
Commun. Math. Phys. 176, 619-644 (1996) Communications In

Mathematical
Physics

© Springer-Verlag 1996

On a Model for Quantum Friction, II. Fermi's Golden
Rule and Dynamics at Positive Temperature

V. Jaksic1, C.-A. Fillet2

1 Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall,
55455-0436 Minneapolis, Minnesota, U.S.A.
2 Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneve 4, Switzerland

Received: 6 December 1994/in revised form: 30 March 1995

Abstract: We investigate the dynamics of an TV-level system linearly coupled to a
field of mass-less bosons at positive temperature. Using complex deformation tech-
niques, we develop time-dependent perturbation theory and study spectral properties
of the total Hamiltonian. We also calculate the lifetime of resonances to second or-
der in the coupling.

1. Introduction

Let s$ be a quantum mechanical TV-level system with energy operator HA on the

Hubert space fflA = C^. We denote by E\ < E2 < < EM the eigenvalues of
HA listed in increasing order. We will colloquially refer to s# as an atom or small
system. Even though we formulate our results for the TV-level system stf most of
them will, in some sense, extend to situations where .^A is infinite dimensional and
HA unbounded - see Remark 4 at the end of Sect. 2 for more details.

Let $ be an infinite heat bath. In this paper & will be an infinite free Bose gas
at inverse temperature β = l/kT9 without Bose-Einstein condensate. This system
is described (see e.g. [BR,D1,D2,LP]) by a triple {j^B9ΩB9HB}9 where J^B is
a Hubert space, HB a self-adjoint operator on Jf#, and ΩB a unit vector in Jfβ.

Let us denote by ω(k) the energy of a boson with momentum k G R3. Then the
equilibrium momentum distribution of bosons at inverse temperature β is given by
Planck's law,

The space #fB carries a representation of Weyl's algebra (CCR),

WB(f) = exp(/<jpβ(/)), (1.1)

where the field operators ψs(f) satisfy, for (1 + ω~1/2)/ e L2(R3), the relation

(1.2)
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The action of HB is determined by the formula

= WB(exp(itω)f) . (1.3)

We are interested in the physically realistic case of mass-less bosons: ω(k) = |k|.
Let us suppose that the systems jtf and &, isolated at time t = 0, start in-

teracting. One expects the temperature of the small system to change. Since the
heat reservoir is an infinite system its temperature will remain constant, and ther-
mal equilibrium is achieved when both systems reach the same temperature l/β.
Roughly speaking, this series of papers is devoted to study this approach to thermal
equilibrium.

A representation of CCR satisfying Properties (1. !)-(!. 3) is usually constructed
using the abstract GNS construction. We prefer to work in an explicit representation
due to Araki and Woods [AW]. This representation is central in our approach.

The configuration space of a single boson is R3 and its energy is ω(k) = |k|
(we will always work in the momentum representation). The single particle Hubert
space is L2(R3). Let J^b be the symmetric Fock space constructed from L2(R3), and
denote by Ωb its vacuum. Let ab(k) and #£(k) be the usual annihilation and creation
operators on J% (see [RS2] for definitions, note that «£(/) — JV3&β^(k)/(k) is
linear in /, while ab(f) = [α£(/)]* is anti-linear). Define the energy operator by

Hb= f
R3

and the field operators by

In the Araki- Woods representation the triple

^B = ̂ b®^b , ΩB = Ωb ® Ωb

The annihilation and creation operators are

= ab((\ + p)1/2/)®

, ΩB,HB} is given by

HB = Hb ® I -

a b ( p l / 2 f ) ,

and the field operators are given by

φB(f) = -

Notation. We write A instead of A® I or I <& A, whenever the meaning is clear
within the context.

When the thermal bath is at zero-temperature, the following formalism is used
to describe the system j/ + ̂ : The Hubert space of the system is fflA ® ^b and
its Hamiltonian is given by

λQ® φb(a) = HA + Hb + λHf . (1.4)

There Q is a self-adjoint operator on Jj?A, α e Z2(R3) and λ e R. In the sequel we
will refer to α as the form factor and λ as the friction constant. If ω~1//2α G I2(R3),
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then HI is infinitesimally small with respect to HQ and the operator //; is essentially

self-adjoint on JjfA ®D(Hb). The particular choice of the interaction Hamίltonian ///
is motivated by the dipole approximation in non-relativistic QED. The extensively
studied spin-boson Hamiltonian also has the form (1.4).

When the heat bath is at positive temperature, the Hubert space of the joint
system is J f = ̂  ® JjfB and the generator of the dynamics is formally given by

Hλ=HA®I + I®HB + λQ® φβ(θί) = HA + HB + λHj , (1.5)

see [D1,D2,PU,H and BR]. In Sect. 3 we will prove that, if ω~lu and ωα both be-
long to L2(R3), the operator Hχ is essentially self-adjoint on #?A 0 D(Hb) ®£>(/4).
However, /// is not a relatively bounded perturbation of HQ. Note that, at zero-
temperature (jβ = oo ), the operator Hχ decouples and acts trivially on the second
Fock space. One then recovers an effective Hamiltonian on fflA 0 -̂  which has the
form (1.4). Thus the zero-temperature model can be realized as a (strong resolvent)
limit of positive temperature models, as expected.

The goal of this paper is to develop time-dependent perturbation theory for the
model (1.5). In the remaining part of this section we briefly outline the physical
content of the theory. It will be further discussed in the third and fourth paper in
the series.

Time-dependent perturbation theory was developed by Dirac in 1920's [DI],
and further refined by Weisskopf and Wigner in [W]. For the other developments
we refer the reader to [HEI and SC]. Dirac used the theory to study emission
and absorption of light by matter, and to derive Einstein's A-B law from the first
principles of quantum mechanics. Weisskopf and Wigner gave an improved solution
of the equations of perturbation theory, computed atomic radiative lifetimes, and
showed how the theory accounts for the observed width of the spectral lines.

