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Abstract: In aperiodic “pinwheel” tilings of the plane there exist unions of tiles
with ratio (area)/(perimeter)? arbitrarily close to that of a circle. Such approximate
circles can be constructed with arbitrary center and any sufficiently large radius. The
existence of such circles follows from the metric on pinwheel space being almost
Euclidean at large distances; if P and Q are points separated by large Euclidean
distance R, then the shortest path along tile edges from P to Q has length R + o(R).

I. Introduction and Statement of Results

The classic isoperimetric problem in the plane, which asks for the curve of least
length enclosing some fixed area, has stimulated much important mathematics. One
generalization which has developed within geometric measure theory treats spaces
less symmetric than the Euclidean plane, such as spaces representing the structure
of crystals. Due to the periodic arrangement of their atoms such structures are, on
a macroscopic scale, invariant under translations but not rotations. This has easily
observed consequences for crystals; for quartz or table salt one can literally see an
optimal polyhedral shape, a shape which solves a version of the isoperimetric prob-
lem that can be described as follows. There is a “cost function” f(#) associated with
variable normal directions 7" of planes in space. (Physically, f(#) is the energy per
unit area needed to separate a crystal into two parts along a plane with normal 7.)
The problem is to imagine integrating f over each possible surface enclosing a re-
gion of fixed volume ¥, and then to find the surface which minimizes this integral.
In 1901 Wulff gave a simple construction for such optimal surfaces (see [Wul, Tay])
which is still used to produce the polyhedral “Wulff shapes” for common crystals.

In this paper we generalize this isoperimetric problem to geometries associated
with quasicrystals. Quasicrystals are an exotic class of solids, usually metallic alloys,
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Fig.1. A Penrose tiling

with an internal structure more complicated than that of ordinary periodic crystals
[S-O]. A common technique for modeling such materials utilizes aperiodic tilings
of space by polyhedra; the best known examples are three dimensional versions of
Penrose’s polygonal tilings of the plane [Gar]; Fig. 1. For tilings of the plane there is
a natural isoperimetric problem yielding the Wulff shape, as follows: Given a tiling
of the plane, find that collection of tiles which covers a fixed area 4 with boundary
of minimal length. In order to obtain the necessary perspective of macroscopic
shape compared to atomic substructure, it is appropriate to seek an optimal shape
asymptotic in 4 — oo.

There are no real difficulties determining the Wulff shapes for some such struc-
tures. For instance, it is not hard to see that the Wulff shape for Penrose tilings
is a regular decagon. However, there are natural analogs of the Penrose tilings,
exhibiting more unusual symmetries, for which the Wulff shape is not so obvious.

In this paper we consider a certain “pinwheel” tiling of the Euclidean plane
made by congruent copies of a 1,2,+/5 right triangle (see Fig.2), and determine
the shape of that region of fixed area which can be covered by a portion of the
tiling with least perimeter. (See [Rad2, Rad3] for discussions of pinwheel tilings and
[B-R,Radl,Rad5] for the relation to possible quasicrystals.) We solve the isoperi-
metric problem asymptotically for large area, and prove that the optimal limiting
shape is a smooth circle, in that there are regions for which area/(perimeter)” is
arbitrarily close to (47w)~'. In fact we prove that large approximate circles are
ubiquitous:

Theorem 1. Given ¢ > 0 there is a distance R such that, for any disk C with
radius v > R there is a region D, whose boundary follows the edges of triangles
in the tiling, that approximates C in the sense that

|(perimeter of D) — 2ar| < er, (area of C\D)+ (area of D\C) < &r?. (1)
In particular, (area of D)/(perimeter of D)? > (4n)~! —e.

