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Abstract: An account is given of the structure and representations of chiral bosonic
meromorphic conformal field theories (CFT's), and, in particular, the conditions
under which such a CFT may be extended by a representation to form a new
theory. This general approach is illustrated by considering the untwisted and
Z2-twisted theories, Jf (A) and Jf (A) respectively, which may be constructed from
a suitable even Euclidean lattice A. Similarly, one may construct lattices A<$ and
Acg by analogous constructions from a doubly-even binary code ^ . In the case when
^ is self-dual, the corresponding lattices are also. Similarly, J f(Λ) and J f(yl) are
self-dual if and only if A is. We show that M'(A^) has a natural "triality" structure,
which induces an isomorphism Jf(/l^) = Jf(Λ<#) and also a triality structure on
3^(A<g). For # the Golay code, A<g is the Leech lattice, and the triality on J^(A^)
is the symmetry which extends the natural action of (an extension of) Conway's
group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and
Meurman's construction of the natural Monster module in a more general context.
The results also serve to shed some light on the classification of self-dual CFT's.
We find that of the 48 theories J^(A) and 3&(Λ) with central charge 24 that there
are 39 distinct ones, and further that all 9 coincidences are accounted for by the
isomorphism detailed above, induced by the existence of a doubly-even self-dual
binary code.

1. Introduction

In this paper we shall provide the details omitted from the summary of our results
given in [1].

The principal result of the paper will be to show how a study of binary linear
codes leads to an understanding of some of the symmetries of conformal field
theories (CFT's). We shall restrict ourselves of self-dual chiral bosonic theories,
which are regarded as trivial by approaches to the CFT classification problem which
rely upon a study of the fusion rules for the representations of some chiral algebras
[2]. (For general reviews of CFT see [3,4].) Hence, a complete understanding of
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these "trivial" theories would seem to be essential to obtain, and further our results
show that such theories are not necessarily without an interesting structure.

Indeed, one such theory, constructed initially by Frenkel, Lepowsky and
Meurman (FLM) [5] from the Leech lattice, possesses only discrete automorphisms,
which close to form the largest of the sporadic simple groups, the Monster group
[8-10]. Building on previous work generalising the construction of this Monster
module to other lattices [11], we show that a certain subgroup of discrete sym-
metries, known as triality, which is the key to the construction of the action of the
Monster in the FLM theory, can be seen in this more general context. Triality is
seen to occur in some theories as an obvious consequence of the existence of a
corresponding binary code, and can be lifted to provide an isomorphism between
otherwise potentially distinct CFT's and further to the triality structure of the form
exhibited by FLM, though in a more general setting. Hence, we see that triality and
binary codes provide insight into the classification of bosonic self-dual theories, and
a more general framework in which to view the hitherto mysterious Monster group.

In addition to these investigations of lattice constructions, we provide a gen-
eral treatment of the representations of bosonic CFT's. We discuss the notions of
a subconformal field theory and of a hermitian structure on a CFT, and demon-
strate that, under certain conditions, we may extend a CFT by a representation to
form a new CFT. A particular example of this is provided by the twisted lattice
construction, which gives the Monster module in the case of the Leech lattice. Our
treatment is based on the approach of [12], which was inspired by the work of
FLM and Borcherds' general approach to "vertex operator algebras" [13]. Results
in a similar direction have also been independently described in [14]. This, and ref-
erences therein to the mathematical literature on vertex operator algebras, contain
material on the calculus of formal variables which provides an alternative method
of rendering our results mathematically rigorous.

The layout of the paper is as follows. Sections 2-4 cover the general aspects of
conformal field theories and their representations. In Sect. 5, we sketch the straight
and Z2-twisted lattice constructions of CFT's and the analogous constructions of
lattices from binary codes. Further details may be found in [11]. Section 6 gives
the results of these constructions, and discusses the connection with the Monster
provided by the work of FLM, while in Sects. 7 and 8 we exhibit the triality structure
in this general framework. Our conclusions are presented in Sect. 9.

2. Definitions and Elementary Properties

In this section, we define what we shall mean by a meromoφhic bosonic conformal
field theory (frequently referred to in this paper simply as a "conformal field theory"
for brevity), and review some of the properties which follow from this definition.
[For physicists familiar with conformal field theory, note that we shall consider
only bosonic meromoφhic chiral conformal field theories defined on the Riemann
sphere, i.e., they are holomoφhic, in the sense that there is only a dependence on
the complex variable z and not its conjugate z*, with meromoφhic matrix elements
and "commuting" vertex operators in the sense of (2.4)].

Definition 2.1. A meromorphic bosonic conformal field theory ( ^ , J*\ V, |0),i/t)
consists of a Hubert space of states Jf, a dense subspace 3F [typically the
Fock space of states of finite occupation number for some set of harmonic



Conformal Field Theories, Representations and Lattice Constructions 63

oscillators] and a set V of linear operators called vertex operators V(φ9z\ which
are linear maps J f —>• J f parameterised by a complex variable z, in one-to-one
correspondence with the states φ G #\ [We shall use the Dίrac notation \φ), but
will write this simply as φ, where it is notationally convenient.] There are two
special states in #", the vacuum |0) and a conformal state φι. We shall take the
product V(φuZ\)V(φ2,z2) - - to be well-defined only for \z\ \ > \z2\ > (see [28]).
The theory must satisfy the properties PI-6 detailed below, and is said to be a
hermitian conformal field theory if it satisfies in addition property P7.

PI. We define the moments of the vertex operator of φι to be given by

V(ψL,z)= ΣLnz~n-\ (2.1)

and demand that they provide a representation of the centrally extended Virasoro
algebra

[Lm,Ln] = (m- n)Lm+n + ̂ m(m2 - \)δm^n , (2.2)

with L\ =L_n and Ln\0) = 0, n ^ - 1 . [Note that we shall see later that the
requirement (2.2) may be weakened slightly and still hold, in the presence of the
remaining axioms.]

P2. The vertex operators satisfy

)|0) = e ^ - ψ , (2.3)

and also

P3. The bosonic "locality" relation

V(φ,z)V(φ, 0 = V(φ, C)V(φ,z). (2.4)

More precisely, we require that the matrix elements of the product V(φ,z)V(φ,ζ)
between states in J^ should be defined for \z\ > \ζ\ and that the function this defines
by analytic continuation be regular except for possible poles at z, ζ = 0, oo and
z = ζ. Then (2.4) should be interpreted to mean that the functions obtained from
either side in such a manner are equal. (Note that any extension of the defini-
tion of the vertex operators V(φ,z) from !F to the space of generalised coherent
states V(φuzι)V(φ2,z2) V(φN,zN)φ for \z\ >\zλ\> \z2\ > \zN\ and φ e &, if
it exists, is unique because of the fact that $F is dense in J"f.) (Note also that we
could allow a relative minus sign between the two sides of (2.4), corresponding to
fermionic fields.)

The property P2 is equivalent to the conditions

[L-l9V(ψ9z)] = ^V(ψ9z) (2.5)

and
lim V(φ,z)\0) = φ . (2.6)
z—»0

(In particular φι = L_2|0).) Equivalently (2.5) can be expressed in the form of the
"translation property"

ewL-i V(φ,z)e~wL-1 = V(ψ,z + w) . (2.7)
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From the locality condition (2.4) we can establish a uniqueness property of the
vertex operators.

Proposition 2.2. If U(z) satisfies

U(z)\0)=ezL-ιφ, (2.8)

for some φ £ #", and is local with respect to the system of vertex operators, then
U(z) = V(φ,z).

Proof The proof is straightforward, since

U(z)eζL-iψ = U(z)V(ψ9ζ)\0) = V(ψ9ζ)U(z)\0)

= V(ψ,ζ)ezL~ιφ = V(ψ,ζ)V(φ,z)\0)

= V(φ,z)V(ψ9ζ)\0) = V(φ,z)eζL-iφ . (2.9)

Thus, taking ζ -> 0, we deduce U(z) = V(φ9z). D

Thus, to demonstrate a given operator to be a vertex for a particular state all
we have to do is show that it is local with respect to V and has the appropriate
action on the vacuum.

We may apply this uniqueness property to (2.5) to deduce that, since -^V(ψ,z)
is local with respect to V,

^ F 0 A , z ) = F ( Z _ n A , z ) , (2.10)

since both sides are local with respect to V and have the same action on the vacuum,
from (2.3).

Similarly, uniqueness immediately implies that V(φ,z) is linear in φ and that
F(|0),z) = 1, again using (2.3) (and the fact that Z,_i|0) - 0).

In addition, we have

Proposition 2.3. The "duality relation:

V(ψ,z)V(φ,ζ) = V(V(φ,z - ζ)φ,ζ). (2.11)

Proof Again this is a consequence of the uniqueness argument (note that the prod-
uct on the left-hand side of (2.11) is local with respect to V, because each of the
factors is). We use (2.3) and the translation property, i.e.,

V(ψ9z)V(φ9ζ)\0) = V(ψ,z)eζL-ιφ = eζL-iV(φ,z - ζ)φ

= V(V(ψ9z-ζ)φ9ζ)\0). D (2.12)

[Note that, as discussed following property P3, these equalities are to be inter-
preted in the sense of analytic continuation of the functions one obtains by taking
matrix elements of the given operators in #\]

These results serve to demonstrate the powerful role played by locality in con-
formal field theory.

Proposition 2.4. Skew-symmetry:

L z ) φ . (2.13)
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Proof. Using (2.11) together with (2.3) we obtain

V{φ,z)V(φΛ)\0) = V(V(ψ,z-ζ)φ,ζ)\O)=eζL-iV(φ,z-ζ)φ. (2.14)

But using (2.4) first gives

V(φ9z)V(φ9ζ)\0) = ezL-^V{φX-z)φ . (2.15)

Thus, comparing (2.14) and (2.15) one obtains (2.13). D

This result will be of use in later chapters when we come to defining what are
called the intertwining operators. Note that it also immediately implies linearity of
V(φ,z) in the state φ.

Let us also assume

P4. xL° acts locally with respect to V, i.e., xL°V(φ,z)x~L° is local with respect
to V.

[Note: we could alternatively assume that the spectrum of Lo is integral (which
we deduce in Proposition 2.9 in our present treatment), and then (2.16), and thus
the locality of the action of Lo, would follow as a consequence of (2.59) and its
implications for Z_i descendent states.]

Then using [Z0,L-i] = £-i , from the Virasoro algebra (2.2), and the uniqueness
argument (together with Lo|O) = 0) we deduce that

xL° V(φ,z)x~L° = x*Ψ V(φ,xz) , (2.16)

when Loφ = hψφ, or equivalently

[Lo, V(ψ,z)] = I z - + hφj V(φ,z). (2.17)

For a general state, i.e., not necessarily an LQ eigenstate, we can write (2.16) by
linearity as

xL°V(ψ,z)χ-L° = V(xL*φ,xz). (2.18)

Later, by imposing the requirement P7 that the conformal field theory has a her-
mitian structure, we will see that the conformal weights hψ for the states φ must
always be non-negative integers.

We begin by writing f as a direct sum of eigenspaces of Lo, i.e.,

(2.19)
h

where Loφ = hφ for φ e #/*.

Definition 2.5. A state φ is said to be an su(l,l) highest weight state or a
quasi-primary state if L\φ — 0. The corresponding vertex operator is said to be
a quasi-primary field.

(The elements L±\, Lo of the Virasoro algebra generate a subalgebra isomorphic
to su(l, 1) [note that for m, n — 0,±1 in (2.2) the central term vanishes].)

Let us also assume

P5. The spectrum of Lo is bounded below.

Note that this assumption is physically reasonable, since in a conformally in-
variant quantum field theory we have both a holomorphic and an anti-holomorphic
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conformal structure, with Virasoro generators Ln and Ln respectively. The Hamil-
tonian H of the theory is given by LQ + LQ, and in any sensible quantum field
theory the Hamiltonian should be bounded below. JSince the holomorphic and anti-
holomorphic sectors are independent, then LQ and LQ should be separately bounded
from below.

Proposition 2.6. The eigenvalues of LQ are non-negative.

Proof. For ψ G J ^ a quasi-primary state, using IΪ_X =L\ and the relation [Zi,L_i] =
2L0, we obtain

2 2 (2.20)

so that, by positive definiteness of the norm on the Hubert space of states, h ^ 0.
If φ is an arbitrary non-zero (not necessarily quasi-primary) state with negative
conformal weight A, then the sequence of states U(φ for N = 0,1,2,... have con-
formal weights A — N. If any of these states vanishes, let TVo be the smallest
such value of N. Then L^°~lφ is a quasi-primary state φ with conformal weight
h = A + l—No < 0. The left-hand side of (2.20) is non-negative, but the right-
hand side (since φ + 0 as we chose No to be as small as possible) is negative.
This contradiction implies that the sequence of states iJfφ are all non-vanishing.
Hence, if any state has negative weight, the spectrum of Lo is unbounded below.
This contradicts P5 and hence establishes the result. D

If a state φ has conformal weight zero then L\φ = 0, otherwise we would have
a state with negative conformal weight. Thus, we may apply (2.20) with φ = φ to
see that L-\φ = 0 also, i.e., a state has zero conformal weight if and only if it is
.sw(l,l) invariant. We shall assume

P6. The vacuum is the only $1/(1,1) invariant state in the theory.

From the fact that the conformal weights are bounded below, we see that
L^φ = 0 for TV sufficiently large, where φ is an arbitrary state of some definite
conformal weight. So we have

Proposition 2.7. 3F splits up into a direct sum of'su(l9l) highest weight represen-

tations.

Each is generated by repeated action of L-\ on an su{\, 1) highest weight state
(a quasi-primary state). This fact will be of use later in proving certain locality
relations, since, by (2.10), we only have to consider quasi-primary states, and for
these the hermitian structure takes a particularly simple form. Let us now define
this hermitian structure.

Proposition 2.8. If V(e

where

and the conjugation map ψ ι-> φ is antilinear.

Proof. All we need do is demonstrate that the left-hand side of (2.24) satisfies
the obvious analogue of (2.5), or equivalently the translation property (2.7). Then,
being local with respect to V, from Proposition 2.2 we see that it must be the

\

ψ

Lιz*~2Loφ,

= Km VU
z-)-0

l/z*)t is local with respect

/z*γ = V(ψ,z),

-2L°ψ,l/z*γ\0) ,

to V then

(2.24)

(2.25)
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vertex operator with argument z for a particular state φ, which must, using (2.6), be
given by (2.25). (Note that the limit is seen to exist from the translation property.)
The map φ ι—> φ is clearly antilinear, from the linearity of the map from states
to the corresponding vertex operators noted above as a simple consequence of the
uniqueness theorem. We now establish that the translation property is satisfied.
eεLιV(eL}^φ,ζ)e~εLι is a local operator (see (2.59)) and so we calculate its effect
on the vacuum and then use the uniqueness theorem. Now

=eBLιeζL-ie
Ll/ζψ (2.26)

( 2 2 7 )

(2.28)

where to get from (2.26) to (2.27) we have used

e^e^ = e x p | τ - ^ I _ , } ( l - βCΓ^exp ^ ̂ -^U \ (2.29)

and, to get from (2.27) to (2.28), [LQ,L-\] = L-\, and we have taken L$φ = hφ.
Thus it follows that

eεL*V(eLι/ζφ,ζ)e-εLι = (1 - εζ)~2hV (exp I ^A Lλ 1 φ, —^—Λ . (2.30)
V I ί J 1 - e C /

Taking ε small gives

[Zi, V(eLι/ζφ,ζ)] = 2hζV(eLι/ζφ,ζ) V(eLι/ζφ,ζ) . (2.31)

Therefore

[L-Uz~2hV(eLlZ*ιl/9 l/z*)+] = —{z-2hV(eLιZ*φ, 1/z*)1"} , (2.32)
αz

so that the translation property is satisfied by z~2hV(ez*Lίφ, l/z*γ. The required
result follows by linearity of the vertex operators. D

So, let us assume

P7. For all φ G #" F(e z * L l z*- 2 Z Ό^, 1/z*)1" is local with respect to V.

The conclusions of Proposition 2.8 then follow. The following result details
some of the useful properties which follow from this hermitian structure.

Proposition 2.9. For ψ,φ G #",

(i) ifLoφ = hφ then Loφ = hφ, i.e., the conjugation operation preserves con-
formal weights,

(ii) L-\φ = —L-ιφ,

(iii) φ — φ,
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where φx.φi.φ^ G #" with Loφj = λ/07 /or 1 ^ 7 ^ 3 α«rf

fφiΦiΦs = (Φi\r(φ2,1)103), (2.33)

(v) Li^ = -Ii^ί,
(vi) ί/ze spectrum of LQ is integral, i.e., all states have integral conformal

weight, _ _
(vii) (ψ\φ) = (φ\ψ).

Proof.

(i) Consider

eεLoV(e^/ζψ,ζ)e-εLo\O} = e^e^e^ψ (2.34)

= efaexp{eεCL-i}exp{e-εL,/OιA (2.35)

Therefore
ε0 , (2.36)

and by taking ε small we see

[io, Fίe1^^, ί)] =UL+h\ V(eL^ζφ, ζ), (2.37)

[Lo, V(ψ,z)] =(z^+h) V(ψ,z), (2.38)

showing that Loφ = hi// as required,
(ii) If 0 =L_λψ,

V(φ,z) = z-2h-2V{eLιz*L-\\l>,l/z*γ . (2.39)

Now,

= I _ i e i l Z > + eLιZ*(2z*L0 - (z*)2Lχ)ψ , (2.40)

using the algebra (2.2). Thus,

V(φ,z) = ~V(ψ9z) = -K(L_^,z) , (2.41)

so _ _
φ = -L-!ψ. (2.42)

(iii) For ι/f a quasi-primary state of weight hψ, (2.24) gives

,z) = z-2h*V(ιl/, 1/z*)1" . (2.43)

From (i), ψ has the same conformal weight as ψ, so that a second application

of (2.7) shows that the vertex operators for φ and φ are equal, and so by the

uniqueness theorem φ = φ. But from (ii), the action of Z_i anticommutes with
the barring operation. From the decomposition of $F into a direct sum of su(l,l)
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highest weight representations, we thus see that for a general state φ € 3F (not

necessarily quasi-primary) φ — φ.
(iv) To establish this result, we note that

= {φι\eL-iV(φ3,-l)\φ2) by (2.13)

= (φ2\V(e-Ltφ3,-l)eL*\φι)* by (2.24) and ^ 3 = φ3

= (φ2\e-L-*V(eLιφvl)e-Lι\φ3)* by (2.13)

= (<h\e-L-i V(φλ, l ) t β - L i \φ3y by (2.24) and ^ = φx

= (φι\V(e-^φ2,-lγ\φ3)* by (2.13)

= {φi\V(φ2,-l)\φ3y by (2.24)

• (2-44)

(v) A quasi-primary state remains quasi-primary under the map φ ι—> φ9 since

||L^||2 = WL_iI,|̂ > = ®\L\L-S) -2(ψ\L0\ψ)

= (φ\L1L-l\φ)-2{φ\L0\φ), (2.45)

using first [Zi,Z_i] = 2Lo and then the facts that bar anticommutes with L-\ and
commutes with Zo and that barring preserves the norm (a special case of (iv) given
by setting φϊ — |0) and φ?> = 0j), so that

| | I ^ | | 2 = | |X^| | 2 = 0, (2.46)

for φ quasi-primary. Hence we deduce L\φ = — L\φ for an arbitrary state φ by
induction on n in considering states of the form Ln_λφ with φ quasi-primary (as
we saw in Proposition 2.7, these span #"), i.e., L\ anticommutes with the barring
operation.

