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Abstract: We prove the existence of localized states at the edges of the bands
for the two-dimensional Landau Hamiltonian with a random potential, of arbitrary
disorder, provided that the magnetic field is sufficiently large. The corresponding
eigenfunctions decay exponentially with the magnetic field and distance. We also
prove that the integrated density of states is Lipschitz continuous away from the
Landau energies. The proof relies on a Wegner estimate for the finite-area magnetic
Hamiltonians with random potentials and exponential decay estimates for the finite-
area Green's functions. The proof of the decay estimates for the Green's functions
uses fundamental results from two-dimensional bond percolation theory.

1. Introduction

The existence of localized states for a two-dimensional gas of non-interacting elec-
trons in a constant magnetic field is a main ingredient in various discussions and
proofs of the integer quantum Hall effect (see e.g. [1-4,7]). It is generally believed
that localization occurs near the band edges for large magnetic fields and bounded,
random potentials of arbitrary disorder. According to Halperin's argument [1], the
localization length should diverge near the Landau levels. This is in contrast to the
situation with no magnetic field. For two dimensional random systems, localization
is expected to hold at all energies for arbitrary disorder and the eigenfunctions are
expected to decay exponentially.

In this paper, we study the family Hω of two-dimensional Landau Hamiltonians
with Anderson-type potentials, having mean zero, on L2(R2). We prove that
localization does occur in all energy intervals In(B) = [(2n -f l)B + Θ(B~l),
(2n + 3)B- 0(B~l)]9 n = 0,1,2,... at large magnetic field strengths B and for
arbitrary disorder. Recall that σ(//ω) is contained in bands about the Landau levels
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En(B) = (2n + 1)£, n = 0, 1, 2,..., of width || F||oo, independent of B. We follow
the approach of [8] developed to study random Schrodinger operators on L2(R^).
This work [8] extends to continuous systems the techniques of Rowland [9], Simon-
Wolff [10], von Dreiftis-Klein [11], and Spencer [12].

For large magnetic fields, we justify the one Landau band approximation of [13]
for each Landau band and obtain exponential decay estimates in x and B on the
Green's function for finite-area Hamiltonians. The key to these estimates is show-
ing that equipotential lines, defined by E = V(x) + En(B) for energies E in the
band edges, don't percolate with high probability. For potentials with zero aver-
ages, this holds at all energies except the Landau levels, which correspond to the
critical percolation threshold. In addition to this restriction, there is a small region
of energy of (9(B~l) around each Landau level where small denominators in the
interband perturbation expansion can't be controlled by our method. Although this
is in agreement with an earlier conjecture of Laughlin [14], it remains an open
question whether these small bands of energies about the Landau levels correspond
to extended states.

In Sect. 2 below, we describe the model and state the main results. We also
give some elementary estimates needed later to justify the one Landau band approx-
imation. In Sect. 3, we prove Wegner estimates for the quantum Hall Hamiltonian
restricted to finite boxes. As a by-product, we obtain the Lipschitz continuity of the
integrated density of states away from the Landau energies. The proofs of the expo-
nential decay of the finite-area Green's function are given in Sect. 4. The results
of Sect. 3 on the Wegner estimate and Sect. 4 on the decay of the finite volume
Hamiltonians are used in Sect. 5, together with results of [8], to prove the main
theorem. We prove some technical lemmas in Appendix 1. In Appendix 2, we give
a theorem which identifies the almost sure spectrum of the Hamiltonians Hω.

We have recently learned of some related results on localization for the models
studied here by J. Pule [24] and by W.M. Wang [17].

2. The Model and the Main Results

We consider a one-particle Hamiltonian which describes an electron in two-
dimensions (x\,X2) subject to a constant magnetic field of strength B > 0 in the
perpendicular ^-direction, and a random potential Vω. The Hamiltonian Hω has
the form

Hω = (p-A)2 + Vω, (2.1)

on the Hubert space L2(IR2), where p = — z'V, and the vector potential A is

A = ^(x2,-xι), (2.2)

so the magnetic field B = V x A is in the #3 -direction. The random potential Vω is
Anderson-like having the form

Vω(x)= ΣMωX*-/). (2.3)

We make the following assumptions on the single-site potential u and the coupling
constants {/l/(ω)}.
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(VI) u ^ 0, ue C2, supp u C £(0, ̂ ), and 3C0 > 0 and r0 > 0 s.t.

u\B(09rQ) > C0.

(V2) {λi(ω)} is an independent, identically distributed family of random vari-
ables with common distribution g G C2([—M,M]), for some 0 <M < oc, s.t.
g(-λ) = g(λ) and g(λ) > 0 Lebesgue a.e. λ e [-M,M].

Note that these conditions imply that | |Kυ||oo ^ MO = 2||M||ooM. We denote by
HA = (p — A)2, the Landau Hamiltonian. As is well-known, the spectrum of HA

consists of an increasing sequence {En(B}} of eigenvalues, each of infinite multi-
plicity, given by

En(B) = (2n+l)B, n = 0,1,2,.... (2.4)

Note that D(Hω) = D(HA) V ω G Ω, the probability space for the model. We will
call En(B) the «th Landau level and denote by Pn the projection onto the corre-
sponding subspace. The orthogonal projection is denoted by Qn = 1 — Pn. Let MO =

sup^J Vω(x)\ < oo. Then, σ(Hω) C LUo σ«> where σn = \βn(B) - M0,En(B) + M0],

which we call the nth Landau band. We show that σ(Hω) is deterministic. The mag-
netic translations are defined for a G Z2 by

Ua = e-
iBx^ae-ίp ' a , (2.5)

where x Λ a = X2β\ — x\d2. We then have

UaHωU~λ = HTaω , (2.6)

where Ta : Ω —> Ω is the Έ}-translation. Standard results (cf. [15]) show that
Hω is a Z2-ergodic self-adjoint family of operators and consequently its spec-
trum is deterministic. Note that σ(Hω) is not necessarily equal a.s. to U«>oσ«
In Appendix 2, we show that the family Hω almost surely has spectrum away
from the Landau levels in the following sense. For any N > 0, there exists con-
stants BN > 0 and CW > 0, such that for all B > BN > 0, the complement of the set
\JnzN(En(B) - CNB-l'\En(B} + CNB-1'2) in [09EN(B)+M0 + CNB~1/2] contains
spectrum with probability one.

Theorem 2.1. Let Hω be the family given in (2.1) with vector potential A satisfying
(2.2), B > 0, and the random potential Vω as in (2.3) and satisfying (V1)-(V2).
Let In(B) denote the interval

In(B) = [En(B) + &(B-l),En+l(B) - &(B~1)] ,

where the term (9(B~l) depends on n. There exists BQ ^> 0 such that for B > BQ
and all n = -1,0,1,2,...,

σ(Hω)ΓMn(B)

is pure point almost surely and the corresponding eίgenfunctions decay exponen-
tially. The integrated density of states is Lίpschίtz continuous away from O(HA ).

Let us make two remarks about the theorem. First, we note that the above
theorem holds at arbitrary disorder. For large disorder, the techniques of [8] apply
directly to show that, without the percolation estimates, σ(Hω) is almost surely pure
point in each Landau band. This regime, however, is of little interest as the quantum
Hall conductivity vanishes in this case. Secondly, we show, in fact, that the local-
ization length, for energies near the band edges as in Theorem 2.1, is a decreasing
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function of the field strength B so that the wave functions are strongly localized.
We also show that the localization length increases as the energy approaches the
Landau levels. The precise manner in which this occurs follows from Proposition
5.1 and Theorem 5.2. However, our method fails to give an estimate of the power
law divergence of the localization length near the Landau level.