This follows from an approximate metric on the space. For large separations, the
length of the shortest path between two points P, Q is approximately the Euclidean
distance ||P — QJ|. More precisely,
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Fig.2. A pinwheel tiling

Theorem 2. Given any ¢ > 0 there exists R such that, for any two points P,Q
on the boundaries of triangles with ||P — Q|| > R, there is a path h along the
boundaries of these triangles, connecting P to Q, with length |h| satisfying
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II. The Details

The pinwheel tiling is constructed as follows. We start with a 1,2,+/5 right tri-
angle, divide it into five similar triangles as in Fig. 3, and then expand the col-
lection of five triangles by the factor v/5. We now have five triangles congruent
to the original. Move and rotate this collection so that the middle triangle coin-
cides with the triangle we started with. Now subdivide each of the five triangles to
produce a collection of twenty-five triangles and again rescale by /5. Move and
rotate this collection so the middle five triangles, highlighted in Fig. 3, coincide
with the five triangles from the previous stage. Repeat this process of subdivision,
rescaling and movement ad infinitum, with the central fifth of each new pattern
always coinciding with the entire previous pattern. The end result is the pinwheel
tiling.

As a first step towards Theorem 2, we prove a similar result about subdividing
triangles without expanding or moving. Take the basic 1,2,/5 right triangle, which
we denote 7, subdivide it into five similar triangles, subdivide each of those
triangles, and so on. (See Fig.4 for the result of 5 subdivisions.) Let X be the
space of pairs of points on the boundary of T, with the product topology. For any
p=(P,Q)€X, let f(p,n) be the minimum distance along a path from P to Q
along edges of triangles in the »" subdivision.

Theorem 3. For any p = (P,Q) € X, lim,—o f(p,n) = ||P — Q|
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Fig. 3. Two iterations of the pinwheel construction, without rotations
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Fig.4. Result of 5 subdivisions

Proof- When P = Q the result is trivial, so we henceforth only consider pairs of
distinct points. Let g(p,n) = f(p,n)/||p||, where || p|| is the Euclidean distance be-
tween the points in p. Let F(p) = inf,>0 f(p,n) and let G(p) = inf,>09(p,n) =
F(p)/|Ipll. F is continuous on X, so G is continuous where defined. We first show
that G attains its supremum on the compact subset X' = {p € X ||| p|| = 0.01}. We
then show that this supremum is 1. Since G = 1, this shows that G is identically 1,
which is tantamount to Theorem 3.

The points in X\X’ are of two types. Either both points lie on the same edge,

in which case G(p) = g(p,0) =1, or P and Q are close to, but on opposite sides
of, one of the three vertices. The theorem clearly holds for the first type, so we
consider the second type. Let p, be the pair of points 5" times farther from the
given vertex than P and Q. For pairs near the acute angles, subdividing twice shows
that g(p,n) = g(p1,n — 2), and so G(p) = G(p1) = G(p2), etc. Eventually one of

the pairs p, will lie in X', so G(p) < sup

rex' G(p'). Finally, subdividing once

shows that, for pairs near the right angle, G{ p) is bounded by a weighted average
of G(p') for pairs p’ near the two acute angles, and therefore by sup ,cyx: G(p').

Thus sup ,cx G(p) = sup ,cx G(p).

Note that lim, . g(p,n — k) = G(p) for any finite k. This implies that, for

any two points P, Q in the k™ subdivision of T, there exists an n, and a path from
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P to QO along edges of the n™ subdivision, whose length is arbitrarily close to (or
less than) sup ey G(p)||P — Q|-

Since X’ is compact, sup pex’ G(p)=max ,cx G(p). We will prove this equals 1
by contradiction. So assume there is a p € X’ such that max rex’ G(p) = G(p) =
1+0 with 6 > 0. If P, are the points in p, let H be the straight line joining P
to Q.

Perform m subdivisions on the original triangle T so that 7' contains a triangle T’
intersected by H, with this intersection in the middle third of the line. (Further
requirements on m will appear later.) Fix n such that for each line determined by a
p € X there is contained in the triangle of level n some triangle of level 0 for which
the small edge makes an angle 6 with respect to the line, with 1/cos(6) < 1 + /2
(this is possible from [Rad 4]). Now subdivide the triangle T an additional » times,
obtaining a triangle 7" within 7’ for which the short edge makes an angle of 0
with respect to H, with 1/cos(6) < 1+ /2.