(vi) From (2.7) and (2.18) we have

(0\V(φ,z)V(φ,ζ)\0) =(z- ζΓh*-hΦKψφ , (2.47)

where Loφ = hφφ, Loφ = hψφ and Kψφ = (0\V(φ9 l)\φ). But, using (2.24) and

^ = φ, V(φ,\)=V(eLιφ,l)l So, using (2.3), {0\V(φ, 1) = (φ\eL-^eL^ i.e.,

Kφφ = (eLiφ\eLiφ). (2.48)

Taking φ = φ and ι̂  (and hence φ) quasi-primary, K, -τ = \\φ\\2 and K-r, = | |^ | | 2

(using ^ = ι/̂ ), both of which are positive (for i/^φO). The locality relation (2.4)
applied to (2.47) then implies that K,-τ = (—IΫ^K-T, (as hψ = h-r), and so hψ must
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be integral. Hence the conformal weights of all quasi-primary states and hence all
of their L_i descendants (i.e., all states) must be integral.

(vii) For general states, locality applied to (2.47) and making use of (2.48)
requires (eLιφ\eLi(-l)L°φ) = (eLιφ\eL^(-l)L^φ). Replacing φ and φ by eL*φ and
eLιφ respectively and using the facts that L\ anticommutes with the bar and that
(-lY*eLl = e~Lι(-iy^9 we obtain the required result. (The factors of (-1)L° can-
cel on either side, as the inner products clearly vanish when the conformal weights
of φ and φ are not equal.) D

An analogue of part (iv) of the above will be of importance later in proving
one of the locality relations when we come to consider extending the CFT by a
particular representation to give a new CFT.

Definition 2.10. The moments of the vertex operators are given by

V(φ,z) = Σ Vn(φ)z-n-hΦ . (2.49)
nez

Then, by (2.3),

V-hψ(ψ)\0) = φ, Vn(ψ)\0) = 0 for n > -hφ (2.50)

(cf. (2.1) noting that the state φι =Z_2|0) has conformal weight 2). Equations
(2.5) and (2.17) may then be rewritten in terms of modes as

[L-u Vn(ψ)] = (1 - n - hφ)Vn-ι(ψ) , (2.51)

and the duality relation (2.11) can also be rewritten, giving

oo

V(ψ,z)V(φ, 0 = Σ (* ~ ίy1-**-** V(Φn, 0 , (2.52)Σ
Λ=0

[a relation which holds, as discussed following axiom P3, at the level of analytic
continuation of matrix elements] where

φn = Vhφ.n(φ)φ , (2.53)

and hφ and hψ are the conformal weights of φ and φ respectively, the sum being
bounded below because Vhφ-n(Φ)Φ = 0 for n < 0 (otherwise we would have a
non-zero state with negative conformal weight). This is a precise version of the
operator product expansion (OPE), showing that this important result, often assumed
in theories as an axiom, is simply a consequence of locality, emphasising further
the important role played by the requirement (2.4).

Note also that for φ quasi-primary, (2.27) gives

Vn(φγ = V.n(φ). (2.54)

A fact which will be of use later when we come to discuss sub-conformal field
theories is

Proposition 2.11. The vacuum is generated in the OPE corresponding to states φ

and φ.
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Proof. Considering the OPE (2.52) for φ = φ9 we see that the leading term in
the expansion on the right-hand side is (z — ζ)~2hφV(φo,ζ), where φo = Vhφ(φ)φ.
φo has conformal weight zero, from (2.51), and so must be proportional to the
vacuum state |0) by our assumption P6 about the uniqueness of the su(l, 1) invariant
state, i.e., φo=k\O)9 and so the leading term is k(z — ζ)~2hΦ. Comparing with
(2.47), we see that k = Kφφ = II^ΦII 2 from (2.48). So k > 0, and therefore the
vertex operator for |0) appears in the OPE. D

Consider now the OPE (2.52) for φL with φL. The singular terms in the ex-
pansion are φ^φuφi and φ3. φ0 = y |0), where c' = 2||0fc||2, φ\ = L\L-2\0) =
3Z_!|0> = 0 ,
φ2 = LoψL = 2φL and φ 3 = L-ιψL. Then, setting V(ψL,z) = L{z\

L(z)L(ζ) = C-(z - C)-4 + 2(z - ζ)-2L(ζ) + (z - C)-1 γζL(ζ) + 0(1), (2.55)

where the (z — ζ)~ι term is rewritten using (2.10) and 0(1) stands for terms regular
at z = ζ. From (2.55) we can use the usual contour manipulation arguments to derive
(2.2) (with c = cf). That is

[Ln,Lm] =
1

§ dzfdζ- § dz§dζ zn+iζm+ιL(z)L(ζ)
(2τπ)2

(2.56)

where the z integral is taken on a contour positively encircling ζ excluding z = 0 and
the C contour is then taken positively about ζ — 0. Substituting in from (2.55) gives
the required result. In other words, we can deduce the entire Virasoro algebra from
the conformal field theory structure and the few simple properties used immediately
above (2.55) (in particular, the relation [Li,L_2] = 3L_i), i.e., we can weaken the
requirement PI slightly and it still holds true in full, showing once more the powerful
consequences which follow from the structure of local vertex operators.

We may similarly deduce the conformal properties of vertex operators. We have

L(z)V(φ,ζ) = - + (z - ζΓ4V(L2φ,ζ) + (z - C)-3V(L^,0

+ hφ(z - ζΓ2V(φ,ζ) + (z- ζ)-ilLv(φ,ζ) + 0(1) , (2.57)

for a state φ of weight hφ. Hence, if Lnφ = 0 for n = 1,2 (and so for all n ^ 1

by (2.2)),

[Ln, V(φ,ζ)] = ζ" ίζ± +(n+ \)hφ\ V(φ,ζ), (2.58)

for all n, by the contour manipulation argument.

Definition 2.12. A state φ said to be a (conformal) primary state if it is a highest
weight state for the Virasoro algebra, i.e., if Lnφ — 0 for n = 1,2. The corre-
sponding vertex operator is said to be a (conformal) primary field.

By using once more the fact that the conformal weights are bounded below, we
see that #" splits up into Virasoro highest weight representations, each generated
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by the action of the operators L-n for n > 0 on Virasoro highest weight states.
If instead we have φ only quasi-primary, then (2.58) holds only for w = 0 ,±l .
The relation (2.58) is a generalisation of (2.5) and (2.17), which hold for all
states.

For a quasi-primary state φ of weight hψ, (2.58) for n = 0, ± 1 is equivalent to
the Mobius transformation property

DyV(φ,z)D;1 = I ^ I V(φ9γ(z)), (2.59)

where
\ h I / Λ//7/7 — nr \ c r' Λ

(2.60)
yu j \ u j K u J

and

This freedom to perform Mobius transformations on the variables for quasi-primary
fields means that we can write the three-point function for quasi-primary states
φuφi and 03 in the form

(0\V(φuzι)V(φ2,z2)V(φ3,z3)\0) = ( Z 1 -z2)
h^-^~h2(zι -Z3)

A2-Ai-*3

f h h (2.62)

where fφιφ2φ3 is defined as above and Loφj = hjφj for 1 ^ j ^ 3. Locality there-
fore implies

f h k ^ ^ ^ (2.63)

Definition 2.13. Ŵ? s/zα// .yαj ί/zίz/ ί>vo conformal field theories 2tf and J f7,
dense subspaces 3F and !F' respectively and corresponding vertex operators V(ψ,z)
and V'(ψ\z), are isomorphic if there exists a unitary map u : 3tf —• $" such that

)u-1 , (2.64)

for ψ e &.

Proposition 2.14. If u : #C —> Jf' w (2« isomorphism of conformal field theories
Jf, J»f' ίAβn «|0) = |0 ;), wife = ι/̂ , wAβre lO),^') are the vacuum states and φL,
ΨL are the conformal states in Jf and Jff respectively.

Proof Taking ψ = |0), the vacuum in #", we have V'(u\0),z) = 1, so by unique-
ness u\0) = \0f), the vacuum state in 3F1. Also, we can show that u must map
the other special state in #", the conformal state φι, into the corresponding state
ψ[ in #"'. From the action of the vertex operators on the vacuum, (2.3), to-
gether with (2.64) we see that uL_\u~ι —V_v Set Ln = uLnu~x for all n. Then

L-\ —L'_x. By conjugation we have L\ = L[9 and by [L\9L-\] = 2L0 we see that

From the OPE (2.52), we have

oo

Σ (z " ϋn~V(</>B,C), (2.65)
Λ=0
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where
φn=Lf

2_nuφL. (2.66)

(Note that the conformal weight of uφL is still 2, as Zo = L'o implies that u preserves
coformal weights). L'2uφι has zero conformal weight, and so is §|0')5 by the unique-
ness assumption made above), for some k G C. L[uφι = uL\φL = 0, L'^uφi = 2UΦL
(see comment above) and V\L'_λuφLX) = j-ζV\uφLX) (cf. (2.10)), so that (2.65)
becomes

V(φ[,z)V{uφL,ζ) = k-(z - Q- 4 + 2(z - ζ)-2V'(uψL,ζ)

j ζ (2.67)

Hence, comparing with (2.55), we see that the contour manipulation argument gives

[L'm,Ln] = (m- n)Lm+n + ^m(m2 - l)<5m,_« , (2.68)

(the modes of V'(uψL,z) are Ln by (2.64)).
On the other hand, we find similarly

V\uφL,z)V'{φ[,ζ) = j(z - CΓ4 + 2(z - ζΓ2V'(ψ[,ζ)

^ζ (2.69)

giving

[Lm,L'n] = {m- n)L'm+n + ^m(m2 - 1 )δm^n . (2.70)

Comparing (2.68) and (2.70) shows Ln — L'n for wφO, and so φ[ — uφi as required
(we already have the case n = 0 from the above discussion). D

Finally in this section, we discuss the notion of a sub-conformal field theory.
This concept is not particularly exploited in the following sections, but it does
provide an interesting example of the techniques and structures discussed above.

Definition 2.15. A sub-conformal field theory of a conformal field theory J f is
defined to be a subspace / 2tf such that

(i) β is an invariant subspace for each V(φ,z), ψ E # / = β Π 3F
(ii) β is invariant under the su(l,l) algebra L±\,Lo
(iii) Wf = (φ:φ

We noted earlier that the vertex operator for |0) appears in the OPE of φ and φ.
From (i) and (iii), this immediately implies that |0) e </. (This automatically gives
invariance under L-\ from V(ιj/9z)\0) = ezL~ιφ for φ G # together with (i).) Let us
denote the orthogonal complement of β as β1-, i.e., β1- = {φ G Jf : (φ\φ) = 0
\fφ G </}. If β is invariant under Ln for some n, then forφGβ and φ G β1- 0 =
(φ\Ln\φ) = (φ\L-n\ψ)*9 i.e., β1- is invariant under £_„. Hence (ii) is equivalent to
saying that β1- is su(l,l) invariant. Also, by (vii) of Proposition 2.9, (iii) could
equally well be stated for β1-.
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Proposition 2.16. A sub-conformal field theory of a (hermitian) conformal field
theory is itself a {hermitian) conformal field theory.

Proof Suppose / is a sub-conformal field theory of Jf. Let P^ be the ortho-

gonal projection onto f, and set φf = P^ΦL Write Z/(z) = V(φf,z) and K(z) —

HΨKΛ where φκ = φL - φ( G f±. To evaluate the OPE Z(z )//(£), we require

the actions of L2, L\ and Lo on φ(. LoφL = 2φL gives Lo(φf + ife) = 2(φf + t/fr).

But / and ί/-L are Lo invariant. So, comparing both sides, we see that Loφf = 2φf

(and LÔ AA: = 2ι/fc), by uniqueness of the decomposition of a state into a sum of a

state in β and a state in β^. L2φf has conformal weight zero, and so is ^~|0),

for some c^ G C. So

y ^/) = (φL\φf) = (^^1^/) = Il̂ /H2 , (2.71)

since pf=pf\ Finally, LxφL = 0 = Lλφf + Lxφκ. But / and / ^ are Zi in-
variant. So L\φf = —L\φκ G β ΪΛ β1" = {0}. From this, it follows by the usual
contour manipulation argument (or comparing with (2.55)) that

[Lm,L{] = (m - n)Lf

m+n + C—m(m2 - l)<5m,_« , (2.72)

where L{ are the modes of L^(z). To deduce from (2.72) that the L{ satisfy the
(centrally extended) Virasoro algebra, we need to show that [Km,L{] = 0, where Kn

are the modes of K(z) (Ln = L{ + Kn). To do this, we consider the OPE K(z)L^(ζ).
We need to prove that it contains no singular terms (at z = ζ), so that the com-
mutator vanishes on applying the contour manipulation argument, i.e., we need
Knφ{ = 0 for - 1 ^ n ^ 2.

To show this, let us look at the action of vertex operators for states in f^ on
states in / and vice versa. Let x denote the operation of taking the operator product
and identifying states with the corresponding vertex operators. Then (i) becomes
/ x / C / . Therefore, for χ E / 1 and φ,ψ G / , ( χ | K ( ^ z * - 2 I o 0 , ± ) \ φ ) = 0,
the state forming the argument of the vertex operator being in β by (ii) and (iii).
So, conjugating, and using (2.24), (φ\V(φ,z)\χ) = 0 , i.e., / x / - 1 C / - 1 . But,
from (2.13), V(χ,z)φ = ezL-ιV(φ,—z)χ. So, since </

± is invariant under L_i, this
result also implies / - 1 x / C / - 1 . Thus, Knφ( G / - 1 and L{φ( G / . But, from
the above calculation of the OPE (2.72), we see that Lnφf G β for - 1 ^ n ^ 2.
So Knφf = 0 for — 1 ^ n ^ 2, as required.

This gives us a type of generalised coset construction [15], with L{ and Kn

satisfying commuting Virasoro algebras with Ln —h{ +Kn,

,Lζ] = (m- n)Lζ+n + —m(mz - l)δm-n , (2.73)

[Km,Kn] = (m- n)Km+n + ^m(m2 - l)<5m,_« , (2.74)

where c^ = c — c? — 2||ι/^||2.

Since / , „ / C / for n = 0,±l by (ii) and l{/ c / , we see that Knf = 0

for « = 0, ± 1 , i.e., we can replace L0,L±\ by hζ,L^±X respectively when acting
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on β. Hence, β becomes a conformal field theory, with vertex operators V(φ,z)
for φ G β restricted to β', vacuum state |0) and conformal state φf. It also retains
the hermitian structure possessed by J4?. (Note also that the zero conformal weight
state remains unique, since Zo = L ζ on β, and similarly the spectrum of hζ is
bounded below (and hence non-negative).) D

Set / ° = {φ G je : Lξφ = 0}. We have

Proposition 2.17.

(i) ψe/°& [L{, V(φ,z)] = OVn e Z (2.75)
(ii) β° is a sub-conformal field theory of 3tf.

(iii) The vertex operators corresponding to β and β^ commute.
(iv) / C (/°)°, In fact, (/°)° is the largest sub-conformal field theory in Jf7

containing β and sharing the same conformal structure.

Proof.

(i) If φ G β^, then L{φ = 0 for n > 0, since the spectrum of Lζ is non-

negative. Also L^{φ = 0, since \\L^\\2 = \\L{φ\\2 = 0, using l{,L^x]=2L{.
If the commutator vanishes, applying it to the vacuum for n ^ — 1 (for which

z/ |0) = 0, since Ln\0) = 0 and so z/10) = -J^|0> G / U / - 1 = {0}) gives

L;fKGM)|0)=0, (2.76)

so that (2.6) gives the left-hand side of (2.75). Conversely, if φ G ̂ ° , we look
at the OPE LJf(z)V(φ,ζ). The singular terms involve the vertex operators for the
states h{φ for n ^ —1, and so vanish. Therefore, the right-hand side of (2.75)
follows by contour integration.

(ii) βQ is invariant under L ± 1 , Lo, since if φ e β° then LζLmφ — Lmlζφ —

[Lm,lζ]φ. The first term vanishes by definition of β°, and the second term, from

(2.72), is —mLmφ for — 1 ^ m ^ 1, which vanishes by the argument given in

(i). Also, conjugation of the right-hand side of (2.75) implies that β® is invariant

under the bar operation. Also, for φ,ψ G / ° , lζv(φ,z)φ = V(φ,z)l(φ, by (2.75),

which vanishes by definition of β°, i.e., β° is invariant under V(φ,z) for </> G ^Z0.
Thus, we see that β° is a sub-conformal field theory of Jf7.

(iii) For 0 G / ° , (*A/|0> = (0 | l f \φ) = 0, i.e., ^ G / 0 ± . Also, from (2.75)

and the fact that \l{,Kn] = 0, we see that φκ G / ° . Hence, P-^Vi = Ψκ> or L^ =
Kn. Thus, the Virasoro algebras of β and ^° are complementary, (that is, they
commute, and add to give the Virasoro algebra for Jtf*). More generally, the vertex
operators corresponding to β and β° commute, since the singular terms in the OPE
V(φ,z)V(φ, C) for φ G β and φ G β° vanish. To see this, we note by positivity of
the Zo eigenspace that Vn(φ)φ = 0 for n > hφ. Then from L^ιVn(φ)phi = —(hψ +
n — \)Vn-\(φ)φ (since l/_λφ = 0 as φ G .Z0, so we can replace L^λVn(φ) by its

commutator, and as φ G </ z/j can be replaced by L_i and we then use (2.51))
we can deduce recursively that Vn(φ)φ = 0 for n > —hψ, as required.