The Hamiltonian HQ has the following spectrum:

(1.6)

To simplify the discussion, suppose that the spectrum of HA is simple, and denote
by ψι,...,ιj/N its eigenvectors. Clearly Ψf = ψj 0 Ωβ is the eigenfunction of HQ
corresponding to the eigenvalue £/, and

b,(t) = \(y,exp(-itHλ)Ψj)\2

9 (1.7)

is the survival probability of the state Ψj. The usual "textbook" derivation of radia-
tive lifetimes starts with the relation

bj(t) = exp(-Γj(λ)t). (1.8)

The inverse radiative lifetime //(Λ,) of the state Ψj is related to the width of the
spectral lines by the uncertainty relation for time and energy. Formal perturbation
theory yields

Γj(λ) = λ2Γj + 0(λf, (1.9)

where the coefficient JΓ) is given by the expression

r} = Σ rjk , (i.io)
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with
Γjk = π\(ψk,Qψj)\2gβ(Ej - Ek) . (1.11)

Here the weight gβ is given, in terms, of the form factor α, by the following formula:

where the integral is over the unit sphere S2 in R3.
Second order perturbation theory accounts only for processes in which a single

quanta of radiation is either emitted or absorbed. It follows from Dirac's theory
that if Ek < Ej, then λ2Γβ is the probability per unit time that an atom will emit
a photon of frequency v = (Ej — Ek)/2π, ana make a transition j — > k. If E^ > Ej,

then λ2Γjk is the probability per unit time that an atom will absorb a photon of
frequency v = (Ek — Ej )/2π, and make a transition k — > j. For historical reasons (see
e.g. [H], page 52) the Γ7 are often referred to as Fermi's Golden Rule. Note that,
at zero-temperature, Γ ̂  = 0 if E} < E^. The coefficient λ2Γj is the total transition
probability per unit time from the level j. Let now PJ be the probability that
the small system is in the pure state \ψj)(ψj . If the system stf + $ is in thermal
equilibrium, detailed balance requires:

Pjri = Σ
£φ;

to hold for all j. A solution of the above system is

Moreover this solution is unique, provided all Γ^ are positive [D2]. Therefore, at
this level of perturbation theory, an atom in thermal equilibrium with the blackbody
radiation is in its Gibbs state, as expected.

Time-dependent perturbation theory, as used in the above formal argument, re-
sisted a general mathematical formulation for over forty years. Among the partly
successful work on the subject, the most notable involve the master equation tech-
niques [D1,D2, D3,HA and PR]. This method has been discussed in [JP] and will
be further discussed in the latter papers in their series. Concerning the "usual"
derivation of (1.8)-(!.!2), note that Relation (1.8) cannot hold at zero-temperature

for all times since the spectrum of H, is bounded from below. Even at positive
temperature it can hold only as an approximation and, to quote [SI], "it is often
discussed fact in the physics literature that the usual "textbook derivation" of the
time-dependent series is internally inconsistent and there is not universal agreement
among physicists concerning either the higher order terms in the series or the precise
quantity which is being approximated."

The foundations of time-dependent perturbation theory for TV-body, non-relativi-
stic quantum systems, as well as the precise mathematical definition of resonance,
were given in [SI]. We refer the reader to [SI and RS3] for a list of references
concerning earlier work on the subject. The notions introduced in [SI] have a nat-
ural extension to non-relativistic QED. The time-dependent perturbation series is
supposed to describe the fate of the eigenvalues of HQ (which are embedded in
the continuous spectrum), after the perturbation /// is "turned on." It is expected
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that these eigenvalues will "dissolve": There are ε > 0 and η > 0 such that, for
0 < λ\ < ε, the operator //; has no eigenvalues in ]Ej — η, Ej -\- η[. Let 7 be a
contour enclosing the spectrum of Hχ. The formula

z-HλΓ
lΨ)r (1.13)

relates the radiative lifetime of the state Ψ to the poles of the function

RΨ(z) = (Ψ,(z-HλΓ
lΨ). (1.14)

Following [SI], we now formulate the strategy for the analysis of the spectrum in
the interval ]E/ - η,Ej + η[, and the rigorous derivation of Relation (1.8): If the
form factor α is sufficiently regular, there exists a dense subspace, $ c J^5 on which
the matrix elements Rψ(z) have a meromorphic continuation from the upper half-
plane onto the region 0 = {z : \z — E} < η}. In Θ the functions Rψ are regular,
except for a simple pole at a point £}(/), independent of the choice of Ψ G $. If
Γj(λ) = —2lm(Ej(λ)) > 0, then //; has purely absolutely continuous spectrum on
]Ej — η,Ej + η[. The resonance Ej(λ) is expected to be an analytic function of λ
for \λ < ε. Finally, the first non-trivial coefficient in the Taylor expansion of Ej(λ)
should have an imaginary part given by Eqs. (1.9)-(1.12). One then can attempt to
derive a formula for the decay of b j ( t ) using Relation (1.13). In first approximation
one should get Eq. (1.8).

For the zero-temperature model with massive bosons, this program was carried
in part in [JP and OY]. However, the physically important case of mass-less bosons
was beyond reach, except in some special cases [A1,A2]. The difficulty, usually
called infrared catastrophe, is related to the fact that there are vectors Ψ in the

domain of//;, which contain infinitely many soft photons, i.e., (Ψ,NΨ) = oo. For
many years no method could be designed to avoid this difficulty. Recently, V. Bach,
J. Frόhlich and I.M. Sigal [BFS] have developed a sophisticated renormalization
algorithm to address this problem. We refer the reader to [HS] for an exposition of
their results.

In this paper, the program presented above is carried out for the positive tem-
perature model whose Hamiltonian Hλ is defined in Eq. (1.5). We use spectral
deformation techniques, i.e., we embed H; into an analytic family of deformed op-
erators Hι(θ) whose essential spectra are disjoint from the real axis. As a matter of
fact, our approach completely eliminates the infrared problem. The novelty in this
approach is twofold: First we replace the usual configuration space deformations by
translations in the spectral parameter. The second point is more technical: It turns
out that the physical Hamiltonian lies on the boundary of the domain of analytic-
ity of the deformed family. Thus we will need a separate continuity argument to
connect Hλ to Hλ(θ).

Finally, we note that formal scattering theory relates (1.8)-(1.12) to experimen-
tal results [M]. It is therefore important to develop a scattering theory for the model
(1.5). The method exposed here yields some partial understanding of the scattering
processes: We plan to do a perturbative analysis of the resonance scattering and
to calculate the energy distribution of photons emitted and absorbed in transitions
[JP2]. The investigation of the long time behavior of the interacting system stf + ,̂
and in particular the study of the stability of the equilibrium states, is based on the
fusion of algebraic and spectral methods. This will be the content of the third and
fourth paper in the series [JP1 and JP2].
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2. Statement of Results

We will need the following condition on the form factor α.

(HI) (ω + ω^αeL^R3).

We begin with a self-adjointness statement for the generator of the dynamics (1.5).

Proposition 2.1. If Hypothesis (HI) is satisfied, then //; is essentially self-adjoint
on 3?A <g) D(Hb) 0 D(Hb) for any λ G R.

To state our results, we need some additional notation. If § is a Hubert space,
we denote by H2(δ,ξ>) the Hardy class of §-valued functions on the strip

<5(δ) = {z : |Im(z)| < δ} .