As is clear from the Wegner estimate, Theorem 3.1, our method fails to give
information about the integrated density of states at the Landau energies. However,
we can improve the result if, instead of the support condition of (VI), we assume
that the function u is strictly positive on the unit square Λtι(O) centered at the origin.
In general, we use the notation ΛI(X) for the square of side / centered at x and

for the characteristic function for this square.

Theorem 2.2. Let Hω be the family given in (2.1) with vector potential A satisfying
(2.2), B > 0, and the random potential Vω as in (2.3). Assume condition (VI) and

(V3) u ^ 0, u G CQ, and 3C0 > 0 such that u\B(0, 1) > C0.

Then, the integrated density of states is Lίpschίtz continuous.

If the hypothesis of Theorem 2.2 does not hold, then a large portion of con-
figuration space is unaffected by the potential. It is not, therefore, surprising that
there is a discontinuity in the integrated density of states at the Landau energies as
there is for the Landau Hamiltonian. A phenomenon of this type has been observed
by Brezin et al. [6] for a Poisson distribution of impurities at low energy. So we
do not expect that the IDS is Lipschitz continuous at the Landau energies without
a condition of the support of u which implies that the zero set of Vω is in some
sense "small."

We mention that W.M. Wang [16] has obtained an asymptotic expansion in the
semi-classical limit for the density of states at large magnetic field strengths away
from the Landau levels, partially justifying the one-band approximation.

We conclude this section with some simple observations on the Landau projec-
tions Pn.

The projection Pn on the «th Landau level of HA has a kernel given by

Pn(x, y) = Be~iix^pn(Bl2(x - y)) , (2.7)

where pn(x) is of the form

Pn(x) — {nth degree polynomial in x}e~^~ , (2.8)

and independent of B. We will make repeated use of the following elemen-
tary lemma, the proof of which follows by direct calculation using the kernel
(2.7)-(2.8).

Lemma 2.1. Let χ\,χ2 be functions of disjoint, not necessarily compact, support
with \χi ^ 1, and let δ = dist(suppχι,suppχ2) > 0. Then,

(1) ||χtf,χι||ι ^ CB5|suppχι|;

(2) \\toPnto\\HS ^

where Cn varies from line to line and depends only on n, and HS denotes the
Hilbert Schmidt norm.



Landau Hamiltonians With Random Potentials

3. Wegner Estimate
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We define local Hamiltonians as relatively compact perturbations of the Landau
Hamiltonian HA=(p—A)2, as defined in Sect. 2. Let A C 1R2 denote an open
connected region in 1R2. We let ΛI(X) denote a square of side / centered at c G IR2,

Λι(x) ~ {y G R2 \xt - yt < I, i = 1,2} .

Given A C IR2, the local potential VA is defined as follows. Freeze all /ί/(ω) G
J2 Π (R2\Λ) and consider V so obtained. This potential depends on the external,
fixed coupling constants and on all λ/(ω) G Z2 Π A. We define VA = V\A and define
HA = HA + VA on L2(R2). We denote by Ify and ΊEΛ the probability and expectation
with respect to the random variables in A. Note that GQSS(HA) = σess(HA), since VA
is relatively compact.

For general regions A, the Hamiltonians HΛ are not independent of the exter-
nal configurations. This lack of independence is characteristic of models on R^.
The multi-scale analysis of [8] requires that we compute the simultaneous occur-
rence of events localized in several disjoint regions. For example, we must estimate
JPΛ(A Π B) in terms of WΛ(A) and WΛ(B). This is particularly difficult when the single-
site potential u does not have compact support. For a discussion of these issues, we
refer the reader to [20] (the argument of [8] for the case when u has non-compact
support is incomplete; the complete argument can be found in [20]). The results
of [20] are not needed in the present situation (or, when the supp u is compact, in
general). Condition (VI) states that suppw C 5(0, 4j). In the multi-scale analysis

of Sect. 5, the regions A are chosen to be squares in the lattice Γ = eiπ/4VΪ%2. This
lattice is chosen in order to apply results of bond percolation theory, see Sect. 4.
Each lattice site of Z2 is a center of a bond in the lattice Γ (see Fig. 1). Let
A be a square region with edges parallel to the bonds of Γ and corners at ver-
tices of Γ. Let A be the subregion obtained by deleting the edge region of A, that
is A = A/{x G A\ \\x - y\\ < l/\/2 V y G dA}. We define a local potential associated
with A to be VA = ΣieΛnr Λ(ω)w(* — O Since the support of the single-site po-
tential u is contained entirely within the basic cell for this lattice Γ, it is clear that
the support of VA is contained entirely within A. Furthermore, the potentials VA{

and ΫA2, associated with disjoint square regions A\ and AΊ with vertices lying in
Γ, are independent. Consequently, for these square regions, if A and B represent
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events associated with the potentials VAl and VA2 , we have the usual equality,

WA(A ΠB) = PA(A)PΛ(B), (3.1)

and its extension to multiple events. We define local Hamiltonians HΛ = HΛ + VΛ

associated with these potentials. We will use these local Hamiltonians in the multi-
scale analysis. Note that if Λ\ C Λ2, then VΛ2\Λ\ — VAl is supported near the bound-
ary of Λ\ and its bound is independent of the regions. Consequently, we can absorb
this term into the operator W(χ), appearing in the geometric resolvent equation (see
Sect. 5), with the only effect of changing the constants. Theorem 3.1 and the results
of Sect. 4 hold as well for these local Hamiltonians HA.

We prove the following theorem.

Theorem 3.1. ΞL#o > 0 and a constant Cw > 0 such that for all B >BQ and for
any E $σ(HA\

WA{dist(σ(HA),E)<δ} ^ Cw[άist(σ(HA),E)-δΓ2\\g\\ooδB\A\ .

This theorem will follow from the properties of the spectral projectors for HA

and a spectral averaging theorem. Since HA depends analytically on the coupling
constants λι, we need only a simple version of the spectral averaging theorem which
we state without proof (cf. [8,18,19]).

Lemma 3.1. Let U be a bounded, self-adjoint operator for which there exist a
constant CQ > 0 and a bounded, self-adjoint operator D such that C$D2 ^ U < oo.
We define a self-adjoint family Hλ, λeJ&,on D(HQ) by Hλ=H0 + λU. Let Eλ( )
be the spectral family for Hχ. For any h ^ 0, supph compact, and h £ L°°(]R),
and for any L C R measurable, we have

fh(λ)DEλ(L)Ddλ

In Sect. 5, we will apply this lemma to the family Hχ = //0 -f λu, where u is a
single-site potential satisfying conditions (VI), and λ = λo(ω) is distributed as in
condition (V2). In this case, we may take D to be the characteristic function for
the disk B(0, r0).

For simplicity, we will work with the case n = 0, the first Landau band, although
the calculation is the same for n, with constants depending on n. As can be eas-
ily checked, the calculations depend only on the difference between the energy
E that we are considering and the nearest Landau energy En(B). To begin the
proof of Theorem 3.1, we need a simple estimate. Let A be an interval in the first
Landau band σ0. Let EΔ be the spectral projector for HΛ associated with A and let
go = 1 — PO, as defined in Sect. 2.