(iv) The above result gives, in particular, [Kn, V(φ,z)] — 0 for all n and all
φ G / , so that by (2.75) we see that / c (/°)°. Also the conformal state for
(β°)° is complementary to that for β°, and so coincides with that for β. D
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3. Representations of Conformal Field Theories

Definition 3.1. A representation (U,Jf) of the conformal field theory J f is a
Hilbert space JΓ and a set of linear operators U(\j/,z): Jf —> Jf linear in ψ for
φ e 3F such that

U(ψ,z)U(φ,ζ) = U(V(ψ,z - ζ)φ,ζ) , (3.1)

(cf the duality relation (2.11)), with U(\0),z) = 1 (otherwise we could have
U(ψ,z) vanishing on some subspace of Jf).

Equivalently, using the mode expansion of V9

oo

U(ψ,z)U(φ,ζ) = Σ (z - ζ)n-h*-h*U(φm0 , (3.2)

where hφ, and hψ are the conformal weights of φ and ψ respectively and the φn

are as in (2.53). The representations which we consider will be meromorphic, that
is matrix elements of operators in U will be meromorphic functions of the complex
arguments of the operators.

As a simple consequence of this definition, we have

Proposition 3.2.

(i) The operators in U are local.
(ii) The modes of U(\I/L,Z) satisfy the Virasoro algebra (2.2).

(iii) U(ψ,z) possesses the analogous translation property to (2.5).

Proof

(i) First, note that by taking φ = |0) in (3.1) and using (2.3) we obtain

U(ψ,z)=U(eίz-W-ιψ9ζ). (3.3)

Hence

U(ψ,z)U(φ,ζ) = U(e(z-ζ)L-ιV(φ,ζ-z)ψ,ζ) by (3.1) and (2.13)

= U(V(φ9ζ-z)ψ9z) by (3.3)

= U(φ,ζ)U(ψ9z) by(3.1),

U(φ9z)U(φ, 0 = U(φ9 ζ)U(ψ9z) , (3.4)

again in the sense of analytic continuation of matrix elements of either side.
(ii) Set U(ΨL9Z) — L(z) = ΣnLnZ~n~2 (using the same notation as for V(ΨL,Z\

but the distinction will always be obvious from the context). Then (3.2) and the
usual contour manipulation argument show that the Ln satisfy the Virasoro algebra
with the same central term as for the conformal field theory J-f.

(iii) (3.3) implies that

^ ψ9z). (3.5)

But from (3.2) with ψ = \j/L we see that

[L^l9U(ψ9z)] = U(L^φ9z)9 (3.6)

and so the result follows. D
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Example 3.3. If β is a sub-conformal field theory of the conformal field the-
ory Jf, as defined at the end of Sect. 2, then β1- forms a representation of βy with
U(φ,z)=V(φ,z) restricted to / - 1 for φ e / .

Proposition 3.4. 77ze existence of the representation given in Definition 3.1 w
equivalent to the existence of "intertwining" operators W{χ,z) : Jf7 —> 3C for χG
Jf (or rather a dense subspace of JΓ) swc/z

U(ψ,z)W(χ, 0 = W(χ, ζ)V(ψ,z) (3.7)

The locality relation (3.7), inteφreted in the usual sense, is referred to as the
intertwining relation.

Proof. Given a representation as above we define W(χ,z) by

W(χ9z)φ = <**-! U(φ,-z)χ, (3.8)

cf. the relation (2.13). We shall ultimately combine the representation and the CFT
to give a new CFT, and the relation (2.13) which must hold for this CFT requires
(3.8) to hold.). Given this definition, we have

U(φ,z)W(χ9 ζ)φ = U(ψ,z)e^ U(φ, -ζ)χ by (3.8)

)φ,-ζ)χ by (3.1)

= W(Lζ)V(ψ,z)φ by (3.8), (3.9)

and taking φ = |0) in (3.8) and letting z —> 0 we obtain W(χ9z)\0) —> χ as z —> 0,
as required.

Conversely, if we are given the intertwining operators W(χ,z) satisfying the
intertwining relation (3.7) for some operators U(ψ,z) and also the limiting relation
as z —> 0 on W(χ9z)\0)9 we have

U(ψ,z)U(φ,ζW(X,w) = W(χ,w)V(φ,z)V(φ,ζ) by (3.7)

= W(χ,w)V(V(ψ,z - ζ)φ,ζ) by (2.11)

= U(V(φ,z-ζ)φ,ζ)W(χ,w) by (3.1). (3.10)

Apply (3.10) to |0) and let w —> 0 to give, since χ is arbitrary, the required locality
relation on U. In addition, U(\Q),z)W(χ,ζ) = W(χ9ζ) from the intertwining relation,
and again action on |0) and letting ζ —> 0 we obtain C/(|0),z) = 1 as required. D

Note that defining W by (3.8) from the representation U gives

zL-iχ, (3.11)

(cf. (2.3)). Conversely, given operators W satisfying the intertwining relation (3.7)
and also (3.11) (which is consistent with the required limit as z —> 0 in the definition
of W) we obtain, by applying (3.7) to |0) and using (2.3),

ζ )ezL-ιψ. (3.12)



78 L. Dolan, P. Goddard, P. Montague

Taking z —> 0, the translation property for U then gives the relation (3.8). Hence,
if we impose the stronger condition (3.11) rather than just the limiting condition
in the definition of the intertwining operators, we always have the relation (3.8)
between W and U.

From (3.8) we have

^ W(χ,z)φ = ezL-iL-{ U(φ, -z)χ - ezL~^ [L_1? (7(0, -z)]χ (3.13)

using the translation property for U. Hence

^W(χ,z)φ = ezL^U(φ,-z)L^χ = W(L-Xχ,z)φ , (3.14)

i.e.,

|FF(χ,z)FF(L_iχ,z). (3.15)
dz

Note also that the fact that the t/'s are linear operators implies, from (3.8), that
W{χ,z) is linear in χ, and since U(φ,z) is linear in φ then the W9s are linear
operators.

Definition 3.5. If Jf and J^r are two isomorphίc conformal field theories with
isomorphism u : ffl —> Jf', as above, and (U, J f ) and (U', JΓ ;) αr^ representations
of ffl and $" respectively, they are said to be equivalent if there is a unitary map
p\Jf-^Jfr such that

pU(φ,z)p-1 = Uf(uφ,z), (3.16)

for all ψ e JtT.

Proposition 3.6. If(\J,Jt) is an irreducible representation, i.e., if it has no proper
subspaces invariant under all the U(ψ9z)for ψ G #", then p is unique up to multi-
plication by a constant.

Proof If p\ and p2 are two suitable maps satisfying (3.16), then u = p^lP\ is a
unitary map commuting with U(φ,z) for all φ G # \ By Schur's lemma (i.e., that
any eigenspace of u is an invariant subspace, and so must be the whole space for
an irreducible representation), we deduce that u is a multiple, K say, K G C, of the
identity map, i.e., p\ = κp2. •

4. Extension of a Conformal Field Theory by a Real Hermitian
Representation

Definition 4.1. 77ze representation U described in the preceding section is said to
be hermitian if

( 2 h * L / z * γ , (4.1)

where φ is a state with conformal weight hψ, (cf (2.24)).

Further, it is said to be real if there is an antilinear map χ ^ χ on JΓ such that
f = χ, L-a = -L_ιχ and
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(cf. (v) of Proposition (2.9)) where LQXJ — hjXj for j = 1 , 2 , Loφ = hφφ and

fxiΦxi = (X\\u(Φ>ι)\X2)- A l s o > w e squire that if Loχ = hχχ then Loχ = hχχ.

Definition 4.2. Set

W(χ,z) = z-2hxW(ez*Liχ, 1/2*)+ , (4.3)

where hχ is the conformal weight of χ G Jf* (i.e., eigenvalue of the zero mode LQ
of U(ψL,z))9 and W is given by (3.8).

Note that this definition extends to all states by linearity of W(χ,z) in χ, which
follows from linearity of W(χ,z) in χ and the antilinearity of the map χ^χ. Its
definition is inspired by (2.24) as we wish it to be part of a vertex operator in some
extended conformal field theory. The operator W is a map from C/f to Jf which
intertwines the conformal field theory and the representation in the opposite sense
to that in which W does in (3.7), i.e.,

χ, ζ)U(ψ9z) = V(φ,z)W(χ, £) . (4.4)

This follows simply by conjugating (3.7) and using (4.3), (4.1) and (2.24).

Proposition 4.3. We have the locality relation

W W z ) . (4.5)

Proof First, consider the action of the left-hand side on an arbitrary untwisted
state φ, i.e.,

W(χuz)W(χ2,ζ)φ = W(χuz)eζL-ι U(φ, -ζ)χ2 by (3.8)

= e ί £ ->F(χ, ,z - ζ)U(φ, -OK , (4.6)

where the translation property for W(χ,z) used in the last line follows by the same
arguments as in Proposition 2.8 (trivially checking that the appropriate assumptions
which went into that proposition remain valid in this context). Hence, using (4.4),

W{χuz)W{χ2,ζ)φ = eζL-iV(φ,-ζ)W(χi,z - ζ)χ2 . (4.7)

Therefore, the locality relation (4.5) is equivalent to

V(φ, -ζ)W(χuz - ζ)χ2 = e<*-«L-i V(φ9 -z)W(X2, ζ - z)χx

= n Φ ? - C ) β ( z - ° Z - 1 F ( χ 2 , C -z)χλ , (4.8)

and so it remains to prove

W(χuz)χ2 = e ^ F f e , -z)χλ . (4.9)

Note that this is analogous to the relation (2.13). Conjugating (4.9) by using (4.3),
with h\ and h2 the conformal weights of χ\ and χ2 respectively, we have to show
the equality of

and z2^(χι\W(e-^χ2,~z)e^ . (4.10)
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Acting on an arbitrary untwisted state φ again, and using (3.8), we have to verify

^ 2 Λ l <Z2k^-i t/(09 -^)^ i z i |Z!) = ^ 2 ^ ( % 1 μ-^-i C/(^^i 0,^)^-^i |^2> . (4.11)

From the fact that the representation is hermitian, i.e., using (4.1), we see that this
is equivalent to

/z*γe^\χ2) . (4.12)

So, we see that for χι and χ2 quasi-primary states, we have to verify

z2A> (χ21U(φ, -z) |χ,) = z2h^2hΦ (χλ \U(φ, l/z*)t\χ2)

2 h 2 h ( ) \ χ ι y . (4.13)

Using (2.18), we may remove the z dependence from U, and find that the
relation which we have to verify reduces to (4.2), i.e., for a real hermitian repre-
sentation, the locality relation (4.5) holds for quasi-primary states.

To deduce the result in general, we make use of (3.15) and an analogous
result for W(χ,z) which we derive below. This enables us, by differentiation, to
infer locality for all L_i descendents of quasi-primary states, which is sufficient by
Proposition 2.7 and linearity of W{χ,z) in χ. From (2.40) together with (4.3), we
see that

^ ^ , z ) , (4.14)

so that, using χ = χ and L-Xχ = -L-iχ,

^ F F χ , z ) , (4.15)

as required. D

Our main result is

Proposition 4.4. If we also have the locality relation

W(χuz)W(χ2,ζ) = W(χ2,ζ)W(χuz) , (4.16)

and the spectrum of LQ in the representation is strictly positive, then we may
extend the conformal field theory ^ to a (hermitian) conformal field theory ffl —
Jf Θ Jf, with vertex operators defined by

/V(ψ,z) 0 \ „ / 0 (L)
V(φ,z) = ( 1 , V(χ,z) = ( ) , (4.17)

V 0 U(ψ9z)J9 \W{χ9z) 0 J*

where we use the notation ψ for (ψ,0) with ψ £ 2tf and similarly χfor (0, χ) with
χ e Jf. The vacuum and conformal states are (|0),0) and ( ^ L , 0 ) respectively,
which are written |0) and φι by this convention.

Proof The vertex operators have the required action on the vacuum, from the ac-
tions of V and W on |0) G 2%\ Since the modes of t/(i/^,z) satisfy the same Vira-
soro algebra as the modes of F(ι/^,z), then we have the required Virasoro structure.
(Also note that we have uniqueness of the su(l, 1) invariant state and a spectrum
of Lo which is bounded below, properties which we assumed for Jf7 and which
carry over into this new theory.) The locality relations necessary for this to be a
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conformal field theory reduce to the six relations

V(φ9z)V(φ9ζ) = V(φ9ζ)V(φ9z), (4.18)

W(χ9z)V(φ9ζ) = U(φ9ζ)W(χ9z)9 (4.19)

U{φ9z)U(φ9 C) = U(φ, ζ)U{φ9z) , (4.20)

V(φ9z)W(χ9ζ) = W(χ9ζ)U(φ9z) , (4.21)

W(χuz)W(χ2iζ) = W(χ2,ζ)W(χuz), (4.22)

W(χuz)W(χ2,ζ) = W(χ2,ζ)W(χuz) 9 (4.23)

which we already have. Note also that the hermitian structure on the C/'s and
the K's together with reality of the representation gives a hermitian structure on the
new vertex operators, with (ψ,χ) = (ψ,^). •

Jf is a sub-conformal field theory of Jf. We have φι ̂  ffl and ι/̂  = 0 in the
previous notation, and there is a symmetric space structure

/ x / C / , Jf x Jί C Jf, Jί x ̂  C Jί, Jf x Jf c Jf . (4.24)

Jf has an automorphism z which acts as 1 on Jf and —1 on Jf.

Proposition 4.5. If we have another definition of reality on the space Jf, with

the conjugation map χ^-^% then, if $?' is the conformal field theory obtained by

using χ in place of χ9 Jf' is isomorphic to 3tf.

Proof We see from

4 f e = 4 ? a = <»ιwυι»>, (4.25)

and (4.2) that

{lx\U{φ,\)\χ2) = {lx\U{φ,\)\χ2) , (4.26)

noting that conjugation preserves the conformal weight. Let χ = uχ. Then (4.26)
implies that

^ ) u = U(φ9\). (4.27)

Setting φ — |0), we find that the map u is unitary. So (4.27) becomes

) . (4.28)

Since LQ commutes with both conjugation operations (by definition), it commutes
with u. So we may use (2.18) to deduce from (4.28) that

U(φ,z)u = uU(φ,z). (4.29)

So, if our representation is irreducible, then u must be a multiple of the identity, by

Schur's lemma, i.e., χ = w2χ for some w G C. Since χ = χ = χ and conjugation is
antilinear, we must have |w| = 1, since

X = X = w 2X = w2w2~χ = w2w*2χ = \w\4χ . (4.30)
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Thus

)Ό-1, (4.31)

where

-(II
is the (unitary) isomorphism. D

Proposition 4.6. Let ffl and #?' be two ίsomorphic hermitian conformal field
theories with isomorphism u : J f —» J f'. Suppose (U, J f ) α«J (U', Jf 7 ) are egwπ;-
tffoz/ representations of 2tf and 2tf' respectively, with a unitary map p satisfying
(3.16). Then

(i) u preserves the hermitian structure, i.e., u\j/ = uψ \/ψ G Jf.
(ii) pW(χ9z)u-1 = W'(pχ9z) Vχ e X .

(iii) If both representations are real, with conjugation denoted by barring,
~pχ = pχ \/χ e J f (rescaling p if necessary).

(iv) .ζΓ, /« addition, the final locality relation (4.23) holds in both theories
(and the representations U and Uf are hermitian), we may extend J"f and Jf7' to
conformal field theories J f and #?' respectively, as in (4.17), (note that (4.23)
is not affected by the redefinition p \—> w~ιp) and u(B p defines an isomorphism

Proof

(i) This follows simply by conjugating (2.64) and comparing with (2.24).
(ii) For φ e JP' and χ £ JίΓ,

pW(χ,z)u-χφ = pezL-W(u-χφ,-z)χ by (3.8)

= pezL-^p-χU'(φ,-z)pχ by (3.16)

= ezL-iU\φ9-z)pχ

= W'(pχ,z)φ by (3.8), (4.33)

where Lr_x—pL^\p~x is the appropriate moment of the vertex operator for the
conformal state in Jf7, from (3.16) and the fact that uφi = φ[. Thus the result
follows.

(iii) We can define a second conjugation operation on Jf7 by χ' = pp~xχf for
χf e X 7 . With respect to this conjugation, (U7, J f ' ) is still real, since

= PP~Xr = PP~~XPP~XX' = PP~XX! = PP Y = X', (4.34)

= -ρL-ιp~xχf = -Lf_λpp-χχr

= -L'-ά' , (4.35)
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and if L'oχ' = hχιχ', then

= Lr

Qpp-χχf = pLop-ιχ' = pLop-ιχ' = ρp-ιL'Qχr

= hyipp~^χr = hyf^f . (4.36)

Also, iffχ,φ% = {χ'x\U'(φ', \)\ύ), for χ[, & e Jf' and φ' € JT', then

Λ ; ^ = (p-'zίlp"1^'^', i)l/2) = (p- 'z ί l^" 1 ^

= fP-h[u-H'p-h'2 ' ( 4 3 7 >

and the reality condition (4.2) follows from that in Jf, noting that p and u preserve
the conformal weights (since Lf

0 = uLou~ι on Jf7' and pLop~ι on X 7 ) . By the
previous argument leading to (4.32), we see that χ' — w2χf for some w G C with
|w| = 1, i.e., we just replace p by w - 1 p to obtain pχ = pχ for χ G JΓ.

(iv) We have, for χ G Jf,

) p - j = ( p ^ ( ^ z * L i z * ~ 2 L o χ , l / z * ) ^ " 1 ^ by (4.3) and u, p unitary

= W'(pez*Liz*-2L«χ, l/z*) f by (ii)

= F'(pχ,z) by (4.4). (4.38)

Hence, together with (ii), (3.16) and (2.64), we obtain the result. Note that the
requirement pχ = pχ determines p up to a sign, which corresponds to the automor-
phism i of Jf which was noted earlier. D

5. Lattice Constructions

The general theory described in Sects. 2-4 is illustrated in the case of the straight
and Z2-twisted constructions of a conformal field theory from a lattice, which we
define below. For full details of these constructions and proofs of their consisten-
cies as meromorphic conformal field theories see [11]. They can be regarded as
being analogues of constructions of lattices from binary codes, and it is for this
reason that we begin this section with a discussion of codes and lattices. In Sect. 6,
we shall demonstrate that the connection with codes is more fundamental than at
first apparent, and in fact provides a more general framework in which to con-
sider Frenkel, Lepowsky and Meurmans' construction of the natural module for the
Monster group [7].