The Hubert space H2(δ,ξ>} consists of all functions, / : S((5) —» §, which are
analytic in &(δ) and satisfy

oo

\\f\\2

HΪ(&^ = sup / \\f(x + iη)\\ldx < oo . (2.1)
\η\ <δ — oo

Given a function / on R3, we define a new function / on R x S2 by the formula

-\s
1/2 f ( \ s k) if s < 0 ,

/(*,*)=< ' V (2-2)
sλl2f(sk) if 5 ^ 0 .

With this notation, we can now formulate our central technical hypothesis:

(H2) There exists δ > 0 such that α e H2(δ,L2(S2}) .

The hypotheses (H1)-(H2) are satisfied, for example, by the function α(k) =
y/fkjexp(—|k|2). We may assume, without loss of generality, that δ < 2π/β (see
Sect. 3 for details).

Here is our main result.

Theorem 2.2. Suppose that (H1)-(H2) are satisfied. Then there exist a dense
subspace $ c $f and, for each η G]0, δ[, a constant Λ(η) > 0 such that for λ G
] - Λ(η),Λ(η)[ and Φ, Ψ G ,̂ the functions

z^(Φ,(Hλ-zΓlΨ), (2.3)

have a meromorphic continuation from the upper half-plane onto the region

(9 = {z: Im(z) > -η} .

The poles of the matrix elements (2.3) in (9 are independent of Φ and Ψ. They are
identical to the eigenvalues of a quasi-energy operator Σλ on #?A. This operator
is analytic for \λ\ < Λ(η), and has a power series representation of the form
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The first non-trivial coefficient in this expansion satisfies

Pj Im(Σ(2))P, = PjQgβ(HA - Ej)QPj , (2.4)

where P} is the orthogonal projection on the eίgenspace of HA corresponding to
the eigenvalue Ej, and gβ is given in (1.12).

Remark 1. For any ψ e 3#Ά, one has ψ 0 ΩB e $.

Remark 2. Formula (2.4) is an obvious generalization of Eqs. (1.9)-(1.11) to de-
generate eigenvalues. By first order perturbation theory, the eigenvalues of the op-
erator —2Pjlπ\(Σ^)Pj yield the coefficients of λ2 in the expansion of the inverse
eigenlifetimes of the eigenstates of energy Ej. In particular, if Ej is non-degenerate,
one easily gets the following corollary.

Corollary 2.3. Suppose that (H1)-(H2) are satisfied, and let Ej be a simple eigen-
value of HA. Then, for small λ, the quasi-energy operator Σ^ has a unique simple
eigenvalue Ej(λ) near Ej. This eigenvalue is analytic and satisfies

lm(af>) = -Γj/2 ,

where Γj is given by Eqs. (1.9)-(1.12).

Theorem 2.2 and Proposition 4.1 in [CFKS] immediately yield the following.

Corollary 2.4. Suppose that (H1)-(H2) are satisfied, and that the operators
PJ lm(Σ^)Pj are non- singular for 1 ̂  j ^ M. Then there exists a constant A > 0
such that, for λ e] - Λ,Λ[ and /iφO, the operator Hχ has purely absolutely con-
tinuous spectrum filling the real axis.

We now turn to the dynamical aspects of the system.

Theorem 2.5. Suppose that (H1)-(H2) are satisfied. Then there exist a dense
subspace $ C ffl and, for each η E]0, δ[, a constant Λ(η) > 0 with the following
property: For \λ\ < Λ(η) there are two maps W^ : $ —> $?A such that, for any

Φ, Ψ e £, one has (W;~Φ, W+Ψ) = (Φ, Ψ) and

(Φ,exp(-itHλ)Ψ) = (W^

as t — > +00.

Finally let the survival probabilities bj(t) be given by Eq. (1.7).

Corollary 2.6. Assume that the hypotheses of Corollary 2.3 and Corollary 2.4 are
satisfied, and set Γj(λ) — — 2Im(£/ (/l)). Then there exist positive constants Λ,a
and C such that, for \λ\ < Λ,

\ b j ( t ) - Q x p ( ~ Γ j ( λ ) t ) \ ^ Cλ2Qxp(-aλ2t),

holds for t > 0.

Remark 1. It follows from our arguments that the constant Λ(η) in Theorem 2.2
behaves like β~] as β | oo. This forbids the use of a limiting argument to analyze
the zero-temperature case.
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Remark 2. Hypotheses (H1)-(H2) cover physically important examples in which

α(k) ~ Λ/M fof small k. From the discussion in Sect. 3 one can deduce variants
of (H2). For example: If the measurable function h : R — > C satisfies \h(s)\ = 1,

and if h(s)ά(s, k) G H2(δ,L2(S2)), then all results hold. The configuration space
of the bosons can be any R^, and the fact that ω(k) = |k| is of no particu-
lar importance. Let ω(k) = g(|k|) be a rotationally invariant function. Assume
that 0(0) = 0 and that g(s) is a strictly increasing, unbounded, diίferentiable
function on R+. Denote by h its inverse. If the form factor α is real-valued,
and if

belongs to H2(δ,L2(S2)) for some δ > 0, then all results hold.

Remark 3. All the results hold if the system $ is an infinite free Fermi gas.

Remark 4. Our results have simple extensions to the case of infinite dimensional
#?A In fact, if we assume that

(i) HA is positive.
(ii) Q is bounded.

(Hi) \Im(HAψ,Qψ)\ ^ C(ψ,(HA + l) 1 / 2ιA) for some constant C and all ^6
D(HA).

Then Proposition 2.1 holds with $?A replaced by D(HA). Theorem 2.2 and
Theorem 2.5 also hold in this case, except that Z1/ is now an analytic family
of type A, and may have non-discrete spectrum. This means that the matrix el-
ements of the resolvent of //;. may have essential singularities in 0. However,
for any bounded region ,̂ there exists a constant Λ(η,&) such that Σ λ has
purely discrete spectrum in $ Γ\&. In particular Corollary 2.3 holds too. Corol-
lary 2.4 also holds locally, i.e., Hχ has purely absolutely continuous spectrum in
R Π $ for \λ\ < Λ(&). But we can assert that H; has no singular continuous spec-
trum for small λ. Finally if we make the following assumptions on the spectrum

of HA,
(iv) The eigenvalues of HA have bounded multiplicity.
(v) do = lim inf/^oo (Ej+\ - Ej) > 0.

Then one can choose the constant Λ(η) in Theorem 2.2 in such a way that Σχ
has purely discrete spectrum. The reader will find a few remarks scattered in the
remaining parts of this work to support these claims. Remark however that condition
(v) is problematic for a particle confined to a box in R" for n §: 2.

