
α U

again provided λ±{-^ωι — ̂ -ωJ) φ^i Equation (4.2e) implies that if λ G £2,

then at most one λt can be larger than max^αj.
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Any λ which obeys (4.2d) for all choices of rrii satisfying Eq. (4.2c), will be
called a candidate. Step 1 consists of finding all candidates. The result is given in
the lemma below, where we use the following notation. Define the truncation [c] to
be the largest integer not greater than c, and the remainder {c}d to be c — d[c/d].
By μ{ij) we mean the weight

j yωj , (4.3a)

where x and y are given by

k _ ffc\ _ ayx

x = {[k/aMΓ1}^ y = ^ - . (4.3b)

In (4.3b), a[ = β^/% a n d a'j = «//%, and by (α ) " 1 we mean the (integer) mul-

tiplicative inverse modαj. For example, if aY — 2 and aj = 3, we get (x, j>) =

( 0 , § ) , ( 2 , ^ ) , ( 1 , ^ ) for * = 0,1,2 mod 3, respectively, while if αz

v = 3 and

αV = 2 we get (x,/) = (0, | ) , ( 1 , ^ ) for jfc ΞΞ 0,1 mod 2, respectively. Note that

μ(ij) = μ(0y) if Oj divides either a{ or k.
The virtue of (4.3a) is that it gives in one formula almost all candidates

which have at most three non-zero Dynkin labels, one of them being λo if
it has exactly three non-zero labels. Suppose for instance λo9λi9λjφθ. Then
from (4.2d), the choices {m^nii) = (αV, — l),(/wo,/w/) = (aj, — 1) and (m^mumj) =
{ά( — άj9 —1,1) (all others zero in each case) lead to λ0 < min{β^,βj, \ά/ — aj\}-
Checking all possible pairs of colabels, one can see that it implies λ0 < ay, except
for £ 8 if {aY,aJ} = {2,5} or {3,5}. Moreover (4.2e) implies λt < a) or λj < a'i9
say λi < a'j for definiteness. Then

( λo = k

When λo < ay, the r.h.s. of (4.3c) uniquely fixes λo and λi9 which then determines
the value of λj using the l.h.s. of (4.3c) - that is, in this case we find that indeed
X — μ(ij). Finally for E%^9k Ξ 3 , 4 mod5, there are four candidates with λo ^ %,
given separately in Lemma 2.

Lemma 2. (1) The candidates for Auk are [ωf], 1 ^ i S Lγ--
(2) The candidates for Bϊk are: [ωz] for 1 ^ / ^ /, [μ(Oj)] and [μ(lj)] for

1 <j < /, and [ μ ( 0 / ) ] .
( 3 ) The candidates for C\k are: [ω*] for 1 ^ / ^ / α«rf [ μ ( 0 y ) ] / o r l g g

//2.
( 4 ) Γ/zβ candidates for Dι>k are: [ωι] for 1 ^ ί < / and [μ(0/)] /or 1 < j <

I- 1.
(5) The candidates for E6k are: [ωz] for i = 1,2,3,6, [μ(0/)] / ^ 7 = 2,3,6

[μ(23)] and [μ(32)].

(6) 7%^ candidates for Eηtk are: [ωι] for 1 ^ / ^ 7, [μ(//)] /or mo^ ί â/rΛ'

0 S i+j ^ 7, a«J [ω1 '7 + co2'* + ^ ω 3 ] for k = 1 mod4.
(7) 77ze candidates for Es,k are: [ωι] for 1 ^ / ^ 8, [μ(ij)] for most pairs

0 ^ / φy ^ 8, as well as

for k=l mod 4, ω 1 ' 7 + ω 2 ' 8 + ^ ω 3 ' 6 awJ ω 2 ' 8 + ^ ω 3 ' 6 + ω5,
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for £ Ξ Ξ 3 mod4, ω 1 ' 7 + ^ ω 3 ' 6 + ω 4 α/κ/ ^ - ω 3 ' 6 + ω 4 + ω5,

for k=l mod 5, ω 1 ' 7 + ω 3 ' 6 + ^ ω 4 ,

for k = 2 mod5, ω 2 ' 8 + ω 3 ' 6 + ^ ω 4 ,

for k = 3 mod 5, ω 1 ' 7 + ^ ω 4 αwrf ω 1 ' 7 + ^ ω 4 + ω5,

for k = 4 mod5, ω 2 ' 8 -f ^ ω 4 α«J ω 2 ' 8 + ^ ω 4 + ω5,

for k = 1,2 mod6, ω 2 ' 8 + (3 - {£}6)ω4 + [ ^ ] ω 5 ,

/or ifc Ξ 1,3mod6,

fork= I,5mod6,

/or £ = 15, 2

(8) Tfte candidates for F4k are: ωι for ί = l,2,3,4,μ(0/) /or 7 = 1,2,3,4,
μ(4j) for j = 1,2,3, and μ(12),μ(21),μ(23),μ(32).

(9) 77*e candidates for G2,k are: ωι, cσ1,μ(0l),μ(02) and μ(21).

We use the notation ω 1 ' 7 , etc., to denote e/ί/zer ω 1 or ω 7 (but not both simul-
taneously). Lemma 2 holds for any &, though for small k not all of these weights
will lie in P+(X/^) Also, for some k these candidates will not all be distinct: e.g.
for Bhk, k even, μ(lj) = μ(Oj).

We will sketch the proof for the hardest case, namely E%. First note that by
(4.2d), at most one element in each of the pairs (λ\,λΊ), (λ2,λ%), (λ^^λβ) can be
different from zero. For notational convenience, suppose that λ6 = λΊ = λ% ~ 0.

Together with (4.2d), identities like 0 = 3—4 — 5 + 6 tell us that at most three
among λo,...,λ5 can be non-zero. If only one or two of the λi9 for i > 0, are non-
zero, then λ will equal either α/ or μ(ij), or equal ω 1 + ^-ω4 or ω2 + ^ ω 4 , as
we have seen. Thus we may assume here that exactly three of λf are non-zero, and
Λ-o = Λ-6 — h — ̂ 8 — 0.

Now we just run through the various possibilities. For example, suppose λ\,λι,
χ3 φθ . From (4.2e) we have λ\ = 1. Since - 2 + 2.3 - 4 = 0, the inequality (4.2d)
requires λi = 1. Then the fact that λ should be in the alcove at all, fixes /ί3 and
constrains k. For another example, suppose ,̂3,̂ 4,̂ ,5=1=0. Then —4 + 2.5 — 6 = 0,
so that (4.2d) forces λ4 = 1 and (4.2e) requires either A3 ^ 2 or λ5 = 1.

Step 2. Here we will use rank-level duality of the quantum dimensions [28] to
significantly reduce the numbers of candidates given in Lemma 2, for Ah #/, Q, D\.

There is a well-known duality between the quantum dimensions of A\^ and
Λlfc-u-H, Q,it a n ( i Ckj, and SO(m)k and SO(k)m. In particular, writing X^ *-> Xμ //5

we have

2α^(/l) = ^ ( / ) , (4.4)

where & is the quantum dimension for the dual theory X'k, v. In all cases, the
weight 0 for X^ is sent to the weight 0 for X'k, //5 and (λ')f £ [λ]. For X\ = A\ or
C/, a = 0 and Λ/ is defined by saying its Young tableau is the transpose of that of
λ (for this purpose we may identify C\ with A\). The situation for X\ = Bι and Z)/
is slightly more complicated; we will give below all relevant values of λf and a.

When Xι = Bι and k > 6, for each 1 ^ 7 < /, (ωJ)' = jωn with a = 0. Also,

for each 1 < 7 < /, ([ifc^lω 7")7 = 27ω/;t/ with a = 0 for ifc odd and α = - 1 for k

even. For A: even, (kωι)f = 2lω/k with a — — 1, while for A: odd, (kω1)' = ωfk
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with a — — \. Finally, when k is odd, (ωι)f = (21 + \)ω'k with a — \, and for

each 1 < j < /, μ{lj)' = (2/ + 1 - 2j)ωrk' with a = -\.
When Xι = D\ and k > 6, for each 1 ^ y < / - l,(ω^y =yω 7 1 with a = 0,

and for 1 < 7 < / - 1, ([Jt/2]αy); = 2/ω'*' with α = 0 if it is odd, and a = - 1 if
& is even.

This rank-level duality for X\ — Bj and £>/ extends to 3 ^ A: ^ 6 provided:

we identify B\m with A\^m and put ω'1 := 2a)1, ωrk :— ώ 1; we identify £>2,m with

^i,w θ^i,w and put ωn := ώ 1 + ώ2, ω/A: := ώ 1 ; we identify B2,m with C2,m and put

ωn := ώ 2, ω/A: := ώ 1 ; and we identify D3m with ^ 3 m and put ωn := ώ2, ω/A: :=

ώ 1 . By ώz here we mean the fundamental weights for A\, A\(&Ai, C2, and A3,

respectively.
Now we turn to the consequences of this rank-level duality for finding Ά2. Con-

sider first Xι = Cι. Since the duality here between quantum dimensions is exact (i.e.
a = 0 always), we have λ e Ά2 iff Λ/ G J^ This gives us an additional constraint on
λ € £2 λ' must be a candidate of Q,/. However, (ωJ)f — jωn and (kωJ)f = jωfk,
so of these only ωι,ωι and Axυ1 are the duals of candidates. X\ = Aι is similar.

