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Abstract: Consider the 2D defocusing cubic NLS iu, + Adu — ufu> =0 with
Hamiltonian [(|V|> + 1|¢|*). It is shown that the Gibbs measure constructed from
the Wick ordered Hamiltonian, i.e. replacing [¢|* by : |¢|* :, is an invariant mea-
sure for the appropriately modified equation iu; + Adu — [ulu|*> — 2([ |ul*dx)u] = 0.
There is a well defined flow on the support of the measure. In fact, it is shown that
for almost all data ¢ the solution u, u(0) = ¢, satisfies u(t) — e ¢ € Cys(R), for
some s > 0. First a result local in time is established and next measure invariance
considerations are used to extend the local result to a global one (cf. [B2]).

Introduction

Consider the Wick ordering Hy = [ |Vu]> + 1 [ |u|* — 2ay [ |u* + a% of the 2D-
Hamiltonian [ |Vu|? + 1 [ |u* corresponding to the 2D-defocusing cubic NLS.! It
is shown that the solutions uy = uy of the Cauchy problem

/ )
uy = Pyuy , uy(0) = ZlnléN &ll%el(x,n)

{ (un): = i%lufl = Auy — PN(uNIuN|2) + 2ayuy =0
converge weakly for all time, for almost all w.? Here {g,(w)|n € Z} are indepen-
dent L?-normalized complex Gaussians and Py denotes the usual Dirichlet projection
on the trigonometric system.

In fact, there is some s > 0, such that

uN(t) _ e2z‘cN(cu)t z gn(w)ei((x,n)ﬂn[zt) , (11)
|n| <N ||

' u is a complex function.

2 We ignore for notational simplicity the problem of the zero Fourier mode in (i). This problem
may be avoided replacing |n| by (|n]? + k)2, k¥ > 0 (redefining the Laplacian).
p.
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2
)| -1
(@)= 3 L1 (i)
|n| <N In '
converges in HS(T2 ), for all time ¢.
The study of (i) mainly reduces to the truncation independent equation

u, = Au — [u|u|2 -2 (f ]u|2dx> u:, , (iv)
T2

where the expression between brackets has to be considered as the usual cubic term
ulu|* with suppression of certain square-terms (which are obviously divergent for
the data considered in (i) when N — 00).

The main point is that (iv) is well posed for typical elements in the support of
the Gibbs measure, or, equivalently, for data ¢, = Y g’ifl—cl“)e“x’”), almost surely in
w. Once a local result is obtained, one proceeds as in [B2], using the invariance
of the Gibbs measure e "W ITd¢ for the flow of the truncated equations (i), to
get the results on solutions for all time. The limit flow for N — oo and the flow of
(iv) have the normalized Gibbs measure du = limy_,oo e "N ®)I1d¢ as an invariant
measure.

This problem was considered in the paper [L-R-S]. The present work extends
the one-dimensional result in [B2] to the 2D-defocusing case.

1. Wick Ordered Hamiltonian for Cubic 2D-NLS (Defocusing Case)

We first recall the process of Wick ordering the |u|*-nonlinearity (we are in the
complex case). This Wick ordered Hamiltonian will lead to the modification of the
cubic nonlinearity appearing in (iv) above. For the general theory of Wick ordering,
the reader may consult [G-J].

The Wick ordered “truncated” Hamiltonians are given by

1
Hy = [|Vun + 3 [ lw]* = 2an [ lun|? + ay ,

where
2
1

|n| <N |n|? B
n+0

gn(w)ei(n,x)

ay =
|n|<N ||

L2(dxdw)

The corresponding Gibbs measure is

e I ITdpy = exp [—% [lownl* +2an [ |onl* — a,zv} exp (—[ |Von*) D doy .

Wiener measure

Denoting ¢ = ¢y, one has

3 T161 + 20 [19F — & = —3 [ (9P ~ 2ay )+ < Gog N> (0)
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Fourier expansion yields

1 4 2 1 In (@) Gny(©) Gy (@) Gny(@)

- = +2a —ay =—= 1
2f|¢| Nf|¢| N 2 gy e — g =0 Inll |n2| |n3| |n4| ( )
ny#ny, ng

RN g @) _
—_ LA St BN + 2a . PnA a (2)
|n|Z<N |n|2 N |n]Z<:N |n|2 N
2y Inf?
)|? w))? -1
|gn( 2)| _ |gn( )|2 +ay,
|n| <N |n| |n]| <N |n|

hence
_ lgn(a))l -1
@=- (= )

Thus (1), (2), (3) are finite a.s. in .
Also for N > N, there is the following distributional inequality:

Pw[ <—%f‘¢N|4+ZaNf|¢N'2 —ajzv)

(Lt 2 0 - )

(for some § > 0).