5.1. Codes and Lattices. Let us begin with some definitions and simple facts.
A binary linear code is a linear subspace # of the vector space F2 over the two

element field F2 = {0,1}. n is referred to as the length of the code, and d i m ^ is
its dimension. Elements of ^ are known as codewords, and the weight of a code-
word c G #, wt(c), is the number of non-zero coordinates of c, i.e., c = (c\9...,cn)
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with Cj = 0 or 1 and wt(c) = c2 = 1 c, where I = (1,1,. . . , 1) and we use the in-
ner product x y — Σ"=i Xj yj, with x = (x\,...,xn) and y = (>>i,...,yn) [and the
arithmetic here is not performed modulo 2!] The dual of the code %> is the orthog-
onal space ^ * = {x G F2" : x y Ξ 0 mod 2 Vy e ^ } , and is also clearly a binary
linear code. So we have dim ^ * = n — dim ^ . A code ^ is said to be self-dual if
^ = ^ * (so that d i m ^ = ^w, i.e., its length must be even). Clearly # is self-dual
if and only if # c ^ * and dim ^ — dim ^*. ^ is said to be even if c2 is even for
all c G # . # is said to be doubly-even if c2 is a multiple of 4 for all c G # . The
length of any doubly-even self-dual code has to be a multiple of 8.

An n-dimensional Euclidean lattice A is a subset of ^-dimensional Euclidean
space which has integral coordinates in some basis ey, l^j^n, i.e., Λ = {Σy=i «/
ey : /i7 G Z} is the integral span of a set of w linearly independent w-dimensional
Euclidean vectors. (The definition can clearly be extended to the non-Euclidean
case by dropping the requirement that the inner product be positive definite.) The
length of a vector x G A is x2. A is said to be integral if x y G Z for all x, y E A
and unimodular if ||Λ.||2 = det(ez β/) = l The dwα/ lattice A* = {y : x * y £ Z
Vx G yl} (which is obviously a lattice). Clearly τl is integral if and only if A C A*.
Also, we see that A is self-dual, i.e., /I = Λ.*, if and only if /I is both integral and
unimodular, since ||Λ*|| = H d̂H""1. The lattice A is said to be even if x2 is even for
all x e A. The dimension of an even self-dual lattice has to be a multiple of 8.

We can define a construction of a lattice from a code, known as the straight
construction [12]. We start from a binary linear code # of length d and define a
lattice Aq by

Λ« =-feV + VΪ.Zd . (5.1)

We see that A% is integral if and only if # G #*, and that Λ<# is even if and only
if # is doubly-even. Also, the length of the vector 4=c G ̂  corresponding to the

codeword c G ̂  is half the weight of c, while the dimension of A<# is clearly just
the length of #, and the Euclidean structure is preserved. The theta function

ΘΛ(τ) = Σ ? K q = e2πίτ, (5.2)

of the lattice is given in terms of the weight enumerator

m(p) = Σ P*c) , (53)

of the code as
βA(£{τ) = Θ3(τ)dWv(Θ2(τ)/Θ3(τ)), (5.4)

where

It is clear that (A%)* = yl^*, so that A% is self-dual if and only if # is self-dual.
Also, /1<̂  is unimodular (which is equivalent to saying that it has one point per
unit volume) if and only if dim^7 = \d (= dim^*). Therefore, this construction
implies the correspondence between the properties listed in the first two columns
of Table 1. In Sect. 5.2, we shall give a corresponding construction of a conformal
field theory from a lattice which justifies the correspondence between the second and
third columns of the table. [We will discuss the notion of self-duality later. Bosonic
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Table 1. Comparison between codes,lattices and conformal field theories

Codes

length
weight
^ C ^ *

dim <g = dim ̂ *
self-dual
doubly-even
Euclidean

Lattices

dimension
(half) length
integral or /I C A*
unimodular
self-dual
even
Euclidean
θΛ(τ)

Conformal field
theories

c
conformal weight
meromorphic
?
self-dual
bosonic
?

corresponds to evenness, since we have seen that the bosonic locality relation (2.4)
when combined with the hermitian condition requires all conformal weights to be
integral. The function χ^>(τ), the character or partition function, for the conformal
field theory Jf is defined to be

X*(τ) = q-c/24tτ(qL°) = q~c/24 Σ dim # ^ , (5.6)
h

where q — e2πιτ as before, using the decomposition (2.19).]
We can divide the lattice A% into two cosets, by defining

where

id

(5.7)

-L^+V2Zl, (5.8)

Zd

+ = {x£Zd :x2 £ 2Z} , (5.9)

Z i ={xeZd :x2€2Z + \ } , (5.10)

so that Ac$ =
A second construction of an even self-dual lattice from a doubly-even self-dual

code can be obtained by first defining

V f ) π + 1 , (5.11)

)n, (5.12)

where d — %n (d must be a multiple of 8 as noted above) and setting A<$ = AQ(^) U
A-^€\ This is known as the twisted construction. It is easily seen to be even.
Thus, it must be integral, and self-duality will follow if we can show that A<$ is
unimodular, i.e., has one point per unit volume. This is clear, since # is self-dual.

The classification of doubly-even self-dual codes and even self-dual lattices of
length (dimension) 8,16 and 24 is known [9,16]. If ^ is a code of length n, and π
is a permutation of the n coordinates of #, then application of π to # produces a
code ^ π (which clearly shares all the same properties as # ) . # and %>π are said to
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be equivalent codes. If two codes are not related in this way, they are said to be
ίnequίυalent. There is one doubly-even self-dual linear binary code up to equivalence
of length 8,2 of length 16 and 9 of length 24 (and 85 of length 32). The one of
length 8 is called the Hamming code, and is denoted by e% (for a reason given
below). At length 16, we can take two copies of e% to give ^ θ ^ . The other code is
written as d\$. Among the 9 length 24 codes there is one which has no codewords of
weight 4. This is the Golay code, #24, and so can be characterised by the fact that it
is the unique doubly-even self-dual binary linear code of smallest length containing
no codewords of weight 4. Its symmetry group (i.e., the group of permutations π
leaving it invariant) is one of the sporadic simple groups, the Mathieu group, M 2 4

(see Sect. 5.1 for a brief discussion of the classification of the finite simple groups).
For the even self-dual lattices, the result is that there is one in 8 dimensions, 2 in 16
dimensions and 24 in 24 dimensions. The 8-dimensional lattice is the root lattice
of E%, written as E$, while the 16-dimensional ones are two copies of E&, i.e.,
£ 8 θ #8, and £>i6, which is the union of the root lattice of D\^ with one of the
spinor cosets of the dual of the root lattice (the weight lattice). The 24-dimensional
even self-dual lattices were classified by Niemeier in 1968. Each such lattice A is
uniquely determined by its set of minimal vectors, Λ(2) = {λ e A: λ2 =2}, which
form root systems of the following types:

0, A24, A\\ Al A% 4 , 4 , A\29 A24, D% D% Dg, Z>?2, £>24, K £ | ,

A4

5D4, A2D2, A2D6, Al5D9, EsDl6, E2Dι(h EΊAXΊ, E6D7An ,

where the lattice corresponding to the empty root system is the Leech lattice, A24.
It was shown by Venkov [17] that \Λ(2)\ = 24/*, where \A(2)\ is the number of
elements in A(2) and h is the common dual Coxeter number of the irreducible
components of the corresponding root system, and that the rank of the root system
was either 0 or 24. Since the algebra must be simply laced, we can then derive
the above list of possibilities. We shall denote the lattices corresponding to the
non-empty root systems simply by the root system itself. The Leech lattice can,
similarly to the Golay code, be characterised as the unique even self-dual lattice
of smallest dimension containing no points of length 2. We also similarly obtain
a sporadic simple group, Conway's group Co\, given by Aut(Λ.24)/{±l}, where
Aut(yl24) is the group of automorphisms of the Leech lattice.

Clearly, we must have Ae% = Ae% — E%. In 16 dimensions, we have Ae^e% —
EgθEg and Ajl6 = A ό The twisted construction interchanges the two lattices,

giving Ae%®e% = DX6 and Adχβ = ^ 8 Θ E s .

For the length 24 codes, we look at the points of length 2 in the lattice, and use
the results of Venkov. We find \Λ^(2)\ = 48 + 16|^ 4 | , where | ^ 4 | is the number
of codewords of weight 4, and \A<g(2)\ = 8|^4|. This, together with a computation
of the number of orthogonal components into which A(2) decomposes, is sufficient
to identify the lattice.

The results of the two constructions in 24 dimensions are summarised in
Figs. 1,2 and 3, where we have the codes on the left, with the values of |#4| noted,
and the lattices on the right, with straight arrows denoting the straight construction
and wavy arrows the twisted construction.

Since there are 24 lattices and only 9 codes, the two constructions can produce
at most 18 of the lattices, and in fact are found to produce only 12. This is due
to some overlap between the two constructions, which enables us to exhibit the
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Fig. 1.

code lattice

Fig. 2.

code lattice

Fig. 3.

results in the form of Figs. 1-3. Note that the two exceptional structures which we
discussed earlier, i.e., the Golay code and the Leech lattice, are connected by the
twisted construction.

We shall construct in Sects. 5.2 and 5.3 corresponding straight and twisted con-
structions value of c and no states of conformal weight one, and we would expect
the automophism group of this theory to be in some way connected to one of the
sporadic finite simple groups. These conjectures, essentially due to FLM, are exam-
ined in Sect. 6, where we look at the results of the two constructions and also at
the Monster group.
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5.2. Untwisted Construction of a Conformal Field Theory. In this section, we
discuss the straight or untwisted construction of a conformal field theory from a
lattice, the construction being analogous to the straight construction (5.1) of a lattice
from a binary linear code described in the previous section. We shall define the
space of states and the corresponding vertex operators, as well as the vacuum and
conformal states, and discuss the hermitian structure of the theory. Finally we shall
consider the concept of self-dual theories. The proofs that this is consistent as a
conformal field theory are given in [11].

We start with a Euclidean lattice A of dimension d, and introduce orthonormal
states \λ) = Ψχ, λEA, (λ\λ')=δχχ/, in Dirac's notation, and oscillators aJ

n, nζZ,
1 ^ j ' ^ d, satisfying the commutation relations

[(tm9aζ\=m&δmt-n9 (5.14)

and aJ

n — aJin, aJ

n\λ) = 0, n > 0, pJ\λ) = λj\λ), where pj = aJ

0. The space of states

J^(Λ) is then defined to be generated by the action of the oscillators aJ_n9 n > 0, on
the momentum states \λ), λ G A. J^{A) has a basis consisting of states of the form

M

Π
fl=l

where λ G Λ and the ma and j a are positive integers, 1 ̂  j a ^ d.
We define the position operator q, with q^ — q, which is a ̂ /-dimensional vector

and only appears in the form eιλ'q, by

ea-i\μ) = \λ + μ ) , (5.16)

and define the field

χJ(z) = qJ - ίpj\nz + iΣ-z~n , (5.17)
«ΦO

 n

which similarly only appears in an exponential or as a derivative (so that the
arbitrariness in the definition of lnz is irrelevant). The vertex operator corresponding
to the state (5.5) is then defined to be

n ω j { a X(z)} : σλ , (5.18)

where the normal ordering denoted by the colons indicates that qJ is written to
the left of pi as well as the creation operators being written to the left of the
annihilation operators, i.e., if

* > ( ) E " " (519)

then

: Qxp{iλ X(z)} := exp{U - X<(z)}ea ' qzλ ' pexp{iλ X>(z)} . (5.20)

The operator σχ is a cocycle operator, such that

= (-l)λ'μσμσλ, (5.21)
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where σχ = eίλ' qσχ, a property which is necessary for the bosonic locality relation
(2.4), demonstrated below. The construction and properties of cocycle operators for
both this construction and the twisted construction are discussed in [11].

The vacuum is the state |0) and the conformal state is taken to be the state

*L = \a-ι α_i|0>. (5.22)

We have [11]

Theorem 5.1. If A is even, J^(A), with the structure defined above, forms a con-
formal field theory with central charge c — d and hermitian structure given by

(5.23)

where φ is a real linear combination of states of the form (5.15) (the result can
clearly be extended to include complex combinations, since we know that the map
φ i—> φ is antίlίnear), and θ is given by

θalθ-χ = -a{ ΘΨλ = Ψ.λ . (5.24)

Thus, we have a construction of a chiral bosonic conformal field theory with a
hermitian structure from an even lattice. This is analogous to the construction (5.1)
of a lattice from a doubly-even binary linear code. Here, the lattice plays the role
of the code, and the ^/-dimensional Heisenberg algebra plays an analogous role to
the cubic lattice Zd. The construction provides justification for the correspondences
postulated in Table 1 between properties for lattices and conformal field theories.
In particular, the dimension of the lattice becomes the value of the central charge c
in the conformal field theory, while the length of a point in the lattice is related to
the conformal weight of a state, i.e., the state (5.15) has conformal weight given by

1 M

h =~λ2+Σma. (5.25)
λ a=\

We have also seen that the bosonic locality relation holds due to the fact that the
lattice is even, and we may write the partition function for the conformal field
theory J^(Λ) in terms of the theta function of the corresponding lattice A as

= ΘΛ(τ)/η(τ)d , (5.26)

where
CO

1 / 2 4 Π ( l - 9 " ) (5-27)

We consider the two transformations S and T of the parameter τ, defined by

S ( τ ) = - l / τ , Γ(τ) = τ + 1 . (5.28)

These generate the modular group Γ = PSL(2, Z). The lattice is clearly even if and
only if ΘΛ(τ + 1) = ΘΛ(τ). Then

Xjf(Λ)(τ + 1) = χjnΛ)(τ)eiπd/u . (5.29)

Also
τd\\Λ*-l/τ) = (-iτ)τd\\Λ*\\ΘΛ*(τ) (5.30)
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together with η(—l/τ) = (iτ)2η(τ) gives

X*(Λ)(-W=\\Λ*\\χJriΛ.)(τ). (5.31)

Hence, we see that the partition function for the conformal field theory is invariant
under the modular group Γ, i.e., under the transformations of (5.28), if the lattice
is not only even but, in addition, self-dual with dimension a multiple of 24. It is
invariant under the transformation S and changes by a phase under T if we only
require A to be even and self-dual (i.e., allow d to be an arbitrary multiple of 8).
[Note that the full partition function, including the anti-holomorphic factor, remains
modular invariant since the phases cancel.]

Definition 5.2. A conformal field theory is said to be self-dual if its character is
invariant under the transformation S.

[Note that this definition is consistent with the identification made in Table 1.]

5.3. Z2-Twisted Construction of a Conformal Field Theory. In this section, we
shall define a representation of a sub-conformal field theory of the lattice conformal
field theory 34f(A). This satisfies the necessary properties, as discussed in Sect. 4, to
extend the sub-conformal field theory to a new theory, which we shall call J f (A),
the twisted conformal field theory, provided that A is even (necessary for J^(A) to
be a conformal field theory), that the dimension of A is a multiple of 8 and that
y/ΪΛ* is even. The requirement that y/ΪA* be even comes from the verification
of the final locality relation (4.23), which involves the lattice in a non-trivial way
as described in [11]. Note that this is almost a modular invariance condition, i.e.,
almost requires self-duality of A, but arises from a consideration of locality on the
Riemann sphere alone. This construction is the analogue of the twisted construction
of a lattice from a binary code described in Sect. 5.1. Again, the relevant proofs of
our results may be found in [11].

Let A be an even Euclidean lattice of dimension d. As noted in [11], the map
θ defined by (5.24) is an involution (automorphism of order 2) of the conformal
field theory 3f(Λ). We write

: θψ = ±ψ} , (5.32)

so that JtT(Λ) = 34?+(A) Θ 3tf~(A).

Lemma 5.3. J f + (Λ) is a sub-conformal field theory of J4?(A).

Hence Jf+(A) is a conformal field theory, from Proposition 2.16. It has vacuum
|0), conformal state ΨL and vertex operators those of Jf (A) restricted to
(which we shall still write as V(ψ,z) for ψ e je+(A)). J^+(A) consists of states
of the form \λ) + | — λ) acted on by an even number of creation operators and
I λ) — I — λ) acted on by an odd number of creation operators. We have observed
that the ̂ /-dimensional Heisenberg algebra plays an analogous role to the lattice Ίβ
in the construction of the lattice Acg from a binary code #, and we see that picking
out 2tf +(A) from Jf(A) corresponds to selecting out the coset /to(^) (in which we
restrict Zd to Z+) from Λ<g.

To obtain the lattice A%, we then added in the lattice As(%>) which is obtained

by shifting Λo(^) by -^=1 if d is an even multiple of 8 and -^=1 + Vΐej for

any j with l^j^d if d is an odd multiple of 8. So, firstly, we suspect that the
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corresponding construction we produce here will only make sense if d is a multiple
of 8. Analogous to the shifting by -K= J_, we define a Hubert space 3^τ(Λ) created

by the action of half-integrally model oscillators c/, r G Z + j , l^j-^d, satisfying

[4,cί]=rδr,-,δV (5.33)

and c/ = cJ_r, on an irreducible representation space χ(Λ) of the gamma matrix
algebra Γ(Λ) = {±γλ : λ € Λ} with

yλyμ = (-Όλ'μyμyλ = ε(λ,μ)γλ+μ> y\ = { - φ 2 , (5.34)

where λ,μ G A and ε(/l,μ) = ±1 (see [11]), with c/χo = 0 for r > 0 and χo £
χ(Λ). The introduction of the space χ(Λ) is necessary, since we have no zero-
moded oscillators, and so no momentum space on which to represent the cocycles,
and we introduce the algebra by analogy with the cocyle operators in the straight
construction.