The argument for X\ — Bι and D\ is not much more difficult. Consider for
example B\ when k > 1 is odd, and any 1 < j < I:

n 1 n } = @'(ωn) - 9(ωι), (4.5a)

= min

1), 9(ω1)} , (4.5b)

( h—-^ωj + ω7 J = \/2^7((2/ + 1 - 2j)ω/k')

+ ^ ω ^ X ^ ω ^ ) } ^ min^ίWx^ω 7 )} . (4.5c)

In deriving (4.5) we use both rank-level duality and (4.2b).
Summarizing, we find the following results:

(1) for Ait and k ^ 2 : J 2 = [ω1],
(2) for B[k and it ^ 3 : J 2 C [ω1] U [ωι] U [^ω7],
(3) for C u : J 2 C [ω1] U [ωι] U [fao1],
(4) for Dhk and ĉ ^ 3 : J 2 C [ω1] U [ω7].

J. The remaining candidates λ come in two forms. Some are independent of k
(ignoring λo), while others have an index j > 0 for which the Dynkin label λj grows
linearly with k. The quantum dimensions of the first kind of candidates converge
as k —> 00 to the corresponding Weyl dimensions, while the quantum dimensions
of the second kind of candidates will all tend to infinity. We will consider the two
kinds of candidates separately; in this Step 3 we first address those independent of
k. The quantum dimensions of the final four candidates in Lemma 2, all for i?8,i55

can be explicitly computed, and are all found to be far larger than ^ ^ ( ω 1 ) . All
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other ^-independent candidates are of the form ωι. For the classical algebras, this
step permits us to complete the proof of the proposition.

Let λ,μ be independent of A:, and lie in /+(X/^0). Then directly from (3.3) we

4*<Λ) W W (4.6a)
dk 2k(μ)

where

T Σ IV α cot
" α>0

— β α cot I π
jS α

(4.6b)

From (4.6a), we find that if 9h{λ) ^ ^ 0 ( μ ) , and Ek(λ + p,μ + ρ) > 0 for all
k ^ &o, then ®fc(λ) > ®it(μ) for all levels A: > &o Thus we begin by verifying the
following, for all k ^ 1:

(i) for Bι and / ^ 4
(ii) for C/ and / ^ 2

(iii) for Dι and / ^ 5
(iv) for E6 : f

(v) for EΊ :

7 + ^ ω 1 + p) > 0,
z + p,ωι + p) > 0,

^ *(V + p,ω ! + p) > 0,
f + p, ω1 + p) > 0 for / = 2,3,6,
1' + p,ω 6 + p) > 0 for all zφ6,
1 ! l(vi) for ^s : EjXω1 + p,ω ! + p) > 0 for all iΦ 1,

(vii) for F 4 : ^(ω 1 " + p,ω 4 + p) > 0 for all /φ4,
(viii) for G2 : Ek(ωι + p,ω 2 + p) > 0.

That the result (iii) does not hold for / = 4 is expected since ω 4 G [ω1] there,
and is of no consequence. On the other hand, B^ missing from (i) means it will
have to be treated separately.

We will illustrate how to obtain (i)-(viii), by working out Bι explicitly. Defining
Ci(x) = \{a > 0|α (p + ω1") = x}|, we find for Bf.

-2 if x = 1 ,

— 1 if 3 rg x ^ 2/ — 3 is an odd integer ,

1 if 2xφ 2/ — 1 is an odd integer between 1 and 21 + 1 ,

0 otherwise.

(4.7)

Setting f(x) := cot f, we deduce from (4.7) that for all k ^ 1 and / ^ 4,

Ek(ω! + p,ωι+p)= -/(I) + g / (j + 0 - /(2/ + 1)

1-2

+ Σ ^ ) - /(2y - 1)} (4.8)

The difference of the first two braces is strictly positive because the function f(x)
is concave over [0,«[, while the other terms are positive since f(x) decreases over
[0,«[. Thus Ek(ωι + p,ωι + p) > 0 in this case. The other Xj are done similarly.
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Next, we will find a ko such that all ωι £ P+(Xιtk0), and ̂ 0 ( ω ^ ) ^ ^ 0 ( ω z ) .
For the exceptional algebras this is easy: we just explicitly compare the quantum
dimensions ^ ( ω z ) for the small levels k ^ maxj{aj}. We find, for E^ E-j, E%, F4,
and G2, that ko = 3,4,6,4, and 3, respectively.

For Xι =Bι (I > 3) and D\ (I > 4), it suffices to note that at k = l,ωf e [0]
and ωι G P+(Xιf\). For X\ = Cι, it suffices to compute the level 2 quantum dimen-
sions, which is easy to do from rank-level duality:

A ( U \ ( 3 7 Γ

4 cos — — - cos21 + 6J V2/ + 6. t

(4.9)

We find from (4.9) that 3ι2{ωι) ^ Q)2{ωλ) for all / ̂  3, with equality only if
/ = 3. One more calculation then shows that for C2,^3(ωι) = ^ ( ω 2 ) .

Finally for B3, the quantity Ek(ω3 + p, ωι + p), as given on the first line of
(4.8), is negative for all k ^ 1, so that ^ ( ω 3 ) / ^ ( ω 1 ) decreases with k. But
since its value tends to 8/7 as k —> 00 (the ratio of the Weyl dimensions), it is
bigger than 1 for all k.

Hence from (i)-(iii) above, together with the results of the previous step, one
obtains that [ω1] has the unique smallest quantum dimension among the [ωι] for
Bij and Z)/^, k ^ 3, and also for C/^, l,k ^ 2 and / + £ ^ 6.

This immediately concludes the proof of the proposition for Z)/^, k > 2, but in
fact is also enough to complete the proof for B^k and C/^ For Q^, the rank-level
duality described in the previous step implies

3){kωx) = &{ωrk) > &{ωn) = 3)(ωι), (4.10)

for all /, k ^ 2 and / + k ^ 6. When A: = 1, to1 = ω1 and ω7 e [0]. The remaining
cases C2,2>Cr2,3 and C3?2 can be checked explicitly with the results given in Table 3.

For Bι, and k > 6 odd, rank-level duality implies

The same applies when k > 6 is even. For k = 3, we can explicitly compute
all quantum dimensions, using rank-level duality; we find the result indicated in
Table 3. For 3 < k ^ 6, it suffices to show 3){ωλ) < 3{kωι) - again, rank-level
duality is the most efficient means. For example,

sin2 (577.) J sin (5717)
_ \2i±3i ωίjAnΛ = 2 . ; 2 / + 3 ( . (4.12)

p /. All that remains is to compare ^ ( ω O with ^(/ l^) for those candidates λk

of the exceptional algebras which depend explicitly on k. For each λk, there exists

a unique Dynkin index j' > 0 such that (A^)7 grows like A/αJ. For each λk, we

will consider @k(λk) separately for each congruence class of k modulo aj. Then
k along such a congruence class can be written as a product of

( 4 ' 1 3 a )
sin(πy/,)
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for α, β, y independent of n and obeying the inequalities

O ^ α ^ - , 0 < α + j8/n < 1, 0 < y < n . (4.13b)

Now, gaβγ(n) is an increasing function of n ^ 0 if β < 0 or α = 1/2, or of n ^ 2β

if β > y. Also, for 0 < α < \9gφ(n) is an increasing function of

n ^ max < ,2y > . (4.14)

These lower bounds for n suffice to reduce the proof of the proposition for the
exceptional algebras to a finite computer search.

Write dim(ω^) for the Weyl dimension of the representation of Xι with highest
weight ωΛ The strategy is to use these simple results concerning when gaβγ(n) is
increasing with n, to find a level ko such that ί^(ΛA) is increasing (along each
congruence class of k) for k ^ ko. Running through all ^-dependent candidates and
their congruence classes, we obtain the following ranges for ko : 2 to 2 for G2\ 7 to
7 for F4; 10 to 10 for E6; 14 to 14 for EΊ\ and 28 to 29 for Es. Explicitly computing

for k < ko, we find that in fact for each λk

9 Θk(λk) is monotonieally
increasing along each congruence class of k modulo aj.

Now for each λk and each congruence class of k9 let k\ be the first level
satisfying dim(ω^) ^ ^^(ΛA1). F° r k\, we get the following ranges: 5 to 6 for G2',
5 to 7 for F 4 ; 5 to 7 for E6; 5 to 13 for EΊ\ and 7 to 31 for Es.

We know from (4.6a) that @>k(ωf) is monotonieally increasing; by the Weyl di-
mension formula it converges to dim(ω^). Therefore we know ^ ( ω ^ ) < ί^(ΛA)
for all k ^ k\. The remaining finitely many k can then be explicitly checked on a
computer.

5. The Classical Algebras

In this section, we proceed to detail Steps 2 and 3 of the proof of the theorem,
as outlined in Sect. 2, for the four series of classical simple Lie algebras, with the
exceptions of B^2 and £>/,2 which we consider in Sect. 6. In each case, we first
recall the relevant Lie algebraic data, and then explicitly give all automorphism
invariants. The fusion products we need are computed using (3.6c).

5.7. The A-Series. All colabels a( are equal to 1, so that hw — I + 1 and a
weight of P+(Aιfk) satisfies λo + λ\ -\ h λι = k. The charge conjugation C acts
as C(λ) — (λo;λuλι-\9...9λ\) and is trivial if / = 1.