3. Preliminaries

The primary purpose of this section is the construction of a new representation of
the bath Hubert space. As a first application of this representation, we will then
prove Proposition 2.1.

We denote by 5 (§) the symmetric Fock space constructed on the Hubert space
§. If U is a unitary operator on § we define, as usual, its second quantification
Γ(U) to be the unitary operator on 5(ί>) which, in the ^-particle sector, reduces
to U ® - ® U. If A is a self-adjoint operator with domain D(A) C §, its second
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quantification dΓ(A) is the self-adjoint operator on $(§) defined by the formula

Qxp(idΓ(A)t) = Γ(Qxp(iAt)) .

We refer the reader to [BSZ] for the proof of the following well-known theorem.

Theorem 3.1. Let ξ>\ and §2 be Hίlbert spaces. There exists a unitary mapping

with the following properties:

(i) If U\ and U^ are unitary operators on ξ)\ and §2? then

U (Γ(Uι ) 0 Γ(C/2)) U~l = Γ(Uλ θ U2) .

(ii) If fι e §ι and /2 G <r>2, then

ί/(exp(/(K/ι)) ® exp(iφ(f2)))U~l = exp(/φ(/ι θ /

(iii) 7/Ώ denotes the vacuum on S(Sι θ §2), tf«d Ώι,Ώ 2 ̂  vacua on

5 ($2), ^w
ί/(Ωι 0Ω2) = Ω .

It follows from this theorem that a unitary transformation

U:^B^ 5(^2(R3) ΘI2(R3)) , (3.1)

exists, so that

U Qxp(ίtHB)U~l = Γ(exp(itω) θ exp(-zίω)) ,

UWB(f)U~l = exp (ίφ ((1 + p)1/2/ 0 p1/2/)) . (3.2)

We now define a unitary map

V : L2(R3 ) θ L2(R3 ) -> L2(R xS2,ds dσ) ,

by the formula

[ sg(\s\k) if 5 < 0,
( V ( f ® g ) ) ( s 9 k ) = \ f '; ' (3.3)

[ s f ( s k ) if s ^ 0 .

It is easy to show that

F(exp(#ω) θ exp(-zϊω)) F"1 = exp(/te) ,

F ( ( l + p ) 1 / 2 / θ p 1 / 2 / ) = / ^ , (3.4)

where

with / defined by Eq. (2.2).

Remark. If / e H2(δ,L2(S2)) for some (5 > 2π/j8, then /^ G H2(2π/β - ε,L2(S2))

for any 0 < ε < 2π/j8, but fβ $H2(2π/β + β,^2(^2)) for any s > 0. Thus, without
loss of generality, we may assume in Hypothesis (HI) that δ < 2π/β.
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Notation, In the sequel we will identify the spaces L2(R x S2),L2(R) ®L2(S2) and
L2(R;L2(S2)), denoting all of them by tfs.

We now come to the central point of the construction. With U and V given by
Eqs. (3.1) and (3.3), we define the unitary map

u = ι

From Eqs. (3.2), (3.4), one easily infers that the following relations are satisfied:

-1 . (3.6)

Here oίβ is obtained from the original form factor α by the transformations (2.2)
and (3.5). Furthermore, if we denote by Ω the vacuum in ^(^fs\ then

holds for any ψ G #?A To complete our new picture, we shall now construct a
self- adjoint generator for the dynamics of the coupled system. This is the puφose
of the following lemma.

Lemma 3.2. If λ G R and (\s\ + \s\~l/2)oiβ G JJ?S, then the operator

Hλ=HQ + λHl , (3-7)

w essentially self-adjoint on any core of dΓ(\s\).

For the proof, we need the following well-known results [GJ, Proposition 1.2.3].

Proposition 3.3. Let μ(k) be a positive, measurable function on some measure
space M. Denote by F the subspace of finite particle vectors of the Fock space

), and by N = dΓ(l) the number operator.

(i) Assume f G L2(M), then for any Ψ G F,

\\a#(f)Ψ\\ ^ 11/11 \\(N+lγ'2Ψ\\,

where a # ( f ) represents either a(f) or a*(f).
(ii) Assume (1 + μ~1/2)/ G L2(M\ then for any Ψ G F,

\\a\f)Ψ\\ g | |(l+μ-1/2)/| | | |(dΓ(μ) +

/« particular the field operator φ(f) is ίnfinitesimally small with respect to dΓ(μ).

Proof of Lemma 3.2. We invoke Nelson's commutator theorem (in the form of
Theorem X.37 in [RS2]). Let N = / + dΓ(\s\). We must show that there is a con-
stant d > 0, such that the following estimates hold for any Ψ G D(dΓ(\s\)):

\\HλΨ\\ g d\\NΨ\\ ,

\(HλΨ,NΨ) - (NΨ9HλΨ)\ ^ d\\N{/2Ψ\\2 . (3.8)

Since i[N9 φ(ctβ)] = φ(i s α^), inequalities (3.8) follow from Proposition 3.3, and
the obvious fact that dΓ(s) is bounded with respect to dΓ(\s\). D
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Proof of Proposition 2.1. We start by observing that Hypothesis (HI) implies that
(\s + s ~l//2)ttβ G ffls. Therefore the conclusion of Lemma 3.2 holds. Let us define
an auxiliary self-adjoint operator M on 3tf by the formula

exp(/M) ΞΞ Γ(exp(/ω/)) 0 Γ(exp(iωt)) .

Using the fundamental property of U (Theorem 3.1) and Definition (3.3) of V , one
shows that

M= U-ldΓ(\s\}U .

It follows from Eq. (3.6) and Lemma 3.2 that //; — U~1H>U is essentially self-
adjoint on any core of M. The fact that J^A 0 D(Hb) (g) D(Hb ) is such a core is
well known (see [RSI], Theorem VIII. 33). D

Remark. Setting TV = / + HA + dΓ(\s\), the proofs of Lemma 3.2 and Proposition
2.1 extend to the situation where HA is unbounded, provided one makes the follow-
ing assumptions:

(i) HA ^ 0.

(ii) Q is bounded with respect to //j/2

(iii) \lm(HA\l/,Q\l/)\ ^ C(\I/,(HA + l)1/2ι/0 for some constant C and all ψ e

Of course one also has to replace J î with D(HA) in Proposition 2.1, and
with //Λ +dΓ(\s\) in Lemma 3.2.

Let us summarize the results of this section in

Theorem 3.4. There exists a unitary mapping U : ffl — > J ,̂ such that

UHλU~l = Hλ .