The operators
1 °° d

Ln = ~ Σ : cr ' Cn-r : +T7^«0 (535)
I r=-oo 10

(r9s9... will usually denote elements of Z + \ in this chapter) satisfy the Virasoro
algebra (2.2) with c — d, and these turn out to be the moments of the operator
corresponding to the conformal state φL when we define the representation. Thus,
the ground state sector χ(Λ) has conformal weight d/16, and so we see that if we
wish to extend 3t?+(Λ) by some subspace of JfV(Λ) to give a new conformal field
theory as described in Sect. 4, then we must have d a multiple of 8 as postulated
above, since the conformal weights must be integral, and the conformal weight of
the state

M . \

Σ<Jxo, (5.36)

where χo £ x(Λ), 1 ̂ ja ίkd and ra = ma -f \ with the ma positive integers, is

d M

hχ = j7 + Έra. (5.37)

This also tells us that we must consider only those states with 0 = 1 , where

θψ-1 = -c}9 θχ0 = (-l)d/sχo , (5.38)

gives us an extension of θ defined in (5.24) from 3tf(Λ) to Jf (Λ) 0 jtfτ(A). Define

f θχ = ±χ} , (5.39)

(cf. (5.32)). J4?£(Λ) is the subspace of ^{A) consisting of states with integral
conformal weight. It is seen to be analogous to A^(^)9 in a similar way to the
correspondence which we have noted between Jf+(yl) and AQ(%>). SO, we would
expect to obtain an analogue of the twisted construction of a lattice from a binary
code by adjoining the twisted sector 3tf"£(A) to J^+(A). This is the extension
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which was discussed in Sect. 4. We saw that to do so we must have 3tff(Λ) a real,
hermitian representation of J f + (Λ), satisfying an additional locality relation.

Define the field

RJ\z) = i Σ — z~~r > (5-40)
r=—oo f

by analogy with (5.17) (note here we sum over r G Z + | ) . Then, corresponding
to the state ψ given by (5.15), we define, by analogy with the definition (5.18) of
the vertex operators in the straight theory,

Λ ( M i dmaRja \
V$(ψ,z) = : Π 7 ΓT7 -Γ^Γ~( Z ) exv{iλ ' R(z>>} : yχ ' ( 5 4 1 )

\α-l \ma — 1) dzma )

where we use the obvious normal ordering, i.e.,

: Qxp{iλ R(z)} := Qxp{iλ R<(z)}Qxp{iλ R>(z)} , (5.42)

where

RJ

$(z) = iΣ^-r- (5-43)

Then set
Vτ(ψ9 z) = V^e^^^ψ, z) , (5.44)

where

A { z ) = l S ( » ' ) ( » ) ^ τ Γ α m • *" - ^Ωo ao ln("4z) (5 45)

[Note that the operators Zw which we wrote down in (5.35) are actually the modes
of the operator VT(ΨL,Z), SO that these will be the Virasoro generators in the twisted
sector, and the conformal weights are as stated. The normal ordered sum in (5.35)
arises from V^(φL,z) as in the untwisted case. However, eA^~z^\\ίL = ψL-\- ^z~ 2 | 0) ,
so we have the extra term F^(^z~ 2 |0),z) = ^z~ 2 , which accounts for the shift
in Lo.]

Let M be a symmetric, unitary matrix satisfying

= yλM . (5.46)

Then the main result of [11] is

Theorem 5.4. The operators Vτ(ψ, z) define a real, hermitian representation of
the conformal field theroy Jf+(Λ), with the conjugation map on the twisted sector
Jί?£(Λ) given by

χu = (-ΌL°θχMu*, (5.47)

for

Xu=(fl dlΛ u , (5.48)
\β=l /

the extension to all twisted states following by antilinearity. Further, if VΪΛ* is
even, 3&(Λ) = J4?+(Λ) 0 ^(Λ) is a hermitian conformal field theory, which is
self dual if A is self-dual.
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[Note that it has been shown in [23] that the condition that VΪΛ* be even is
also necessary for consistency of the conformal field theory.]

6. Results of the Constructions and Connections with the Monster

6.1. The Monster Module. The result of the recently completed classification of
finite simple groups [10] is that there are 16 infinite families of groups of Lie
type, the alternating groups on n elements for n ^ 5 and 26 so-called sporadic
simple groups, which do not fit into any systematic classification. One of the spo-
radic groups is the Mathieu group, M24, the symmetry group of the Golay code,
as discussed in Sect. 5.1. Conway's group Coo is the automoφhism group of the
Leech lattice. It involves, as quotients of subgroups, 12 sporadic simple groups
including the Mathieu group. In 1973, Fischer and Griess predicted independently
the existence of what would turn out to be the largest of the sporadic groups,
the Monster, F\, (which turns out to involve 19 of the other sporadic groups)
which would have order 2 4 63 2 05 97 7l 1213317.19.23.29.31.41.47.59.71 « 8.1053. It
was observed by Griess, Conway and Norton that the smallest non-trivial irre-
ducible representation of the Monster would have dimension d\ ^ 196883. Nor-
ton showed that this representation would have the structure of a real commu-
tative non-associative algebra, and Griess [8] explicitly constructed such an al-
gebra of dimension 196883 and verified enough of its symmetries to prove the
existence of the Monster (and also that d\ — 196883). (Tits subsequently showed
that the Monster is the full automoφhism group of the Griess algebra.) However,
the construction of Griess is inelegant. From the point of view which we have
been pursuing in this work, i.e., the analogies between codes, lattices and confor-
mal field theories, we would expect, as was stated towards the end of Sect. 5.1,
the automoφhism group of the conformal field theory obtained by the twisted
construction from the Leech lattice to be somehow related to a sporadic sim-
ple group, since the Golay code was related to the Mathieu group and yielded
the Leech lattice under the twisted construction, which was related to Conway's
group Co\.

Further evidence for this point of view is provided by the theory of modular
functions. The modular group

Γ = PSL(2,Z) = SL(2,Z)/(±1) (6.1)

has an action on the upper half complex plane H given by

Γ t e "- (6 2)

Dedekind and, independently, Klein produced a function j(τ) on H invariant
under Γ. Set q = e2πiτ. Then

Θ4(τ)
jiτ)=φϊ- (63)

Lemma 6.1. The modular functions (the meromorphic modular-invariant functions
on H U {/oo}) are given by the field of rational functions of j(τ). Up to an additive
constant, j'(τ) is the unique such function having a simple pole at ioo with residue
1 in q.
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We see from (5.26) that j(τ) is the partition function for the conformal field
theory ffl(E\). We showed there that χ^(yi)(τ) was modular invariant for A an even
self-dual lattice of dimension a multiple of 24. So, by the above lemma, taking
another even self-dual 24-dimensional lattice in place of E\ in (6.3) will give j(τ)
up to an additive constant. The constant term in the expansion of the character as
a power series in q is the number of states of conformal weight 1 in the theory,
which is at least 24 since we always have the states aj_x\ϋ) for 1 ̂ Ξy'^24. For the
Leech lattice, these are the only such states, but for other lattices we have the states
\λ) for λ a lattice point of length 2. We set J(τ) to be j(τ) with zero constant term,
giving

J(τ) = q~x + 0 + 196884^ + 21493760?2 + ΞΞ £ anq
n , (6.4)

n

where an ^ 0 for all n e Z. It was noticed by McKay that

fli =rfo + rfi, (6.5)

where do — 1 can be interpreted as the dimension of the trivial representation of
the Monster. McKay and Thompson [18] soon noticed

a2 = d0 + dx + d2 , (6.6)

where d2 is the dimension of the next largest irreducible Monster module, and
similarly for other terms. It was conjectured from this that there exists a natural
infinite-dimensional representation of the finite-dimensional Monster

K" = F _ i θ K i θ K 2 θ , (6.7)

such that dim Vn = an, n — — 1,1,2,.... From (6.3), it would be imagined that the
natural choice for V* would be the conformal field theory 3tf(A) associated by
the straight construction with a 24-dimensional even self-dual lattice A. However,
as mentioned above, none of these provide zero constant term in their characters.
Inspired by the analogies to codes and lattices as we have mentioned, the obvious
thing to consider is the twisted construction Jf(A24) from the Leech lattice. The
weight one states in the twisted theory Jίf(A) are given in 24 dimensions by \λ) +
I — λ) for λ G A a vector of length 2, since the states aJ_x\0) are projected out
by taking the θ — 1 subspace. (There is no contribution from the twisted sector,
since in 24 dimensions the twisted ground state has conformal weight §, and so the

smallest weight of a twisted state is 2 for the states cj

 x χo, χo G χ(A), 1 ̂ y'^24.)

So Jf(A24) has no weight one states and the character is J(τ) as required, i.e., it

is conjectured that Jf(A24) provides the natural module V^ for the Monster, with

Vn the space of states in the conformal field theory of weight n + 1.
This conjecture was proved by Frenkel, Lepowsky and Meurman [6,7]. The

basic idea of their work is to construct an involution σ known as a triality operator
of the conformal field theory which extends the natural action of AvX(A24) on the
theory to the Monster. What we shall show in Sect. 6 and 7 is that this triality can
be understood in a more general context than the specific case considered for the
Monster, for which properties special to this case were used. In the remainder of this
section we shall discuss in more detail how the Monster arises as the automoφhism
group of J^(A24). In Sect. 6.2, we discuss the results of the straight and twisted
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constructions of conformal field theories, and in particular the coincidences between
the straight and twisted theories.

Aut(yl) is the group of automorphisms of the J-dimensional even self-dual lattice
A, i.e.,

Aut(ΛL) = {R G SO(d): Rλ G A VA G Λ} . (6.8)

Its centre is Zp = {±1} = Z 2 . As already remarked, in the case of the Leech lattice
the automorphism group is Co0, and the group Aut(yl24)/Zp is Conway's group Co\.
Co\ is a simple group of order 22139547211.13.23 « 8.1018. We have a representation
of Aut(yl) on the Hubert space JΊf(A) given by R •-> uR with

uRalu-χ = Rijdl uR\λ) = \Rλ), (6.9)

for R G Aut(Λ). However, this is not a group of automorphisms of the conformal
field theory because we must consider the cocycle operators.

We have from [19] that if yχ and y\ are irreducible representations of gamma
matrices with the same symmetry factor ( ( — \ ) λ ' μ in this case) then there exists a
unitary transformation S such that

= v(λ)y'λ , (6.10)

where v{λ) = ± 1 and

Take iλ = yRχ for some R G Aut(yl). Let

C(A) - {(R,S) : R G Aut(Λ), S y ^ " 1 = vR,s(λ)yRλ} , (6.12)

for some VRts(λ) = ± 1 . Note that in the trivial case 7̂  = γχ9 v(λ + μ) = v(λ)v(μ)
and S G Γ(A). Thus, the kernel of the homomorphism (R,S) \-> R is Γ(A)9 and so
we have the exact sequence

1 -> Γ(A) -^ C(A) -^ Aut(A) -+ 1 . (6.13)

This provides a group of automorphisms of J^(A) Θ J^τ(A) given by

«Λ,sχ = ^χ . (6.14)

Since we have yχ = y-χ, then ip = (—1,1) G C(A) acts trivially on Jf(/l). Thus,
we have a group of automorphisms C(A) = C(A)/ZP, where ZP = {(±1,1)} = Z2,
and a homomorphism (±R,S) \—>Rof C(A) —> Aut(/l)/Zp with kernel Γ(yl), giving
us the exact sequence

1 -> Γ(/t) -^ C(yl) -> Aut(yi)/Z/> -> 1 . (6.15)

In the case of the Leech lattice, we obtain

1 -> Γ(A24) - . C(yl24) -> Co! -> 1 , (6.16)

and C(A2Λ) together with the triality operator (involution) σ generates the Monster

as a group of automorphisms of ^(^24) . C(A24) is the centraliser of the involution
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Ϊ = ( 1 , - 1 ) G Γ inside the Monster, i.e., it preserves the "fermion number," or in
other words it maps states in the straight sector into the straight sector and similarly
for the twisted sector, while the triality operator mixes the straight and twisted
sectors.

The group Γ(Λ) is an extra-special 2-group, i.e., |.Γ(Λ.)| = 2d+ι with centre Z2

and Γ(Λ)/Z2 = Λ/2Λ ^ Zd

2.
On the other hand, it is 1 which has trivial action when C(Λ) acts on Jf (Λ).

So we have a representation of Co(Λ) = C(Λ)/Zl9 where Zι = {l,ι} = Z2. The
homomorphism (R, ±S) >—> R leads to the exact sequence

1 -• Λ/2Λ -» Co(Λ) -* Aut(Λ) -» 1 . (6.17)

6.2. Results of the Straight and Twisted Lattice Constructions. In this section, we
shall describe the results of the straight and twisted constructions of a conformal
field theory from an even self-dual lattice in 8, 16 and 24 dimensions.

Let us begin with a few standard results which are relevant.

Proposition 6.2. Let φa, l ^a^N, be an orthogonal real basis for the weight one
states of a conformal field theory Jf, i.e., ψ* = φa and (φa\φb) = kδab. Set

V{φ\z) = T\z) = Σ T^-n~ι . (6.18)
n

Then these modes obey the ajfine Kac-Moody algebra

[Tl Tb] = ifabcTc

m+n + kmδabδm,.n . (6.19)

Proof The operator product expansion (2.52) gives

Ta(z)Tb(ζ) = kδab(z - O~2 + ifabcTc(ζ)(z - CΓ 1 + 0(1) , (6.20)

where T^\\ίb — ifabc\\ιc', since this must be a state of weight one, and also Tf\j/b =
λ\Q) similarly, where λ = (0\T^\φb), i.e., A* = (^ |K_i(^) |0) by (2.54) if the states
φa are quasi-primary. So λ* = (ΐl/b\φa) by (2.50), and so λ = hδab. We have that the
weight one states φa are quasi-primary, since L\φa = λa\Ql) say, so λa = (0\L\\φa),
i.e., λa* — (φa\L-\\0) = 0, since |0) is su(l, 1) invariant. The usual contour mani-
pulation argument then shows that (6.20) is equivalent to (6.19). D

The zero modes define a compact Lie algebra with structure constants fabc, i.e.,
we have a continuous group of automorphisms of the conformal field theory. We
shall denote this Lie algebra by g^.

Proposition 6.3. For A an even lattice, the ajfine algebra of Jf (A) in Proposi-
tion 6.2 is the ajfinization gΛ of the Lie algebra gA with root system Λ(2). In
particular, g^{Λ) = gΛ.

Proof The weight one states are given by aJ_x\0) and \λ) for λ e A a vector of
length 2. The appropriate operator products may easily be evaluated, for example

V(λ,z)V(μ, 0 = eίλ ' x<^ea ' qzλ ' peiλ ' x>(z)σλ

. eiμ X<(ζ)eiμ ' qζμ p jμ ^ ( 0 ^ . (β2\)
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The σχ commutes through to the right and we use σχσμ = ε(λ,μ)σχ+μ. Moving zλ ' p

past eιμ ' q produces a factor zλ'μ, while

eiλ X>(z)eiμ X<(0 = eiμ Xκ(ζ)eiλ ' X>(z) Jiλ - X>(z),iμ - X<({)] ? (6.22)

where the commutator is given by

[iλ X>(z),iμ X < ( 0 ] = - Σ A Ai- f - ) = A μ\n (1 - - ) , (6.23)
n>0 n \zJ \ zJ

from (5.19) and (5.14). Hence we obtain

F ( λ , z ) F ( μ , 0 = (z - ί ) Λ " ̂ ε(A,μ)eα ' x < ( z ) + z > ' ^ ( O ^ α + μ ) q

. Z2 /.^ V Λ x>(z)+//i *>(O σ ^ ( 6 2 4 )

Since λ, μ have length 2, λ μ = ±2, ±1,0. So we only obtain singular terms in
the operator product for λ μ = — 1 and λ μ = — 2 (i.e., μ = -λ). In the first
case,

^ (6.25)

while in the second case

V(λ,z)V(-λ,ζ) = | ^ p ίl + (z - ζ)iλ • ^X(C)] + 0(1), (6.26)

Taylor expanding the right-hand side of (6.24) about z = ζ. The vertex operator
d ifor the state ε α_i|0) is is jLX(ζ)9 which has modes αw. Similarly to the above,

we obtain

iε • ~X(z)V(λ, 0 = — V(λ, 0 + 0(1). (6.27)
dz z — ς

In commutator form, the algebra of the weight one states is, in the gauge in which
ε{λ,-λ) = \,

n ( λ + μ ) λ μ = -l

[Vn(λ% Vm(μ)] = I λ an+m + nδn^m λ μ = -2 ,

[ λ μ ̂  0

[ε an, Vm{λ)] = ε λVn+m(λ),

[ε an,η • am] = ε • ηδn-m . (6.28)

This is recognisable as gΛ as required. D

If we denote [20] the space of conformal fields corresponding to states of con-
formal weight at most n by Wn, then we have a map

WnxWm^ Wn+m_x , (6.29)

given by the singular part of the operator product expansion. Thus for n = m = 1,
the operator algebra, for the modes of the vertex operators given by taking moments
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with the usual contour manipulation argument, as we have seen above, closes. In
the case n = m = 2, we see that it does not close in general, but we can follow
FLM and define a new product such that this cross-bracket algebra does close on
WL. We remove the term corresponding to a state of conformal weight 3 in the
operator product expansion for two states of conformal weight 2 by multiplying by
(z — ζ) to obtain

(z - ζ)V(φ,z)V(φ,ζ) = Σ(z - ζγ-3V(V(ψ)2-nφ,ζ) + 0(1). (6.30a)
«=o

For the modes of the corresponding vertex operators, this is

ΦmXφn = [ψm+uΦn] ~ [Ψm, Φn+\] , (6.30b)

i.e., it is composed of two brackets which "cross."

In the case of the theory J^(Λ24), there are no weight one states, and so we
do not have the continuous group of automorphisms corresponding to these fields,
nor indeed any continuous automorphisms [7] (see also [27]), but only discrete
automorphisms which, as we have stated in Sect. 6.1, close to form the Monster
group. We have an algebra on the space of states V\ of conformal weight 2 (cf.
the decomposition (6.7)) given by φ x φ = Vo(φ)φ, for φ, φ e V\, of which (6.30)
is the commutative affinization [7] \φι acts as the identity element. The algebra is
commutative and non-associative. (Commutativity follows from the mode expansion
of (2.13), remembering that there are no states of conformal weight one.) We may
call this the Griess algebra. In fact, it is a slight modification of the algebra originally
defined by Griess [8], incorporating a natural identity element [7]. Note that Tits'
proof [21] that the Monster is the full automorphism group of the Griess algebra,
together with the observation that the modes of the vertex operators in Wχ generate
F # , implies that the Monster is in fact the full automorphism group of the conformal
field theory.

This completes the necessary review of the standard concepts which are relevant
to this section.