The simple currents form a cyclic group of order / + 1, generated by J with ac-

tion J(λ) = (λι\ λo9λ\9...9 λi-\), corresponding to a rotation of the extended Dynkin

diagram. Their charge and conformal weight are equal to Qjm(λ) = jfϊY^j=ιjλj

and hjm{0) = km(l + 1 - m)/2(l + 1).
Choose any positive integer m dividing /-hi , such that k(l + \)jm and m are

coprime if m is odd, and such that k{l + l)/2m is an integer coprime with m if m
is even. In both cases, this means that we can find an integer v such that vk(l+
I)/2m = 1 modm. To each such divisor m of / + 1, one associates the automorphism
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invariant given by

and first found in [13]. These and their conjugations C o σm are the automorphisms
appearing in Table 1; that they form the complete set is proved in [17]. The total
number of different automorphism invariants equals 2c+p+t, where

- 1 if / = 1 and k = 2,

c = { 0 if / = 1 and £ φ 2 , or / ^ 2 and k g 2 ,

1 otherwise

p = number of distinct odd primes which divide / 4- 1 but not k; (5A.2)

0 if either / is even, or / is odd and k = 0 mod 4 ,

t = { or / = 1 mod 4 and k is odd ,

1 otherwise.

All Aik automorphism invariants have order 2 and commute.

5.2. The B-serίes. A weight in P+(Bhk) satisfies λ0 + λ\ + 2λ2 H h2Λ,/_! +
Xι — k, and the dual Coxeter number of B\ is hy = 2/ — 1. As #2 — Qz, we take
/ ^ 3.

The charge conjugation C is trivial, but there is a simple current of order 2,
which exchanges the zeroth and first components, J(λ) — (λ\;λo,λ2,...,λι). It has
Qj(λ) = λι/2 and hj^) — k/2. When k is odd, there is the simple current automor-
phism invariant [3],

σj(λ) = Jχi(λ\ for k odd . (5B.1)

As reported in Table 1, this is the only non-trivial invariant for &φ2, whereas for
k = 2, there are a number of exceptional invariants. As already apparent in Table 3,
k = 2 is very special, and we defer its full description to the next section. The case
k = 1 is straightforward (see [15]). We proceed here with the proof when / ^ 3
and k ^ 3.

From the corollary of Sect. 4, we know that the action of any automorphism on
the first fundamental weight is necessarily of the form σ(ωι) = Jb(ωι). Suppose
b = 1. Then the norm condition yields

(p + Jωι f - (p + ω 1 f = (k - 2)/ι = 0mod 2n . (5B.2)

Therefore σ(ωι) = J(ωι) requires k to be even.
The basic idea of the proof is the same as for the Aι series in [17], but with the

extra complication that not all fundamental representations are contained in fusion
powers of ω 1 . Thus we need a second weight, for which a convenient choice is the
spinor ω1. The full proof (for k + 2) includes three steps:

(i) we first show that an automorphism which fixes ω 1 and ωι is necessarily
trivial (this result also holds for k = 2);

(ii) assuming that ω 1 is fixed, we find only four possibilities for σ(ωι) consis-
tent with the action of σ on the fusion product ψ x ω1 (here φ = ω2 is the adjoint
representation); from this, we easily conclude that the only globally acceptable
solutions are σ\ (all k) and σ — σj (k odd);
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(iii) finally, we show that the assumptions k even and σ(ωι) =J(ωι) are not
compatible with σ being an automoφhism of the fusion ring.

We first of all introduce the orthogonal basis {e*}, convenient for computing
fusion products. So we will set λ = [x\,x2,...,xι], with the orthogonal components
given in terms of Dynkin components by

Xl = χi + ... + χl_ι + h> (5B.3a)

xι = j . (5B.3b)

In this basis, the metric is the identity λ λ' = Σiχiχi> an<^ * n e Weyl vector is

(i). We start off by proving that if ωι and ωι are both fixed by σ, then all
weights are fixed, so that σ = σ\. The weights of the defining representation ω1

are {0, ±e/}i^/^/, so that

a)1 x ω 1 = 0 + ω2 + (2ω 1 ) , (5B.4a)

ω

λ x oi = co1-1 + coi+ι + (ω1 + ω1"), for 2 ^ z ^ / - 2 . (5B.4b)

The norms of the weights appearing in (5B.4) read (p + ω1)2 = p 2 + i(2l + 1 — z)
for 1 ^ z ^ / - 1, (p + 2a)1)2 = p 2 + 4/ + 2 and (p + ω 1 + ω<)2 = p 2 + i(2l +
1 — z) + 2/ + 2, also for 1 ^ z ^ / — 1. Assuming σ(ωι) = ω 1, we obtain that σ
must permute the weights on the r.h.s. of (5B.4a). But a non-trivial permutation is
forbidden by the values of their norms, so that σ(ω2) — ω2. The same argument
applies to (5B.4b) with z = 2, showing that ω 3 must be fixed by σ, and by induc-
tion, all weights ω\ i < /, must be fixed. If ωι is assumed to be fixed as well,
then Lemma 1 implies that the whole of the alcove is fixed, and that σ = σ\.

(ii). Here we assume that ω 1 is fixed by σ, and show that the only automoφhisms
with this property are σ — σ\ and, for k odd, σ — σj.

The fusion (5B.4a) shows that the adjoint φ = ω2 = [1,1,0,..., 0] must be fixed
by σ. We first compute the fusion of φ with the spinor ωι = [\,..., ^ ] , then compare
it with that of φ with σ(ωι) and require they be compatible.

The weights of the spinor representation ωι are P(ωι) = {[=b^,...,zb^]} (with
uncorrelated signs), so that the weights appearing in φ x ωι have the following
form: (a) in the first two positions, there will be ^'s and | ' s , but a \ followed by
a \ puts the weight in a wall of the alcove (meaning it would be fixed by a Weyl
reflection and so does not contribute), and (b) in the last 1 — 2 positions, there will
be ^'s and — ^'s, but a — j followed by a ^ or an ending — ^ also puts the weight
in a wall (recall that we are using weights not shifted by p). Thus

3 I I ] I"3 I 1 1
2 ' 2 ' ' " ' 2 j + | _ 2 ' 2 ' 2 ' ' " ' 2

Set λ = σ(ωι). The weight diagram of the adjoint is the set of roots of Bι so that

P(φ) + λ = {λ±ehλ± {et - βj\ λ ± (βi + ej), λ}λύi<jύ i . (5B.6)
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From (5B.5) and (3.8d), we require that Nψ λ = 1. But mult^(O) = /, and this im-
plies from (3.6c) that there should be / — 1 non-zero roots α such that the weights
λ — α get out of the alcove and brought back onto λ by an odd Weyl transformation.
Looking at all non-zero roots, we find that those which can take λ — α out of the
alcove and off the walls are:

1. The /-hi affine simple roots α/ (αo = ~Φ) iff Λ, α/ = 0 for / ̂  1 (i.e. the
zth Dynkin label equal to zero), and λ φ = k for ί = 0. One easily checks that
Wi(p + λ — (Xi) = p + λ with Wi the Weyl reflector through the ith hyperplane. [For
/ = 0, the reflection is given by wo(λ) — λ + (n — λ φ)φ.]

2. The roots α = =b^ + eι for 1 ̂  / ̂  / — 1 iff λ α/ = x/ = 0. In this case,
we have w/(p + λ — α) = p + /I =F e*, so that the weights Λ, ± e, — e/ and λ ± β/ all
cancel out.

Since the condition Nφ λ = 1 requires that (/ — l)λ ' s cancel against some λ — αf

for some choice of (/ — 1) affine simple roots α, , we find that A must have either
/ — 1 zero Dynkin labels and satisfy λ φ = x\ + X2 < A:, or else / — 2 zero Dynkin
labels and satisfy A φ = x\ +X2 = k. In addition, the fusion φ x λ must contain
exactly three weights. From (5B.6), the result is that these two conditions, NΪ λ — 1
and ΣμNψ χ = 3, force λ to be one of the following four weights:

λ = σ(ωι) G {ω\j(ωι\ω\J(ω1)} . (5B.7)

The first weight in (5B.7) must be discarded since it was assumed to be fixed

by σ. If λ = J(ωι), then using N^j) * = A/J , a straightforward consequence of

_ g2ιπ*/£ a n ( j ^ e Verlinde formula, we obtain from (5B.4a),

= [A:-2,0,...,0] + [A:-l,l,0,...,0] + [^0,.. .,0], (5B.8)

which must be the transform by σ of

ω1xω/ = ω/+ ί^^ ^ ] ' ( 5 B 9)

clearly impossible.
The solution λ = σ(ωι) = ωι leads to σ = σ\ by step (i), since σ then fixes both

ω 1 and ωι. The remaining possibility λ = J(ωι) requires k odd for norm reasons,
and leads to the simple current automorphism σ — oj of (5B.1). Indeed σjι o σ,
fixing ω 1 and ωι, must be trivial, implying σ = oj.

(iii). We now assume that k is even and that σ(ωι) =J(ωι). With the results of
step (ii), it is easy to show that these assumptions lead to a contradiction: for k ^ 4
even, we will find that there is no automorphism such that σ(ωι) = J(ωι).