To prove (4), one considers the different terms (1), (2), (3) and uses the standard
moment inequalities for linear combinations of products of Gaussians (obtained
from hypercontractivity estimates). The contribution of expression (1) above to the
difference in (4) is given by

> 1] < Ce N 4)

Iny (@) Gny (@) Gny (@) gny(w)

m-mim—nm=0 m| |ml lns| |na
ny#ny,ng
max |n;| >Ny

Since these are products of 4 Gaussians, there is equivalence of the L?(dw)-norm

and the Orlicz norm L¥(dw), with ¥(1) = e*"° — 1. Since the {gn(w)} are inde-
pendent complex Gaussians, one clearly gets for the L2(dw)-norm

1/2
{ [ A+ DA+ D 2A + )20 + o —x +x3l)_2dx1dxzdx3}
Jx1]>No

< NO—1/2'

The contribution of term (2) to the difference in (4) is

|gn(@)? — 1 |lgn(@)]? = 1
(lnlzéN |n|? ) <No<|ZnI§N |n|? ) '

Since [ |gq(w)|*dw = 1, the norm is estimated by (3 ,»y, |71|‘4)1/2§,N0_1 .
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Similarly, term (3) contributes for -, N W ~ N; 2. Estimate (4) easily

follows.
One deduces the following stability estimate (4 > 2)

1 5V
Po | =5 [lowl*+2ay [lgn] —ay > 4| e ®)

Proof. Choose Ny with (log Np)? < % From (0) applied with N = Ny and (4), (5)
follows.

Hence, the renormalized Gibbs measure is a weighted Wiener measure with
density in )

p<oo

2. Truncated NLS
ul = IZ_N = iul’ — A + Py | |*) — 2ayu™ = 0.
uN

Rewrite equation (= u") as

— Au+2( [ |u]* — an yu + Py(ulu]* = 2u [ |u?) =0, (6)

2— . . . -
where [ |uf?> —ay = D= 'g"(mlz L = ¢cy(w) is time invariant, and converges to

Coo(®) < 00 ass. in . Define uy = 2N @ . 4y reducing Eq. (6) to

ivy — Av + Py(v[v> — 20 [ [v*) = 0. )

The nonlinear term is given by

PN{ Z 3(n1)3(n2)5(n3)ei<"1—n2+n3,x)} ®)
ny+ny,n3

— 3 Um0 ©)
|nf <N

3. Cauchy Problem

iy — Au+ Py(ulul* — 2u [ |u]*) =
10
u=Pyu, u(0) = ¢n(x) = 3, o gniw) ) (10
on time interval [0, 7].
Proposition. The Cauchy problem
iy — Au+ (ulul?> = 2u [ |[u?) =0 an
. 1
u(0) = po(x) = 3 Hple

1
is well posed on [0,7] except for w in a set of measure < e © (6 > 0) and the
solution u is the (distributional) limit of the solutions uy of (10) when N — oc.
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In fact

u— 3 9O ity +inf?o
In|
is the limit in LY (TZ)[O’ 7] of

uy— 5 9@ icemino

|n| <N |nl
for some s > 0.
Corollary. Solutions of
{ ! ouN (12)
N (0) = dn(w)

1
for t €[0,7] and N — oo converge for w outside a set of measure < e <. In

fact

Uy — eeN@) ) gn(w)ei((x,n)+tin|2) (13)

|n| <N |n|

converges in L7 (TZ)[O’ 7] when N — oo for those w.

