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Abstract: We study a topological obstruction of a very stringy nature concerned
with deforming the target space of an N = 2 non-linear σ-model. This target space
has a singularity which may be smoothed away according to the conventional rules
of geometry, but when one studies the associated conformal field theory one sees
that such a deformation is not possible without a discontinuous change in some
of the correlation functions. This obstruction appears to come from torsion in the
homology of the target space (which is seen by deforming the theory by an irrelevant
operator). We discuss the link between this phenomenon and orbifolds with discrete
torsion as studied by Vafa and Witten.

1. Introduction

A very interesting aspect of string theory is the way in which space-time is described.
In physics, thanks to the success of general relativity, we are accustomed to picturing
space-time as being a manifold equipped with a metric. The physics of space-
time is then described in terms of this metric. Such a picture has some potential
shortcomings. In particular we may wish to consider some space-time which is not
smooth and thus may not admit a metric in the conventional sense. One way to treat
such a space may be as a limit of a sequence of smooth manifolds which converges
to the desired space. Thus the "metric" on the singular space is approximated by
this sequence of smooth metrics.

While such a picture appears natural from a viewpoint of general relativity it
may be that it is not so natural from a string theory point of view. In this paper
we illustrate precisely this point by considering a singular space which classically
appears as the limit of a sequence of smooth manifolds and then showing that a
string theory on the singular space cannot be deformed into a string theory on any
of the smooth manifolds which approximate it.

* Supported in part by NSF grant DMS-9400873.
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The framework in which we will work is one of the most successful for studying
stringy aspects of geometry. That is, we look at N = (2,2) superconformal field
theories and their associated Calabi-Yau target spaces. We also restrict ourselves in
this paper to the rich class of complex dimension three target spaces. The usefulness
of N — (2,2) theories is that one can understand the geometry of the target Calabi-
Yau manifold without any explicit reference to the target space metric (see, for
example, [2] for a review). One may also study many singular spaces, such as
orbifolds [18], without any inherent difficulties.

The deformations of a Calabi-Yau manifold can be understood in terms of
marginal operators in the associated conformal field theory. If the target space is sin-
gular, rather than being a manifold, the marginal operators presumably still tell one
how to deform the singular space. Certain of these deformations may remove some,
or perhaps all, of the singularities. This process is well-understood in many cases of
orbifolds (see, for example, [3]) where twisted marginal operators in the conformal
field theory can be matched to the "blow-ups" of the orbifold, i.e., deformations
which resolve (at least partially) the quotient singularities of the orbifold.

In [28] some examples of more troublesome orbifolds were studied. It was found
that certain of the deformations of the classical orbifold appeared to be "missing"
in the conformal field theory language. That is, these geometric deformations could
not be seen by the string theory. The purpose of this paper is to shed some light on
the geometrical explanation for such a phenomenon. We will see that there is a truly
stringy explanation for such obstructions. These obstructions are due to world-sheet
instantons wrapping themselves around particular elements of the second homology
group of the target space.

The construction of [28] rests upon the study of "discrete torsion." There is some
potential for confusion on the subject of discrete torsion and we will clearly set out
our definitions here. Given a conformal field theory for a Calabi-Yau manifold V
with a discrete symmetry group G, one may build the theory for the quotient V/G in
a systematic way. There is an ambiguity in this construction however. Phases may be
introduced when building the partition function for the characters without disturbing
modular invariance. It was shown in [26] that these phases must be elements of
H2(G, U(l)). If G is finite then this group is isomorphic to H2(G). (The coefficient
group TL is assumed for homology and cohomology if omitted.) Thus each element
ε G H2(G, U(l)) gives rise to a possible conformal field theory for the orbifold
V/G. We call ε the "2-cocycle" for the theory. In [28] some examples of orbifolds
with a nontrivial 2-cocycle were studied and it was shown that each of the marginal
operators could be associated to a deformation of the orbifold space itself, but
that some deformations appeared to be "missing," i.e., corresponded to no marginal
operator.

The singular cohomology groups H*(X) of a manifold X need not be free
abelian groups. Of particular interest to us in this paper will be the torsion part of
Hi(X) ( o r equivalently H3(X)), where X is a Calabi-Yau manifold. We impose the
condition h2>°(X) = 0. In this case the torsion group is isomorphic to the "Brauer
group" of X. We will use this terminology here for convenience although the reader
is not required to know the full definition of the Brauer group.1 It was suggested
in [26] that there should be some connection between the Brauer group and the
2-cocycles in an orbifold. An example studied in [7] had trivial Brauer group but
admitted nontrivial 2-cocycles. Thus these two concepts are not equivalent. As we

Further information about the Brauer group is provided in the appendix.
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shall see in this paper however there is some intimate connection between them.
Because the term "discrete torsion" has been used at times to refer to either the
Brauer group or the group of 2-cocycles, we will try to avoid using it in this paper
to save any confusion.

Although motivated by the orbifold construction of [28] we shall see that stable
singularities are probably not confined to such examples. The topological obstruction
to deforming away the singularities may be thought of as "hiding away" in the
singularity itself. To understand this geometrically we will blow up the singularity
to expose its contents. This blow-up will not be a marginal perturbation as one is
accustomed to in orbifold theory but rather will be an irrelevant perturbation.

In Sect. 2 we discuss how the Brauer group affects the correlation functions
of an N — (2,2) superconformal field theory. In particular we only need concern
ourselves with that part of the conformal field theory which is present in the A-
model (which is one of the topological field theories obtained by twisting the original
N = 2 model). We will review how the Brauer group adds a degree of freedom to
the A-model that cannot be expressed in terms of the Kahler form or the 5-field.

In Sect. 3 we discuss blow-ups as irrelevant operators. This generalizes the usual
notion of blow-ups in the context of orbifold theories which correspond to truly
marginal operators. We will need such a generalization to deal with the singularities
discussed in this paper. This allows us to study the examples of stable singularities
in Sect. 4.

Finally we present a discussion in Sect. 5.

2. The A-Model

In this section we will study the form of the correlation functions of the A-model
with target space X, where X may have a non-trivial Brauer group, that is, when
H3(X) contains a torsion subgroup. From the universal coefficient theorem (see, for
example, [11]) the torsion part of H3(X) is isomorphic to the torsion part of H2(X).