The identity NJ{λ)J(μ) = N^μ implies from (5B.4a),

ωι xωι = J ( ω 1 ) x / ( ω 1 ) = 0 + ω 2 + (2ω 1 ) . (5B.10)

As before, we obtain that the adjoint φ must be fixed, since σ must preserve the
r.h.s. of (5B.10). The argument we used in the second part (ii) then shows that
λ = σ(ωι) must be one of the four weights in (5B.7).
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Take first λ = coι. This again implies that the fusion product (5B.8) must be the
σ-transform of that in (5B.9), which is impossible. The second weight λ = J(ωι)
in (5B.7) must also be discarded since J(ωι) = σ(ωι) is already the image of ωι.

If λ = ωι, we obtain from (5B.9), using once more NJ$ = Nv

λ ,

Again (5B.11) must be the image under σ of (5B.9). This requires that ωι =
[^,...,^] be in the r.h.s. of (5B.11), implying k=l or k — 2, contrary to the
assumption k ^ 4.

Finally, λ =J(ωι) requires k odd.
Therefore, all four possibilities in (5B.7) lead to a contradiction, and the proof

of the theorem is complete for the Bj^ algebras, &Φ2. D

5.3. The C-Serίes. A weight of P+(Cιtk) satisfies λ0 + λ\ H h λι = k and the
dual Coxeter number is equal to hw = / + 1. Here too, the charge conjugation

C is trivial, and there is one simple current J, of order 2, defined by J(λ) =

(λι;λι-ι9...9λuλo). It has h m = kl/4 and Qj(λ) = Σj=i7V2

When kl = 2 mod 4, there is a simple current automoφhism invariant given
by [3]

σj(λ) = J2QΛλ\λ\ if kl = 2 mod 4 . (5C.1)

The diagonal invariant σ\ and σj are the only automoφhism invariants (note that
for / = 2 and k = 1, Oj = σ\).

Let σ be any automoφhism invariant of C/^ From the corollary of Sect. 4, we
have that, for any k, σ(ωι) = Jb(ωι) for some b — 0, 1. Suppose b = 1. Then the
norm condition yields

(p + ω 1 ) 2 = (p + Jω1)2mod2/ι => i(W - 2)w = 0mod2« . (5C.2)

Therefore σ ( ω 1 ) = / ( ω 1 ) requires kl = 2 mod 4. But precisely for those values
of k and /, there exists the automoφhism invariant σj9 whose action on ω1 is
also σ(ωι) — J(ωι). Thus replacing σ by σj1 o σ, we may assume for all k that
^•(α;1) = coι

9 and show that the only such automoφhism is trivial. This will com-
plete the proof for the Q series.

The fusion of ωλ with the other fundamentals reads

ω1 x ω

ι = 0 + ω2 + (2ωι), (5C.3a)

ω

ι x ω

ί - = ω1'"1 + ω ί + 1 + (ω1 + ω1'), for 2 ^ / ^ / - 1 . (5C.3b)

The norms of the weights in the r.h.s. of (5C.3a—b) are equal to (p + ω1)2 =
p2 + , (/ + i - i ) , (p + 2ω 1 ) 2 = p 2 + 2/ + 2, and (p + c^+ω1")2 = p 2

| ) + / + | . Assuming that ω1 is fixed by σ, the norm argument shows from (5C.3a)
that ω2 must be fixed, and then from (5C.3b), that all α/ are fixed as well. In turn,
Lemma 1 implies that all weights of P+(C/^) must be fixed, and σ = σ\. •
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5.4. The D-Serίes. A weight of P+(DUk) satisfies λ0 + λ\ + 2λ2 H h 2Λ,/_2 +
λι-\ + λι = k, and the height is n = k + 2/ — 2. Since D 3 = ^3, we will assume
/ ^ 4.

For any /, there is the outer automorphism

C i α ) = (^,;Ai,...,λ/_2,A/,A/_i). (5D.la)

For / odd, C = C\ is the charge conjugation, while for / even, the charge conju-
gation is trivial. Moreover when 1 = 4, there are four new outer automorphisms
given by

C2(λ) = (λo;λ4,λ29λs,λ\), C3 = QC2, C4 = C2C1, C5 = C1C2C1 .

(5D.lb)

Together with CQ = σ\, these six Cz correspond to the different permutations of the
Dynkin labels λ\,λ-i,λ^.

There are three non-trivial simple currents, Jυ, Js and Jc = Jv o Js. Explicitly, we
have

Jυλ = (λι;λo9λ29...,λι-2,λhλι-ι)9 (5D.2a)

Qv(λ) = (!/_! + λι)/29 hJv{0) = k/2 . (5D.2b)

The expressions for Js and J c depend on the parity of / and are given by

λr9λι-ι,λι-29...9λuλo) if/iseven, /m~> ^
Q Q Q Q Q \ -ί 1 ^^ (5D.2c)
l/-i ;Λ/,λ/_2,. . . ,λi ,Ao) if / is o d d ,

Qs(λ) - Σjλj/2 - l-^λχ-χ - -Λu hJs{0) = kl/S , (5D.2d)

and
((λι-\;λι,λι-2,. .,λ2,λo,λι) i f / i s e v e n ,

\(λr9λι-ι9λi-29...,λ29λo9λι) if /is odd,

ι-2 I 1 — 2
β ( T \ V ^ ,* Q /O 2 Q Z, 7̂ 7 IQ (cn Oΐ*Λ

cv^/ — 2-jJjl — T^/—1 — "Ίi "Jc(0) — rCl/o . yjD.Δl)

All three simple currents have order 2, except Js and J c which have order 4 if / is
odd. We denote by Ns the order of Js (equal to the order of Jc).

Corresponding to these simple currents, one defines the following simple current
automorphism invariants

συ(λ) = Jv

λι-ι+λι(λ\ if k is odd, (5D.3a)

σs(λ) = J^klQs{λ)l\λ\ if Nskl Ξ 8 mod 16 , (5D.3b)

σc(λ) = Jc*klQc{λ)β(λ\ if Nskl = 8 mod 16 , (5D.3c)

with σs = σc if / is odd. The automorphism invariant συ was found in [3] as well
as σs and σc for / even, while σs for / odd was discovered in [1].

The last simple current automorphism invariant for Dij, when k and / are both
even and &/Ξθmod8, was found in [30]. It is the integer spin simple current
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automorphism we mentioned in Sect. 3, and explicitly reads

λ if Qυ(λ) = 0, Qs(λ) = Omod 1 ,

Jv(λ) if Qv(λ) = 0, Qs(λ) = I mod 1 ,
1 (5D.3d)

Js(λ) if Qv(λ) = \, Qs{λ) = Omod 1 ,

Jc(λ) if Qv(λ)=\, ftWΞlmodl.

Obviously any product of these with each other (when the values of k and kl
allow it) and with the Q will define other automorphism invariants. Together, they
generate all of them, for A:φ2.

When k = I = 2 mod 4, σs and σc generate an Abelian subgroup of order 4, con-
taining the elements σ\,σs, σc, and σs o σc = σc o σs. In this case the automorphism
invariants are just C"σb

sσ
c

c, where a,b,c = 0, 1.
When 1 = 4 mod 8 and k is odd, the subgroup generated by σs and σc is of

order 6, and consists of the elements σ\,σs,σc,σs ° <*c>Gc ° <?s> and σso σco σs —
σc o σs o σc = σv. Any automoφhism invariant in this case will look like C7σ, where
σ G {σs,σc) and C7 is one of the 2 (/φ4) or 6 (/ = 4) conjugations.

In general we have C\σv — σvC\, Cjσvsc — σvscCj and C\σs — σcC\. Also,

When k = 2, there are in addition a number of exceptional invariants, detailed
in the next section, and first found in [12]. The proof for k — 1 was done in [15].

We now proceed to show, for A: ̂  3, that this list of automoφhism invariants,
also summarized in Table 1, is exhaustive. As usual, we first use the results of
Sect. 4 to restrict the possible values of σ(ωι).

Let σ be any automoφhism invariant of D\^. From the corollary of Sect. 4, we
have that, for any A:φ2, σ(ωι) = Cy«//«/1f(ω

1), where Cj is some conjugation, and
a,b = 0,1. By replacing σ with Cj o σ, we may drop Cj.

Consider first the possibility a— l,b = 0. Then

(kl \
(p + ω 1 ) 2 = (ρ+Jsω

})2 mod2« => ί — - 1 1 n = 0 moά2n . (5D.4)

Therefore σ(ωι)=Js(ωι) requires kl = 4mod8. When / is even, there exists an
automoφhism invariant σs for these A:, / with the property that ^ ( ω 1 ) = Js(coι);
in this case, replacing σ with σs o σ, we may assume σ(ωι) — ω 1 . On the other
hand, when / is odd, the charge conjugation C\ = S2 must commute with any
automoφhism invariant: i.e. C\ o σ o C\ — σ. But this would be violated if σ(ωι) =
J ^ ω 1 ) , since Js(ωι) = Jc(ωι) only happens when k — 2. Thus the case a— \,b — 0
cannot apply when / is odd. The identical argument applies to a = b = 1.