Lemma 3.2. \\EΔQQEΔ\\^d-2(\-(2dΔΓ
l\Δ\Γ2M2, where dA = άist(σ(HA)\{B},

A ) = (9(B), and MQ =

Proof Let Em G Δ be the center of the interval. We then can write

^ [άist(σ(HA)\{B},A)Γ\EA(HA~Em)Q0EA)

^ d-l{EA(HΛ-Em)Q0EA+EΔVΛQ0EΔ} .
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This implies that

\\EΔQQEΔ\\ ^d^ll^\\EΔQ^Δ\\+M0\\QoEΔ\\\ -

Since dΔ = G(B\ it is clear that for all B sufficiently large (2dΔ)~l\Δ\ < 1, so

\\EΔQ*EΔ\\ ^ d-\\

and the result follows. D

Note that as dΔ = &(B)9 we obtain

\\EΔQoEΔ\\ = β(B~2) . (3.2)

Proof of Theorem 3.1. We can assume without loss of generality that the closest
point in σ(HA) to E is EQ(B) = B. All the calculations below hold for any band.
Let Δ C OQ\{EQ(B)} be a connected interval containing E and let EΔ be the spectral
projection for HΛ and Δ. Recall from Chebyshev's inequality that

VΛ{&&(σ(HΛ\E) <δ} ^ ΊEΛ(ΎrEΔ) , (3.3)

where WA and ΈΛ denote the probability and expectation with respect to the variables
in A Π Z2, Tr denotes the trace on L2(IR2), and δ is such that [E - δ, E + δ] C A .
We first note that

ΎτEΔ ^2Ύr(P0EΔPQ). (3.4)

This follows from the identity

ΎrEΔ = ΎrEΔP0EΔ + ΎτEΔQ0EΔ ,

and the bound
TrEΔQQEΔ £ \\EΔQ0EΔ\\(TrEΔ),

since EΔQQEΔ ^ 0. Now by Lemma 3.2, H^βo^H = ®(B~2\ so (3.4) follows for
all B sufficiently large. Let us now suppose inf Δ >B for definiteness. From (3.4),
and positivity we obtain

ΎrEΔP0EΔ ^ Ίτ(EΔ(HΛ-B)PQ(HΛ-B)EΔ) [dist(zU)]~2

^ Ύr(PQVΛEΔVAP0) [dist(zl,5)]-2 . (3.5)

Writing V\ = Σί \^ίui ^oτ short, the trace in (3.5) is

, (3.6)

where i,j &ΛΓ\Z2. Defining Aίj = u^Au,12 for any A € B(JV), we have from
(3.6),

(3_7)
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We must estimate

ι.J U

gM2EEX|Tr(/f4')|). (3.8)
*J

To estimate ΊEΛ(\Ύr(P£EJ{)\), we write the spectral decomposition of the trace-class

operator PQ as

n=l

where {μn} are the deterministic, non-negative eigenvalues of \PQ\, so that

Σnμn — l l ^ o Ί l i ' and the set {i/^} (respectively, {</>«}) is the orthonormal basis of

eigenvectors for \F%1 (respectively, |(/^z)*| = \PQ\) Substituting this into the trace,
we obtain,

|TΓ(P '̂)| ^ ΣHn\(>l>n,Eljφn)\ g \Σl*n((Φn,EUφH) + {,/,„,£»,/,„)) . (3.9)
n ^ n

The expectation on the right side of (3.8) can be bounded above by

φn} + (ψn,E«ψn)) . (3.10)

We estimate the two inner products on the right side of (3.10) using Lemma 3.1

with D equal to u 2 and u\' 2, respectively. Consequently, (3.8) is bounded above by

since Co = 1.
To evaluate the sum, we first consider those indices i and j for which i — j\ < 2.

Let Xij be the characteristic function for supp(wz + Uj). Then the contribution from
these indices to the sum in (3.9) is

Σ I n f i l l ^ Mlo Σ \\XiAXij\\i ^C^lΛMsuppi i l , (3.12)
|ί-y|<2 |ί-y|<2

by Lemma 2.1, part (1). Next, in order to estimate the sum over the complimentary
set of indices, we define the function χj to be the characteristic function for the

set {jc G R2\ \x — i\ < \x — j\}, and write χjT = 1 — χj. Using the inequality

\\AB\\, ^ \\A\\HS\\B\\HS, (3.13)

we obtain

H/tf ' l l , ^ \\uj/2Poti\\HshtP0u}/2\\HS + \\u]/2P,l- \\HS\\TUJ Pou]/2\\HS . (3.14)

If |z — j\ ^ 2, condition (VI) on the support of Uj implies that

dist(supp$,supp«y) ^ ^ - - ^ fl i -^1 , (3.15)
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for some strictly positive constant a. A similar inequality holds for dist(suppχzy ,
suppw/). By part (2) of Lemma 2.1, one obtains from (3.14) and (3.15),

-; , (3.16)

from which it follows that

Σ ptf ' l l i ^C2\suppu\\Λ\. (3.17)

Combining (3.12) and (3.17) in (3.9), we obtain an upper bound for all B large
enough,

Έ,Λ(ΊτEΔ) ^ CW[dist(*,£) - <JΓ2*||0HooM| M| , (3.18)

where Cψ depends on M, | |M| |OO, and suppw. This proves the theorem. D

The estimate of Theorem 3.1 suffices to prove the Lipschitz continuity of the
integrated density of states away from the Landau levels, as stated in Theorem 2.1.
With regard to Theorem 2.2, let us show how the hypothesis (V3) on suppw allows
the improvement. For M0 = || Jω||oo as *n Sect. 2, define

HQ=HA+2MQ(l-χΛ)9

and the finite-area Hamiltonian by

Beginning with (3.4), we have for A C σ0 and Em = center of A,

ΎrEA g 2Ίτ{EA(HA + 2M0 - Em)PQ(B + 2M0 - ̂ Γ1}

g 2(B + 2M0 - EmΓl{^EΔ(HΛ - Em)P0 + ΊτEA(2M0χA

Since 2M0χA - VΛ > M0χΛ and \\(HΛ- Em)EΔ\\ ^ ,̂ we obtain

ΎrEA ^ 2(B + 2MQ-Em)-

As (B + 2Mo — Em)~l\Δ\ < jJ <C 1, we arrive at

ΎrEA ^ 4MoCΓ1(5 -h 2Mo —

Here we used the fact that Σ/ez2n/ι w* = CI%Λ The remaining steps are the same
as above. In light of this calculation one might speculate that the singularity at the
Landau energies of the IDS is due to the existence of large regions where there
is no potential. Indeed, numerical studies on the Poisson model [6] seem to also
support this idea.

4. Percolation Theory and Decay Estimates

In this section, we prove the technical estimates required to justify the one-
Landau band approximation. We consider for simplicity the first Landau band
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σo = [B — MO,B -f MO], but all other bands can be analyzed using the same tech-
niques. Formally, if one neglects the band interaction, the effective Hamiltonian
for an electron at energy E is E = B + V(x). Consequently, in this approximation,
the electron motion is along equipotential lines V(x) -f B — E = 0. Since V is ran-
dom, it is natural to estimate the probability that these equipotential lines percolate
through a given box. If not, the electron will remain confined to bounded regions.
One can expect that the interband interaction will not change this picture. We will
do this in the second part of this section by showing that the Green's function de-
cays exponentially in x and B through regions where | V(x) + B — E\ > a>0. The
first part of this section is devoted to reformulating our problem as a problem in
bond percolation.