The A-model is a topological field theory [30] in which the correlation functions
depend upon non-trivial instanton effects. The instantons are holomorphic maps from
the world-sheet, I", to the target space X. Further, the action of this instanton is
assumed to depend only upon the homology class of the image of this map in X.
For an instanton / with homology class [/] G H2(X), let us denote e~Sl by μ([/]),
where S/ is the action of the instanton. In order for string interactions to behave
correctly [26] we further demand that the action depend linearly upon the homology
class of /, i.e.,

μ G H o m ( i / 2 ( I ) , C * ) , (1)

where C* is the multiplicative group of nonzero complex numbers.
Recall that H2(X) is an abelian group and thus may be decomposed into free

and torsion subgroups:

H2{X) = ZhlΛ(x) x TLh x TLh x , (2)

where ί/ are finite positive integers labeling the torsion part of H2(X).
A simple application of the universal coefficient theorem yields Hom(//2(X),

C*) ^ //2(X,C*). Given the exact sequence

0 -> Z -> C -> C* -> 0 , (3)
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we obtain the long exact sequence

0 -> Free(//2(X)) -> H2(X, C) -• # 2(X, C*) -> Tors(7/3(X)) -> 0 , (4)

where Free(G) and Tors(G) denote the free and torsion parts of the abelian group
G respectively.

For the time being let us assume that Toτs(H3(X)) = 0. Then we see from (4)
that

We usually think of the A-model correlation functions as depending upon the "com-
plexified Kahler form." This complexified Kahler form is written B + iJ, where J
is the usual Kahler form and B is a real 2-form of X defined modulo elements of
de Rham cohomology which are elements of integral cohomology. It is easy to see
that this agrees with (5).

Let us form a basis of ¥TQQ(H2(X)) with elements βjj = 1 hlil(X). We may
then expand

B + U = Σ(B + tJ)jej , (6)
j

where Bj = Bj + 1 for all j . We now introduce the usual {/-variables:

qj = exp{2πi(B + iJ)j}. (7)

We then see that

μ(Ul) = Πi7(U]), (8)
j

where Πj are non-negative integers labeling the homology class of the instanton.
When we calculate a correlation function in the A-model we use the usual

methods of intersection theory in topological field theory [29]. That is to say, for
each instanton background, the contribution to the correlation function is given by
the intersection number of some cycles representing the observables in the moduli
space of the instanton. This intersection number is an integer.2 Such a contribution to
the correlation function is then weighted by μ([I]). We thus see that the correlation
functions in this A-model take the form of power series in the variables qj with
integer coefficients. All of the many examples studied so far confirm this (see, for
example [13, 12]).

Now let us consider the case when the Brauer group of X is not trivial. We
take the simplest case where Tors(//3(X)) = Έm for some integer m. This implies
that Tors(//2(X)) = Έm. Let t be a 2-cycle so that [t] generates this torsion class.
That is, t is a cycle such that

p[t] = 0 4 Φ w divides p . (9)

2 It is a priori possible that the instanton moduli spaces in some examples could have orbifold
singularities, leading to rational numbers rather than integers. No examples of this phenomenon are
known, and perhaps it does not occur. In any case, although we have assumed here that the intersection
numbers are integers, the discussions in this paper are unchanged if rational numbers are used in place
of integers.
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This implies that (μ([t]))m = 1, i.e.,

μ(M) = exp ( ^ α ) , (10)

for α = 0,..., m — 1.
The choice of α is required, in addition to B + U, to determine the correlation

functions. That is, the position of the specific A-model in the moduli space of
theories is not entirely determined by the complexified Kahler form but also requires
a specification of the discrete parameter α.

We may consider the shape of the moduli space of A-models as follows. The
"large radius limit" of an A-model is the limit point where the action of all non-
trivial instantons becomes infinite. That is, μ([/]) —• 0 for [/] ^ 0 (as always we
have μ(0) = 1). At this limit point therefore the choice of α does not matter. Thus
different "sheets" of the moduli space, each parametrized by B + U but having a
different value of α, are joined at the large radius limit. It is important to remember
that when describing the moduli space in terms of A-models we assume that we are
in the neighbourhood of the large radius limit and that each correlation function is
completely determined by a power series centered at the limit point. Thus, we will
not discuss further aspects of the global geometry of the moduli space which take
us outside this region. This region of the moduli space is shown in Fig. 1.

Let us illustrate the new form of the correlation function by an example in which
m — 3 and we are considering observables corresponding to divisors in X, where
X is a Calabi-Yau threefold. For simplicity let us also assume that hι>ι(X) = 1 so
that there is only one such observable. Thus we have H2{X) = Z x Z 3 . Now we
may perform the usual expansion of the A-model correlation functions in terms of
the rational curves on X as was done in [13]. In this case we expect

{(9DΘDΘD) =#(DΠDΠD) + (nx + ωan2 + ω2an3)q + O(q2) , (11)

where ω is a nontrivial cube root of unity. It is not possible for any algebraic curve
to lie in a torsion class of H2(X). This is because the area of an algebraic curve is
given by the integral of the Kahler form over the curve. This area may be recast

large radius limit

Fig. 1. The A-model moduli space for target space with
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as the intersection of a 4-cycle representing the dual of the Kahler form with
the curve. Since any cycle in a torsion class must have zero intersection num-
ber with any other cycle, any curve in a torsion class would have zero area,
which is not possible. It may happen however that the difference of two curves
is a torsion cycle. The lines (i.e., rational curves intersecting D once) on X
can therefore lie in one of three homology classes and these are counted by
n\,n2,ri3. The number of lines is thus n\ + «2 + ft3 which is counted by (11) in
the usual way when α = 0. When α is 1 or 2 however we distinguish between these
lines.

Note that for α = 1 or 2 the series (11) is not a power series with integer (or
rational) coefficients. Thus the fact that all examples studied so far did lead to a
series with integer coefficients implies that the examples had a trivial Brauer group
(or at least, only elements of order 2). It would be interesting to study an example
of a smooth Calabi-Yau manifold with non-trivial Brauer group and so generate a
solid example of the series of the form (11). Unfortunately at this point in time we
are not aware of any such examples.