In the sequel we shall identify Jj? with ^ and //; with //;,, and always work
in the new representation. We would like to add a few comments concerning the
above construction.

The simplest and most widely used complex-deformation technique is based on
the Aguilar-Combes theory and the group of dilation operators: [AC, BC,RS3 and
SI]. The investigation of the zero-temperature model has been, so far, based on the
second-quantization of the dilation group. This approach has been used in [OY, JP],
as well as in a recent work of Bach, Frohlich and Sigal [BFS]. In the mass-less
case the infrared problem reflects itself in the fact that the eigenvalues {Ej} are

not uncovered by a dilation of the Hamiltonian HQ : Regular perturbation theory

does not apply directly. Since /// is not a relatively compact perturbation of HQ,

it is difficult to analyze the spectrum of H) near Ej, and to show that the matrix
elements (1.14) have a meromorphic continuation across the continuous spectrum.

The resolution of the problem in the positive temperature case is based on the
replacement of dilation analyticity with translation analyticity. The latter one orig-
inated in the study of resonances of an atom in a homogeneous electric field (see
[AH and HE] for an example). The formal connection between the two problems
becomes transparent in Eq. (3.6). The complex deformation shifts the essential spec-
trum into the lower half-plane, and uncovers the eigenvalues {Ej}. However, the
domain of the Hamiltonian is modified by the deformation, and the bulk of the
technical work below will center around the resolution of this difficulty.
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4. Spectral Deformations and Fermi's Golden Rule

Throughout this section we assume that Hypotheses (H1)-(H2) hold. For θ G R,
let u(θ) be the unitary translation group on Jtifs,

(u(θ)f)(s) = fθ(s) = f(s + θ ) . (4.1)

Denote by U(θ) = Γ(u(θ)) the second quantization of u(θ). One easily shows
that

U(θ)dΓ(s)U(-θ) = dΓ(s) + ΘN ,

where TV = dΓ(l) is the number operator on g(J^) Thus, under a second quan-
tized translation, the operator Hχ transforms according to

Hλ(θ) = U(θ)HλU(-θ) = HA + dΓ(s) + λQ ® φ(o$) + ΘN .

Remark that if /e//2(<5,§), Eq. (4.1) define a map from <5(δ) to
The first lemma in this section states some basic properties of such complex
translations.

Lemma 4.1. Let 0 < δ' < δ, then the following holds:

(i) If f belongs to H2(δ,ξ>) then its derivative f belongs to H2(δ',ξ>\ Fur-
thermore, one has the bound

(ii) If f belongs to H2(δ,ξ>\ then the map

is analytic, and -JQ- — f/θ.

(iii) If θ\,θι e S(^) then, for any f G //2((5,§), one /zαs

Proof. Unless explicitly mentioned, all norms will refer to the space Z2(
We first prove (i). Since, by definition, /G// 2((5,§) implies that the function
/ : S((5) — > § is analytic, we only have to prove the bound on the derivative /7.

Denote by / 6 /,2(R, dr) 0 $ the Fourier transform of / e ^2(R, <&•) <g) £, then the
norm (2.1) can be expressed as

= sup
\θ\<δ
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Therefore we have

ll/ΊI//2 ( < $/ $) = sup ||rexp(θr)/||
\θ\<δ'

^sup rexp(-(c5-<5')H)| sup || exp(0r + (δ - δ')\r\)f\\ ,
rGR \θ\<ό'

and an explicit calculation leads to the desired inequality:

Using the same notation, we now prove (ii). Assume that |Im(0)| < δ' < δ. Then,
for small h G C,

H/0+Λ _ y* _ A//*|| = || exp(z0r)(exp(//ir) - 1 - ihr)f\\

^ sup I exp(-Im(0)r - <5'|r|)(exp(z7zr) - 1 - ihr)\

and another simple calculation gives

\\fθ+h-fθ-hf/θ\\ g o(A)||/|| f f2{ί,S) , (4.2)

as A — >• 0, which is the desired estimate. To prove (iii) remark that, as a consequence
of (ii), we have

Therefore (i) gives

^ |01 -02| SUp \\f/θ2

O^t^l

as required. D

Let now θ G ®(<5) be complex, and define

λHf(θ) + 07V . (4.3)

These operators are well defined on the dense subspace

One easily checks that, as an operator on ,̂ ///(0) satisfies the relation

Hλ(θ)* D Hj(θ) . (4.4)
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Therefore, //;.($) is closable for each (λ,θ) e C x S(c5). We use the same symbol
to denote its closure. The following proposition summarizes some simple facts about
the family of closed operators {HQ(Θ) : θ e C}.

Proposition 4.2. Assume that θ e C, then the following holds:

(i) For any Ψ G @ 0«e λαs1

(ii) /y^ImθΦO, then H$(Θ) is a normal operator satisfying

D(HQ(θ)) = 9 , H0(θ)* = H Q ( Θ ) .

(iii) The spectrum of H0(θ) is given by

σ(HQ(θ)) = {nθ + t :n= 1,2,... t eR}\Jσ(HA).

Proof. Remark that, on the sector N = n, the operator //o(θ) reduces to the normal
operator

//on)(0) = HA+SI^ h sn + nθ .

A simple calculation immediately yields Identity (i). From this identity one easily
shows that, if Im(θ)Φθ,

} : Ψ(n} G £>(#oΛ)(0)); Σ \\H^n\0)Ψ(n}\\2 < oo
n

and it follows that //o(0) is a closed normal operator on 2. The last assertion in

(ii), and (iii) both follow from corresponding statements about HQ (θ). D

The next result provides us with the necessary control of the interaction ///(θ).

Lemma 4.3. Let θ G ®(<5), and Im(0)Φθ. Then the interaction ///(θ) is infinites-
imally small with respect to

Proof. By the Cauchy-Schwarz inequality,

\ \ Q ® a * ( f ) Ψ \ \ 2 ^ | |

Applying a well-known trick we obtain, for any ε > 0,

\\Q®a*(f)Ψ\\ g ^||β2tP|| + ̂ |αs(/)

By Proposition 3.3, we further get

\\Q®a*(f)Ψ\\ ί£ ±-£\\Q2Ψ\\ + ^\\f\\2\\(N + 2)f || .

Finally, since Im(θ) + 0, the first statement of Proposition 4.2 and Eq. (4.3) lead to

\\Ht(θ)Ψ\\ ^ ε\\H0(θ)Ψ\\ + Cεβ\\Ψ\\ ,

for appropriate Cκβ > 0. D
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Let us introduce the strips

6*05) = {z :0 < ±Im(z) < δ} .

We are now ready to prove some basic properties of the deformed operator ///($).