4.1. Percolation Estimates. We first show that in annular regions between boxes
of side / and 1/3 there exist closed, connected ribbons where the condition
\V(x) + B — E\ > a > 0 is satisfied, provided Eή=B, with a probability which con-
verges exponentially fast to 1 as / tends to infinity. Obviously, the existence of
such a ribbon is equivalent to the impossibility for equipotential lines at energy E
to percolate from the center of the box to its boundary. Although this is a clas-
sical matter, let us recall how one can formulate the above condition in terms of
two-dimensional bond percolation.

Recall that Vω(x) = Σ/ez2 λi(ω)u(x — /), where the single-site potential u ^ 0

and has support inside a ball of radius ru < 4=. We define ru to be the smallest

radius such that supp u C B(Q, ru). Consider a new square lattice Γ = em/4V2Z2.
The midpoint of each bond of Γ is a site of Έ2 (see Fig. 1). We will denote
by bj the bond of Γ having j G Ή2 as its midpoint. For definiteness, we assume
E 6 (B,B + MO). The other energy interval can be treated similarly.

Definition 4.1. The bond bj of Γ is occupied if λj(ω) < ^= .̂ The probability

lP{λj(ω) < ^y^} = p is the probability that bj is occupied (p is independent
of j by the iid assumption).

Let us assume that the bond bj is occupied and consider (see Fig. 2),

\x\άist(x,bj) < —,= - ru = rλ \ .
I v2 J

(4.1)

— Γ

SUpp Uj

Fig. 2. The region &j and potential sites.
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Obviously, ^7 does not intersect the support of the other single-site potentials cen-
tered on Z2\{j} so that V(x) = λj(ω)u(x — j) Vjc G dtj. Then, if bj is occupied,
one has V(x) < ̂  Vx G 3tj (recall that ̂  > 0). We now assume that there is

a closed circuit of occupied bonds # = UyEy bj, y C %2 (i.e. a connected union

occupied bonds). We call & = \J € ^y the closed ribbon associated with ^. For

all x G ^, we have V(x) < ~. If we take a = ̂ , then

V(x) + 5 - E < -α, V J C G ^ . (4.2)

The existence of a closed ribbon ^ so that V satisfies condition (4.2) is a
consequence of the existence of a closed circuit # in Γ of occupied bonds.
In order to estimate the probability that # exists, we use some standard re-
sults of percolation theory (see, e.g. [21 and 22]) which we now summarize.
For a subset Θ C R2, the in-radίus of 0 is defined to be sup{R > Q\BR c &},
where ^ denotes a ball of radius R. We will write Inrad$ for the in-radius
of 0.

Let 2Z2 be the square lattice (the length of the side plays no role in the calcu-
lations). A bond (edge) of J} is said to be occupied with probability p, 0 ^
p^l9 and empty with probability 1 - p. We are interested in the case when
the bonds are independent (called Bernoulli bond percolation). The critical per-
colation probability pc is defined as follows. Let POO(P) be the probability that
the origin belongs to an infinite (connected) cluster of occupied bonds. Then,
we define

Pc = inf {p\Pao(p) > 0} .

For 2-dimensional Bernoulli bond percolation, pc = ±. Hence if p > pC9 occupied
bonds percolate; that is, we can find a connected cluster of occupied bonds running
off to infinity with non-zero probability.

Of importance for us are the results concerning the existence of closed circuits
of occupied bonds. Let rnj be a rectangle in 7L2 of width / and length nl. Let
Rnj be the probability that there is a crossing of rπ>/, the long way, by a con-
nected path of occupied bonds. This probability is controlled by an exponential
factor m(p)9 which is strictly positive for p < pc and m(p) \ 0 as p / pc. This
factor measures the probability that the origin 0 is connected to x G Z2 by a path of
occupied bonds

The basic result is

Theorem 4.1. For p > pC9 Rnj ^ 1 - C§nle~m(^~ pV , for some constant C0.

Let us write r\ for r\j9 the box of side /. An annular region between two con-
centric boxes is denoted by a\ = r3//r/. A closed circuit of occupied bonds in <z/
is a connected path of occupied bonds lying entirely within α/. Using Theorem 4.1
and the FGK inequality, one can compute the probability A\ of a closed circuit of
occupied bonds in #/ for p > pc.

Theorem 4.2. For any ? G [0, 1], A\ ^ [^3,/(^)]4. In particular, if p>pc,
30 < CQ < oo as in Theorem 4.1, such that

(l-py . (4.3)
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R-

C-

Fig. 3. A closed circuit # C a\ and the corresponding ribbon $.

We now apply these results to our situation as follows. On the lattice Γ defined
above, the probability that any bond is occupied is given by

P = J g(λ)dλ ,
-M

so, under our assumptions on the density g, if a > 0 then p> pc = \, and we are

above the critical percolation threshold pc — \. Note that when E — B, a = 0, so

p = ^ — pc, the critical probability. It follows from Theorem 4.2 that any annular

region a\ = r3/\r/ in Γ of in-radius Λ/2/ = ^(3\/2/ — \/2/) and sides parallel to the
bonds of Γ (see Fig. 3) contains a closed circuit of occupied bonds with probability
given by (4.3). By the argument above, there is a ribbon & associated with ^ in
aι whose properties we summarize in the next proposition.

Proposition 4.1. Assume (VI) and (V2) and suppose that suppw C Bru(Q\ Let

I > Λ/2, E G OQ\{B}, and a > 0. Then for m(\ - p) and C0 as in Theorem 4.2, 3
a ribbon & satisfying

/ 1 \
(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

inrad^ ^ 2 -= - r u ,
λ/2

V(x) + B-E<-a, Vj

with a probability larger than

where

p = / g(λ)dλ .
-M

4.2. Decay Estimates. The effective one Landau band Hamiltonian B + V local-
izes electrons at energies E where the equipotential lines E = V(x) 4- B don't
percolate to infinity. The effect of the interband interaction is to induce some
tunneling through the "Classically Forbidden" ribbon ^ of Proposition 4.1. As a
consequence, instead of localization in the compact subsets of R2 bounded by
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,̂ one expects exponential decay of the Green's function in x and B across
such ribbons &. Such an estimate is the starting point of the inductive, multi-
scale analysis detailed in Sect. 5. By the geometric resolvent equation, we show
there that it suffices to consider the following ideal situation, where for some

F(JC) + B - E < -α, Vx G IR2 , (4.9)

or, alternately,
V(x) + B-E>a, V x e l R 2 . (4.10)

A condition such as (4.9) with E > B is satisfied, with a probability given in
Proposition 4.1, by a smoothing (see Sect. 5) of the potential V^ defined as

V(x) x E 0t

Here we obtain decay estimates on

with V having compact support with non-empty interior and satisfying (4.9)
or (4.10).

Let Θ be an open, bounded, connected set in IR2 with smooth boundary
and define p(x) = dist(*,0). Let *l £ Cg°(JBL2) with η>0 and suppη C #ι(0).
For any ε > 0, define ηε(x) = n(xlz)- We consider the smoothed distance func-
tion Pε(x) = (ηε*p)(x)'9 supppε C IR2\{.x|dist(.x, (9C) < ε}. We fix ε > 0 small and
write p for ρε below for simplicity. We have ||Vp||oo < Q/ε and ||^p||oo <
Ci/ε2, for constants Co, C\ > 0 depending only on η and Θ. This ε will play
no role in the analysis below and, consequently, we absorb it into the con-
stants Co and C\. We consider one-parameter families of operators defined for
α E R as

HA(x) = e^HAe-^ (4.12)

H(a) = HA(a)+V; (4.13)

P((x,) = eiΛpPe-iΛp

9 etc. (4.14)

Here, we write P for the projector PQ and Q = 1 — P. For α £ IR, these families
are unitarily equivalent with the α = 0 operators.