3. Away from Criticality

As is well-known (see, for example, [20]) the β-function for the metric of a non-
linear σ-model is given by the Ricci-tensor to first order

If the target space is at large radius, the later terms in the series are negligible.
Consider the flow towards the infra-red (low-energy) limit. If the target space has
positive curvature then the sign of the ^-function shows that the space will shrink
under this flow. If the space has negative curvature it will expand, and if it is Ricci-
flat then it will be stable (to leading order). Calabi-Yau manifolds fall into the last
category and thus may provide conformally invariant σ-models.

A complex projective space is a space of positive curvature. The non-linear σ-
model on such a space is a massive field theory [17] and thus naively appears to
flow to something trivial in the infra-red limit. This may be viewed geometrically
as a process in which the target space shrinks down to a point in the limit. Actually
one needs to be a little careful about this statement. Although one might think
that a non-linear σ-model with a point target space is, by its very definition, a
trivial theory, one may reach different conclusions by treating the point as a limit
point of theories on a complex projective space [15]. In the latter case the limit of
the infra-red flow is better thought of as a target space whose size is —00. This
has become a recurring theme in recent works [31] and may be viewed as part
of the inherent difficulty in clearly defining the concept of sizes below the Planck
scale.

The best method of giving geometrical interpretations to spaces away from
the large radius limit is probably that of the linear σ-model of [31]. The be-
haviour of the complex projective space, F", as a target space was studied in
the latter and gave the following picture which is the most complete version
of what happens in the infra-red limit. The linear σ-model contains a real pa-
rameter, r, which, in the case r ^> 0 gives the size of the complex projec-
tive target space (or, to be more precise, the area of complex lines in the
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target space). The renormalization group acts on this parameter to drive it to-
wards —oo in the I.R. limit. In this limit however the geometrical interpretation
changes. When r < C θ the target space becomes that of (n + 1) disjoint points.
The conformal field theory associated with such a target space has c = 0 but
consists of (w-f-1) Sl(2, (C)-invariant vacua. That is, we have a reducible but
trivial representation of the Virasoro algebra. This is the sense in which the
IP"-model flows to a trivial theory in the I.R. limit. Note that this picture
preserves the Witten index, Tr(— l)F, or Euler characteristic, of the theory
during the flow. The Euler characteristic of both Ψn and (n + 1) disjoint
points is n -f 1.

We wish now to consider something intermediate between a projective space
and a Calabi-Yau manifold. That is, we want a theory which is not conformally
invariant but flows to a non-trivial conformal field theory in the infrared limit.
Such an example may be provided by blowing-up a smooth point on a Calabi-
Yau manifold. Blowing up points is familiar in string theory for resolving orbifold
singularities (see [3] for a review). Blowing up singularities may result in a smooth
Calabi-Yau manifold. If one blows up a point on a Calabi-Yau manifold, X, that
is already smooth however one obtains a manifold, X, which does not admit a
Ricci-flat metric (although it is still complex and Kahler).

In the case of a Calabi-Yau threefold, blowing up a smooth point replaces that
point by a divisor isomorphic to the projective space IP2. The normal bundle of this
divisor is 0(—1) (i.e., the inverse of the Hopf bundle). Consider a curve C which
is a projective space P 1 lying within this F 2 . It is a simple matter to show that the
normal bundle of the curve is Θ(l) @ Θ(—l). Given that its tangent bundle is Θ{2)
we obtain

= 2 + l - l = 2 . (13)

Thus c\ φ θ . In particular since Jcc\(X) > 0, the curve C will shrink during the
flow to the infra-red limit. Since all such curves shrink, the "exceptional divisor" P 2

will also shrink. Curves away from this blowup will satisfy Jc c\(X) — 0 and should
be stable under this flow. So long as a neighbourhood of such a curve is stable under
the flow, the process must lead to a birational transformation and so the complex
structure remains fixed. Thus, the net result would appear to be that the limit of
this flow is to turn X back into X. That is, we take a manifold X corresponding
to a conformal field theory. We then perturb it to obtain a field theory that is not
conformally invariant, but flows back to the original under flow to the infra-red
limit. In other words, blowing up a smooth point is equivalent to perturbation by
an irrelevant operator.

It is worth describing an example of this picture in terms of the linear σ-model,
as we now do for completeness. The reader who is already convinced of our asser-
tions concerning the effects of the renormalization group may skip this section. Let
us consider the case of the quintic hypersurface in P 4 . This is a smooth Calabi-Yau
manifold. A generic line (i.e., linearly embedded P 1 ) in the ambient P 4 will intersect
this Calabi-Yau manifold at five distinct points. Thus by blowing up such a line we
blow up the Calabi-Yau manifold at five points. The toric picture of this blown-up
ambient space leads to the following gauged linear σ-model. Consider seven chiral
superfields with lowest components x\,...,x5,p,f in a theory with gauge group
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X\

x2

x3

x4

x5

P
f

1
1
1
1
1

- 5
0

g(2)

1
1
1
0
0
0

- 1

(14)

Part of the classical potential comes from the D-terms of this theory and the van-
ishing of this requires that two parameters of the theory r\ and r2 be set as follows:

r2 =

We also consider the invariant superpotential

= P +4

(15)

(16)

as in [31]. The vanishing of the classical potential requires all of the derivatives of
(16) to be zero.

Now consider the phase where r\ — r2 > 0 and r2 > 0. With this choice, the
classical vacuum requires that at least one of {x\,x2,X3J does not vanish and that
at least one of {x4,X5,/} does not vanish either. Suppose first that / + 0. We may
fix the phase of / (we then normalize / = 1) using one of the t / ( l ) groups. The
derivatives of the superpotential then require p = 0 and that

x\ + x\+ x\ + x\+ x\ = 0. (17)

Let the other U(l) action be used to form \_x\,X2,X3,X4,xs\ as the homogeneous
coordinates of P 4 (expressing P 4 in the familiar form of a symplectic reduction
S9/U(l)). Thus the classical vacuum appears to be the quintic Calabi-Yau hyper-
surface in P4 . Note however that we are missing the line [0,0,0,^4,^5] and hence
5 points of this Calabi-Yau manifold. Now let / = 0. This forces either x4 or x5

to be nonzero and thus p — 0. We also have the constraint x\ + x\ = 0 from one
of the derivatives of the superpotential. Use one of the £/(l)'s to fix the phases of
x4 and x5. The other (/(I) may be used to form P 2 with homogeneous coordinates
[x\9X2,X3] The result is that each of the 5 points [0,0,0,X4,x5] in the quintic hy-
persurface have been replaced by P2 . That is, we have blown-up 5 smooth points
as promised.