Let L; be the straight line joining P to t;, the vertex on the short edge of
T" closer to P, let L, be that short edge of T”, and let L3 be the straight line
joining #,, the vertex on the short edge of 7" closer to Q, to Q. Let /i (resp.
5, resp. I3) be the projection of L; (resp. Ly, resp. L3) onto H. We denote the
length of a line L by |L|; in particular, for L;, which is a short edge obtained by
subdividing m + n times the triangle T, we have |L;| = 5~"+"/2_ Since T’ was
obtained by subdividing m times, it follows that

) " 12 51—m 1/2 Sl—m
L < (P +5my =|11|<1+W) <T@
So 51—m 51—m
L -l < 5+ <3——, 4

since |I;| > |H|/3. By the same reasoning the same inequality holds for L, namely

Sl—m

Now |Ly| = |la]/cos(8) < |L|(1 4 6/2) < 2|L,], so

o ) —tnem)2 O
|1+ 8) = [La| > |fa|5 > |Laly =5 (n+ )/22' (6)
But, if we choose m such that
5 51—m
—(m+n)/2Y
5 4>6|ﬁ| (1+9), )

which is certainly possible, then we get a contradiction with the optimality of p
by the following argument. By assumption there is a path along the edges of some
subdivision, connecting the endpoints of L; (resp. L3), whose length is arbitrarily
close to (or shorter than) |L;|(1 + ) (resp. |L3|(1 + J)). Thus there is such a path
connecting the endpoints of A whose length is arbitrarily close to (or shorter than)
|Li|(1 + 8) + |La| + |L3|(1 + J). From (4)—(7) this is less than |H|(1 + &), which
is the contradiction. [
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We now return to the pinwheel tiling. We call the 1,2, /5 triangles that make up
the tiling “level-0 triangles”. Each such triangle, combined with four of its neighbors,
forms a v/5,2+/5,5 “level-1 triangle”. Each level-1 triangle, together with four of its
neighbors, forms a 5, 10,5v/5 “level-2 triangle”, and so on; see Fig.5. If P and Q
are points on the boundary of a level-n triangle, then the shortest path from P to Q
along level-0 triangles has length ||P — Q|lg(n, p), where p is the pair of points
on the basic 1,2,/5 triangle that correspond to (P, Q) under similarity. Theorem 3
states that g(n, - ) approaches 1 pointwise as n — oo.

If P and Q are points that are separated by Euclidean distance |L|, then the
straight line L from P to Q will cut across several level-n triangles, crossing the
edges of the level-n triangles at points a,b,...,z. This is illustrated in Fig. 6, in
which the triangles are level-n, the smaller-scale tilings are not shown, and points
P,a,b,z and Q are indicated by disks. The idea of the proof is to choose n large,
so g(n, - ) is close to 1 and the shortest-path distance from each pair (7,s) of
consecutive points is close to the Euclidean distance. We then require |L| to be
large compared to 5”2, making the effect of the end segments Pa and zQ negligible
compared to [L|.

The difficulty is that the convergence g( + ,n) — 1 is not uniform; for any » there
is a set of p’s for which g(n, p) is not close to 1. We must control the contribution
of this set, and this requires knowledge of the number of level-n segments in the
straight line from P to Q.

Lemma. Let N be the number of level-n segments in the straight line from P to Q.
If |L| > (10)5"2, then 5~"*D2|L| < N < 5-(=272)[.

Proof. The diameter of a level-n triangle is 5"+172, This gives an upper bound on
the length of each segment, and so a lower bound on the number of segments. Now,
if a level-n triangle intersects L, it lies entirely in the set of points within distance
5(+1D/2 of L. This region has area 5"+V/2|L| + 5"+ 7. Since each level-n triangle
has area 5", there can be at most SU~"2|L| 4+ 51 < 5@=™/2|L| such triangles. [
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Fig. 5. Two levels of triangles
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Fig. 6. Points P,a,b,z and Q

Proof of Theorem 2. Pick 6 =¢/75 and let X' be the set of pairs of points
on the edges of the basic triangle that are separated by a Euclidean distance = .
X' is compact, so we can find an »n such that g( -,n) < 1+¢/3 on X’. On
X\X’' we have only the basic estimate g( -,n) < g( -,0) < 5. Finally, pick
R > (30)5" 12 g,