Lemma 4.1. The family //(α), α E IR, has an analytic continuation into the strip

S = {α G C| |Imα| < ηpB
l/2} , (4.15)

as a type A analytic family with domain D(H). The positive constant ηp depends
only on the distance function p. Furthermore, in this strip S, one has P(α)2 = P(α)
and for some constant C\ independent o/α,

||/>(α)|| < C, (4.16)

and

\\Q(aXHA(a)-zΓl\\ < Ci/T1, if dist(z,B) £B. (4.17)
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Proof. For α G R, one has

HA(QL) = (-z'V - αVp - A)2

) Vp] + α2 |Vp|2

(p - A) . (4.18)

We first show that HA(a) is a type A analytic family on the strip S. For this, it
suffices to show that

{α2| Vp|2 + lα/Jp - 2αVp (p - A)}(HA - z)"1 ,

has norm less than 1 for some z <ζσ(HA) and |Imα| <ηpB
1/2 (cf. [23], in particu-

lar, Theorem IV. 1.1 and Chapter VII.2). For later purposes, we choose z G C(B) =
{z\ \z — B\ — B}, circle of radius B centered at B. Since | Vp|2 and Δp are bounded,
we can choose η'p such that

||(α2|Vp|2 + mΔp}(HA-zΓl\\ < 1/2 ,

for |α| < η'pB
ll2 and for all z G C(B). Hence, it is enough to show that

V|α| < η'pB1/2, for a possibly smaller constant η^9

2|α| || Vp (p-A)(HA-zΓλ\\ < 1/2 , (4.19)

for some z G C(B\ Since ||Vp||oo < C0, we easily find that | |Vp (p - A)(HA -
z)-1!! < CΊ#-1/2. This implies (4.19) for all B sufficiently large. We take ηp to be
the smallest of these two constants. Since type A analyticity is stable under bounded
perturbations, it follows that //(α) is a type A analytic family of operators on S.
From these estimates and (4.18) for α G S, we have that for B large enough,

\\(HA(«)-zΓl\\<C2B-\ zeC(B), (4.20)

for some constant €2 uniform in α G S and z G C(B). Next, note that the eigen-
functions of HA are analytic vectors for the family emp, α G S. It is a consequence of
this, the analyticity of HA, and the eigenvalue equation, that σ(HA(oc)) is independent
of α, α G S. The family P(α), α G 1R, has an analytic continuation in S given by
the contour integral

W=ri S (HA(*)-zrldz. (4.21)

The boundedness of P(α) follows from (4.20) and (4.21). The idempotent property
of P(α) follows from this analyticity and the identity P(α)2 = P(α), which holds
for real α. Furthermore, the function α G S — > Q(tt)(HA(a) — z)"1 is holomorphic
on and inside C(B). By the maximum modulus principle, it follows that

\\Q(a)(HA(*)-zrl\\£ sup \\Q(a)(HA(a)-zΓl\\, (4.22)

and the bound (4.17) follows from this, (4.16) and (4.20). D

We next prove the main estimate of this section.

Theorem 4.3. Assume that (V,E,B) satisfy (4.9) or (4.10) for some a>0 and
E G σo\{B}. Furthermore, assume that supp V is compact with non-empty inte-
rior. There exists constants C2 ^ ηp, C3, and B\, depending only on M0 =
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l l V p l l o o , and | |VF||oo, such that if we define y ΞΞ C2 τom{Bl/2

9aB}9 and u is a
solution of

(HA + V ~ z)u = v, z = E + /ε, ε > 0, E > 0 , (4.23)

for some v € D(eγp), then for B > B\, Vα e C, |Im α| < y, we Aαi e

u <E D(eίp«} , (4.24)

^ C3a~l\\eicίpv\\, (4.25)

^ C3B-l\\eiΰίpv\\. (4.26)

Proof. Let t (α) = ezαpt;, so that ι (α) is analytic in the strip |Im(α) |<y. Let

w(α) = ^αpw, α G R, i.e.,

κ(α) = (//(α) - zΓlv(*) = ((H - z)-lv)(oc) , (4.27)

with H = HA H- F, as above. Since F is //^-compact by assumption, 7/ has point
spectrum, and according to Lemma 4.1 and standard arguments, //(α) has real spec-
trum independent of α in the strip S defined in (4.15). Then, w(α) has an analytic
continuation in |Im(α)| < y, which proves (4.24). Furthermore, this continuation
satisfies (4.27) in the whole strip 5, i.e. (//(α) -z)w(α) = t?(α), for all α E S. Pro-
jecting this equation along P(α) gives

(B+V- z)(AO(α) = (^O(α) + ([β W - PVQ]uM) , (4.28)

where (Pw)(α) = P(α)w(α), etc. Taking the scalar product of (4.28) with (Pu)(a)
results in the inequality,

|| . (4.29)

In the appendix, we prove that for B large enough,

and
||(P*β)(α)|| ^C5 l l

With these estimates, we obtain from (4.29),

(a-C6yB-l)\\(Pu)(κ)\\2 ^

||, (4.30)

where the constants Co and C7 depend only on ||F||oo, H V F U o o , and | |Vp||oo To
estimate ||(βw)(α)||, it follows from the resolvent equation and (4.27) that

α)!! +C,fi-1Mo||(β«)(α)||

a)\\, (4.31)
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with MO = || V\\ oo < oo. Using the estimate on QVP derived in the appendix and
taking B > 2M0Q, we obtain,

||(βιO(α)|| ^ 2ClB-l\\υ(x)\\ + C,B^'2\\(Pu\^\\ , (4.32)

where C8 =2M0CιC2. Substituting (4.32) into (4.30), we obtain

(a - C6yB~l - C7C8£-2)||(A/)(α)|| ^ (Q +2C1C7£-3/2)|lί;(α)|| . (4.33)

This proves (4.25) for B large enough. Inserting (4.25) into (4.32) yields (4.26). D

Corollary 4.1. Let (9 be an open, connected, bounded subset of R2 with smooth
boundary and suppose $ C R2\$. Let E G σo\{B} and assume that (B,E, V) sat-
isfy (4.9) or (4.10) for some a>0. Let χx, X = (9 and g, be bounded functions
with support in X and s.t. \\%x\\<x> ^ l Then,

sup \\χt(HA + V-E- iεΓlXΦ\\ ^ C3max{a-\B-l}e^d , (4.34)
ε Φ O

where €3 and y are as in Theorem 4.3 and d = dist($, $).

Proof. This is an immediate consequence of Theorem 4.3. We set p(x) = dist(;t, $)
and choose v = χ@v. Then, eιcίpv = v , Vα G C. For u a solution of (H^ -\- V — E —
is)u = χ&v, one has Vα G C, |Imα| < y,

V-E- iε

by Theorem 4.3. Taking Imα — > y, we obtain (4.34). D

5. Proof of the Main Theorem

We will show below that Corollary 4.1 implies hypothesis [HI] (y0, /o) of [8]. This
hypothesis, along with Wegner's estimate, Theorem 3.1, are the main starting points
of the multi-scale analysis described in [8]. The goal of this analysis is to verify
the main assumption (A2) of Theorem 3.2 of [8], which gives sufficient conditions
for pure point spectrum in an interval and exponential decay of eigenfunctions. A
version of Kotani's trick, necessary to control the singular continuous spectrum for
the models studied here, follows from Lemma 3.2.