Proposition 4.4. Assume that (λ,θ) G C x ®~(<5), then:

(i) The following identities hold,

D(Hλ(θ)) = 2) , Hλ(θY = H (θ) .

(ii) The spectrum of Hχ(θ) satisfies

σ(Hλ(θ))c{z .lm(z)^D(λ,θ}},

where D(λ,θ) is given by

D(λ,θ) = -

Furthermore, if Im(z) > D(λ,θ), one has the bound

1
\\(Hλ(θ)-zΓl\\ ^ lm(z)-D(λ,θ) '

(iii) The map
(λ,Θ)^Hλ(θ)

from C x S~((5) to the closed operators on 3tf, is an analytic family of type A
in each variable separately,

Remark. A similar statement holds for (/, θ) G C x S+((5).

To prove Proposition 4.4, we need the following simple facts (see e.g., [K]
Chapter V, Sect. 3.2): If T is a closed operator on a Hubert space §, the convex
set

θ(T) = {(φ,Tφ):φ£D(T),\\φ\\ = l},

is called the numerical range of T. Let us denote by 91 (T) the closure of this set.

Lemma 4.5. Let T be a closed operator on a Hubert space §, such that D(T) =
D(T*). Then

and, for z e C\9l (Γ), 0/7^ Λβ^ ί/ze bound

\\(T-z}~l\\ < - Γ45)
111 ; " = dist(z,5l(Γ)) ' ( }

Proof Let φ G D(T) be a unit vector, and z φ 5ft (Γ). Cauchy-Schwarz inequality
implies

(4.6)

from which it follows that T — z is one-to-one. Since Sft(Γ*) = Sft(Γ), a similar
reasoning shows that (Γ —z)* is also one-to-one. Therefore, (T — z) has a dense
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range on which (T — z)"1 is well defined. By (4.6) this inverse satisfies (4.5).
Finally this bound extends to all of § by continuity. D

Proof of Proposition 4.4. The first assertion is a simple consequence of Lemma 4.3.
To establish the second assertion, we set

D(λ, θ) = sup Im(5R (#;.(0))) . (4.7)

The assertion will follow from Lemma 4.5, provided we can show that D(λ, θ) ̂
D(λ, θ). To this end we first observe that, since real translations are unitary, we can
choose θ — — iμ with 0 < μ < δ. Then a simple calculation shows that

(4.8)

where

yg = ( - λα

Denote by P the orthogonal projection on g, and set P^ = 1 — P. By construction,
we have N = dΓ(P) Θ dΓ(P^) = a*(g)a(g) Θ N^, and (4.8) splits into a direct
sum

lm(Hλ(θ)) = -μ a*(g)a(g) --Q® φ(g)

In the above formula, we recognize the sum of a (shifted) harmonic oscillator and a
number operator. Completing the square in the first term, and performing a unitary
transformation, we can rewrite

v2

lm(Hλ(θ)) = -μI®(N0®N-L)+j-Q2®I,

where TVo is a simple harmonic oscillator. Therefore we have

σ(lm(Hλ(θ))) = i-μn + Ί—q2 : n = 0, 19...;q G σ(Q)\ ,

which, by Definition (4.7), means

D(λ,θ) ί \

We conclude by estimating y with the help of Lemma 4.1. To prove the last as-
sertion, we first claim that, for fixed λ G C and Ψ G ̂ , the vector valued function
0 ̂  Hλ(θ)Ψ is analytic. In fact, with

t _

Proposition 3.3 (i) implies

By Lemma 4.1 (ii), the right-hand side of the last inequality is o(h), proving the
claim. Since Strong analyticity in λ for fixed θ is obvious, type A analyticity now
follows from the first two assertions of the proposition. D
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Remark. If we replace Q) by D(N)Γ}D(HA + dΓ(s)), the proof of Proposition 4.2
extends to unbounded HA. The same remark holds for the proof of Lemma 4.3 and
Proposition 4.4 provided Q is bounded.

We now further investigate the spectrum of //;.($). We will denote by ?β(η) the
open half-plane {z : Im(z) > η}.

Theorem 4.6. There exists a constant A > 0 such that, for (λ,Θ) £ C x S~(<5),
/7ze following statements hold:

( i )//
|λ <Λ |Im(0) | , (4.9)

/Ae spectrum of the operator ///($) z« ί7ze half-plane φ(Im(0) + -̂  ) is purely
discrete and independent of θ.

then the spectral projection Pχ(θ) associated to the spectrum of //;X0) in

ty (Im(0) -\- A) is analytic in λ and satisfies the bound

Proof. Remark that, by Proposition 4.2 and Lemma 4.3, the resolvent formula

0)-z)-1)-1 , (4.10)

holds for small λ, as long as z belongs to a cone of the form {z : 0 < c\ < \z\ <
c2 Im(z)}. We organize the proof of Theorem 4.6 in two steps: First we will extend
the domain of validity of Formula (4.10) by refining our estimate on the product
///(θ)(//o(θ) — z)"1. Then we will invoke analytic perturbation theory to control
the spectrum.

Applying Proposition 3.3(i), we get

\\H,(ΘXH0(Θ) - z)-1 1 | g V2\\Q\\ \\*β\\H2(δ)\\(N + l)1/2(#o(0) - ?T' II

Since N and H$(β) are commuting normal operators, it is rather easy to compute
the norm of T = (N + l)1/2(//0(θ) - z)"1. On the sector N = 0, the operator T
reduces to

and therefore,

- - (411

^
On the other hand if z = E + iη and θ = ξ — iμ, the sector TV = n > 0 reduces
T to

+ + sn + nξ - E) - i(μn + η)

It follows that
| |Γ(,)||= V^£f _ (4Λ2)
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Since ||Γ|| = suprt^0 ||Γ
(7|)||, Eqs. (4.11) and (4.12) lead, after an elementary analy-

sis, to the bound ~
_V2

ίΫΓm 1A -M .̂ // ^ ^P ,

(4.13)
dist(z,σ(//0(g))) if -M < ?̂ < 3μ

0 / ! , if f? ^ 3μ .

If we set

Λ =

0,ε) ΞΞ {z : Im(z)

one easily verifies that, for ε < |Im(0)|, the bound (4.13) implies

sup \\λHj(θ)(Ho(θ)-zΓl\\ ^

Consequently, if \λ\ < Aε, the identity (4.10) holds on G(0,ε). Moreover the fol-
lowing estimate holds for TV ^ 0,

sup (z -

It follows that any z in the set

ε>0

is in the resolvent set of H;(θ) for small /. Therefore, the discrete spectrum of //o($)
is stable, and analytic perturbation theory applies. The first statement of Theorem
4.6 follows, except for the independence of the eigenvalues on the parameter θ.
Fix (/o,$o) satisfying (4.9). Since H^(θ) is an analytic family in θ, its discrete
eigenvalues are (branches of) analytic functions with at most algebraic singularities
in a neighborhood of ΘQ. On the other hand, //;0($o) and H^Q(Θ) are unitarily
equivalent if θ — ΘQ is real. Thus the discrete eigenvalues are independent of θ.