If the rank of g#, the Lie algebra corresponding to the affine algebra generated
by the weight one fields in a conformal field theory 2f?, is equal to the value of the
central charge c of the theory, then we have c weight one fields P\z) corresponding
to states φJ' (i.e., Pj(z) = V(φJ\z)) corresponding to a Cartan subalgebra of g#>.
We choose the states φJ to be real and orthonormal, and the moments of PJ'(z),

P>(z) = Σφ-"-1, (6-31)
n

satisfy
[a?m9ai] = mδmt-nδV, (6.32)

(which we see immediately from (6.19)).

Proposition 6.4. The simultaneous eigenvalues of the pJ = aJ

0 form an even lattice
A, and if dim A = c, then 2tf ^

Proof We have that the modes L'n of

L'(z) = \ : P(z) P(z) := ΣΦ~~"~2 , (6-33)
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where the normal ordering is defined as in Sect. 5.2, satisfy the Virasoro algebra
(2.2) with central charge c, i.e.,

[Lf

mX] = {m-n)Lf

m+n + ^m(m2-\)δm^n. (6.34)

Also, PJ(z)\0) =ezL-iaJ_ι\Q) from (2.3) implies that aJ

n\0) = 0 for n ^ 0. This
gives

Z'(z)|0) -L'_ 2 |0> = ! « _ ! a_!|0) = φ[ , (6.35)

as z —> 0. Also note Z^|0) = 0 for « ^ —1 and Z^ = Z/_Λ (since aJ

n = aj_n, as the

states corresponding to the PJ'(z) were chosen to be real and we use (2.54)).
The weight one states are Virasoro primary states, i.e., Lnφ = 0 for n > 0 if

φ is a state of conformal weight one (this is obvious for n ^ 2 as the conformal
weights are non-negative. For n = 1, the result follows by the argument used in
Proposition 6.1 to show that the states φa are annihilated by L\). Thus (2.58) holds
for all « G Z , and we may deduce for V(φ,z) = PJ(z) by taking modes that

[Lm,ai] = -naJ

m+n. (6.36)

We may thus deduce that

[L_,,L'(z)] = £ l ' ( z ) . (6.37)

Equations (6.37) and (6.34), together with the fact that Lf(z) is clearly local with
respect to the vertex operators (since the PJ(z) are), shows that, by the uniqueness
theorem, L\z) = F ( ^ , z ) .

Equation (6.36) also implies that

[Lm,L'n] = (m- n)L'm+n + -^m(m2 - \)δm^n , (6.38)

so that, setting Ln = Ln — L'n, (6.34) and (6.38) imply

[Lm,Ln] = (m-n)Lm+n. (6.39)

SetL(z) = J2nLnz-n-2=L(z)-L'(z)=V(φL-φi,z). But \\φL-ψ[\\2 - <0|Z2Z_2|0) =
<O|4Zo|O) + (0|Z_2Z2 |0) by (6.39), i.e., \\φL - φ[\\2 = 0 by Ln\0) = L'n\0) = 0 for
n ^ —1. Thus ΦL = φ[ and so L'n = Ln.

Since the action of a]

n on a state decreases the LQ eigenvalue by n, we can
deduce from the non-negative spectrum of LQ that the space may be built up from
states Ψ% satisfying

pJψ^=KjΨ^ (Ψl\Ψkκ) = δkk\ aJ

nψ£ = 0 f o r « > 0 , (6 .40)

by the action of aJ

n for n < 0. (The states have been decomposed into simultaneous
eigenstates of the commuting hermitian operators pJ = aJ

Q.) The k on Ψ^ is a
degeneracy label, which will be shown below to be unnecessary. The space 34?
decomposes into a direct sum of spaces Jff for K #= 0 (generated from ψ£ by the
action of the creation operators aJ

n) and Jfo generated by the creation operators
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from the vacuum (there is no degeneracy label due to our uniqueness assumption
about the state of conformal weight zero).

From the OPE (2.52) (noting that ψ£ has conformal weight \K2\

oo , 2
k ) = Σ V{a[ Ψk

κ,ζ){z - ζ)"-2κ - 1

n=0 2

n=0

= (z- ζyλVV(Ψk

κΛ) + O(l), (6.41)

so that

) , (6.42)

i.e., acting with V{Ψ^ζ) on a state with pJ eigenvalue λJ' maps it to a state with
pJ eigenvalue λJ' + & (if the state is non-zero).

Now, since Ψ^ is quasi-primary and has weight ^K2,V(Ψχ,z)=z~κ

l/z*γ. Equation (6.42) then implies that V(ψ£,z) lowers the eigenvalues of pj

by KJ. So ψ£, given by the action of V(ψ£9z) on |0), must be a state with pJ

eigenvalue — KJ'. Also, since from Proposition 2.9 it has the same conformal weight
as ψ£, it must be a state of the form Σk, akfψ^κ, for some ak/ G C. We choose

the degeneracy labels such that ψ£ — Ψ^κ. (Note that the map ψ ι—> φ is invertible
(as it preserves norms, from Proposition 2.9) and so there are the same number of
degeneracy labels in the — K eigenspace as in the K eigenspace.)

Now, from the OPE,

V(ΨJ<9z)V(ψg9ζ) - λ(z - ζ)~κ2 , (6.43)

where λ = δkk' from (2.48).
Consider

V{ΦK9z)V{ΨiK9ζ)\Ψι

κ) . (6.44)

We see from (6.42) that V{ΨίK9ζ)\Ψι

κ) G ̂ 0 , and so V{ΨJ

κ,z)V{Ψk_κX)\Ψι

κ) G

JtJ

κ. However, (6.43) implies that, as z -> ζ, (6.44) goes like (z - ζ)~κ2^kΨι

κ.
Thus, we see that there can be only one degeneracy label, and we drop them from
now on.

The momenta K form a lattice also, since the 4-point function

must be non-zero (see below for the details), implying that V(ΨL,z)V(Ψκ,ζ)\0)
is non-zero, a momentum eigenstate with momentum K + L. The requirement of
integral conformal weights fixes this lattice A to be even, and so we have the desired
Fock space structure. However, we must still verify that we have the isomorphism
j f = 3ή?(A) of conformal field theories. In particular, we need to consider the
cocycle structure.

From the additivity of momenta, we see that we must have the OPE

-ζ)λ ' »V(Ψλ+fl,ζ) +..., (6.45)
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where ε(λ,μ) is not necessarily non-zero. (We shall show below that it is in fact
of unit modulus.) Consider the 4-point function

. {zx-z2)
λ^{zλ-z,rλ'^z2-z,yλ'^z3-zA)

λ^G{x) , (6.46)

using su(l, 1) invariance, with

(z z)(z z)

and G(x) having potential poles at x = 0,1 and oo. We consider the limits z\ —» z4,
^2 —> z 3 ; ^1 —• ̂ 2? ^3 —• ̂ 4; ^1 - ^ ̂ 3, ^2 —>• ^4 T h e first o f these gives, on us ing

(6.43),

)\0) - (z! - z 4 Γ λ 2 ( z 2 - z 3 ) V , (6.48)

and we deduce that G(x) is regular at infinity.
Considering the second limit and using (6.45) gives

{0\V(Ψ-μ,zι)V(Ψ-λ,z2)V(Ψλ,z3)V(Ψμ,z4)\0)

~ε(-μ,-λ)ε(λ,μ) • (zi-z2)
λ ιJ(zi-z4)

λ^(0\V(Ψ^μ

(6.49)

But

(0\V(Ψ^μ,z2)V(Ψλ+μ,z4)\0) = z~(λ+μ)2{Ψλ+μ\eL^e**L-i\Ψλ+μ) , (6.50)

by (2.43) and the creation property (2.3) (noting that the states Ψχ are (quasi-)
primary). Applying (2.29) then gives us

{0\V(Ψ-μ,zλ)V(Ψ^hz2)V(Ψλ,z})V(Ψμ,z4)\0)

~ ε(-μ, -λ)ε(λ,μ) (z, - z2)
λ ' "(z3 - z4)

λ ' "(z2 - z4T
(λ+μf • (6.51)

Hence G(x) must be regular at x = 0.
Similarly, the third limit gives us that G(x) is regular at x = 1. Hence, by

Liouville's theorem, G(x) must be a constant, in fact G(x) = 1 from (6.48). So we
deduce that

(0\V(Ψ-μ9zx)V(Ψ-λ9Z2)V(Ψλ9z3)V(Ψμ9zΛ)\0) = (z! - z 4 ) V ( z 2 - z 3 ) ^ 2

• (z! - z 2 ) λ "(z1 -z3y
λ'»(z2-z4Γ

λ'»(z3 -zAf» , (6.52)

and
l . (6.53)

However, the OPE (6.45) together with the hermitian property (2.43) tell us that
ε(λ,μ)* = ε(—μ,—λ), and so by (6.53) we see that ε(λ,μ) is of unit modulus. The
locality property applied to (6.45) gives immediately that

ε(λ9μ) = (-l)λ 'iε(μ9λ)9 (6.54)
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and associativity implies

ε(λ,μ)ε(λ + μ, v) = ε(λ,μ + v)ε(μ, v). (6.55)

We thus see, from [11], that we may make a "gauge transformation" of the
cocycles for 34? (Λ) if necessary so that the symmetry factors are given by the
above set of ε(λ,μ). Hence, our proposed isomorphism u : 34? —• 34?(A) is given by

ualu-ι=άί; u\Ψλ = \λ), (6.56)

using the notation of Sect. 5.2 for 34? (A) (where we use a hatted notation to dis-
tinguish the theory 34?(Λ)). All that we are now required to show to complete the
proof is that

)u-ι = V(uψ9z)9 (6.57)

for all φ e 34?. From the definition of the PJ\z), we see that this is true for the
states α^_j|0). Further, we may act with the modes of the PJ(z) (i.e., the aJ

n) on
the states Ψχ to generate all states in 34? by use of the duality relation (cf. the
argument given in [11] to simplify the final locality relation), which holds also in
34?(A). Hence, we need only verify (6.57) for φ = Ψχ,λ G A. Further, we see that
it is only necessary to verify (6.57) for such states acting on states |μ),μ G Λ9 since
we may act on the left with suitable combinations of the operators V(άJ_ι\0),ζ) and
move them to the right by locality to act on \μ) and raise it to an arbitrary state in
Jf {A). So, we need only check

uV{Ψλ9z)\Ψμ) = V{\λ)9z)\μ) 9 (6.58)

for all λ, μ G A.
Let us verify (6.58) by induction on the modes. From (6.45) we have

V(Ψhz)\Ψμ)=zλ'»ε(λ,μ)\Ψλ+μ) + , (6.59)

i.e., the first non-zero term in the expansion is

Ψχ)\Ψμ) = s(λ,μ)\Ψλ+μ) , (6.60)

similarly for the right-hand side of (6.58). We have chosen the ε(λ,μ) of
such that (6.58) holds for this mode. Now, from (2.51),

[L_i, Vn(Ψλ)] = ( l - n - μ2)Vn-ι(Ψλ). (6.61)

Hence

L-λVn{Ψλ)\Ψμ) =(\-n- \λ2)Vn.λ{Ψλ)\Ψμ) + Vn(Ψλ)μ a^\Ψμ)

= (\-n-\λ2-λ- μ)Vn-X(Ψλ)\Ψμ)+μ.a-XVn{Ψλ)\Ψμ), (6.62)

using [aL Vn(Ψλ)] = λJ'Vm+n(Ψλ) (which follows from the OPE (6.41)), and simi-
larly for Vn(λ)\μ). So, if we have (1 — n — \λ2 — λ μ) + 0 for all relevant n then
the required result follows by induction. Thus, we require the coefficient to be pos-
itive for the first non-zero term, i.e., for n = — ^(λ-\- μ)2 + ^μ2, and so we have
the desired conclusion. D
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In [20] the twist invariant subalgebras for the theories Jf (A) were evaluated,
i.e., the algebras generated by the weight one states in J f + (/t), which survive into
the twisted theory Jf (A), i.e., the states \λ) + | — λ) for λ G Λ(2). For dimensions
of 24 or greater, the minimal conformal weight in the twisted sector is at least 2, and
so the algebra Q^(Λ) is just the twist invariant subalgebra of g^Λ)- But m 8 and 16
dimensions, the twist invariant subalgebras become "enhanced." There are twisted
states with conformal weight one in these dimensions, and including the correspond-
ing vertex operators in the operator algebra extends the twist invariant subalgebra.
£F(E%) as we have seen has gj^(Es) — E%, and the twist invariant subalgebra D%
is enhanced to E%. By Proposition 6.4, we see that ^f (E%) = J^(Es), in com-
plete analogy with the result for the constructions of lattices from codes. Similarly,
and again mirroring the results for codes, it is found that 34? (£ 8 0 E%) = Jf(Z)i6)
and Jf (Dχ6) ^ Jf(Es Θ Es). The results for the 24-dimensional even self-dual
lattices are shown in Table 2. The lattices A (except for the Leech lattice A2A)
are denoted by the algebra whose root system Λ(2) forms, while the straight and
twisted theories J$?(Λ) and Jf (A) are labelled by the algebra corresponding to
the weight one fields (except for J f (A24) = K#, the natural Monster module).

Table 2. Straight and twisted constructions from even
self-dual lattices in 24 dimensions

Jίf(Λ)

El

A?
Λ24

D24

3 2Π2A2
U5ΛΊ
A24

A\ηEΊ

Al5D9

A2

2

AuDηEe

A2

9Dβ

A3

A4

Λ6
A\Dά,

A6

Λ4Λ2
Λ2

D4

A24Λι
U{\)24

D24

D2

2

D4

D2A2

A24

AιηEΊ

A\5D9

A\2

AnDΊEβ

A2

9D6

A3

A
A\DΔ,

A

%

A4

M4
V"
D\2

4A\\
DD\B\

Bn

D9AΊ

D%B2

6

B\

A\A\
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We see that there are 9 coincidences between a twisted theory and a straight
theory (Proposition 6.4 shows that the theories are indeed isomorphic) and the
other 15 twisted theories aredistinct, as their algebras are distinct. This gives us
a total of 39 self-dual bosonic theories with c = 24. We also remember that there
are 9 doubly-even self-dual binary codes of length 24. By comparing with the
results from Sect. 5.1 given in Figs. 1,2 and 3 we see that these coincidences be-
tween the straight and twisted theories are such that the conformal field theory
given by the straight construction from the lattice obtained by the twisted construc-
tion applied to a doubly-even self-dual binary code is isomorphic to the theory
given by the twisted construction from the lattice obtained by the straight construc-
tion applied to the same code. We may thus extend Figs. 1-3 to give Figs. 4-6,
where there is included on the right hand side the dimension of the appropriate Lie
algebra. Again, wavy arrows denote the twisted construction and straight arrows
the straight construction, (άimgy?^ = \Λ(2)\ + 2 4 and άimg ~(Λ) = ^\Λ(2)\, in
at least 24 dimensions, so that, from our discussion in Sect. 5.1, dim g^(A^) —
16|^ 4 | +72, dim g~(Λ , = άimg-. = 81 #41 + 2 4 and dim#~ ~ = 41 #41 in 24
dimensions). Also, Fig. 7 shows the results in 16 dimensions. (Note that Fig. 7 may
be extended indefinitely by adjoining copies of itself, a property which is not shared
by the graphs in 24 dimensions, since in that case dim g decreases as one descends
the graph).

We thus see that the connection with codes is more than just an analogy. Codes
can be used to understand the structure and symmetries of conformal field theories.
In Sect. 7, we prove that J^(Λ<^) = Jί? (Λ<#) for any doubly-even self-dual binary
code # (of any length - a multiple of 8). Here, we show

Proposition 6.5. Any coincidence between a twisted theory and a straight theory
must be due to the existence of a doubly-even self-dual binary code.

code lattice eft dim g

42

42

18

6

0

744

744

360

168

72

24

0
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I#4I code lattice eft dimg

^ D
Oά
 1128

66 d
Oά
^ ^ A , 552

105

12

24

30 d'^ ^ D
ή

4
 264

dl0ε7

Fig. 5.

code lattice eft

Fig. 6.

120

48

dimg

456

216

96

code lattice eft

28

28

First we need

Fig. 7.

496

496

496

496

Lemma 6.6. Let ^ be a self-dual bosonίc conformal field theory with central
charge c = d. Then Jf7 is ίsomorphic to J^(Λ%) for %? some doubly-even self-dual
binary code of length d if and only if g^ D su(2)d.

Proof The proof in one direction is immediate (see (7.1-3)). Conversely, if
Qje D su(2)d then rank Q#> = d. So, from Proposition 6.4, we see that 2tf = Jf(Λ)
for some even lattice A. A is a weight lattice for g#> D su(2)d, and so is contained
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between the root lattice of su(2)d and its dual, i.e.,

VΪZd C A C -^=Zd . (6.63)

So we can write

A = ^- + VΪZd (6.64)
v 2

for some doubly-even linear binary code # (these properties of # follow since /I
is an even lattice). Since Jf7 is self-dual, χ^{—1/τ) = %^(τ), and so we see from
(5.31) that yl, and hence #, must be self-dual. Note that this also implies that d
must be a multiple of 8 from the lattice theory discussed in Sect. 5.1. D

Proof of Proposition 6.5. If a twisted theory J-f (A) in ^-dimensions coincides with
a straight theory J^(Af) then the corresponding algebra must have rank d (since
J^(A') contains the states flijO), 1 ^ j ^ d, for which the corresponding fields

commute). The weight one states in Jf (A) are of the form \λ+) = \λ) + | — λ) for
λ G Λ(2)9 and these satisfy the commutation relations

f θ A μ = 0
[Vn(λ+),Vm(μ+)] = { (6.65)

[ ( Λ ) F w ( α τ μ ) + ) λ μ - ±1,

from (6.28). Hence, since the algebra has rank d, we must have d orthogonal
vectors in Λ(2) (since for λ μ = ±2, 1 = ±μ and the states λ+ and μ+ are not
independent). So, denoting these by Vϊej for 1 ^ y ^ ί/, we see from (7.1-3)

that 0jf(Λ) D su(2)d, and, since Jf (/I) is self-dual due to the fact that $ (A) is,
the above result tells us that A = A<$ for some doubly-even self-dual binary code
<€. But, as is shown in Sect. 7, tf (A%) = 3tf(λ«). So we deduce also that Ar is
equivalent to Λ<g. Therefore, all coincidences are labelled by codes in the manner
noted from the results above. D

We also note those twisted theories which are distinct from untwisted theories
must have rank strictly less than d, from Proposition 6.4, and this is consistent with
Table 2, since all of the 15 new twisted theories have algebras of rank less than 24.