In order to make this paper more self-contained, we recall the main points of
this analysis here and refer to [8] for the details. To reduce the family Hω in (2.1) to
a one parameter family, we consider variations ω' G Ω for which only AQ changes.
For ω fixed and λ = λo(ω') — A0(ω), we have

Hω> =Hω + λu = H0 + λu = Hλ(A) , (5.1)

with u satisfying (VI). Let RΛ(Z) = (Hχ — z)"1. We first check the compactness
condition, (Al), of [8]. By the diamagnetic inequality,

e-Hλ(A), g e-Hλ(0),y t ^ Q t (52)
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and it is clear that ul/2e ^(^v/2, t > 0, is compact. Using the integral represen-
tation

oo
Ώ.(γ\ — Γ ^-(Hλ(A^-χ^^f V ^ Π ί^^ΛKλ\x) — J e aΐ > * < U , \3'3)

0

it follows from the norm-convergence of the integral and inequality (5.2) that
ul/2Rχ(z)u1/2 is compact for Imz φO, V/l This, for λ = 0, is condition (Al)
of [8].

The second condition (A2) is that 3/0 C/, / some interval, and |/0| = |/| s.t.
V£ E /o,

sup \\RQ(E + iε)uϊ II < oo . (5.4)
εφO

The multi-scale analysis is used to verify this condition for a.e. ω (recall HQ = Hω).
The main theorem, which we recall in the present context, concerning condition
(5.4), is the following.

Theorem 5.1. (Theorem 2.3 of [8]). Let y0 > 0. 3 a minimum length scale
/* = /*(y0,CV), s.t.: if [HI] (y0,/o) holds at energy E for /0 > /*, then for
ΊP-a.e. ω 3 a finite constant dω>0 s.t.

sup IK/4, — E — iε)~luϊ \\ < dωδ(u) ,
εφO

where δ(u) depends only on u.

We prove below that [HI] (yo,/o) holds at each energy in [B — M^B—
0(B~1)] U/oC#) Π σ0 with a suitable yo (see Proposition 5.1) and for all /o large
enough provided B is large. By Theorem 3.2 of [8], this theorem and the compact-
ness result shown above imply that Hχ in (5.1) has pure point spectrum in this set
for a.e. λ. By the probabilistic arguments of [8], we conclude that Hω has only pure
point spectrum in this set for IP-a.e. ω.

The second main theorem which we recall here allows us to prove exponential
decay of the eigenfunctions.

Theorem 5.2. (Theorem 2.4 of [8]). Let χx be the characteristic function of a unit
cube centered at x e R2. Under the assumptions of Theorem 5.1, for ΊP-a.e. ω 3
a finite constant dω>0 s.t. for all x, \\x\\ large enough,

ε>0

where y\ = (l/6\/2)yo, yo as in Theorem 5.1.

Let us remark that for our problem, yo ~ Bσ, for some σ > 0 so there is expo-
nential decay in the 5-field also. We now turn to the proof of [HI] (yo, /o).

To begin, we introduce some geometry. In this section, we work with sub-
regions of the lattice Γ = βzπ/4Λ/2^2, introduced in Sect. 4, rather than in J2. Recall
that there is a 1:1 correspondence between bonds bj E Γ and vertices j E TL2. We
arbitrarily choose a vertex of Γ as the origin and take coordinate axes parallel to
the bonds of Γ. We define boxes ΛI C Γ relative to this point,

ΛI = {x E R2 I xι ^ 1/2 for i = 1,2} .
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For convenience, we fix points so the bond bo has one of its ends at 0 E Γ. For
any δ > 0, consider A\^ = {x G A\ | dist(x, dΛi) < δ}. Let χ/^ be the C2-function
which satisfies suppχ/^ C Λh χ/?(5 ^ 0, |Vχ/,a| C Λ/Vt/,<5 and χι,δ\^ι,δ = 1. Let
^(χ)Ξ[χ,//Λ], f o r a n y χ e C 2 .

As described in the beginning of Sect. 3, we work with the modified local
Hamiltonians HΛ in order to utilize the independence of the potentials and (3.1).
Let A C 1R2 be a rectangular region with sides parallel to the bonds of Γ and cor-
ners at the vertices of Γ. We define a slightly smaller subrectangle A C A, with
sides parallel to the bonds of Γ, by A = A/{x E A \\x - y\\ < l/\/2 V y E dA}. We

define a local potential associated with A to be VA = Σ/e/inr M^^C* ~~ 0 and tne

local Hamiltonian HΛ = HA + VΛ. The Wegner estimate, Theorem 3.1, and the
results of Sect. 4, hold for HA- For simplicity of notation, we will continue to
write HA for HA below.

We apply the multi-scale analysis to HA relative to the lattice Γ. We verify con-
dition [HI] (jo Jo) of [8] using Corollary 4.1 and the geometric resolvent equation
(ORE). We must show that for E E [B - MQ,B - (9(B~l )] U /0(£) Π σ0 and for all
/o sufficiently large, that the following holds:

[HI] (yo, /o) For some y0 > 0, /0 > 1, 3£ > 4 s.t.

>o υ J

We begin with a simple lemma which allows us to control the gradient term

Lemma 5.1. Let HΛ = (p-A)2 + VA and write RΛ = RΛ(E + iε), εφO, E G R.
w G L2(1R2), | |w| | = 1, we have for i = 1,2,

| | , (5.5)

where M0 = H^H^ > 0. Moreover, for any bounded χ £ C1, we have,

EUp-A^RAuf ί ||χ^W | | | |χW | |+(2M0 + |£|)||χ^W||2
/=!

+ 2 Σ \\(diχ)RΛ u\\ \\χ(p - A)tRΛ u\\ . (5.6)
i=\

Proof. The inequality (5.5) follows directly from the equality

(RΛ u, HARΛ u) = (RΛ u, u) - (RΛ u, ( VA - E - iε)RA u) ,

and the Cauchy-Schwartz inequality. The inequality (5.6) follows in the same way
by writing out \\χ(p - A\RΛ u\\\ D

We now prove the main result of this section. Recall that ̂  denotes the ribbon
defined in Sect. 4.

Proposition 5.1. Let #2 be any function, H fclloo ̂  1, supported on vl/
where Ext ̂  = {.x G R2 | λx $ & Mλ ^ 1}, so that, in particular, supp χ2 Π ̂  = 0.
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For any E E σo\{#}, δ > 0, ε > 0, and a > 0, we have

sup \\χ2RΛl(E + i£)χlβ\\ ^ αr^max^-1,*'1} max^-1,^ + \E\)δ~2} ,
εφO

(5.7)

C depends on €3 of Theorem 4.3 αrcd #2, 7 is defined in Theorem 4.3, and
d = (r\ — 3ε)/2 (π Ξ inrad ̂ ), with a probability larger than

1 - (Cle-ml + Cw[dist(E,B) - 6}-2\\9\\^Bl2} . (5.8)

In particular, for χ/?<5 defined above and E E σo with a — ^-γ~ — (9(B~l+σ), any

σ > 0, we have that for any /0 > V2 and large enough, and any ξ>4, ΞL#(/0) > 0
s.t. V£>#(/o), [HI] (jo, /o) holds for some y0 > yd/4/0 > 0, 5-0 ί/ ί̂ y0 =

Proof. 1. By Proposition 4.1, 3 50 s.t. B > BQ implies 3 a ribbon ^ C
(with a probability given by (4.7)) satisfying

dist(«, 3Λ/), and dist(^, δΛ//3) > —= + rM > 0 , (5.9)
v2

and

ri ΞΞinrad<^>2 ( —= - ru] , (5.10)
\ v 2 /

and such that

K(JC) + ̂  - E > -α, V x e ^ , a=E—- -. (5.11)

(We assume E > B\ similar arguments hold for E <B.) For any ε > 0, 3ε <C π,
define the border of ̂  by

^ε = { c G ̂  I dist(jc, 3^) < ε} .