Finally, consider a = 0, b = 1. In this case

(p + ω1 )2 Ξ (p + Λω 1 ) 2 mod2n => (k - 2)n = 0 mod2/ι . (5D.5)

Therefore σ(ωι) = Λ ί ^ 1 ) requires A: even. If in addition kl = 2 mod 4, then replace
σ with σsoσ. If instead / is also even, and kl = Omod8, then replace σ with
σvsc o σ. Finally, if / is even and kl = 4 mod 8, the replace σ with σs o σc o σ. So
in all cases, after composing it with adequate automoφhisms, one may assume
σ(ωι) = ω1 except if both k = Omod 4 and / is odd, in which case σ(ωι) = Jv(ωι)
remains a possibility.
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The idea of the proof is exactly the same as in the Bι series, and is only slightly
more complicated due to the larger number of outer automorphisms. More precisely,
for A:φ2, we will go through the proof of the following three points:

(i) an automorphism which fixes ω 1 and the spinor ωι must be trivial (true even
for k = 2);

(ii) assuming that ω 1 alone is fixed, there are now twelve possibilities for σ(ωι)
consistent with the action of σ on the fusion product φ x ωι; apart from the trivial
solution σ = σ\9 this will imply that the only globally acceptable solutions are C\
(all k) and συ,C\συ (for k odd);

(iii) finally, the assumptions &Ξθmod4, / odd and σ(ωι) = Jv(ωι) are not
compatible with σ being an automorphism of the fusion ring.

Again we first introduce an orthogonal basis {β/} in the weight space, and write
λ = [x\,X29 - - ,xi] with the new components given in terms of the Dynkin labels as

Xi = λi + + λι-2 + -(/l/-i + λι), (5D.6a)

*/_i = -(A/_i+λ/), (5D.6b)

xι=l-{-λι-λ+λι). (5D.6c)

In that basis, the metric is the identity λ λ' = Σiχiχi> a n d m e Weyl vector reads

(i) Let us show that if ωι and ωι are both assumed to be fixed by a σ, then all
weights are fixed as well and σ = σ\. The weight diagram of the defining repre-
sentation is the set P(ωι) = {i^z}i^/^/, and we obtain the following fusions:

ω

ι x ω

ι = 0 + ω 2 + (2ωι), (5D.7a)

ω 1 x ω1' - ω'- 1 + ωi+ι + (ω1 + ω1"), for 2 ^ / ̂  / - 3 , (5D.7b)

co1 x ωz = ω 7 " 1 + (ω1 + ωι). (5D.7c)

The usual norm argument applies once more. The first fusion (5D.7a) implies that
ω2 is fixed by σ if ω 1 is fixed. Then (5D.7b) shows that all fundamental weights
ω\ for 3 ^ / '^ I — 2, are fixed. Finally, assuming ωι fixed, the last fusion forces
ωι~ι to be fixed as well. From Lemma 1, the conclusion follows that all weights
in P+{D^k) are invariant, or σ = σ\.

(ii) We assume here that σ(ω1) = ω1 and classify all automorphisms with that
property, for A: ̂  3.

The fusion (5D.7a) shows that the adjoint φ — ω2 = [1,1,0,..., 0] must be fixed
by any σ which leaves ω 1 invariant. We will compute the fusions φ x ωι and
φ x σ(ωι) and require their compatibility, thereby restricting σ{ωι).

The weight diagram of the spinor ωι is P(ωι) = {[d=^,...,±^]}, where the
number of — signs is even. Arguing as in the 2?/ case, we find

i ΐ
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Denote X — σ(ωι). The weight diagram of the adjoint is the set of roots of Dι so
that

P(ψ) + λ = {λ±{ei-ej\ λ±(ei + ej)9 λ}Xύi<jύl . (5D.9)

Again, muΓt^(O) = /. As in Bι, this implies that there must be / — 1 non-zero roots
α such that X — α gets out of the alcove and is mapped back on X by an odd
Weyl transformation. In this case, we find that the only non-zero roots which can
take X — a out of the alcove are the / + 1 affine simple roots αz , with αo = —φ.
Moreover X — α; is out of the alcove if and only if X oct• = 0 for / ^ 1, and
X . φ = k for ί — 0. One also checks that wz(p + X — a,i) = p + X with wt the Weyl
reflector through the /th hyperplane. Therefore, N^ λ = 1 if and only if either / — 1
Dynkin labels are zero and X φ — x\ + X2 < k, or else 1 — 2 Dynkin labels are
zero and λ-φ = x\ -\-X2=k. The other condition we obtain by comparing (5D.8)
and (5D.9) is that the fusion φ x X must contain exactly three weights. Altogether
the two conditions Nφ λ — 1 and ΣμN^ ;, = 3 force X = σ(ωι) to be one of the
following twelve weights (given in the Dynkin basis):

X = ω\ ωι~\ ( * - 1,0,...,0,1,0), (k - 1,0,...,0,1), (5D.10a)

X = ω\ (k- l ,0 , . . . ,0) , (5D.10b)

λ = (0,. . . ,0, l , i fc-l), (0, . . . ,0,/c-1), (1,0,. . . , ik- 1,0),

and ( 0 , . . . , ( U - 1,1), (0,...,0,A: - 1,0), (1,0,...,0,^ - 1). (5D.10c)

It remains to examine these 12 possibilities case by case.
The four weights in (5D.10a) correspond to X = σ(ωι) with σ given respectively

by σ = l,C\9σv and C\συ (the last two requiring k odd for norm reasons). These
four automorphisms all leave ω 1 fixed, so that composing them with σ leaves us
with an automorphism which fixes both ω 1 and ωι', hence trivial by step (i). This
shows that σ = <τ\,C\,συ and C\σv everywhere.

The possibility X = ωι must be discarded since ω 1 was assumed to be fixed.
The second one, X = (k — 1,0,...,0) = Λ(ω 1 ), must also be excluded. Indeed the
identity N^μ) = Nv

Kμ applied to ω 1 x ω 1 yields

ω1 x Λ ( ω 1 ) = Λ ( 0 ) + Λ ( ω 2 ) + Λ ( 2 ω 1 ) . (5D.11)

This must be the image under σ of the product ω1 x ωι given in (5D.7c), and
which contains only two fields in its r.h.s., leading to a contradiction.

As to the six weights in (5D.10c), it is enough to consider the first three,
XI : = ( 0 , . . . , 0 , l , £ - \\X2 : = ( 0 , . . . , 0 , i - 1) and X3 := (1,0,.. .,0,* - 1,0), since
the last three are their conjugates by C\. Let us compare the fusions of ω 1 with ωι

and with X1:

ωι x ωι = (ωι + ex) + (ωι - et), (5D.12a)

ω

x x χι = (X1 + eι) + (X1 - eι-ι) + (λι - e{), (5D.12b)

ω

x

 X /i2 = (A2 + ^ i ) _ h ( A 2 _ e / ) 5 (5D.12c)

co1 χX3 = (^3_ e i ) + ^ 3 + eιy (5D.12d)
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Assuming (p + ω1)2 = (p + λι)2mod2n for consistency, one obtains the norms

(p + ωι - eif = (p + ω1)2 , (5D.13a)

(p + λ2 + e?i)2 = (p + A3 - e θ 2 ΞΞ (p + ω') 2 + nmod2n , (5D.13b)

(p + Λ2 - e/)2 = (p + /I3 + eif = (p + ω') 2 + 2 - £mod2« . (5D.13c)

From (5D.12a) and (5D.12b), we see σ(ωι)ή=λ\ Comparing (5D.12a) with
(5D.12c), we obtain either σ(ωι — eι) — λ2 + e\ or λ2 — e/. But the former is ruled
out by the norm condition (5D.13b), and the latter leads by (5D.13c) to k = 2,
contrary to the assumption k ^ 3. Thus λ2 must also be excluded. The weight λ3

is similarly ruled out, because the norm condition either leads to a contradiction, or
else forces k = 2.

(iii) We finish the proof by showing that there is no automorphism satisfying
σ(ωι) = Jυ(ωι) if both k = 0mod4 and / odd.

As in step (ii), the fusion

ω 1 x ω 1 = Jv(ωι) x Jv(ωι) = 0 + φ + (2ωι) (5D.14)

shows that φ must be fixed, consequently that λ = σ{ωι) must be one of the twelve

weights in (5D.10) (see the argument in step (ii)).

Assume first λ = ωι. Using NJ^μ = Λ Ĵμ leads to

ω 1 x ωι = (ωι + ex) + (ωι - e{) , (5D.15a)

JΌ(ωι) x ωι = (ωι + (jfc - l)βi) + (ωι~ι + (k - 2)ex). (5D.15b)

Trying to match the r.h.s. of (5D.15a) and (5D.15b), the norm forces either k odd
or k = 2. Thus λ = ωι is impossible, as is its conjugate λ = ωι~ι.

The next two possibilities, λ = (k — 1,0,..., 0,1,0) and its conjugate, correspond
to λ = Jv(ωι) and λ = C\Jυ(ωι), which require k odd.

The case λ = (k — 1,0,...,0) =Jυ(ωι) is clearly impossible since it is already
the image of ω 1 . As to λ = ω 1, it is forbidden for the same reason as in step (ii),
namely because σ(ωι x ωι) = ω 1 x Jυ(ωι) and that the two fusions do not contain
the same number of fields, see (5D.7c) and (5D.11).

The first and fourth weights of (5D.10c) are ruled out as in step (ii). From
(5D. 12b), we obtain (A1 - (0,...,0, l,k - 1))

Jv(ωι) x λx =JΌ(λι+eι) + Jυ(λι-eι-ι) + JΌ(λι-eι). (5D.16)

Since there are only two weights on the r.h.s. of (5D.12a), (5D.16) implies
σ(ωι)φλι. Similarly, σ(ωz)Φ(0,...,0,A: - 1,1).