Using invariant Gibbs measures e /N ITd¢y (forming a convergent sequence to
a measure i ~ Wiener measure) and probabilistic considerations, one shows next
that a.s. in the w solution uy = uy,, of (12) converges on [0,00[ and also (13)
converges in H* for all z. The limiting flow leaves p invariant since e~V I[Td¢y
is invariant under the flow of the truncated equation (12). The reasoning followed
here is completely analogous to the argument in [B2] for the 1-dimensional NLS.
4. Estimates on (11)

Consider the integral equation associated to (11)
t
u(t) = S(O)p +i [ St — D[(uful* — 2u [ |u]?X()ld7, (14)
0
where S(¢) = ¢"4. Consider the norm (space-time on [0, 7])

1/2
|||u|||s=(Zfdi(1+|nlz)s(1+M—In\zi)lﬁ(n,l)|2) .0

Here u(n, A) denotes the Fourier transform u, in the sense that

u(r,t) =3 [dre ™00, 2)  for (x,¢) € T2 x [0,1]
n

(strictly speaking, % is not uniquely defined and (15) should be understood as a
restriction norm). The exposition below will be closely related to [B1], which the
reader may wish to consult for more background and details.
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1
We will show that for w outside an exceptional set of size < e °, the trans-
formation

u— St)p + iftS(t — O)[(ufuf* - 2u lul*)(1)]dt (16)
0

defines an ||| |||s-contraction on the set S(¢)¢ + (]|| |||s-ball).
Write, cf. (8), (9),

wul? = 2u [[u = 3 am)d(ny)u(ny) 2t
ny$nyp,n3

— S u(n) [an)? &™) . (17)

The contribution of the second term in (17) is immediate. We consider the first as

a trilinear expression, replacing the %, u, u factors by uy, U, 43 resp. We limit each
Fourier transform to a dyadic region |n;| ~ N; (i = 1,2,3). Denote w the first term
in (17). Since

et _ iln)?t
fS(t—r)w(r)dr——z 5 Jdidatn e STt
nez? - |n|

there is an estimate of
t — t)w(t)dt

N

by (cf. [B1])
2s AR 1 12
(£ ralt e L {z| P (f e )} s

where the denominator |/ — |n|?| means |4 — |n|?| + 1 (because estimates are local
in time).
For each of the u; (i = 1,2,3), there are 2 possibilities,

1 .
w=g T gulw)l e, M
i |n|~N;
lleillls < 1, (1)

decomposing as S(t)¢ + (H*-ball).
Denote N', N2, N3 the decreasing ordering of {N;,N,, N3} and u',u?,u° the cor-
responding u;-factors. The estimates from [B] permit to bound (18) by

Cc

log N?
. exp —2

! 2 3
P iog toa vz Il 2o 12l (19)

This estimate appears in [B1] in the discussion of the 2D cubic NLS. The
main underlying (Strichartz-type) inequality is inequality (26) below. The factor
XD o5 log & APPEATS from bounding the number of lattice points on a circle of ra-

dius < N.
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The exponent s will be a sufficiently small positive number. It follows from
(19) that the following cases are taking care of

u' (I1), w*(11), (20)
u'(11), u>(11) and log N? ~ log N*. (21)

If |[|v]||s = 1, we may clearly write v as

1/2
JdX (X [+ 1) (ans(l+|/I’|)[5(n,n2+/1’)|2) [eﬂfzal,(n)ei«n,xnnw% ’
(22)

5 2, 4/
where a;/(n) = = nz’i(lz(z :’2:1,),2)1/2, hence Y-, n*|a;(n)|?> = 1. Also be Holder’s
n :
inequality,

172
[ oa+pe (Zn”(l+|A’|>|6(n,n2+z’)|2> di < (log K)'?. (23)
|A| <K n

Next, we aim to bound the range of A’. Observe that we may assume (restricting
w) that say

1 )
— Y g(w)e®M|| < clogN (24)
N i< -
for all N. Hence,
luilloo < clog N; if u; is of type (I). (25)

Recall also the main estimate used in the Cauchy problem for the 2D-cubic NLS
(Strichart-type inequality)

log N

i((r,n+tln?) _oe N
2, e log log N

|n—ng| <N

(X laH (26)

< exp
L4(T3)

This L*-inequality reduces to lattice point counting on circles and the exponential
factor bounds the divisor function. For details, see again [B1].
Hence

Z fd/?. a(n, i)ei(<x,n)+/lt)

|n—ng| <N

L4(T2 x[0,1])

1/2
< Nt (Z [dal + |A— |nf]) |a(n,,1)|2> . (27)
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To prove (27), writt n=ng+ny,|n;| <N and A= |n]>+ 1. Estimate for
|4 —n| <K

2 f dMa(n, A)é'€ (x,n)+,1t)}

[n—ng| <N |i—|n|2| <K

L4(T2 x[0,1])

< [ dh|| S alngtny,|notm [P+ Ap el motm)im < by (26)
<k {lml<N LAH(T2x[0,1])
12
[ du| X la(no+mi,ne +m|* + )P
lAl <K [n] <N

1/2
< Né(logK)'? (Zf di(1+ |4 — !nlzl)la(n,i)lz) .