Then ^£Ξ^+U^~, where ^ are two disjoint, connected subsets of .̂
Let % = {x E ̂  I dist(jc,^+) = dist(;c,^ε~)}; ^ is a closed, connected path in .̂
Let ^ε = { c G ̂  dist(jc,^) < ε/2} C 31, so that inrad %> = ε and

(5.12)

This is strictly positive. Because of this, we can adjust ^ε so that d%?ε is smooth.
We need two, C2, positive cut-off functions. Let χ^ > 0 satisfy χ^|^ε = 1 and
supp|Vχ^ C ̂ ε. Let χ\ satisfy χιM//3 = 1 and supp|Vχι| C ̂ ε (see Fig. 4). By
simple commutation, we have (with χ2 as in the proposition),

(5.13)

Next, denote by R@ the resolvent of //^ defined in Sect. 4.2. The GRE relating RΛl

and R® is

(5.14)
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/ / 11/6 1/2

Fig. 4. The ribbon ?̂ and cut-off functions.

Substituting (5.13) into (5.12) and noting that χ2χ& = 0, we obtain

ΛX//3 - χ2RΛlW(χ®)R®W(χl)RΛlχlβ . (5.15)

Note that from (5.12) and the choice of χ@ and χ\, we obtain that

dist(supp W(χΛ), supp W(Xl )) ^ (n - 3β)/2 . (5.16)

We apply Wegner's estimate, Theorem 3.1, to control the two RAI factors in (5.14),
and the decay estimate, Corollary 4.1, to control the factor R@, which is possible
due to the localization of W(χ^) and W(χ\) and (5.16).

2. To estimate the R@(E -f /ε) contribution, we use Corollary 4.1 with 0 = ̂ ε

and $ — <%e. Let χx, X = Θ and <f, be a characteristic function on these sets. Then
W(χ^)χ<g — W(χ&) and χ&W(χι) = W(χ\). Inserting these localization functions
into (5.15), we obtain from Corollary 4.1,

\\χ*RΛ(E + iε)χφ\\ ^ Cmax{a-\B-l}e^d , (5.17)

with probability larger than
\-Cle~ml , (5.18)

for some m = m(l — p) > 0 and 0 < C < oo. The factor d satisfies

d^(r\- 3δ)/2 , (5.19)

where r\ = inrad^ as in (5.10).
3. Next, we turn to

W(χι)R,(E + iε)χlβ , (5.20)

and
(5.21)

where we write RI for RΛ{ for short. We will bound RI by Wegner's estimate and
the terms (5.20)-(5.21) via Lemma 5.1. From Theorem 3.1, we have for any δ > 0,

\\Rι(E + iε)\\<δ-1 , (5.22)

with probability larger than

1 - Cv[άJst(E,B) - SΓz\\g\\00δBίi . (5.23)

From (5.22) and Lemma 5.1, both (5.20) and (5.21) are bounded above by

C4max{(H,(2M + I^Ί)^""1} , (5-24)

with probability at least (5.23). The constant €4 depends on 3αχι, for |α = 0, 1,2.
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4. Using the estimate P(AΠB) ^ P(A) + P(B) - 1, and (5.17)-(5.18) and
(5.23)-(5.24), we find

\\teRι(E + iέ)κp\\ ^ 2Cmax{a-\B~1} m^{δ~\(2MQ + \E\)δ~2} e^d ,
(5.25)

with probability at least

1 - {Cle~ml + Cw[dist(E9B) - δΓ^g^δBl2} . (5.26)

This proves the first part of the proposition.
5. To estimate ^te,<0^/Z//3> we use me second formula of Lemma 5.1, (5.6),

which gives

+ 2 max \\(diX2)RlXl/3\\ \\χ2(p -A)iRιχι/3\\ . (5.27)

Since dtχ2 satisfies the same condition as χ2, the factor \\(diχ2)Rιχι/3\\ in (5.27)
satisfies the estimate (5.24) with possibly a different constant. Solving the quadratic
inequality (5.27), we obtain

\\X2(p -

+ (2M0 + |£|)||χ2Λ/χ//3||2)]1/2} , (5.28)

which can be estimated as in (5.25). Finally, we write

ll^to^)^//3|| ^ \\(Δχι,δ)RιXι/3\\ +2Σ IKdjχt^p-AϊjRa^l , (5.29)
7-1

which can be estimated from (5.25) with χ2 = Aχi^ and (5.27) with χ2 = (dj χij).
6. We now show that for any /0 large enough, ΞL#0 = BQ(IQ) such that for all

B>BQ, condition [HI] (/0,7o) is satisfied with y0 = (9{mm(Bl/2,Bσ)}. We take
E e [B - MO, B - (9(B-{)] U I0(B) Π σ0 and a = ̂  = Θ(B~l+σ\ for any σ > 0.

First, we require that (5.25) be bounded above by e~ydl2. This leads to the condition

Cδ~2B2-σe-yd ^ e~yd/2 , (5.30)

where γ = C2min{J#2,j?σ}. This condition implies that we must choose δ in (5.22)
to satisfy

δ>Bl-(σ^e~^4 . (5.31)

If we now define
70 = y^/4/o ,

we find that
\\W(χ,,s)R,χl/3\\ g e~^ .

Next, the probability estimate (5.26) leads to the condition

σδl2

0 ^ IQ{ , (5.32)
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or, for all /o large,
σδl ^ l- , (5.33)

for some ξ>4. We can choose δ so that both conditions (5.31) and (5.33) are
satisfied provided the condition

/^+2<£3/2-^)v^4, (5.34)

is satisfied for some ξ>4. It is clear from the definition of y, that for any /o,
there exists a BQ = BQ(ΪQ) such that condition (5.34) is satisfied for all B > BQ.
This completes the proof of the theorem. D

6. Appendix 1

The following estimates hold for all B sufficiently large.

Lemma A.I. Let V G C2, (1R). 3 constant C>0 depending only on ||δαF||00,
|α| = 0, 1,2 such that Vα G S,

||P(α)Fβ(α)|| g OT1/2 . (6.1)

Proof. Let z = 5 - 1, so z G ρ(HA(u)) for α G S. We have

P(α)Fβ(α) - P(αX/t,(α) - z)(^(α) - z)-1 Fβ(α)

- P(oO(Jΐ,(α) - z)V(HA(κ) - zΓlQ(*) + P(*)(HA(x) - z)

x (#χα) -zΓH^T/Xα^T/Xα) -z)'1^) . (6.2)

Recall that P(α) is analytic in α G *S. As

α) - z) = P(a)(B - z) = P(α) , (6.3)

for α G 1R, the identity principle for analytic functions implies this holds for α G S.
This result (6.3) and estimates (4.16)-(4.17) imply that the first term on the right
in (6.2) is bounded as

Vα G S. As for the second term, the commutator is (see (4.18))

- ΔV .