There now remain four weights in (5D.10c), namely λ2 = (0,...,0,£ — 1),
A3 = (l,0,...,0,£ — 1,0), and their C\-conjugates. But the norm condition implies
f = /mod4 if σ(ωι) = λ2, and f = / + 2mod4 if σ(ωι) = λ3, and these congru-
ences are not consistent with the assumptions / odd and k = 0mod4 that we made.
This finishes the proof of step (iii), and that of the theorem for the Dik algebras,

D
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6. The Orthogonal Algebras, Level 2

As already clear from Table 3, something special happens for the orthogonal al-
gebras when the level k is equal to 2: a large number of fields have equal quan-
tum dimensions. This has the immediate consequence that the technique we used
in the previous section is no longer available. More importantly however it hints
at the fact that the current algebras B^2 and D\2 have a much richer spectrum
of modular invariants than at the other levels. Indeed, exceptional automorphism
invariants have been recently discovered in [12] for most orthogonal algebras,
level 2. It is the purpose of this section to show that the list of automorphisms
anticipated in [12] form the complete set, and to give a detailed description of
them.

6.1. The B-Series, Level2. The alcove P+(Bι^) contains / + 4 weights: the identity,
the / fundamental weights ω\ and the three combinations 2ω 1 ,ω 1 -f ωι and 2ωι.
For what follows, it is convenient to rename / of these weights as

v1' := ω\ for 1 ̂  / ̂  / - 1 and vι := 2ωι . (6.1)

At level 2, the height for Bιa is equal to n = 21 + 1.
For any number x, we define [x]n to be the unique number 0 ^ [x]n ̂  | satis-

fying x = ±[x]nmoάn for some choice of sign. Then for each integer m satisfying
m2 = \ moan, we define the following permutation of P+(Bιt2)'

for all 1 < i < I,

ifλe{092ω\ωι+ωι,ω1}.

We leave the proof that the σm actually define automorphism invariants for
Sect. 6.3, where we inteφret them as generalized Galois automorphisms. Note that,
since σm(vι) = v[m]", we obtain that σm = σmι if and only if [m]n = [m!]n, or equiv-
alently m = ±m' mod n for some sign. It is easy to show that if p denotes the
number of distinct prime divisors of n, then the number of distinct σm is equal to
2p~λ. Also note that σm o σmr = σmmι so that all automorphisms commute and are
of order 2. All but σ\ are exceptional. We want to show that the σm maps are the
complete set of automorphism invariants for B\2>

The quantum dimensions of Bι2 are given in [24]:

1 ) = 1 , (6.3a)

+ ωι) = 9{ωι) = Λ/H , (6.3b)

^ V ) = 2, for all 1 ̂  / ̂  /. (6.3c)

Let σ be any automorphism of B\^ Equations (6.3), together with (3.8a), (3.8c),
force σ(λ) = λ for λ G {Q,2ω\ωι + ωι,ω1}. Write σ(v1) = vw; the norm condi-
tion (3.8a) then reduces to n— 1 = (n — m)mmod2n, i.e., m2 = Imodn. Now,
σ and σm have the same action on ω1 and ωι. Thus σm o σ leaves them both
fixed, and must be the identity by step (i) of Sect. 5.2, proving σ = σm every-
where. D



148 T. Gannon, P. Ruelle, M.A. Walton

6.2. The D-Series, Level 2. The height here is n = 2 + hv = 21. The / + 7 weights
in P+(Z)/?2) will be denoted by

κ\κ2,κ\κ4 :=0,2ω 1 ,2ω / ,2ω / " 1 , (6.4a)

μι,μ2,μ3,μ4 := ωι~\ωι

9ω
ι +ωι~\ωι +ωι , (6.4b)

j := ω\ for 1 g / ̂  / - 2, and v'"1 := ω / - 1 + ωι . (6.4c)

For each m satisfying m2 = Imod4/, we define a mapping σm on P+(D^2) by

/) = v[mi]n for all 1 g / g / - 1 , ^

/I if A G ] V V } i ^ 4 ,

with the same definition of [x]n as in the previous subsection. It will follow from
Sect. 6.3 that all σm are generalized Galois automorphisms, and as such, that they
define automorphism invariants.

Our task in this subsection is to prove the following. For / = 4, there are pre-
cisely six automorphism invariants, namely the six conjugations Q (all σm are
trivial in this case). For / > 4, any automorphism invariant of Dί2 equals C\σm

for a = 0,1, and σm as in (6.5a). Moreover, C"σm = C\ σmt iff both a = af moά2
and m = ±m /mod2/ for some choice of sign.

Thus the number of automorphism invariants for / > 4 is precisely 2P, where
p is the number of distinct prime divisors of /. When Zφ2mod4, all but two
of these, namely σ\ and C\, are exceptional (σs = σc = C\ and συsc = σi); when
/ = 2mod4, all but four of them, namely C\σh

ι_v are (σs = σc = σ/_i). Note that
for / > 4, the composition law is

Ca

λσmoCiσm, =Ca

x

+a' σmm,, (6.5b)

so that the automorphisms are all of order 2 and commute.
Let us begin with Zλ^ Computing the norms, we find that ω ^ ω 3 , and ω 4 are

the only weights in the alcove with norm equal to 5 mod 16, and ω2 is the only
one with norm equal to 10 mod 16. Therefore any automorphism σ must fix ω2 and
permute ωι

9ω
3

9 and ω 4. Thus for one of the conjugations Q of D^Ct o σ fixes all
the ωJ\ so must equal the identity by Lemma 1.

The quantum dimensions for D12 are computed in [24]:

= 1 for 1 ^ z ̂  4 , (6.6a)

y/j for 1 g i S 4 , (6.6b)

^(v z) = 2 for 1 g 1 ̂  / - 1 . (6.6c)

For / > 4, 3){K1^ < 3>{yJ) < @(μk), so that the three sets of weights must be sta-
ble under any σ. Computing the norms, we find that σ{μι,μ2} = {μι,μ2}, so replac-
ing σ by C\ o σ if necessary, we may assume σ(μ2) = μ2. The mapping σ(vι) = vm

is allowed by the norm condition (3.8a) only if m satisfies m2 = 1 mod4/; since σ
and σm coincide on {ωι,ωι}9 they coincide everywhere. D

6.3. Galois and the Level 2 Exceptionals. It is very tempting to interpret the auto-
morphisms σm in (6.2) and (6.5a) as pure Galois automorphisms, but in fact not all
are. For 2?/2, the Galois group (over Q) of the extension Q ( ^ ^ ) is contained in
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TL\n. Recall that for a Galois transformation ga to define an automorphism invariant,
it has to fix the identity, ga(0) = 0, and to commute with the modular matrix T.
Leaving the Γ-condition aside for the moment, let us look at the other one, and let
us suppose that the permutation of the alcove induced by ga fixes the identity. If
that is so, ga must leave the quantum dimensions (6.3) invariant, and in particular
da(V^) = λ/n- It is a standard result in number theory [19] that ga(V^) = (n/ahVn,
where ( / )j is the Jacobi symbol, defined in terms of the Legendre symbol and
the prime decomposition of a by:

)!' u ^ ' - < 6 7 )

We conclude that ga can define an automorphism invariant only if a satisfies
(njά)j = + 1 , and one can show that, together with the Γ-condition, this is also
a sufficient condition. It is now an easy matter to show that the norm condition
alone, which roughly speaking amounts to a2 = 1 mod«, is not sufficient to guar-
antee that (n/a)j — + 1 . If however {nja)j = +1 is satisfied, then σm(λ) = ga(λ) is
a Galois automorphism invariant upon setting m = a moan. Similar conclusions ap-
ply to Z)/j2: the Γ-condition and (q/a)j (aj2t)J = + 1 , where / = q 2* and q odd,
are necessary and sufficient conditions for ga to define a pure Galois automorphism,
which then equals σm upon setting m = a moan.

However one can show that both (6.2) and (6.5a) have the generalized Galois
form (3.11). Whenever S£o G Q (this is satisfied by BU2 and DU2 with S$f0 = l/4/ι
in both cases), then

g(So,o) = ±So,o = ^(O)^ (o),o (6.8)

for any element g of the Galois group, and therefore g{0)—J(β) for some simple
current J. For Dι^J = '\ά. or Jv, because ^ ( ω ! ) G Q and (3.13) imply Qj{ωλ)eΈ.
To commute with T,ga must obey a2 = lmod2/i/V, where N = 1,2,4 for / Ξ O ,
2, zblmod4, respectively. On the other hand, the Galois group for the orthogonal
series is 2 ^ , where M = 2,4 when / is even, odd, respectively. Now for any m
obeying m2 = I moan (for B12) or moάln (for D12), it is easy to verify that an
a e 1L*Mn can be found such that a = m mod n and ga commutes with T. We want
to show σm = σga, up to a conjugation.