Next consider the phase where r\ > 0 and r2 < 0. Now / must be nonzero and
we fix it using one of the U{\) groups. Also one of {x\9X2,X3,x^xs} are nonzero
and we use the other U{\) to form P4 . It follows that p — 0 and we lie on the
quintic hypersurface. At first sight therefore, this phase appears to be simply the
quintic Calabi-Yau manifold in P4 . This is not the full story however. Thus far we
have neglected some of the fields in the theory - namely the lowest components of
the twisted chiral superfields coming from the field strength of the two C/(l) gauge
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fields. Call these fields σ\ and σ2 consistent with the notation of [31]. The classical
potential of these fields is given by [24]:

a,b i

= 2|σ1|
2(|x1|

2 + |*2|
2 + 1*312 + M 2 + M 2 + 25|/?|2)

| 2 + |x3 |
2 + | / | 2 ) . (18)

It would appear that for r\ > 0 and r 2 « 0 the fields σa are very massive and
so should be set equal to zero. It turns out however that there are large quantum
corrections to the potential when x\ = x2 = x3 = / = x | 4- x\ = 0 and σ2 appears to
be massless. One may show [31] that there are Σ^ β z

 2 ) = 2 extra solutions for σ2

when r2 <C 0.

Our target space for this latter phase is thus as follows. We have a smooth
hypersurface in P 4 where the σ fields are zero and we have a completely disjoint
set of 10 points given by the 5 points on the quintic with x\ = x2 = x3 = 0 each
with two possible nonzero values for σ2, and σ\ is still zero. Note that the Euler
characteristic of this set is equal to —200 + 10 = —190 which is precisely that of
the quintic blown-up at 5 points.

The effect of the I.R. flow is to force r2 —* — oc. Thus if we begin with a target
space of the quintic threefold with 5 points blown-up and go to the I.R. limit, we
end up with the quintic threefold with 10 disjoint points. This is shown in Fig. 2.
Note that the resulting conformal field theory consists of that of the quintic together
with 10 trivial representations of the Virasoro group. Thus it is only when we focus
on the nontrivial irreducible part of the conformal field theory that the blow-up is,
strictly speaking, an irrelevant operator. Since our main concern in this paper is the
behaviour of the correlation functions only in this part of the theory, this meaning of
an irrelevant operator is good enough for our purposes. Note also that the complex
structure on the target space is unaffected by this process as expected.

Let us briefly note that the "monomial-divisor mirror map" of [6, 5] may also
be extended to this picture. This map maps a toric divisor in the target space of the
A-model to a monomial which may be used to deform the complex structure of the
mirror B-model. This is done by identifying both the sets of divisors and the set
of monomials with a set of points lying in a hyperplane intersecting a lattice based
on the ideas of [8]. The blow-up of a smooth point can be represented by a point
outside this hyperplane, this in turn maps to a monomial with the wrong weight to
be considered as part of the original quasi-homogeneous defining equation. In fact,
the monomial's weight is too high and thus is of no importance in the infrared limit
as was argued in [27]. Thus we see again that the blow-up is an irrelevant operator.
Presumably given a good definition of the B-model away from criticality, we could
understand the meaning of the trivial representations that appear in the I.R. limit.

Fig. 2. The infra-red limit of the quintic threefold with 5 points blown up
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Thus far we have gained little. We already knew how to handle a non-linear σ-
model on a smooth Calabi-Yau. Where blow-ups prove useful is where they resolve
singularities. If the target space X is singular then one may study the σ-model by
blowing X up. Depending on the first Chern class of the resulting target space this
may be a relevant, marginal or irrelevant perturbation of the original theory. In the
case of orbifolds, the cases considered are usually marginal (see, for example, [3]).
One may also have a case of a singularity being resolved by an irrelevant operator
as we now show.

Consider (C4 with coordinates (w,x9y,z) and the hypersurface defined by the
equation

Xy = WZ . (19)

This hypersurface has an isolated singularity, or "node", at the origin. There are
many ways to remove such a singularity. Consider a compact variety X which
contains such a node. The ways in which X can be smoothed depend upon the
global geometry of X. That is, there may be global obstructions to processes which
removed the singularity locally. Whether or not the resulting smooth space is Kahler
is also a global question.

If X is a protective algebraic variety then there is always at least one way
of smoothing X to form a Kahler manifold, X, as follows. Blow up the origin
of C 4 in which the node (19) is embedded. Thus, the origin is replaced by IP3.
The intersection of the hypersurface (19) with this F 3 is obtained by treating the
coordinates (w,x,y,z) as homogeneous coordinates. Thus the effect of the blow-up
is to replace the node by a quadric hypersurface in F 3 . It is a well-known result in
algebraic geometry that such a complex 2-fold is isomorphic to F 1 x F 1 .

Now consider the first Chern class of this blow-up. Let C by any one of the two
families of rational curves in the exceptional divisor F 1 x F 1 . Clearly because of
the product structure, the normal bundle of this curve within the exceptional divisor
is 0(0). The other normal direction of the curve is that of the way F 3 embeds in
(C4. Thus the total normal bundle of the curve is (9(0) Θ 0 ( - l ) . Adding this to the
tangent bundle we obtain

fcι(X) = 2 + 0- 1 = 1. (20)
c

This is thus similar to the case of a blow-up of a smooth point - the blow-up is an
irrelevant operator. In contrast to the latter case however, the irrelevant perturbation
has been of some use - we have smoothed the target space.

4. Examples

We are now in a position to study some examples for the target space which exhibit
stable singularities thanks to the analysis of the preceding sections.

4.1. A Double Cover ofΨ3. Let K' be a smooth hypersurface in F 3 defined by an
equation of degree 8 in the homogeneous coordinates. Let X1 be a double cover
of this F 3 branched over K'. The space X' is a smooth Calabi-Yau manifold and
was studied in the physics literature long ago [25]. The resulting space has A1'1 = 1
given by the original F 3 and h2>ι = l49, where the 149 corresponding deformations
of complex structure of X1 can be provided by the 149 inequivalent deformations
of the octic defining equation for K'. The Brauer group of X' is trivial.
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By deforming the octic equation to special values we may make the double cover
singular. Let X be such a singular degeneration of X' branched over the singular
octic surface K. We define K as follows. Let W be a generic polynomial in the ho-
mogeneous coordinates [xo,... 5X3], [po,..., p^\ of degree (2,2) with respect to the x's
and the p's. The x's form the homogeneous coordinates of our F 3 . K is defined by

d2W
= 0. (21)

The number of nodes may be calculated using the methods of [22].3 This surface
has 80 nodes and as a result X has 80 isolated nodes of the form (19). K, and
thus, X have 69 deformations. The fact that 69 + 80 = 149 shows that each of the
nodes appears to have "eaten up" one of the original deformations of X'.