This bound is conclusive, except if log K > log N. Now the range |A — |n|?| > N%
may be trivially estimated, writing from the triangle and Hausdorff~Young inequality
w.r.t. the ¢-variable

> [ dia(n,a)et=n+o

[n—ng| <N |4—|n|2|>N20

LA(dxdt)

3/4
< X { J |a(n,z)|“/3dﬂ} :

[n—no| <N | |A—|n|?| >N20

This expression is bounded by N2N 3, from Hoélder’s inequality, which estab-
lishes (27).
By interpolation, for 2 < p < 4,

Z fd/l a(n, A)ei((x,n)+lt)

|n—ng| <N

LP(TZ x[0,1])
. 1/2
< N°¢ (Zfd/l(l + A - |n|2|)2_5|a(n,/1)12) . (28)

Consider first a triplet (u1,us,u3), where u' is (II) and hence #? is (I) (otherwise
we are in case (20)). We estimate using duality (18) by

WNY [ i o, (29)
where

U(n j’) 1 n,x U(n) l n,x
U—Zfd/lll ||2|1/2 ()4 or U_Zfdl |'| ((mx) +40)
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with 3" [diju(n,2)]* <1 and Y, |v(n)]* < 1. Applying (28) with p =3 and
(24), estimate (29) by

N'Y 3 1P| - 2] ] - [Pyl £ (N'Y X 1P |ls - ([ ool [13]1Ps ]l
JES JeS

N 1/2
KNS (Zf da|A — |n|2|2/3|u1(n,x)|2)
J n

(¥4 eJ

R 1/2 12
x (z [dilh— PP, A)P) ( S fdili - |n|2|-‘/3+|6<n,1>|2)

neJ

1/2
< (N*y ( > [ danP)a— a2 ul(n, A)P)

|n|~N1

1/2
- ( > fdflli—lnlzlzﬂlz?(n,l)IZ)

[n|~N3
1/2
x (zfd,u/l— |n|2|—‘/3+|a(n,/1)|2> : (30)

Here # denotes a partition of the set [|n| ~ N'] in intervals J of size ~ N? and
Pj is the corresponding Fourier restriction operator in the x-variable.

Thus the preceding estimate (30) is conclusive provided for some u; of type (II)
we consider the contribution of #|jj;, _ 1,2/ nv2) ©OF if the denominator A — |nf* in

(18) satisfies |4 — |n|?| > (N?)®. Hence we may in the estimate of (18) assume
[2—n?| € (N?) and |4 — |n*| < (N?)® if u; of type (II). (31)

It follows from (22), (23) that, up to introducing a factor log N, in estimating (18),
the u; of type (II) may be taken of the form

u; = eilllt Z ai(n)ei((n,x)+t|n|2) , (32)
|n|~N;
where
|| < Nf and S n¥|a;(m)? £ 1. (33)

> ai(ny)az(nz)az(n3)

Thus (18) with w the first term in (17) is bounded considering an expression of
n=nj—ny+n3,ny £ny,n3

the form
2 } 1/2
[n[2={ny [2—|np [2+|n3 2+

(Jni| ~ N,y 1=1,2,3), 34)

(logNz)z{ 2

In] <N1

where || < (N2), Y la'(m)]? £ 1, a*(n) = 22, &*(n) = 2L or 3 |d(n)? <
(N3)_2s.
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Next, assume u! of type (I). Estimate by (24), (28),
(29) = (V'Y [l oo [l (I3 1124 [13] 113

1/2
< (N'Y(logN') - (N?)° ( > [dia- |n|2|2/3|z72(n,1)12)

|n|~N2

1/2
X( > fdili—Inf2|2/3|u3(n,i)lz)

|n|~N3

12
x (Zfdm— |n|2r”3+|a<n,x>|2) . (35)

Thus the estimate (35) is conclusive provided for some u; of type (II), we consider
the contribution of ;2| w1ys or if the denominator 4 — |n|? in (18) satisfies
|A — |n|?| > (N!)s. Thus in this case, (18) may be estimated assuming