First note that for 2?/2, any automorphism σ must fix ωι (see Sect. 6.1), and for
Z)/2, either σ or C\ o σ will fix ωι (see Sect. 6.2). Therefore σm{ωι) — C' o σQa(ωι)
for some conjugation C. By step (i) of Sects. 5.2 and 5.4, it suffices to show
σm(ωx) — Co σga(ωι). This can be seen from the following formulas:

^ > ) , (6.9a)
n J

for Dh2:
S-f^ =2 cosί^f) . (6.9b)

S0,vJ \ l J

Equation (6.9a) can be found in [24], while (6.9b) can be derived directly from the
formula

Sωιtλ = S0,λ Σ exp[-2πz> (λ + p)/n] , (6.10)
ι

where P(ωι) is the weight diagram of the defining representation of Bj and Z)/.
Clearly we have 2 = ga(^(ω1)) — @(ga(ω1)), so that ^ ( ω 1 ) = v7 for some j .
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Applying ga to (6.9a) and (6.9b) yields ga(ωι) = v^n, and consequently C" o
σga(ωι) = C oj(ga(ω1)) = v[a]n, as claimed.

So we have proved that, up to conjugation, all automorphisms of B^2 and D\2

are generalized Galois automorphisms of the form (3.11). Let us also mention that
in some cases, all of them can in fact be realized as pure Galois automorphisms
as well as generalized ones. The reason for this is that, to a single m satisfying
m2 = 1 mod n or 2«, there are in general several a G Έ^n such that a = m mod n
and ga commutes with T. This happens for instance when / is odd. For Bi^J
odd, ga commutes with T if a2 = 1 mod Sn. But then a! — a + In also satisfies
a12 = 1 mod 8w, and both a and a! lead to the same m by reduction modulo n. They
however make a difference because (n/a')j = {—\)ln{n/a)j, so that, for / odd, either
9a ° r 0a7 fiχes the identity. Hence σm = σQa or σ^, is a pure Galois automorphism.
The same conclusion holds for Dι2 when / = 3 mod 4.

7. The Exceptional Algebras

We complete in this section the proof of the theorem for the five exceptional simple
Lie algebras. Fusion rules will be most easily presented by writing decompositions
of tensor products of finite Lie algebra representations, since fusion coefficients are
identical to the coefficients of truncated tensor products [8,25], with the truncation
related in a simple way to the level. Explicitly, we can write

λ®λf = ®®m(kt)
μ

λλ,(μ)kt, (7.1a)

with the fusion coefficient Nχλ, at level k determined by

Nlλ, = Σ m(ktfλλ, . (7.1b)
kt=Q

Equation (7.1a) presents the fusion rules for all levels in an economical way. It is
just the tensor product λ 0 λ'9 with the representations in the decomposition labelled
by the threshold level kt at and above which the corresponding affine representation
appears in the corresponding fusion rule. In particular, the tensor product coefficients
(or Clebsch-Gordan series coefficients) are

00

Rμ

λχ>=Σm<<ktfχx'- ( 7 l c )
kt=0

For convenience we will also include a superscript indicating the "norm squared"
of the highest weight of the representations in the tensor product decomposition:

A® A7 = © 0 ^ ^ , (μ)ft

μ\ with n(μ) := (p + μf . (7.1d)
μ kt

7A. The Algebra E6. The colabels of E6 are equal to (1,2,3,2,1,2), so that
a weight of P+(E6tk) satisfies λ0 + λ\ + 2λ2 + 3λ3 + 2λ4 + λs + 2λ6 = k and the
dual Coxeter number is equal to 12. The charge conjugation acts as C(λ) =
(λo; λ5, /l4, λs, λ2, λ\9λβ).
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There is a simple current J of order 3, given by Jλ = (>L5; /lo,^, A3, A2, Ai, A4).
Its charge and weight are Qj{λ) — {—λ\ + λ2 — λ4 + As)/3 and Ay(o> = 2fc/3. When
k is coprime with 3, there is a simple current automorphism invariant [1]

σj(X) = jMi-*-2+*4-*5\fy9 if (^3) = 1 . (7.2)

Note that for * = 1,2, σj = C.
When A: = 0mod3, there are only two automorphism invariants, σ\ and C, and

there are two more when k ^ 4 and 3 are coprime, namely σ/ and Cσj (σj is of
order 2, σ2 = σi).

Let σ be any automorphism invariant of Ew From the corollary of Sect. 4, we
have that, for any k, σ(ωι) = CaJb(ωι) for some a = 0,1, b = 0,1,2. Replacing σ
with Ca o σ, we may assume a = 0.

Consider first Z> = 1. The norm condition yields

(p + ωι)2 = (p+Jωι)2mod2n=> ^(k - I)n = 0moά2n. (7.3)

Therefore σ(ωι) =J(ωι) requires k = Imod3. But for precisely these k, the au-
tomorphism invariant σj has the same action on ω 1, σj(ωι) =J(ωι). Replacing σ
with σj o σ for these k, we may assume b = 0. The argument for b = 2 is identical,
so that for all k, we may assume σ(ωι) — co1, and prove that the only automorphism
with that property is σ\.

Consider first the finite-dimensional Lie algebra tensor product

ω

x®ωλ = (ω2)21 1^ Θ ( ω 5 ) f ^ Θ(2ω1)21 5^ , (7.4a)

with subscript threshold levels indicating the corresponding fusions. Since ω1 is
fixed by σ, the weights on the r.h.s. of (7.4a) must be permuted. However, from
the superscripts, we read that the norms are all different, so that the permutation
must be trivial. In particular ω2 and ω 5 must be fixed as well. By considering in
a similar way the following sequence of tensor products, we can establish that all
fundamental weights of E6 are fixed by σ, for all levels k ^ 1. The following three
tensor product decompositions are sufficient:

ω

ι 0 ω

5 = (0)f θ (ω 6)^ 0 2 Θ (ω1 + ω 5)^ 1 4 , (7.4b)

ω1 <g> ω2 = (ω3)\26 Θ (ω 6)^ 0 2 Θ (ω1 + ω 2)^ 3 2 Θ (ω1 + ω 5)^ 1 4 , (7.4c)

co1 ® co6 = ( ω 1 ) ^ Θ (ω4)\Ulϊ Θ (ω1 + ω 6 ) ^ . (7.4d)

We note that ω',/Φl, appears in the fusions (7.4) if and only if the value of k
allows it to be in P+{E^)- Thus all fundamental weights in the alcove must be
fixed by σ, and by Lemma 1, this shows that σ = σ\ as soon as σ(ωι) = ω 1, and
the proof is complete. D

7.2. The Algebra EΊ. A weight in the alcove satisfies λ0 + 2λ\ + 3λ2 + 4λ$ +
3A4 + 2A5 + 6̂ + 2λj = k, and the dual Coxeter number is hv = 18. The charge
conjugation is trivial, but there is a simple current J of order 2, given by

(λ6;λ5,...,λuλ0,λΊ). It has Qj(λ) = (λ4 + λ6 + λΊ)/2 and hm = 3t/4.
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When k = 2 mod 4, it gives rise to the simple current automorphism invariant [3]

σj(λ) = Jλ*+λ*+λΊ{λ\ ifk = 2mod4 . (7.5)

We note that σj = σ\ for k = 2.
There is only the trivial automorphism σ = σ\ when k φ 2 mod 4 or k = 2, and

for & > 2 and £ =. 2 mod4, there are two, σ\ and σj.
From the corollary of Sect. 4, we know that, for any automorphism and any

value of k, σ(ω6) = Jb(ω6) for some 6 = 0,1. Suppose 6 = 1 . Then

(p + ω 6 ) 2 = (p -h/ω 6) 2mod2« => ί -k - 3 j w = 0mod2« . (7.6)

Thus σ(ω6) = / ( ω 6 ) requires A: = 2 mod 4. Precisely for these k, the automoφhism
invariant σj has the property that σj(ωβ) = J(ω6). Replacing σ with σj o σ, we
may assume 6 = 0. Thus for all &, we may assume σ(ω6) = ω 6, and prove that the
only such automoφhism is σ\.

For k _ 1, all fundamental weights α/ belonging to P+(E7^) appear in the
fusions (7.7) and the usual argument shows that they must be fixed by σ. The
fusion threshold levels of the following tensor products [33] were obtained using
the affine Weyl group:

co6 ^ co6 = (0)}" 5 Θ (ω1 ) 2 3 5 5 Θ (ω 5) 2 5 5- 5 θ (2ω 6) 2 5 9 ' 5 , (7.7a)

ω 1 (8) ω6 = (ω6)f8 θ (ω 7 )f 2 θ (ω1 + ω 6 ) f 6 , (7.7b)

ωι®ωι= ( 0 ) i " 5 θ (ω 1) 2 3 5- 5 θ ( ω 2 ) 2 7 L 5 θ (ω 5) 2 5 5- 5 θ (2ω1)2 7 5-5 , (7.7c)

ω1 (8) ω7 = (ω4)f2 θ (ω6)f8 θ (ωΊ)f2 θ (ω1 + ωβ)f6

(7.7d)

f 9 5 θ (ω 1) 2 3 5- 5 θ (ω 2 ) 2 7 1 ' 5 θ (ω 3 ) 3 0 7 ' 5

θ (ω 5) 2 5 5- 5 θ (2ω1)2 7 5-5 θ (2ω6)2 5 9-5 θ (2ω 7 ) 3 1 L 5

θ (ω1 + ω5)f 5 5 0 (ω 6 + ωη)f 3 5 . (7.7e)

Going through these five products and assuming σ(ω6) — ω 6, we have successively
that ω\ω5,ωΊ,ω2,ω4 and ω 3 must be fixed by σ. By Lemma 1, the whole of the
alcove must be fixed. D

7.3. The Algebra Es. Here a weight satisfies λ0 + 2Ai + 3A2 + 4/l3 + 5λ4 + 6A5 +
4^6 + 2λγ + 3̂ 8 = A:J a n d the dual Coxeter number is 30. The charge conjugation is
trivial and there is no simple current (except for an anomalous one at k = 2 which
does not give rise to an automoφhism invariant).