Given X how may we remove the singularities? Obviously one way is to deform
it back into X' which is a smooth Calabi-Yau manifold. Another way one might be
tempted to try is to use "small resolutions." This amounts to replacing each node
by a F 1 . This process was used in the string context in [14] to continuously change
the topology of the target space. It is also reviewed in [2] together with its relation
to the "flop". Anyway, in this case the small resolutions do not work - the resulting
smooth space is not Kahler.

Consider X as the blow-up of X replacing each of the 80 nodes by exceptional
divisors in the form of F 1 x F 1 as described in the previous section. See Fig. 3
(where only 2 of the 80 nodes are shown). The space X is smooth and Kahler but
not Calabi-Yau. As shown in the appendix however, this space is very interesting for
our purposes because H2(X) contains a Έ2 subgroup. That is, we have an example
with a nontrivial Brauer group.

Now let us consider the A-model on X. Since X is singular we need to think
carefully about how to calculate correlation functions in the model. The N = 2 σ-
model on X flows to the superconformal field theory on X as explained in Sect. 3.
Thus if the exceptional divisors in X are very small then we expect to have a the-
ory with correlation functions very close to that of X. The exception to this will be
correlation functions involving fields from the part of the theory that became trivial
in the infra-red limit. From Sect. 3 we expect that the fields associated with the
homology of the exceptional divisors themselves are such fields. The A-model on
X can be considered as the limit of this infra-red flow, twisted to form a topological
field theory. The A-model on X therefore would appear to be given by the A-model
on X with all the "massive" bits ignored since these disappear in the infra-red limit.
That is, we ignore the contributions to the homology appearing from the excep-
tional divisors themselves. What we do not ignore however is the torsion in H2(X)
because this may be observed away from the exceptional divisors. In particular
there are rational curves C\,C2 £ X such that [C\] — [C2] is a nontrivial element of
Ύors(H2(X)) and neither C\ nor C2 is contained in any of the exceptional divisors.

We propose therefore that one may define an A-model on X in terms of the
homology classes on X excluding classes lying exclusively within the exceptional
divisors. This means that our Έ2 group in the Brauer group allows us to introduce

3 The matrix d2W/dpidpj represents a symmetric map / : E —• E*, where E is a vector bundle of
rank 4 over IP3. The fact that this matrix has entries which are quadratic in the homogeneous coordinates
of this IP3 shows that E* 9* 0 ( l ) φ 4 . Theorem 1 of [22] can then be used to calculate the number of
nodes since nodes appear as the locus of corank ^ 2 maps.
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Fig. 3. The relationship between X, Xr and X

a parameter α which may be 0 or 1 as in Sect. 2. In particular, if α = 0, the curves
C\ and C2 will contribute identically to correlation functions and if α = 1 they will
contribute differently.

Consider this A-model as we deform X slightly into X'. All the rational curves
away from the nodes are deformed slightly but now the Brauer group is trivial and so
C\ and C2 lie in the same homology class. In the underlying conformal field theory
one would expect the correlation functions to change slightly. This is all well and
good if α = 0 but if a = 1 then we are in trouble. The coefficients in the A-model
correlation functions appear to jump as the homology classes of C\ and C2 change.

Thus, an A-model on X for which the parameter α is 0 may possibly be deformed
into an A-model on Xf, but for A-models with α = 1 this deformation appears to be
obstructed at the level of correlation functions. Since this deformation is the only
way of smoothing X into a Calabi-Yau manifold, if α = 1 then we are unable to
follow the A-model from the singular space to the smooth one. Thus, even though
X may be classically deformed into the Calabi-Yau manifold X', this deformation
is not compatible with string theory! The only deformations of complex structure
of X allowed in the case α = 1 are the 69 which preserve the 80 nodes.

This state of affairs is, of course, similar to that suggested in [28] to which we
now turn our attention.

4.2. A Double Cover of(Ψ1)3. To discuss our next example, we need to introduce
a whole plethora of spaces all of which may be deformed into each each other
continuously. These are as follows:

X%\ Let T be the torus of one complex dimension described as a quotient of
the complex plane (C, parametrized by z, with identifications z = z + 1 and z =
z + /. Take three copies of this torus parametrized by zi,Z2,z3. X# is defined as the
orbifold obtained by dividing this space T3 by the group G = Z2 x Z2 generated
by (zi,z2,z3) H+ (-z1 ?-Z2,z3) and (zi,z2,z3) ^ (zu-z2,-z3).

Y: This orbifold may be blown up in the usual way to form a Calabi-Yau
manifold Y. Y has A1'1 = 51 and A2'1 = 3. Actually this blow-up is not unique and
there are many topologies possible for Y. Which one we choose is not important
for this paper.
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X'\ Consider the space (IP1)3 and a smooth hypersurface K' within this space
defined by an equation of weight (4,4,4) (i.e., quartic in each of three sets of
homogeneous coordinates). X' is the double cover of ( F 1 ) 3 branched over K'. It
is a smooth Calabi-Yau manifold with torsion-free cohomology with h1'1 = 3 and
h2'1 = 115. As explained in [28], X* may be written as a double cover of ( F 1 ) 3

and may deformed into Xf.
X: Let faιa2a3 represent a generic polynomial of weight (tfi,fl25#3) in the ho-

mogeneous coordinates of ( F 1 ) 3 . Let W be a symmetric matrix of the form

( /400 /220 /202 \

/220 /040 /022 (22)

/202 /θ22 /θO4 /

K is the hypersurface defined by det W — 0. X is the double cover of ( F 1 )3 branched
over K. K, and therefore X, have 64 nodes.

X: The space X may be blown-up to a smooth manifold X by replacing each of
the 64 nodes by an exceptional divisor F 1 x IP1. As before X is not a Calabi-Yau
manifold.