To prove the second statement, assume that 2ε < |Im(θ)| and \λ\ < Aε. Let
y± be the contours defined by {z : Im(z) = ±lm(θ)/2}9 and set y = y+ - y _ . We
formally define

Pi(θ) = f -.(z - Hi(θ) (4.15)

We shall prove below that, as a weak integral, and after extraction of explicit zeroth
and first order terms, the above integral becomes absolutely convergent. Therefore,
Pχ(θ) is analytic and, by a standard argument, is the spectral projection of Hλ(θ)
corresponding to the part of its spectrum contained in the strip bounded by y+ and
7_. Iterating the resolvent identity we get

λΠ(l\θ) + λ2πf\θ) , (4.16)
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where
PO = P0(θ) = I ® Ω(Ω, ) ,

Π(Γ\Θ) = § (H0(0) - zΓlHι(θ)(H0(θ) - z)-1 ,

Πθ) = -f.(H0(θ)-zΓ]

Using the spectral theorem (recall that //o($) is normal), one easily shows that
77(1)($) can be written as

Π(l\θ) = - / exp(-μ\t\)Ξtdt , (4.17)
1 —00

where
Γ PO exp(///oO#/(0) exp(-///oO for ί < 0 ,

"' ~ \ Qxp(iH0t)HI(θ)Qxp(-ίH0t)PQ fort>Q.

Another simple calculation yields

-\

Thus we conclude from Eq. (4.17) that

μπ(1)(0)|| g ̂  . (4.18)

To estimate 77; (0), we proceed as follows: By Cauchy-Schwarz inequality we
have, for any Φ,Ψ e 2f,

\(Φ,πf\θ)Ψ)\ ^ sup 117/7(0X^(0) -zΓ^KΘJUvίΦM^), (4.19)
zey

where

By the spectral theorem, this quantity is easily seen to be bounded by

/2
v ( Φ ) g J - I I Φ I I . (4.20)

We now deal with the supremum in Expression (4.19). We start by the simpler case
/ = 0. There we can apply the method which leads to Inequality (4.14). Leaving
the details to the reader, we quote the resulting bound

sup|// /(θ)(//0((?)-zΓ1// /(θ)| | g -?-. (4.21)
zG}' ^ μ

Using the resolvent formula (4.10), a simple calculation shows that

= (1 - λHι(θ)(H0(θ) -



638 V. Jaksic, C.-A. Fillet

Therefore, Inequalities (4.14) and (4.21) yield

1

2_

Optimizing the last expression over ε, and combining it with the estimate (4.20)
gives the desired bound

(4.22)
\/L^ / /

Putting together (4.18) and (4.22), we finally get

| |/>A(θ)-/>o(θ)| | ^

with x = λ\/Λμ < 1/2, from which the required inequality follows easily. D

Remark. In the case of unbounded HA and bounded β, the above argument shows
that the spectrum of H;(Θ) decomposes into a first part σ$ C {z : |Im(z)| ^ μ|M},
and a second part in {z : Im(z) ^ Im($) + /|M} Statement (ii) of Theorem 4.6
still holds in this case. However σ0 need not be purely discrete. In general we can
only assert that, given any bounded region ,̂ there exists a Λ(θ,3%) such that the
spectrum in σ0 Π & is discrete for \λ\ < Λ(θ,$). On the other hand, if we assume
that the spectrum of HA is well separated

ί/o = Hminf(E, + \ —E, ) > 0,
y-κx>

and has bounded multiplicity, then one easily shows that σo is discrete provided

The previous result allows us to apply reduction theory to the discrete spec-
trum of resonances, and to construct the quasi-energy operator by transforming
Ran(P;v(θ)) back to J^A with a linear isomorphism S^(θ). We follow here the de-
velopments of [HP]. If

λ < Λ \ l m ( θ ) \ / 4 , (4.23)

Theorem 4.6 implies that
\\Pλ(θ)-P0\\ < 1.

It immediately follows that the maps

PO : Ran(PΛ(θ)) -> ̂  , P;.(θ) : XA -> Ran(Pλ(θ)) ,

are isomorphisms. Consequently, setting

Tλ = P0Pλ(θ)P0 , (4.24)

one easily checks that the operator

from Ran(P;($)) to .^CA has inverse

Sλ(θ)~l = Pλ
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We use the isomorphism S^(θ) to transport the reduced operator Pλ(0)H^(θ)P^(θ)
back in the space Jf^. A simple calculation yields

Σλ = Sλ(θ)Pλ(θ)Hλ(θ)Pλ(θ)S;(ΘΓl = T7ll2M}T7l/2 , (4.25)

with
Mλ = PQPλ(θ)Hλ(θ)Pλ(θ)P0 . (4.26)

Finally we remark that since U(θ)Po — P$U(Θ) = PQ for any θ £ C, the operators
T) and M; are independent of θ as long as Condition (4.23) holds.

The following lemma explores some properties of the quasi-energy (4.25).

Proposition 4.7. The quasi-energy operator depends analytically on λ for \λ <
A\lm(θ)\/4. It has a Taylor series of the form

oo

Σ} = HA + Σ Σ(2^λ2n .
n=\

The first non- trivial coefficient in this expansion is

P, Qhβ(Ej - HA)Q) ,
j

where the function hβ(z\ analytic in ^(—δ\ is given for Im(z) > 0 by the formula

Proof The analyticity of Γ;v follows from its definition (4.24) and Theorem 4.6 (ii).

By the same result, \\Tλ - 1\\ < 1 holds for \λ < Λ\im(θ)\/4. Therefore Γ;~
1/2 is

also analytic. The Taylor series of Tλ is obtained by inserting the Neumann series
for the resolvent of Hχ(θ) in Eq. (4.15). In this way we obtain

T = i + Σ τ n λ
00 { n ) "

with coefficients given by

T(n) = f~(z - HA

In a completely similar way we can write

with the following coefficients

A/00 = -z(z-HA

The fact that odd powers of λ drop out of this expansion is an easy consequence of
photon number conservation (recall that PQ projects on the zero photon subspace).
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By Definition (4.25), the first non-trivial coefficient in the Taylor series of Σχ is

An explicit calculation gives

Σ(2) = \t^d(K(z}(Z ~ HAΓ> +(Z~ HAΓ>K(Z)} ' (4'27)

where

K(z) = P0Hf(θ)(z - H0(θ )ΓlHι(θ)P0 .