For any P and Q with ||P — Q|| > R, we find a path from P to Q as follows.
Draw the straight line L from P to Q. This defines points a,b,...,z, where L
crosses the edges of level-n triangles, as before. Take the shortest path from
P to a, followed by the shortest path from a to b, and so on. Some of the pairs
(r,s) will correspond to points in X’. The total length of the resultant paths is
then at most |L|(1 + ¢/3). Some (at most 5@~™/2|L|) of the pairs will correspond
to points in X\X’; the paths that result from these segments have total length at
most 256|L| = |L|¢/3. Finally, the paths from P to a, and from z to Q, have total
length at most (10)5"*1/2 < |L|¢/3. Thus the total path from P to Q has length
less than [L|(1+¢). O

Finally we return to our original claim (Theorem 1) about the existence of
approximate circles. Given ¢ > 0 there is an N such that a regular N-gon inscribed
in a circle of radius R approximates it, for both length and area, to within a fraction
&/2, in the sense that

27R — (perimeter of N-gon) < ER, nR? — (area of N-gon) < ;—Rz . (8)

Pick a length L for which the metric distance used above is Euclidean to within
a fraction ¢?> and set K = NL/(2n). Then, for any center point and any R > K we
build our approximate circle as follows. Within the circle of radius R around the
point we inscribe a regular N-gon in the circle, then move each of the vertices a
distance < 1/2 to place them on triangle edges. Connecting these points by shortest
paths along triangle edges gives us an approximate N-gon of which we need show
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that the area and perimeter are accurate to within &/2, which would thus give us
the desired approximation of the circle to within e.

By assumption each approximation to a leg of the N-gon (we ignore corrections
due to the small shifts of the vertices, as they are much smaller) has length accurate
to within &2, and so the perimeter is also accurate to within & < ¢/2. We can
overestimate the error in area by assuming each approximate leg is a circular arc
spanning the leg. To lowest order in the angles o of these arcs, the excess area is
N2L?(a/12N) and in this notation the excess perimeter is NL(«?/24). From this we
see that 0?/24 = ¢2 and therefore a/12N = ¢/v/6N < /2. O

The techniques we have used above also suffice to analyze a variety of similar
problems. For example, consider the following signal-propagation problem on the
vertices of the pinwheel tiling. Suppose that initially a single vertex P is colored
red, with all the other vertices being black. At each time step, color red the nearest
neighbors of the red vertices. After a large number of steps, what will be the size
and shape of the red region? In light of Theorem 2, the answer should be no
surprise:

Theorem 4. Given ¢ > 0, there exists an R such that every vertex Q with
[P — Q|| > R gets colored in at most ||P — Q||(1+ &)/v/5 steps.

The problem can be restated as if the color red moved with various speeds along
the different edges: v/5 along hypotenuses, 1 along short legs and 2 along long legs.
Since the signal cannot propagate at a speed faster than /5, the theorem shows that
the red region is asymptotically a round disk of radius v/5n + o(n), where 7 is the
number of steps. (The analogous result in which one assumes the same speed on
all edges is simply a restatement of Theorem 2.)

The proof of Theorem 4 is almost identical to the proof of Theorem 2 (via
Theorem 3), and is essentially due to the existence of hypotenuses lying arbitrarily
close to the desired direction. For the proof just assume that along hypotenuses
the red color moves with speed v/5 and along legs at speed 1. (Our use of a
lower speed along long legs could only raise the estimate on the number of steps.)
The only subtlety is that, in order to prove the analog of Theorem 3, we must
only consider subdividing by even numbers of times since only even-order sub-
divisions decompose hypotenuses into smaller hypotenuses and legs into smaller
legs.

II1. Conclusion

In many ways, the structure of aperiodic tilings is intermediate between periodic
grids (such as cubic lattices) and stochastic grids as analyzed in percolation [Kes].
For the isoperimetric problem on pinwheel space we have shown that the stochastic
features dominate. There is enough variation in the position and orientation of
triangles to allow the construction of good approximate circles of arbitrary size
and arbitrary center. The only essential features of the pinwheel tiling used in our
proof were its hierarchical nature, which is common in the aperiodic tilings used
to model quasicrystals [S-O], and its “statistical” rotational symmetry [Rad3]—the
existence of edges lying close to every direction. Similar results are to be expected
from any tiling with these properties.
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