These spaces are thus related as follows

x % jtf x _drf x ,

blow-up blow-up (23)

Y X

where "def" refers to a deformation of complex structure.
String theory on X% is understood from orbifold theory. Since H2(G) = Z2 there

are two possible theories depending on one's choice of the "discrete torsion" 2-
cocycle [26]. With a trivial 2-cocycle one recovers the usual blow-up picture as
expected [3]. That is, the chiral ring corresponds to the cohomology of Y. Thus Y
may be taken to be the geometrical interpretation of a conformal field marginally
perturbed from that of the orbifold X# with trivial 2-cocycle.

When the nontrivial 2-cocycle is chosen, one obtains a chiral ring mirror to that
with a trivial 2-cocycle. That is, A1'1 = 3 and A2'1 = 5 1 . These numbers precisely
agree with the degrees of freedom of X. X has 3 deformations of its "Kahler
form," that is, the sizes of the three F 1 ? s may be varied. (X itself is singular so it
does not really have a Kahler form as such.) Varying W gives AT 30 deformations
of complex structure but this does not actually account for all the deformations
oϊ K which preserve the 64 nodes. Since X' has 115 deformations there will be
115 — 64 = 51 deformations of K maintaining 64 nodes and thus 51 deformations
of X. Thus there are 51 deformations of complex structure for X for our purposes.

As the reader may have guessed by now, the group H2(X) contains a Έ2 torsion
part. Thus by analogous reasoning to the previous example, if we set a = 1 for the
A-model on X, we obstruct the deformations taking X into X'. This then appears to
give the correct geometrical picture for allowing X to be regarded as the geometrical
interpretation of a conformal field theory marginally perturbed from that of the
orbifold X# with nontrivial 2-cocycle. Note however that in addition to just knowing
the classical geometry of X, we also need to put α = 1 to stop X' from providing
the geometrical interpretation.
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5. Discussion

We have observed that conformal field theory, or topological field theory, on a
target space with nodes may have degrees of freedom which are "hidden away" in
the nodes. By perturbing by an irrelevant operator we have been able to probe the
secrets of these nodes to discover the Brauer group at work.

It is important to realize in the above description that the hidden degrees of
freedom cannot be expressed as some local property of each of the nodes. The ap-
pearance of torsion in H20C) is a global property - many nodes in just the right place
are required to produce the element of the Brauer group on blowing up. This demon-
strates further some of the peculiar properties of the stringy description of space.

A question we have not addressed is that of the existence of a conformal field
theory associated to some singular target space X. Given a smooth Calabi-Yau
manifold near the large radius limit we may assume the existence of a conformal
field theory approximated by the non-linear σ-model with Ricci-flat target space. In
the case of a singular target space however some of the correlation functions of the
supposed conformal field theory may contain divergences.

Consider the conformal field theory on the manifold X' in the example in either
Sect. 4.1 or 4.2 and consider the process of deforming the target space continuously
to X. Such a degeneration of complex structure leads to infinities in the chiral ring.
That is, the B-model on X' appears bad in the limit X' —> X. This appears to rule
out a good conformal field theory corresponding to the A-model with α = 0. For
the case α = 1 we have removed precisely the offending fields from the B-model
causing the divergences. Thus the case α = 1 contains no infinities and may describe
a good conformal field theory.

This agrees with the analysis of [28] where there are only two choices of orbifold
theories on X*. One consists of the theory which may be blown up to Y. The other
is the theory which is deformed to X with α = 1. There is no third possibility of
a theory which may be deformed to X with α = 0 since such a theory would be
a limit of X' and, as such, contain divergences. Thus although we have introduced
the Brauer group as an extra parameter in the space of A-models, it would appear
that to obtain a finite conformal field theory on a singular space such as X, one is
forced to rule out the choice α = 0. Presumably it is only on smooth manifolds that
one is really free to choose α.

The example in Sect. 4.2 appears to show a link between elements of the Brauer
group and nontrivial 2-cocycles for orbifolds. The imposition of a (non)trivial 2-
cocycle for the orbifold Xff appears to match the (non)trivial choice for α for the
theory on X. Can we therefore claim to have a complete geometrical understanding
of these 2-cocycles? Unfortunately the picture is not complete. It is not possible to
blow-up X* to obtain some manifold with nontrivial Brauer group. We must deform
X% into X before blowing up for our construction to work.

The desired theorem for a general case might appear along the lines as follows.
Given an orbifold X# = V/G, for finite group G, there exists some X obtained by
a deformation of complex structure of X* such that the blow-up, X, of X satisfies
Tors(//2(X)) = H2(G). In light of the example of [7] we must also exclude the
trivial case where X% is a manifold. It is not at all clear that this conjecture is true
and it is certainly worthy of further study.

It was observed in [28] that X and Y from Sect. 4.2 are a mirror pair. This is a
fact that we have not used yet. Since Y may be written as a complete intersection
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in a toric variety one should be able to use the method of [10, 4] to construct
its mirror. This example is very similar to that studied in Sect. 3.4 of [4]. The
result is that the mirror of Y is a hybrid model which is a "trivial" (i.e., quadratic)
Landau-Ginzburg theory in <C6/Z2 fibred over ( F 1 ) 3 . The superpotential of this
Landau-Ginzburg theory "degenerates" (i.e., some directions become massless) over
a subspace of ( F 1 ) 3 . This subspace appears in the form of K in Sect. 4.2. That is to
say, the description of the mirror of Y in the language of [4] is precisely X except
that "double cover" is replaced by "Landau-Ginzburg fibration" and "branched over"
is replaced by "with superpotential degenerating over." This is a curious point which
should be pursued further.
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Appendix: Some Calculations of Brauer Groups

In this appendix, all cohomology groups will be defined using the etale topology
unless otherwise noted. See [23] for a basic reference for the etale topology and
etale cohomology. By the Brauer group of an algebraic variety X, we mean the
cohomological Brauer group, Br'ζX) = H2(X, djw), where (&m is the sheaf of units
in (9χ. See [21] for an introduction to Brauer groups of varieties. We will assume
X is defined over C, or any algebraically closed field of characteristic zero.

There is an exact sequence

0 -> Pic(JO ®% Q/Z -» H2(X, Q/Z) -> Br'(X) -> 0 .