We remark that the resolvent in K(z) is restricted to the one-photon sector, there-
fore K(z) is analytic in ^β(Im(θ)). Another explicit calculation shows that, for
Im(z) > 0.

K(z) = -±Qhβ(z - HA)Q .

Therefore, applying the Cauchy integral formula to Eq. (4.27) gives

as required. D

j PjQhβ(Ej -HA)Q,
2

Remark 1. In the case of unbounded HA and bounded Q, the quasi-energy is an
analytic family of type A with domain D(HA). In fact one can show that the com-
mutator [HA, Γ J is bounded. It follows easily that Σ; — HA is bounded and analytic.

Remark 2. The above argument also yields an expression for the Lamb shifts of
the energy level Ej.

Now that we have got some understanding of the family {H^(θ)\θ £ (3±(^)},
we shall relate it to the physical operator Hλ. This is the content of the next
result.

Lemma 4.8. For λ £ R and Im(z) sufficiently large, we have

Im(0)TO

Proof. Clearly we may assume Re θ — Q. Note that, by Proposition 4.4 (ii), the
resolvent of //;.(0) is uniformly bounded as Im(0) | 0 when λ G R. Therefore, it
suffices to show strong convergence on a dense subspace. We will prove that

Jim \\((Hλ(θ) - zΓl ~ (//;. - z)~l)(N + 1 Γ1 1 | = 0 .

As usual, we denote by F C SK^s) me subspace of finite particle vectors. We
define

^o Ξ {(Hλ(θ) -z)ψ .Ψe,^A®(Fn D(dΓ(\s\)))} ,

which is a dense subspace by Proposition 4.4 and the remark which follows it. Since
J#Ά ® ( F Π D ( d Γ ( \ s \ ) ) ) is a core of d Γ ( \ s \ ) , it is also a core of Hλ by Lemma 3.2.
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It follows that, for Φ e ®o>

L(Θ)Φ = (Hλ(θ) - zΓ1 Φ - (Hλ - zΓ1 Φ

= (Hλ - z)~\Hλ - Hλ(θ))(Hλ(θ) ~ zΓ1 Φ

(8) -i (*(«/* - Ψ + a*(*β ~ α?)) -

Since ^o is dense, the above formula extends by continuity to arbitrary Φ. By
Proposition 3.3(i) and Lemma 4.1(iii), we further have

We end the proof by showing that (N + l ) ( H λ ( θ ) - z)~l(N + I)"1 is uniformly
bounded as Im(θ) | 0. Indeed, a simple calculation shows that

(N + l)Hλ(θ)(N + I)"1 = fl;.(0) + Λβ 0 - ( « * ( « ? ) - *(«?))(# + I)"1 ,

which, by Proposition 3.3, is a uniformly bounded perturbation of H^(θ). D

Remark. If //^ is unbounded and g bounded, we only need to replace J#Ά by
D(HA) in the definition of ^o? and the above proof still holds.

Let E C 3(^) be the set of entire vectors for the group U(θ). We recall that
E consists of all Ψ £ ^(^s) such that the vector- valued function U(Θ)Ψ has an
entire analytic extension. Define $ — $?A ®E. It follows from the Paley-Wiener
theorem that $ is a dense set of vectors in ffl .

Proof of Theorem 2.2. For Φ, Ψ £ <f , / £ R and Im(z) sufficiently large, the func-
tion

θ ̂  f ( θ ) = (U(Θ)Φ, (Hλ(θ) - zΓ1 U(Θ)Ψ ) ,

is analytic in Q~(δ). Since it is obviously independent of Re(0), / is actually
constant on ©~(δ). Let us show that / is continuous on S~((5)UR. Indeed,

f ( θ ) - /(O) - (Φ, ((Hλ(θ) - zΓ} ~ (Hλ - z

+ (U(Θ)Φ, (Hλ(θ) - z)

The first term vanishes as Im(0) ΐ 0 by Lemma 4.8. The two other terms also
tend to zero in this limit since Φ and Ψ are entire vectors for translations, and
(Hλ(θ) - z)-1 is uniformly bounded. Therefore, /(θ) = /(O) holds on S~((5) U R.
Since by Theorem 4.6 the function
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is meromorphic on s$(Im((9) -f |/t|M), it does provide the required extension. The
properties of this extension follow from Theorem 4.6 and Proposition 4.7. In par-
ticular the expression for Im(Z^2)) is obtained using the well known formula

Im f - ] = iπδ(x) ,
\x-ioj

in the definition of hβ(z). D

Remark. Here again we did not use the fact that HA is bounded. Of course the
constructed extension will only be meromorphic if the spectrum of Σχ is discrete.

Proof of Theorem 2.5. Let Φ, Ψ G S, and define

Then for Im(z) > 0, the Fourier-Laplace transform

00 ]

/(z) = f f(t)exp(izt)dt = -(Φ,(Hλ-zΓlyr),
0 l

is well defined. For any η > 0, the inverse relation

00 s/£

f(t)= / f(E + »/)exp(-/(£ + iη)t)~ , (4.28)
— 00 ^^

holds for t > 0. Now let θ = —ίμ with 0 < μ < δ, and assume that 4ε < |Im(0)|,

and |/l| < Λε. As in the proof of Theorem 2.2, /(z) has an extension to the lower
half-plane given by

f(z)=^(U(θ)Φ,(Hλ(θ)-zΓlU(θ)Ψ).

By the resolvent identity and estimates (4.20) (4.14), / belongs to the Hardy class
of the strip {z : — μ + ε < Im(z) < — ε}. It follows that we can rewrite the inversion
formula (4.28) as

dz °° dE
f ( t ) = § /(z)exp(-feθ— + / f(E - i(μ - e'))exp(-/(£ - »(μ - e'))t)— ,

y Z7C _00 Z7Γ

where the contour y is as in the proof of Theorem 4.6, and εf > ε. The first term
in the above expression is easily identified as

/„(/) = (U(θ)Φ,Sλ(θΓ]exp(-iΣλt)Sλ(θ)U(θ)Ψ) ,

whereas the second term is of the order exp(— (μ — ε")0 f°r c// > ^ ' The proof is
complete. To prove Corollary 2.6 we only need the additional observation that, if
Ψj(λ,θ) denote the eigenvector of ///($) associated to the eigenvalue £/(/), then

. D

Remark. The above proof does not use the fact that HA is bounded.
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