For # a doubly-even self-dual binary code, we have the decomposition A<$ —
Λo(<g)\JΛι(<g),Λ« = Λo(<g)\JΛ3(<g). So we can divide J^?±(A^) and ^(A^)
into two subspaces each according to whether the momentum is in Ao or not, i.e.,
we define Ψ"^ — Jf±(Aa) to be the subspace generated by the Heisenberg algebra
from the states \λ) with λ G Λa and with 0 = ± 1 , 0 ^ a ^ 3 (note that we also
include the lattice A2). Similarly we can define twisted spaces SΓ^ (for more details
see the next section). Then we have the decompositions

MT(Av) = τT0

+

o

^+
o

0 ^^ 1 ^^ 0 ^^ 1 '

Q KD ? 3 ^ e-̂ Q ξP ^ 3 (6.66)
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) evident cubic
c symmetry

je(Λc) = je(Λc) induced
^& isomorphism

* A '

induced cub ic
symmetry

Fig. 8.

The triality structure of FLM is an involution acting on J^(Λ^) which mixes the
straight and twisted spaces, e.g. maps Ί ^ + <-> ̂ + , i^0

+ -> 1^, ^ -> F+. So, we
might postulate that an extension of this operator to the whole structure (6.66) would
provide the isomorphism between Jtf*(Λ<$) and 3tf(Λ<g) and also an automorphism
of 34?(Λ<g). In the next section, we show that this is true, but give rather a converse
argument to this, i.e., we observe that there is an obvious triality structure of J^(Λ^)
which, using the isomorphism J^(Λ^) = J^f(Λ^) which we prove directly, can be
extended to the first three rows of (6.66) and then finally to Jί?(Λ<g)9 providing a
simple construction of the triality structure of FLM, which serves to generate the
Monster, and also generalising this structure beyond the particular case associated
with the Golay code. In Sect. 8, we define further involutions to give a cubic group
of automorphisms. This strategy is summarised in Fig. 8.

[Note that if we let go be the Lie algebra corresponding to the sub-conformal
field theory Ί ^ + , and ga for a = 1,2,3 the algebras corresponding to ΨQ~, f\+ and
Ϋ\~ respectively, then we have a sort of "elaborated symmetric space structure"

[do, go] c go [go, 9a] c g
a
,

(6.67)

[g
a
,g

a
] c#o [g

a
,gb] c #

c
,

where (a,b,c) is a permutation of (1,2,3). 0 = ® f l =o0α c a n t>e divided into a
symmetric space in three isomorphic ways, i.e., g/go Θ ga ]

7. Construction of the Triality Operator

For # a doubly-even self-dual binary code of length d, we defined the spaces
Ψ^ for β = 0,l,2,3 in the previous section. (Note that we suppress the <€ de-
pendence for ease of notation.) We may also define 8 corresponding twisted
spaces starting from an irreducible representation ΘC = &(ΛQ ) of the gamma matrix
algebra Γ == Γ(Λζ) = {yλ : λ e ΛQ} (noting that Λ% = Λo U Λ\ U Λ2 U Λ3)9 which
is described in the appendix. 9C is of dimension 2 1 + ί / / 2 and splits into four irreducible
representations 3Γfl, 0 ^ a ^ 3, of To — Γ(ΛQ), with %Ό θ 3Ca

 a n irreducible rep-
resentation of dimension 2dl2 of Γ(Λ0 U Λa) for a — 1,2,3. (Note that the lattice is
only even for a = 1,3). Define θ = (-l)dβ on 9£a for a = 0,1,3 and θ = - ( - l ) ^ 8

on 3C>ι. Set ZΓ^ = J^(Aa) for 0 ^ a ^ 3, the subspace with θ = ±1 generated
by the ooscillators from S£a.
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Define the weight one states

f{ = ^ i | 0 > e i r 0 - , (7.1)

ζ{ = -l-(\V2ej) + I - y/lej)) e r+ , (7.2)

ζ{ = l-(\y/2ej) - I - y/2ej)) e rλ~ , (7.3)

1 t^ j ύ d, where the e7 are the unit vectors in the direction of the axes (which
we defined in Sect. 5.1). Set JJ'a(z) = V{ζlz\ 1 ^ a ^ 3, \ ^ j ^ d. Then these
currents define an affine su(2)d algebra. This follows from the relations (6.28),
which give

μ* , j f ] = iεabcJ^+nδJk + \mbm^nb
abb>k , (7.4)

where there is an implicit sum over c, 1 ^ c ^ 3. For each su(2), i.e., for each y,
we can define a rotation in that su(2),

| 1 2 J (7.5)

which rotates by π about the axis equally inclined to the first and second axes. Set

σ = Π *' • (7.6)
7=1

Then we have, since the distinct sw(2)'s commute,

σJ^σ-1 = J^2, σJi2σ-' = j£, cj£a~l = -J% , (7.7)

and σ defines an automorphism of 34?(Λ%), provided the cocycles are chosen
appropriately, which has order 2 (σ2 = 1), i.e., σ is an involution of 3tf{Λ<g).

When d is an odd multiple of 8, we shall modify the definition of σ given
above slightly, by redefining for some /, 1 ^ / ^ d,

, (7.8)

σ still being given by (7.6). This still gives σ2 = 1. [Although each individual su(2),
with generators JJ

o

a for some j , has half-integral spins on J^(Λ^), the diagonal
group, with generators ΣJJQ*, has only integral spins, due to the way in which the
occurrence of the half-integral spins is correlated by the codewords. The redefinition
(7.8) for d an odd multiple of 8 changes σ by a factor of —1 on states with half-
integral spin with respect to the su(2) labelled by / (but leaves it unchanged on
states with integral spin with respect to this su(2)).]

Proposition 7.1. The spaces Ψ^ and 3^ for 0 ^ a ^ 3 are irreducible as rep-
resentation spaces for i^0

+ [7].

Proof Consider initially the space Ψ* for some a, 0 ^ a ^ 3, and some parity
P = ±. Suppose that U is an irreducible representation space for Ϋ^~ contained in
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rf. set

ΨJ = \aίxaίx |0>, V{z) = VW,z) = ^ : P\z)P\z) : , (7.9)

where there is no sum over j (we drop the summation convention unless otherwise
stated) and

j , (7.10)

from (5.18). Also, fory'Φ£, set

ΦJk = fl^αlilO), V\z) = VW\z) = PJ(z)Pk(z) , (7.11)

(for j + k, PJ and Pk commute, so no normal ordering is necessary). Then, since

U is irreducible, U(z) and Ljk{z) map U —> U, since ι//J, \j/jk G fγ Denoting the

modes of the vertex operators for ψJ and ψJk similarly, we have [LJ

0,LQ] = 0 and

so we may write U as the direct sum of simultaneous eigenspaces of the LJ

0. If

φ e U is such a state, say LJ

oφ — vJφ, 1 ^ j ^ d. Then

Φ = Σ<ak

M_nφ (7.12)

(j + k) must be a state in U, since L7X(z) : U -> t/". But

4<4> ( )^4> ()
The projection of the state (7.12) onto the simultaneous eigenspaces must be in U,
so we see from (7.13) that aJ

na
k

M__nφ G U, i.e., aJ

mak

n maps U —> t/ for 7ΦA:. Thus,
so does

[ < / M , aJ

na
k

M] = -MaJ

na
J

m + mδm^na
k_Mak

M , (7.14)

for 7 ΦA:. Hence α^'α^ maps L̂  -^ U for mΦ — «. Putting m = —n in (7.14) we
have that

mak_Mak

M-Maίmai (7.15)

maps U —> C/ for jφA:. Since ι/t E 1^+, then we can decompose (7 into eigenspaces

of LQ : U —> t/. Applying (7.15) to a state φ £ U of conformal weight hφ, we see

that tfj^ m u s t annihilate φ for sufficiently large M, i.e., for M > hφ. Thus aJ_maJ

m

maps U -* U, and we have that α^ <4 maps U ^ U for all 1 ^ 7, k ^ d and

m,# G Z.

Therefore, since S7* = ΛQ"^ maps U —> C/ and the operators S7* commute, we
may decompose (7 into the direct sum of the simultaneous eigenspaces of these
operators. By application of aJ

mak

n with m, n ^ 0 to a state in such an eigenspace,
we see that each such eigenspace contains a state of the form \λa) + P| - λa),
where λa G Λa(%>). The vectors \/2^7 ± y/lβk and -4=c for 1 Sj<k^d,cE^,
generate the lattice Λo(^), and generate from λa the lattice Aa{^). Set

f - \yfaj ± V2ek) + I - (>/2βy ± V2β,)), Cc = \±c) + | - ^ c ) . (7.16)

Then V(ζβ,z) and V(ζc,z) map U -^ U (since the states are in ^ + ) and,

projecting onto the simultaneous eigenspaces of the operators Sjk, we see that
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application of these vertex operators takes us from the eigenspace containing
\λa) +P\ — λa) to all eigenspaces \λ) + P\ — λ) with λ G Λa. Applying aJ

mak

n with
m, n ^ 0 generates Ψ*p from these states (e.g. taking m = 0, n < 0 maps us to a
state with an odd number of creation operators and zero mode piece \λ) — P\ — λ)),
i.e., U = Y^p, and so the spaces Ψ^ are irreducible as representation spaces for

0 'The argument works in a similar way for the spaces ^ . For U an irreducible

representation space for Y^ contained in Tf, cJ

rc
k

s maps U —> U, as above. Then

by application of c/c* with r, 5 > 0 we see that U contains a state χ for P —

Po or a state c 7 \χ for P = -PQ, where χ G f , and Po = ( - l ) ^ 8 . Acting with

the vertex operators V(ζχ9z) for Q = |/l) + | — λ) G f̂ + in the first case shows
that the set of all such χ appearing in U must form an irreducible representation
space for the gamma matrix algebra ΓQ, i.e., U must contain S£a, and then acting
with cJ

rc
k

s for r, s < 0 we deduce that U = 3~a

p. In the second case, acting with
c\c{ shows that U contains all the states c^Lχ, \ ^ k ^ d. We may, as above,

deduce that χ ranges over all of 9Ca (act with V(ζχ,z) for λ e^ = 0) and hence that
p D

Proposition 7.2. σ mα/λs Ί ^ + to itself. Further, σ :

Proof. From the above argument, aJ

mak

n, V(ζ^z) and V(ζC9z), 1 ^ j < k ^

d,m,n e Z, c G ^ , generate Ί ^ + from |0). So, since it is clear that σ|0) = |0),
it is only necessary to show that σ transforms these operators into operators which
map i^0

+ into itself in order to establish the result. Equation (7.7) gives

i - 1 = V(ζ{,z), σF(C7

2,z)σ"1 = V{ζj

vz),

1 dz). (7.17)

Now F(Cί,z)K(ζ*,0 for a = 1,2,3, 1 ^ j , k ^ d, maps ΊΓ0+ to itself, since Ϋ
is defined as a subspace of Jjf(Λ<g) by the conditions θ = 1 and θ\ = 1, where

(7.18)

and each of these products commutes with both θ and θ\. (θ\ = 1 fixes the mo-
mentum to lie in yto(^) ) Taking moments of the product with a = 1 shows that
aJ

mak

n maps i^ to itself, and from

= 2V(ζi,z)V(ζk,z) =F 2F(C7

3,z)F(Ciz) (7.19)

we see that V(ζ^,z) does also. Finally, we must consider V(ζc,z). Set !PC = 1775

Then for 7 such that ej c = 1,

[4 1 , V( ψc,z)] = \ V( Ψc,z), [4ι ,V(Ψc,,z)] = -\V{Ψc,,z), (7.20a)

[42, V(Ψc,z)] = ίεV(Ψc,,z), [42, V(Ψc,,z)] = -ίεV(Ψc,z), (7.20b)
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where c' = c — 2βj and ε — ε{—y/ϊej, -Uc) = -ε(\/2ej, -We')- Therefore

-iε -l)\V(Ψc,,z)J •
(7.21)

Set /l(c) = {c' : c[ = ±c#, 1 ̂  £ ̂ g </}, i.e., the set of all ^/-tuples which can be
obtained from c by application of (7.20) for various j . We see that

l ^ ) , (7.22)

where n(c,cf) is the number of 7, 1 ̂  j -^ d, such that cjφcy and η(c,c;) is
given by

( )( c , / V % ) % ^ (7.23)

Similarly, we find

σV(Ψ-c,z)σ~ι =2-τW Σ {-i)n{cJ)n{c,cf)V{Ψ_cl,z). (7.24)

But ^ is doubly-even, so that n(c,cr) + n(c9-cr)= \c\ G 4Z, i.e., {-i)<c-c') =
JΠ(C,C ) p r o m faQ appendix,

η(c,c') = (-iyic'c>)η(c,-c'), (7.25)

and so (7.22) and (7.24) may be added to give

σV(ζc,z)σ-ι=2~^\ £ ^ ' ^ ' ^ ( ί ^ z ) , (7.26)
c'eA+(c)

where zl+(c) = {c; e Δ(c) : n(c,c') e 2Z}. When n(c,cf) is even, £c/ G f̂ "1", since

^= = -^ + A, where λ e VΪZ^. Therefore, V(ζc,z) maps to operators which map

Fo

+ to itself. Thus, σ : Y^~ -+ f^0

+ as required.

Since Ί^Q", Ί ^ + and ^ ~ a r e itreducible as representation spaces for 1^+ and
σ maps 1^+ to itself, it is only necessary to check the transformation of one state
in each space to show that σ : YQ~ —> ̂ + , ir+ -» iT~ and Y{~ —> τ^J~. Since
σ-ζ J = σ^ 5 ( j^ = σζ\ and σ^ = — ζJ

3, then this result follows. D

Hence, σ gives an isomorphism between i^ 0 ^ ~ and Y^ θ Ί ^ + (note that
these are conformal field theories (φL e ^ + ) )

As stated in the previous section, we shall now show

Proposition 7.3. 3tf(Λ<g)= M?(Λ<g\for Ή a doubly-even self dual binary code.

Proof. V2JQ1 = PQ9 1 ̂  j ^ d, provides a Cartan subalgebra for j4f(Λ<g)9 and we

see from (6.65) that \/2/Q2, 1 ̂  j ^ d, provides a Cartan subalgebra for
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(i.e., both Qyft'χ and Q £f,A have rank d). The corresponding lattice of eigen-
values in the first case on irf~ is A^6\ i.e., is J-dimensional. So, by (7.7),
the lattice of eigenvalues of VZ/Q2 in 34f(Λ<g) is also d-dimensional and con-
tains Λo(^). By Proposition 6.4, J4?(A<#) is isomorphic to a theory J^(A) for
some ί/-dimensional even lattice A. A contains Λ.o(̂ Q? and since it is even it
must be integral, and hence A c ΛQ(<$)* = Ao(%) U Aλ{^) U Λ2(<β) U Λ 3 (^). Note
that A\(<β\ Λ2(<£) and Λ3(<£) axe all shifts of AQ(<&) SO that, since A D /lo(ίf),
if τl contains any element of Affi) then A D Affi) for z = 1,2,3. Thus, there
are three possibilities for /I even, i.e., A = /lo(^), /I = A$(%>) U A\{^) = /1# and
/I = /lo(^) U A-siΉ) = /l^. For rf ̂  24, these three possibilities can be easily dis-
tinguished by considering their partition functions, d i m g ^ ^ ) = 16|#4| + 3d, while

dimg ~ = dim#jr(Λ0W) = 8|#4| + d from earlier discussions. Also, since

is strictly contained in A<$, the partition functions for j^(A<g) and ^(AQ^)) are
distinct. Hence, all three cases have distinct partition functions, and so to com-
plete the proof in d ^ 24 it is only necessary to verify that J f (A<$) and Jίf(A^)
have equal partition functions. (Note that since dimg ~ . , = 81 #41 +d we can

immediately exclude the possibility A = Ay.) Since Ϋ~o

+ Θ i^~ = ^ + θ ^ + from
the above, then the partition functions for these parts coincide, and it remains to
consider Ψ^ 0 Ψ^~ and ̂ + 0 ^ + . The corresponding partition functions are

" ' n O - i W Σ ^ m + m 2 +(- l ) f Σ (-ί)5m+m2) (7.27)
n—\ \m——oo m——oo /

and

Π(l"/)""+(-!)» ΠO+ίT" . ( 7 2 8)
i -i /

and these are equal by virtue of the identity

Σ ?J»+-> = Π 0 - <72") Π (1 + ί r ) (7-29)
m——oo n—\ r=\

Alternatively, we may see the equality immediately since, as we have argued pre-
viously, 7 ~ . , and χ^~ λ are modular invariant, and so equal up to a constant,

from the discussion of Sect. 6.1. The constant terms coincide, both being equal
to 8 | # 4 | + d , the dimension of the corresponding Lie algebra. The cases d = 8
and d = 16 can be considered separately. There is only one code to consider in
the first case and two in the second, and the results quoted in Sect. 6.2 show
that $(Acg) = 3tf{Acg) here also. So we have $(Λ<e) = J^(A^) as required. D

Proposition 7.4. σ can be extended to an isomorphism 3tff(A<$) =

Proof. From Proposition 7.3, we have an isomorphism σo ($) (#)
with σoJjl(z)σ^1 = J^2(z). Restricted to Y^+ 0 f̂ ~, σ = OQU, where u is an auto-
morphism of 1^+ 0 i^0~ commuting with Jjl(z\ 1 ^ j ^ d, i.e., w preserves the
eigenspaces of the pJ. Thus M|A) = f(A)|/l) for λ G AQ(^), where \v(λ)\ = 1. From
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uV(\μ),z)u~{ = V(u\μ),z) applied to \λ), we see that

v(λ + μ) = v(λ)v(μ) (7.30)

is required, u can be extended to an automorphism of 3^(A%) by choosing

μ G Λ^) and v(μ) such that v(μ)2 = v(2μ) (since 2μ G Ao(^) this is known).