(See [21], II Thm 3.1.) If X is a non-singular variety over the complex numbers,

then H2(X, Q/Z) coincides with the singular cohomology group //Jng(X, Q/Z) in

the usual topology. If furthermore, Pic(X) = H2

ng(X,Z), as is the case \ϊHx{Θχ) =

H2{ΘX) = 0, then this exact sequence along with the universal coefficient theorem

shows that Br'(X) <* ^ Z U

We use the cohomological Brauer group rather than the description "torsion in
// 3" because, for the second example below, we will need some technical machinery
which has already been set up using etale cohomology in [19]. Furthermore, in the
first example, we will use the following interpretation for elements in the Brauer
group.

If X is a variety, a Brauer-Severi variety over X is a variety P along with a
map / : P ^X which is a IP"-bundle. (See [21], I, Sect. 8 for details.) Not all
such Ψn -bundles are projectivizations of vector bundles on X, and the Brauer group
gives obstructions for a Brauer-Severi variety to come from a vector bundle. From
the exact sequence

0 -> <Bm -> GLn+ι -> PGLn+ι -> 0

we get, using suitably defined cohomology groups, an exact sequence
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Giving a Ψn-bundle over X is equivalent to giving a class ξ € Hι(X,PGLn+\). If
δn+\(ξ)φ0, then £ does not come from a rank n+ 1 vector bundle. Furthermore,
\mδn+\ is annihilated by multiplication by n -f 1 (see [21], I, 1.4). Thus, in par-
ticular, if / : P -* X is a P 1 -bundle which is not the projectivization of a rank 2
vector bundle, then it gives rise to a non-trivial 2-torsion element in Br'(X).

We now construct 2-torsion elements in the Brauer groups for the threefolds
mentioned in the main text.

Construction 1. Let W C P 3 x P 3 be a generic hypersurface of bidegree (2,2), and
let K C P 3 be the discriminant locus of the fibration p\ : W —> P 3 , where /?i is the
projection onto the first factor. It is easy to see that K is an octic surface with 80
ordinary nodes. Let d : X —• P 3 be the double cover of P 3 branched over K, and
let π : X —• X be the blowing-up of the 80 nodes of X, so that X is non-singular.

Theorem 1. There is a non-trivial 2-torsion element in Br'(X).
Proof. Let U be the non-singular locus of X, so that U = X — U!=i £/> where the
Ei are the exceptional divisors obtained from blowing up the singular points of X.
Each Ei is a non-singular quadric surface. By [21], III 6.2, there is an exact sequence

80

0 -> Br'(X) -> Br'(£/) -> Q)Hι(Eh($/Z) = 0,
z = l

so Br'(X) = Br;(£/). Now each point x E U corresponds to a choice of a ruling of
the non-singular quadric or quadric cone p^ι(d(x)). Let P C Gr(2,4) x U be the
variety such that Px parametrizes the lines in the corresponding ruling of p]~ι(d(x)),
so that / : P —> U is a P 1 -bundle. Let lx C W be the line corresponding to a point

Claim: f does not have a rational section, i.e. a rational map σ : £/ —> P with / o σ
the identity wherever σ is defined.

Proof. Suppose that / has a rational section σ : U —> P. Let D C PF be defined to
be the Zariski closure of the set

Vσ(χO Π 'σ(x2)l
 χi? χ2 ^ ^ are any distinct points on which

σ is defined such that d(x\) = d(x2)} .

If J(xi) = d(x2) then /ff(Xl) and /σ(x2)
 a r e ^ m e s m distinct rulings of p^~ι(d(x\)), so

the intersection consists of one point. Thus the projection D —> P 3 is generically one
to one, and so the cup product of the cohomology class [D] of D in H^ng(W,Έ) with

the cohomology class of a fibre of p\ is one. But since W is ample in P 3 x P 3 ,
by the Lefschetz hyperplane theorem, H*ng(W,Z) = ^ n g ( P 3 x P 3 , Z ) and so the
intersection of every cohomology class in H^ing(W,Z) with a fibre of p\ is always
even. This is a contradiction, proving the claim. D

Now if / were the projectivization of a rank 2 vector bundle $ on U, a section
of $ would yield a rational section of / . Thus / : P —> U gives rise to a non-trivial
2-torsion element in Br7(t/) = Br^X). D

Construction 2. Let P — P 1 x P 1 x P 1 with trihomogeneous coordinates ([po, p\],
[p2,P3],[p4,P5]). We denote by Θp(a,b,c) the line bundle of tridegree (a,b,c). Let
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M be a symmetric matrix

( /400 /220 /202'

/220 /θ4O /θ22

/202 /θ22 /θO4 >

with the tridegrees of the forms indicated by the subscripts. For general choice of
M, M is rank ^ 2 on a surface K C.P of tridegree (4,4,4) whose singular locus is
the locus where M is rank 1: from this, it is an easy Chern class calculation using
[22] to see that K has 64 nodes.

Now consider the map s : P —> P defined by s([po, p\],[p2, pi],[p4, p5]) =
([Po>P\]ΛP2,P3],[P4>Ps]\ s o m a t ^ is a double cover. Consider a general matrix

( /200 /120 /102'

/l20 /θ4O /θ22

/lO2 /θ22 /θO4 /

detMy vanishes on a surface AΓy of tridegree (2,4,4), which for general Ms has 32
singular points. Now s~ι(Ks) is a surface K of the type described above, but the
matrix M — s*Ms determining it may not be general. Nevertheless, if Ks is general,
K will have 64 nodes. If X and Xs are the double covers of P branched over K and
Ks respectively, X and Xs the blow-ups of the nodes, then it is clear that X can
be deformed smoothly to the blow-up of the double cover branched over a surface
determined by a general matrix M. The Brauer group is a topological invariant, and
so showing Bτ'(X) contains a 2-torsion element for this special M will show it
contains a 2-torsion element for general M.

Consider the map fs : Xs -* P 1 x P 1 which is the composition of the maps
Xs —• P and P —> IP1 x P 1 given by projection onto the second and third P 1 ? s. fs

is a conic bundle. We also define / : X —> P 1 x P 1 similarly, so that / is an elliptic
fibration. The following lemma summarizes the geometric results about X and Xs

we will need.