We will show that for all levels &=f=4, there is only the trivial automoφhism
invariant σ\, and that for k — 4, there is a second, exceptional one we call σe%, and
which was first given in [10]. It permutes the fundamental weights ω1 and ω6 and
fixes all other weights:

1 fixes all other weights .



Automorphism Modular Invariants of Current Algebras 153

This is not a Galois automorphism: the Galois group for Eg,k is ^ + 3 o 5 9a commutes
with T iff a2 = 1 moάn\ so the only possible ga at k = 4 are #i and #_i, both of
which give σ\. Remarkably, in the set of all automorphism invariants for all simple
X\ and all levels k9 σe% is the only one that cannot be explained in terms of simple
currents, conjugations, Galois transformations or these combined.

Let σ be any automorphism invariant of E^k- From the corollary of Sect. 4,
we have that, for any k 4=4, σ(ωι) = ω 1 . For k = 4, the only other weight in the
alcove which has the same quantum dimension as ω1 is ω 6, so that the additional
possibility is σ(ωι) — ω6. But in this case we can replace σ with σe% o σ so that
the new σ fixes ω 1 . Thus for all k, we may assume σ(ωι) = ω 1 . The proof will
be complete if we show that any such automorphism is necessarily trivial.

We show that if ω1 is fixed, then so are all ω\ for 1 ^ i^ 8, which are in the
alcove. By the usual norm argument, the fusions encoded in the following sequence
of tensor products establishes the result except for ω 5 :

co1 ® ω1 = (0)2

620 Θ (ω1 )3

680 θ (ω2)3

7 4 0 θ ( ω 7 ) 7 1 6 θ (2ωι ) 7 4 4 , (7.9a)

ω ω7 = (ω1 )2

680 θ (ω2)3

7 4 0 θ ( ω 7 ) 7 1 6 θ (ω 8 ) 7 6 4 θ (ω1 + ω 7 ) 7 8 0 , (7.9b)

ω1 0 ω 8 = ( ω 2 ) 7 4 0 θ ( ω 3 ) 8 0 0 θ ( ω 6 ) 8 1 6 θ ( ω 7 ) 7 1 6 θ ( ω 8 ) 7 6 4

θ (ω1 + ωΊ)Ί

4

s° θ (ω1 + ω 8 ) 8 3 0 , (7.9c)

ω1 0 ω 3 = ( ω 2 ) 7 4 0 θ ( ω 3 ) 8 0 0 θ ( ω 4 ) 8 6 0 0 ( ω 6 ) 8 1 6

θ ( ω 8 ) 7 6 4 θ (ω1 + ω 2 ) 8 0 6 θ (ω1 + ω 3 ) 8 6 8 θ (ω1 + ω 7 ) 7 8 0

θ (ω1 + ω 8 ) f ° 0 (ω 2 + ω 7 ) 8 4 4 . (7.9d)

These fusions were calculated from the corresponding tensor products listed in [26]
using the affine Weyl group.

The remaining fundamental representation, ω 5, is contained in the following
tensor product:

ω 6 0 ωΊ = ( ω 2 ) 7 4 0 θ ( ω 3 ) 8 0 0 0 ( ω 4 ) 8 6 0 0 (ω 5)^ 2 0 0 2(ω6)8

?

1

5

6

0 ( ω 7 ) 7 1 6 0 ( ω 8 ) 7 6 4 0 (ω1 + ω 2 ) 8 0 6 0 (ω1 + ω 3 ) 8 6 8

0 (ω1 + ω 6 ) 8 8 4 0 2(ωι + ω7)78

5° 0 2(ωι + ω 8 f 5

0

0 2(ω2 + ω 7 ) 8 4 4 0 (ω 2 + ω 8 ) 8 9 6 0 (ω 3 + ω 7 ) 9 0 8

0 (ω 6 + ωΊt26 0 2(ω7 + ω8)87

5° 0 (2ω 7 ) 8 2 0

0 (ω1 + 2ω 7 ) 8 8 8 0 (2ωι + ω 7 ) 8 4 8 . (7.9e)

This time, the norm argument is not sufficient to show from (7.9e) that σ must also
fix ω 5. However, one can show that the only representations that can possibly be
exchanged with ω 5 are (2ω 7 ) 8 2 0 and (2ωι + ω 7 ) 8 4 8 , and that can only happen for
levels k = 20 and k — 6, respectively. But it is then easily checked for these levels
that their quantum dimensions differ, so that at the end ω 5 too must be fixed. Thus,
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for all k ^ 2, all fundamentals ωι in the alcove must be fixed if ω 1 is fixed, and
Lemma 1 implies once more that σ = σ\, completing the proof for £ 8 Π

7.4. The Algebra F4. A weight in P+(F^k) satisfies λ0 + 2λ\ + 3λ2 + 2λ3 + λ4 = k,
and the dual Coxeter number is hv — 9. The charge conjugation C is trivial, and
there is no simple current.

We will show that for k + 3, σ\ is the only automorphism invariant, and that
at k = 3, there is one more, namely the exceptional σ/4, first found in [35]. It is
given by

[ permutes ω2 <-> ω4 and ω 1 <-» 3ω4 ,
σ/4 : < (7.10)

[ fixes all other weights .

In fact this permutation equals the one induced by the Galois transformation g5,
given by (3.11) (a pure Galois automorphism). For k = 3, the relevant Galois group
is isomorphic to Z | 4 , and one finds, in the notation of Sect. 3, that gs(λ) = σ/4(λ).

From the corollary of Sect. 4, we have that for &φ3, an automorphism must
satisfy σ(ω4) = ω 4. From Table 3, the only other possibility at k — 3 is σ(ω4) = ω 2,
but in this case, we can replace σ by σ/4 o σ and assume that ω 4 is fixed. The
conclusion follows if we show that σ(ω4) = ω4 implies σ = σ\.

This is easily done with the following two tensor products:

ω

4 0 ω

4 = (0)f θ (ω1)^7 θ (ω 3 ) f θ (ω4)?1 θ (2ω 4 )f , (7.11a)

ω 3 ® ω 4 = ( ω ! ) f θ (ω2)^5 θ (ω 3 ) f θ (ω4)^1

θ (ω1 + ω 4 )] 1 θ (ω 3 + ω4)7

3

s 0 (2ω 4 )f . (7.11b)

The norm condition implies that all representations in these two products must be
fixed by σ if ω 4 is fixed, so in particular those fundamentals lying in the alcove
are fixed, implying σ = σ\ by Lemma 1. D

7.5. The Algebra G2 A weight in the alcove satisfies λo -h 2λ\ + λi — k, and
hv — 4. There is no charge conjugation nor simple current.

The only non-trivial automorphism invariant σg2 is found at level k = 4 [35]. It
is the following permutation:

I permutes ωι <-> 4ω2 and 2ωλ <-> ω2 ,
σg2 : < (7.12)

[ fixes all other weights .

The Galois group Z | 4 is the same as for F43, and g$(λ) = σg2(λ) also holds here.

From the corollary of Sect. 4, the second fundamental weight ω2 must be left
invariant by any σ, for k + 4. At k = 4. Table 3 shows that the only other possibility
is σ(ω2) = 2ωι; in this case, composing σ with σg2 allows to assume that, here too,
ω2 must be fixed.

It remains to show that an automorphism fixing ω2 is trivial. This immediately
follows from the tensor product

ω20ω2 = (0$ 0 (ωι)lfl Θ (ω2)^ Θ (2ω2)^4 , (7.13)

which shows that ω 1 is fixed, and from Lemma 1. D
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8. Conclusion

In this paper, we have established the complete list of automorphism modular invari-
ants for unextended current models based on finite-dimensional simple Lie algebras.
More precisely, we have classified the modular invariant forms, sesquilinear in the
affine characters, obtained by twisting the diagonal invariant by an automorphism
of the fusion ring. Some of these invariants correspond to torus partition functions
of WZW models [13]. In particular, the diagonal invariants describe WZW mod-
els based on simply-connected simple Lie groups. The WZW partition functions for
nonsimply-connected groups can be obtained by "orbifolding" the diagonal invariant
[18]. Many of our invariants can be obtained by similarly "orbifolding" the con-
jugation invariant. But many others await interpretation. For example those Galois
automorphism invariants which cannot be written as simple current invariants seem
problematic at present. Another interesting case is provided by the exceptional in-
variant of i?8,4 which, in the list of invariants for all simple algebras and all levels,
is the only one that cannot be described in terms of simple currents, conjugations
and/or Galois transformations.

Although the list of automorphism invariants constitutes major progress towards
the general problem of classifying modular invariants for conformal current mod-
els, more technical problems need to be overcome before the full list of modular
invariants can be contemplated. Among the most striking ones, let us mention the
fixed point resolution problem, and more importantly, the classification of the chiral
extensions of Kac-Moody algebras. A humbler task should be to extend our anal-
ysis to the remaining semi-simple Lie algebras - something of direct value for the
Goddard-Kent-Olive models.
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