This ensures that (7.30) holds. Then replacing σ0 by OQU gives an isomorphism

Jf (Λ%) —> 34?\A<β) which coincides with σ on ^ + θ ^ ~ . Thus, σ can be ex-

tended to the whole of Jf7(Λ<#) as required. D

Therefore Ψ~3

+ 0 f̂ ~ and ^ + 0 ^\~ are equivalent as representations of the iso-

moφhic conformal field theories Ψ^ θ ^ ~ and ̂ + θ f̂ +. It is shown in Sect. 8

that σ maps Y^ —> ̂ + and ̂ ~ —> ̂ J + (in fact, a more generalised form of this

result is demonstrated), (σ is unique up to the automorphism i of 34?(A<$) which is
1 on f^ 0 Ϋ^~ and —1 on i"γ 0 ^ ~ . ) σ thus gives an isomorphism of /

and f ς + 0 ^o + . For ̂  G T ^ + , φ G +

,z)σφ = V(σφ,z)φ . (7.31)

In [24] it is shown that any irreducible hermitian real meromorphic representation
34? of 34?(A)+ is equivalent either to 34?(A)± or 34?T(A)+, a twisted analogue of
Proposition 6.4. The argument used there proceeds by showing that any represen-
tation U of a conformal field theory Jf can be characterised by a state in J f to
do this the expectation value in a state χ of the representation of a product of the
operators C/(î -,zy)5 representing states ι/̂  G J^, is rewritten using (3.8) and locality
as the scalar product of a suitable state of Jf on the product of vertex operators
of 34? acting on one of the ψ/s. The essential representation property (3.1) can be
translated into properties of this state. This argument can be reversed to define a
representation by a suitable state of J f having these properties. This procedure can
be applied to associate a state to any meromorphic representation of Jf (A)+. The
properties required for this state to define a representation are such that the state
defines also a representation of J f (Λ). This representation is an extension of the
initial representation of Jί?(Λ)+, and must restrict to this, in particular restricting to
a meromorphic representation of J f (Λ)+. The (non-meromorphic) representations of
Jf (A) are easily classified (see e.g. [25]), and those that restrict to a meromorphic
representation of 34f(A)+ are simply 34?(A) itself and 3fτ(A) (modulo inequivalent
ground state representations of the twisted cocycles). The possible cases quoted then
follow. These cases are clearly distinguished by a simple count of the number of
states of conformal weight one. (Note that the uniqueness of the twisted representa-
tion has been demonstrated previously in the case of the Leech lattice in [26] using
specific features of this model, so allowing a demonstration of triality for the Mon-
ster theory. The arguments of [24] allow the result to be extended to encompass all
even lattices. This is in the spirit of this paper of extending results for the Mon-
ster to a broader class of theories by abstracting the general properties required.)
Thus, we deduce that έ7~0

+ 0 ^ + and Ί ^ + 0 ^]+ are equivalent as representations
of f̂ + θ fΫ and f^ θ ^ respectively, identified by σ. Since σ ( ^ + ) = ̂ + ,
then ^ + corresponds to ̂ + . So σ can be extended by a map p from ^ + —> i ^ +

and ^ + —> ̂ + into an automorphism of 34?(A<#), by the arguments at the end of
Sect. 4. For φ e ^ 0

+ , φ G iγ9

pV(ψ,z)p~ιφ=V(σψ,z)φ. (7.32)



114 L. Dolan, P. Goddard, P. Montague

Considering (7.31) and (7.32) together, we deduce that acting on «^+,

ι ) , (7.33)

where β = σp. But we know from the above arguments that the action of Y^ on
«^+ is irreducible, and so it must follow from a Schur's lemma type argument that
β = κ\ for some i c e C . From the arguments at the end of Sect. 4, we see that
we must have p = ±σ~ι since both p and σ are compatible with the conjugation
and this fixes the map up to a sign. Therefore, we may choose p = σ~x on ^ +

and rename p : ZΓ+ —> Ϋ+ as σ. σ squares to 1 on f̂ +, Y^~ and ^ + , and so
to demonstrate that it is an involution, we must check that σ2 = I on ^ + . For
ψ G r+, φ e V>

σ2V(ψ,z)φ = σV(σψ,z)σφ = V(σ2ψ,z)σ2φ = V(ψ,z)φ , (7.34)

and so, since Ψ^ acts irreducibly on ̂ + , (7.34) is equivalent to saying that σ2 = 1
on ^~3

+. This establishes that σ is the triality operator postulated, i.e., an automor-
phism of order 2 of J f (Λ<#) such that it maps Y^ and ^ + into themselves, and
interchanges Y^ and ̂ + . It is defined up to an automorphism α (induced by i on

ϊ ) equal to 1 on f0

+ e ^ + and - 1 o n ^ e J / , with which it commutes.

8. Extension to a Cubic Group

Renaming the triality operator σ constructed in the previous section of σ^, we may
also construct, by permuting ζ\, ζJ

2 and ζJ

3, automorphisms σ\ and 02 of Jίf(Λ^).
Then 1, σa, σ\θ2, σiσ^ib, 1 ^ a, b ^ 3, (where ii = 1 on 1^+ Θ ̂ ~ and —1 on
Yf θ t [ ~ and Ϊ 2 and *3 are defined by cyclically permuting ^ ~ , ^ + and ir

x~)
generate a group isomorphic to the symmetry group of the cube, S4. For (a,b,c) a
permutation of (1,2,3),

GaGbGa = h^c, Vb = *c> ^ α ϊ α = Zασα, σ α ^ = ϊ c σ α . (8.1)

There exist subgroups isomorphic to 53, e.g. {l,cri,σ2ϊ250'3>GΊσ'2J2>0"i0'3}
We therefore extend the spaces which were considered in the previous section

to give the following "magic square" diagram:

(1) J22 J3)

(l) tf{Λ<g) = r+ e ro~ e

\£) Ή' y**-^) — ' Q Φ "\ \Π 0 ^ 1
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Let Yab be the space in row a and column b and set ΎΌb = Ψ^+ if a b = 0,
for 0 ^ a, b ^ 3. For (a,b,c) a permutation of (1,2,3), σa : %x -> %\,tfr

a\ ->
i^i, ^ <-» T^i, i.e., it defines an automorphism of Ϋ^o Θ i^i and a n isomoφhism
%o θ ^ i ^ ^ίo θ ^ i . Define J^a to be the space given by row a and J^b to be
the space given by column b. Then σa induces an automorphism of J^a and an
isomorphism J&Ί, —> J^c. The generalisation of the result that σ : i^3

+ —> ̂ + which
was required in the last section is that σa preserves the columns, in the sense that
<Ja ^αα —> ^a<χ a n d σfl i ^ a <-> ̂ a for a = 1,2. This induces an automorphism of
the space Jf2 =3tf?(Λ<#). In a similar way, an automorphism of the third column
is induced. Note that σa, as an automorphism of the second column, is defined
up to the involution ιa, which is 1 on %2 θ ^ 2 and —1 on ΫI2 θ ^ 2 - Thus ιa

commutes with σa. Either σ\σ^σ\ is equal to σi or it is equal to 1202, depending on
the sign choices made in the definitions. Whichever choice is made though, σ\ =
a\ — (G\GΊ>U\Ϋ = 1, SO that {I,σi,σ3,σiσ3σi,σiσ3,σ3σi} forms a group isomorphic
to S3. Thus, we obtain a triality group of automorphisms of Jf(Λ^), explaining the
origin of the term triality operator which has been used so far. In the case # = #24?
the Golay code, the triality group, or just σ3, then, as explained in Sect. 6.1, together
with the extension of Conway's group defined there generates the Monster.

Note that if we reverse the situation of the previous section, and use the modified
definition (7.8) if and only if d is an even multiple of 8, then the induced maps,
say σa, interchange columns 2 and 3 rather than preserve them, i.e., the σa induce
isomorphisms f̂2 —> J>f3.

Finally in this section, we verify that σa does in fact preserve the columns as
stated. In other words, we wish to show

Proposition 8.1. For α = 1,2, and (a,b9c) a permutation of (1,2,3),

σa : n* -> ^cα, σa : raa -> raa , (8.3)

Proof. From the arguments of the previous section, we see that for σ3 (and anal-
ogously for all the σa) that it either preserves or interchanges the columns, i.e., it
satisfies either (8.3) or

σa : rM -> 1Tφ σa : τ ^ α -> raβ , (8.4)

where α = 2 and β = 3 or vice versa. Since, on J^f(Λ^) we have σασ^σα = ιaσc

then we see that on Y^i θ ^ 3 , for I ^ d ^ 3, we must have σa

σbσa — ±σc> thus
showing that if either one of σ& or σc preserves the columns, then both do, since
with two applications of σa whether it preserves or interchanges the columns is of
no consequence. Thus, we can deduce that σ\,σ2 and σ3 preserve the columns if
we can show that any one of them does. σ\ is the simplest of the three to consider.

By cyclic permutation of the corresponding property for σ = σ^ from Sect. 7,
we have the relations

σιζ{ = -ζi σιζ{ = ζi σιζ{ = ζi, (8.5)
or

σxa{σ\x = -a{9 σλ\y/lej) = i\ - Vϊej), σλ\ - y/ϊej) = -i\y/2ej) . (8.6)

Its action on V(Ψc,z) is given by an argument similar to that given in Sect. 7 in
showing that σ mapped i^+ to itself, i.e., for e7- c = 1, we use

[jf, V(ΨC9z)] = -\εV(Ψc,,zX [4\ V(Ψc,,z)] = -±εV(ΨC9z), (8.7)
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together with (7.20) to give

J ( r(ψe,z)\_mljκ_ ( 0 ( i - 1 ) £ \ Ί / V(Ψc,z)

•(i + l)ε 0 )\\V(Ψc,,z)

- ^ V d - O β o J U ( ^ ) J ' (8 8)

where

σ/ = e x p | ^ | ( 4 2 + 4 3 ) | , (8.9)

(cf. (7.5)). So it follows by successive application of (8.8) that

σιV(Ψc,z)σ-1 = (-φ\V(Ψ-c,z) . (8.10)

Together with (8.6), this gives

σ\ — 0exp{/πw p} , (8.11)

where w — ~τ^L which is in Λ^) for d a multiple of 16. This defines σi on

), although it can also be used to define σ\ on i^9 giving an automoφhism

of 3#Ί = Jf(Λ%) which preserves Ψ%, i ^ . On the twisted spaces ^ + , 5 r

1

+ , ^ r

2 "
and ^3+σi may be defined by the analogous relation

σι - θyw . (8.12)

This provides an isomorphism J ^ —» ̂ 3 which preserves the columns, and the
required result follows. When d is an odd multiple of 8, if we use the same definition
of σ\, then we have that w E Λ2(

c£), and σ\ (and hence σ2 and σ?>) interchanges
the columns, as noted above. Otherwise, we redefine σ[ for some / by analogy with
(7.8), which serves to modify w to τ ^ j l + V2eι, which is once more an element
of Λ^Ή), and hence σ\ preserves the columns. (Making this modification when d
is a multiple of 16 gives a σ\ which interchanges the columns.) D

9. Conclusions

The main result of this paper is the demonstration that the remarkable results of
Frenkel, Lepowsky and Meurman on the construction of the natural representation
of the Monster group as a conformal field theory generalise to a wider class of
theories. This generalization exhibits the features which lead to the existence of the
"triality" structure more clearly, and specific features of particular models are not
required.

Following in this spirit, the discussion of the structure and representations of chi-
ral bosonic meromoφhic conformal field theories and the construction of orbifolds
illustrates a general program and approach which it is hoped to take further.

The nature of what were previously thought of as merely useful analogies of
conformal field theory with the theories of lattices and codes has been extended to
deeper links between their structures, and it will prove interesting in the future to
extend the depth and, more importantly, the understanding of such connections.
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Appendix

In this appendix we wish to define the gamma matrix algebra Γ = Γ(ΛQ ) =
{±yχ : λ £ ΛQ} required for the extension of the triality structure in Sect. 7. In
order to do this, we must specify the symmetry factor S(λ,μ) [22] in

(A.I)

such that

S(λ, v)S(μ9 v) - S(λ + μ, v), S(λ, μ) = l/S(μ, λ), S{λ> λ) = 1 , (A.2)

for /l,μ,v£ylQ. The definition of [11] requires modification, since the lattice is

not even in this case. Following [11], S{λ,μ) — (—\)λ ' μ for λ,μ £ Λq = ΛQ U Λ\

or Λq — ΛQ U Λ3. Making the choices S(y/2ej, -7751) = i = —S(^=±,y/2ej) for

1 ^ j ^ d gives, from (A.2), S{λ,μ) as follows:

μ £ /to μ E Λ\ μ E Λ2 μ £ A3

2 r - Λ / 1 λΛ. if / I \A W / i \Λ, if / i \Λ if
A t / lo (, — 1 ) \ — A J V — Ay ^ — 1 )

2 rz Λ ( 1 \λ ' μ ( 1 \λ ' μ piλ ' μπ Λλ μπ

λeΛ2 {-l)λ'μ ea'μπ (-l)λ'μ+ι -e

iλ'μπ

λeΛ3 (-l)λ'μ eiλ'μπ eίλ'μπ (~l)λ'μ. (A.3)

If 3C is an irreducible representation of Γ, then we consider the division of 9C into
irreducible representations of Γ(Λq). Since Λq is an even self-dual lattice, we see
from Appendix C of [11] that such a representation SC(Λq) C Γ is of dimension
22^. Then 9£\Λq) = yw2£(Λq) for w — τ ^ l is also an irreducible representation

space for SC(Λq). Noting that yw&
f(Λq) = 9£{Aq) (since 2w £ Λq as I £ ^ for

^ doubly-even) and that yw and Γ(Λq) generate Γ, gives ΘC = β£(Λq) ® 3£'(Λq).
In other words, $£ is of dimension 22^+ 1. Also, from Appendix C of [11], an
irreducible representation of Γ(ΛQ) has dimension 2ϊd~ι, so similarly $£(Λq) —
^o(Ao)θ &\(ΛQ), where ^Q(ΛQ) and ^ i (A 0 ) are irreducible representations of
Γ(ΛQ). Similarly, ^'(Λq) = ^2(^0)0^*3(^0). Also, we have a decomposition of
#* into irreducible representations of 2£(Λq)9 which must be different sums of the
2£J(ΛQ) (because Γ(Λq) and Γ(Λq) together generate Γ). Thus, we take ΘCQ 0 9£3

and #Ί 0 ^2 (dropping the explicit ΛQ dependence) to be such sums.
The gauge choice yχ = y-χ made in [11] cannot be extended to the whole of Γ.

We have yχy-χ = ε(λ,—λ)yo — ε(λ9 — λ)l. So yχ = y-χ implies that y\ = ±l9 and
so is a central element of Γ. From the table (A.3) we can see that this can only be
true for λ £ ΛQ. With the definition of θ given in Sect. 7 however, i.e., inserting an
additional —1 on ΘC2, then θyχθyχ is central, and so, by irreducibility and Schur's
lemma, must be a multiple of the identity. Since y^χ — i yΓ 1 , from the above, then
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yχ = ±θy-χθ (θ — θ as θ is an involution). By a choice of gauge, we take

This gives the involution

= yλ.

ΘV(\l/,z)θ~ι = V(θψ,z),

(A.4)

(A.5)

for ψ G Jf(Aa), a = 0,1,3, acting on the full twisted space ^ Θ ^ θ 3~2 ®
^ 3 + , explaining the reasoning behind the apparently unnatural definition of θ. This
still gives yχ = y-χ restricted to 3CQ θ 3Cj for j = 1,3 and λ e A0U ΛJ, as we re-
quired for such self-dual lattices in Appendix B of [11].

To make the above analysis perhaps a bit clearer, an explicit construction is now
given of Γ Ξ Γ(ΛQ) in terms of Γ(Λ0). Suppose Γ(Ao) = {±sχ : λ G Λo}, s2v is
central in Γ(ΛQ), for v G Λ%, as 2v λ is even for all λ G ΛQ. SO sχ is proportional
to sχ+2v> and we arrange the gauge so that they coincide, i.e.,

/ 1 \χ n 2 / 1 \il / A £*\

for λ,μ G ΛQ. Choose K e Λ\ and p G Λ3 with κ p = j . Then £(?<;,p) = — S(p, K:) = /,
from the table. We can take s2p = 1 as it is central in Γ(ΛQ) (since 2p λ is even
for all λ £ ΛQ). Then we have a representation of Γ(Λ%) = {=Lβv : v G

βλ =
Sχ 0

0

0

o

for A G Λo, εj = ( - I f m λ. This satisfies ft = β^χ and j8| = (-1)^
A representation of Γ(ΛQ ) is then given by defining

(A.7)

as required.

/

Jλ+κ =

Sχ

0

0
0

0

Sλ

0

0

0

0
0

sχ

0

0

Sλ

0

0
£χSλ

0
0

εκ

λsλ

0
0

0

0

0
εκ

λsλ

0

0
0
0

0
0

g/c+ω

A o

0
0
0

• K+ω

ιελ Sλ

0
-εκ

λ

+ωsχ
0
0

0
0
0

0 '
0

0

\

0
ίε^Sλ

0 /

0
0

0 )

x 0
-iεfs

0
0

(A.8)
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with εω

λ = ( - l ) ω ' λ and sκ

λ

+ω = εfε™. This gives θy^θ'1 = -yλ for λ e Λ2, al-
though (A.4) holds for the remaining sectors. This could be corrected by a change
of gauge, although Jf(Λ2) need not be considered anyway, since it corresponds to
a fermionic conformal field theory.

Finally, we consider the cocycles for Λ<$ necessary for defining the triality
operator σ. Set

nc = Π yvϊe,- > ( A 9 )
j:cj=\

for c e ^ . Then ηc = ± 1 , since it is proportional to y^, which is central. We wish
to choose the gauge such that ηc = 1 for all c G ̂ , and also preserve the gauge
choice yχ = y-χ. This means that we may change yy/ιe. by a factor εy only if we

change y_^/2e. by the same factor. Let % = {c e %> : ηc = I}. This is a sub-code of

^ , since ηc+c' = ΆcΆcΊ where c-\-cr is performed modulo 2 (i.e., inside ^ ) (since
the y^2e. commute). Then ^ = % or ^ = ^Ί U (^Ί + c0), where ?/Co = — 1. In the

case «\ Φ*7, ^ * D ^ . Choose c2 G «i* such that c2 ^ . Then c2 c G 2Z for all
c G ̂ i and c2 c0 G 2Z + 1 (otherwise c2e^* = %). Set εy = - 1 for (c 2) 7 = 1
and εy = 1 otherwise. Then ηc = 1 for all c G # as required. If f/(c, c7) is defined
as in (5.23), then

Noting 72_^ = y2, - ( - l ) i | c | , multiply (5.23) and (A. 10) to give

(A.ll)
and (5.25) follows.
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