Lemma 2.
(1) The discriminant locus A of fs consists of two curves Δ\ and Δ2, each of

type (4,4) on P 1 x P 1 , meeting transυersally at 32 points, and each fibre of fs

over Δ is a union of two P 1 's.
(2) The Car tier divisor class group and the Weil divisor class group of X

coincide, and PicX = Z θ 3 , generated by ^ ^ ( l ) , 1 ^ / ^ 3, where p{ : X -> P 1

is the projection onto the ith component of P.
(3) There is a non-singular threefold V bίrationally equivalent to X, and a map

g : V —> B biratίonally equivalent to f : X —> P 1 x P 1 , where B is the blow-up of
P 1 x P 1 at the points of Δ\ Π Δ2. Furthermore

(a) g is flat.
(b) If we also denote by Δ\ and Δ2 the proper transforms of these two curves

on B, g~ι(Δ\) and g~l(A2) are irreducible divisors, and a fibre of g over a general
point of Δ\ or Δ2 consists of a union ofΨι's meeting at two points.

Proof (1) It is easy to see that for a general choice of MS9 the projection p : Ks —>
P 1 x P 1 is finite, p is a double cover, and the branch locus of p is the discriminant
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locus A of fs. Furthermore, the singular points of A are precisely the images of the
singular points of Ks. Since Ks has 32 nodes, A has 32 nodes.

Consider the curve Δ\ C P 1 x P 1 defined by /040/004 — /022 = 0 This is a
curve of bidegree (4,4). Over this curve, detMs reduces to

~/l2θ/θO4 + 2/i2θ/lO2/θ22 - /lO2/θ4O

If we consider this as a quadratic expression in the variables /120 and /102, its
discriminant is — 4(/o4o/oo4 ~/o22)> w m c r i is zero over Δ\. Thus Ks is branched
over Δ\, and Δ\ C zl. It is easy to see that A is of bidegree (8,8) on P 1 x IP1, and
thus A = Δ\ U A2 with ^2 of bidegree (4,4). Since A has 32 nodes, this leaves no
choice but for Δ\ and Δ2 to be non-singular curves meeting transversally.

(2) Let C1(X) denote the Weil divisor class group of X. The defect of X is
defined as rk(Cl(X)/Pic(X)), and this can be computed via the methods of [16],
Sect. 3 to be

dim// 0(j^ z / P(4,4,4))-dim// 0(^p(4,4,4)) + # of nodes of K,

where Z is the singular locus of K and <fZ/p is the ideal sheaf of Z in P.
Z is defined by the 2 x 2 minors of the symmetric matrix M. There are six

such distinct minors, and using them, one obtains a three step resolution of JZjp by
direct sums of line bundles on P. (One can do this by hand or very quickly using
Macaulay [9].) From this one computes that dim//°(t/Z/p(4,4,4)) = 61. We omit
the details. This then gives that the defect is zero.

Now Pic(X) = Z Θ 3 since K is an ample divisor in P, and the local class group
of a node is torsion free, so Cl(X)/Pic(X) is torsion free and rank 0. We conclude
that C1(X) 2έ Pic(X).

(3) X is a double cover of Xs branched over a non-singular surface S which
is contained in the non-singular part of Xs. If p G Δ\ Π A2, then f~λ(p) — l\ U l2

with l\ and l2 being IP1?s intersecting at a node of Xs. Blow-up the node and then
the proper transforms of l\ and l2. Doing this for all p G Δ\ Π A2, we obtain a non-
singular threefold Vs with a flat morphism Vs —• B. (Equivalently, Vs is obtained by
blowing up the singular locus of Xs Xpixpi B.) Let S' be the proper transform of
tS in Vs. Since S intersects l\ and l2 transversally, Sr is non-singular. Let V be the
double cover of Vs branched along S, and g : V —> B the composition of V —> Vs

and Vs —>• 5. It is then clear from the construction that g is flat. For (b), observe
that if g~ι(Ai) was not irreducible, then the Weil divisor class group of X would
be larger than (2) permits. The last statement follows from the above description
of V. Π

Theorem 3. Br ;(X) contains a non-trivial 2-torsίon element.

Proof. The Brauer group is a birational invariant ([21], III, Theorem 7.4), so it
will be enough to show that Br ;(Γ) contains 2-torsion.

We will follow the notation of [19]. Let η be the generic point of B, ί : η —> B
the inclusion, PV/B = Rιg*Gm, and S — ker(/V/# —• iJ*Py/β). By Lemma 2, (3),
g : V —»B is what is called a good model in [19], Definition 1.1, so we can apply
the results of [19], Sect. 1.

Let Dj = g~ι(Ai), Dj be the normalization of Dz, and let Dj —> ̂ z —> J/ be the
Stein factorization. By Lemma 2, (1), Δι —* Δ\ is an unramified double cover, as
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one obtains the same double covering using the map fs. By [19], Proposition 1.13,

i=l

By the exact sequence

0 -> δ -> PV/B -> i*i*Pv/B -> 0

(surjectivity on the right follows from [19], Proposition 1.10) we obtain a sequence

We also have an exact sequence of sheaves on η:

0—>A—>ί

where d is the degree map and A is the Jacobian of Vη = Xη. First H°(A) = 0:
a non-trivial degree zero line bundle on Xη would extend to give a divisor on X
not allowed by Lemma 2, (2), and so H°(η,i*Py/B) Q Z. Thus coker(α) is a cyclic
group, and since it injects into HX(B,$), we must have

coker(α) = 0 or Z/2Z,

and thus
im(Hι(B,£) -> Hι(B,Pv/B)) = Z/2Z or (Z/2Z)®2 .

In fact, it is the first case which occurs, but since that does not matter to us, we do
not prove this here. Finally, we have an exact sequence ([19], 1.5)

0 = Br'(Z?) - Br'(K) - Hι(B,Pv/B) - H3(B,<Bm) = 0 ,

with the left and right terms being zero since B is a rational surface, so Br'(F)
contains a two-torsion element. D

Remark 4. The above computation obscures the actual source of the 2-torsion,
which can be seen in the following manner: Using the results of [1], H*ing(Vs,Z)
has 2-torsion, generated by IQ — l\, where /o and l\ are the two components of a
fibre of g over a point in Δ\ or Δ2. (Vs is as in the proof of Lemma 2, (3).) This
cycle then lifts to a difference of two rational curves in V, generating the 2-torsion
in H^ {V,Έ) we have produced above. However, this requires a more detailed anal-
ysis of the geometry of V. Furthermore, the method of proof of Theorem 4 is a
more suitable approach for some other examples.
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