The resulting term in (6.2) involving Δ V is treated as above. As for the derivative
term, it suffices to show

\\(HA(*) - zΓ\Pi ~ adiP - At)\\ ^ C.B1'2 , (6.4)

for all α G S. To see this, let fftα) = (pt - αδ, p - Afi and Λ(α) = (//^(α) - z)"1.
For u — R(a)v, v G L2(R2), we have

= (R(<*)v,υ) +z\\u\\2 +2ι(Imα)(w, Vp F(α)w) .
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This leads to a quadratic inequality for each / = 1,2,

+ 2|Imα|

Solving this, and noting that |Imα| ^ Bl/2, \z\ = Θ(B), and, for this z, \\R(u)\\ < C0

by (4.16)-(4.17), we get

(6.5)

which is (6.4). D

Lemma A.2. Le/ p be the distance function defined in Sect. 4. 3 constant C > 0
depending only on | |δαp||oo> |α = 0, 1,2, swcA ί/zαί Vα G 5,

(6.6)

for |Imα| ^ 51/2.

Proof. We can assume that α is purely imaginary by a standard unitary equi-
valence argument (note that when α is real, ||P(α)*<2(α)|| =0.) Let z = B — 1,
as in Lemma A.I. We then have by (6.3),

(6.7)

The last term is Θ(B~l) by (4.16)-(4.17). Let us write α = iβ, with β real. Then
by the resolvent equation, we have

= -2iβ(H*(«) - zΓl[2(p-A) Vp + iAp](HA(a)-zΓl (6.8)

Using (6.8) in (6.7), we obtain the bound,

||P(α)*β(α)|| ^ 2|Im(α)|(| |{2(/>-Λ) Vp + idp}P*(α)|| + C0)

yί) Vp/»*(α)|| + C2) , (6.9)

where the constants are bounded as in the lemma. We again used (4.16)-(4.17)
and the boundedness of Δp. The proof will follow from (6.9) once we show that

(6.10)

Inequality (6.10) follows directly as in (6.4) if we write

(ίtf(α) - zΓ^pi-At) = (Hϊ(a) - z)-1 {(/»,- + iβdiP -A,) - iβd,p} , (6.11)

and note that β ^ Bί/2. This proves (6.10). Π
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7. Appendix 2

In this appendix, we prove that there is almost surely spectrum near the band edges
for the Hamiltonians Hω, defined in Sect. 2. This verifies that Theorem 2.1 is not
trivial. To our knowledge, the existence of spectrum near the band edges does not
follow from any known result. We prove the following theorem for the families Hω

as defined in Sect. 2. As in the previous sections, we restrict our discussion to the
first Landau band although a similar calculation works for any band.

Theorem 7.1. Let Hω be the family of Hamiltonians in Theorem 2.1 and let
λ±(B) = B±Mo be the upper and lower first Landau band edges, respectively.
Then for all B sufficiently large, there exists a constant Co > 0, such that with
probability one,

σ(Hω) Π [£ - C0B~l/\E + C0B~l/2] Φ 0 ,

for allEe[λ-(B\λ+(B)].

Remarks 7.2.

1. As the proof below shows, Theorem 7.1 remains valid if the assumptions
(V1)—(V2) on the single-site potential u are weakened. In particular, we only
require that u G C0(IR2). The compactness assumption on suppw can be weakened
also provided u has sufficiently fast decay. The proof can also be modified if the
distribution function g has non-compact support.

2. One can easily extend Theorem 7.1 to show that

σ(Hω) C [A_(5) - C0B-l/2,λ+(B) + C0B~l/2] ,

with probability one.
3. Theorem 7.1 does not exclude the possibility that there are gaps of size

/2 in σ(Hω).

Let PQ be the Landau projection defined in (2.7) and set g0 = 1 — PQ. We denote
by φo the function in RanPo defined by

/9 V/2

 2

φQ(x)=(-B) e~β\x\ , (7.1)
\π J

so that PQΦQ = φo and ΦQ = 1.

Proof of Theorem 7.1. Let E G [λ-(B)9 λ+(B)] and choose any δ > 0. We will
show that with non-zero probability there exists a state φ G D(HA\ with \\φ\\ = 1,
and a constant B0 > 0, such that for all B > BQ, there exists a uniform constant
C0 > 0 such that

\\(Hω-E)φ\\ g δ + CQB~l/2 . (7.2)

This implies that

σ(Hω) n[E~ C0B~l/2 - δ,E + C0^"1/2 + δ] Φ0 ,

with non-zero probability. Since σ(Hω ) is non-random and δ is arbitrary, the theorem
follows.

Without loss of generality, we assume that Ee[B,λ+(B)]. Let ru > 0 be
the radius of the smallest ball centered at the origin containing supp(w) and let
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Λu = {j e Z2, \j\ ^ 2ru}. Under condition (VI), we have ru g l/\/2, but here we
only need that 0 < ru < oo. We can write MO = || ^6||oo, where VQ(X) is defined by

Since the potential u is continuous and suppw is compact, there exists a point
x(E) e suppu such that E — B = Vό(x(E)). Using the magnetic translations (2.5),
we can replace u by another function ύ = u( — x(E)), so that x(E) = 0 and
ffc(O) = E-B. Note that \x(E)\ ^ 2ru for all energies in [λ-(B), λ+(B)]> and that
II w || oo = I HI oo Consequently, we will write w for w below and all constants will
be uniform in E.

We use the function φo defined in (7.1) and write

\\(Hω-E)φ0\\ ^ (7.3)

By Lemma A.I, (6.1), there exists a constant C\, depending only on ||<3αtt||oc»
|α =0,1,2, such that

\\QoVωφ0\\ ί dZrI/2 . (7.4)

To estimate the first term on the right side of (7.3), we write

\\^[yω - (E - B)]φ0\\ ^ \\[Vω - (E - B)]φ0\\

E λ]Uj-(E-B)

M Moll-

The last sum in (7.5) is estimated as follows. We first note that

(7.5)

IR2

< —

R2

^ M^e-
(7.6)

It is easy to show that the sum over {j ^Έ2,\j\ ^ 2ru} of the exponential on the
last line in (7.6) is Θ(B~λ/2) for B sufficiently large. It then follows from (7.6) that

for a constant C2 uniform for all B > B0 > 0 and E e [λ-(B\ λ+(B)].
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It remains to estimate the first term on the right of the last line of (7.5). This
is bounded above as

V0 - (E - B)]φo\\

For δ > 0 as given above, it follows from condition (V2) that

P «
\M I 1 " 1

\λj-M\ ^δ\\u\\^\ ^ \fg(λ)dλ\
I L ε J

(7.8)

(7.9)

for ε = M —
the bound

!^) l. Consequently, for the first sum on the right we find

(7.10)

with a non-zero probability. Finally, using the fact that ^δ(O) = E — B, we find

-(E-B)\2e-2B^2d2x (7.11)

2x)-(E-B)\2e-2"2d2x. (7.12)

o-(E-B)]φ0\\2 = —
V π / R 2

IR2

Making use of the fact that u G C^R2) and that VQ has compact support, the first
order Taylor expansion for V$ about x = 0 gives

- F0(0)| ^ (7.13)

where the constant C^ depends only on ||<5αw||oo, for α = 0, 1. Combining
(7.7)-(7.13), we find that

\mVω-(E-B)]φo\\ ^(C2 + Cι)B-V2 + δ, (7.14)

with positive probability. Returning to (7.3), this shows that

\\(Hω - E)φQ\\ ^(5 + C0^-1/2,

where CQ = C\ -h C2 + Q, for all B sufficiently large, and with positive pro-
bability. D
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