[A—n| < VY™ and |4 — |m]* < (V') if w; is of type (I),

and hence is bounded by
> ai(ny)az(nz)as(n3)

n=ny—ny+n3,ny £ny,n3
[n|2=]ny |2=|np 2+|n3 [2+p

25 1/2
} (Im| ~N;),  (36)

(logNl)z(Nl)s{E

n

where |u| < (N1), a'(n) = % and a'(n) = Q% or Y |d(n)]* £ (N')™ for
i=2,3.
Observe that for n = n; — ny + n3,

> = (Im1|* = [maf* + |n3*) = 2(ny — ny,m2 — m3) (37)

hence the second condition in the summation in (34), (36) may be written

<n2 — n1,Nny — n3) = g . (38)
If |na] > 10(|m| + |n3]), |{(n2 — m1,my — n3)| ~ |mp)* and it follows from |u| <
(N?)® or |u| < (N')* that thus |n;| ~ N! or |n3| ~ N'. Hence, we may assume
n; = N, since the role of u;,u3 is identical. We assume here s small enough
(s < 2).
Our next aim is for given » and p to estimate

u

# {(nl,nz,ng)l |n;| ~ N; and n=n; — ny + n3, (ny — ny, np — n3) = 5} . (39)
ny+ny,n3

In the proof of Lemma 1 below, we will use some elementary facts about lattice

points on circles in the plane. First, on a circle of radius R, there are at most

epr;g(g—R < R? lattice points. As already mentioned above, this bound is an es-
timate on the divisor function (considering factorization in the ring of Gaussian
integers a + bi, a,b € Z). Secondly, if I' is an arc on a circle of radius R and

[I'| < cR'3, then I' may only contain two lattice points. Indeed, if there were 3
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distinct elements Py, P,, P53 in I' N Z?, then

IF 3 1 Pl
CT > 2 area triangle (P1,P,,P3)=det |1 P, | € Z\{0}
1 P

leading to a contradiction. This last argument is the essence of Jarnick’s theorem
on the distribution of lattice points on strictly convex arcs (see [BP]).

Lemma 1.
(39) < min{NZ(N; AN3)°, N>N3(N3)} . (40)

(Recall that N',N* N3 is the decreasing ordering of Ny,N,,N3.)

Proof.
(i) Fix np and write (n, —na,n; —n) = —4 as
2 2
n—+ny n n—mp
- ) _ 41
) 2 2 (41)

Thus (41) corresponds to the lattice points n; on a given circle with |n;| ~ N;. Their

number is bounded by exp lo?ﬁ)]gv}vl (distinguish the cases log N; = log radius and
log Ni < log radius; in the second case, the number is at most 2, by the triangle
argument). This gives the first bound in (40).

(ii) Write the equation as (n —nj,n —n3) = 5 and assume |n3| < |n;|. Write
n — n3 = r(a,b), with a,b relatively prime, v40. It follows that

(m,(a,b)) = —% + (n,(a,b)) . (42)

If a,b+0, the number of solutions of (42) in n; is at most 1 + W%'

Consider the case a,b=0, |n3| > |a| V |b|. Fix 4,B, |a| ~ 4, |b| ~ B. The num-
ber of n3’s satisfying n — n3 = r(a,b), |n3| > |a| Vv |b| is at most A—]ll/%. The corre-
sponding number of n;’s is f}i’/z‘;‘ This gives the bound >, , 4 - B - A]\% . AJY/B =
N1N3 log N3.

Assume now nj3 satisfies |n3| < |a| V |b|. Fix n3, thus N} choices and estimate
the number of n;’s by 1 + Ia_IN\}W < %—; Thus this contribution is bounded by N;Ns.
If a = 0 (b+0), ny is restricted to N3 choices (n,n3 with same first coordinate). The
first coordinate of n; is arbitrary and the second defined by (n—ny,n —n3) = £.
This gives again a bound by N;Nj.

Hence there is also the estimate by NiN;log(Ny A N3).

(ili) Write the equation as (n —n3,n3 —ny) = 5. Write n — n3 = r(a,b) with
r+0,a,b relative prime. As in (ii), the contribution of a,b=0, |nz|,|n3| > |a| V |b],
is estimated by N,N3log(N, A N3). The contribution of |n3| < |a| V |b] < |n2] is
bounded by N? % = N,N5 and the contribution of |ny| < |a| V |b| at most NZ. For
a =0 or b =0, the number of possibilities is N,/Nj.

This yields the estimate N;N; log(N, A N3) + NZ.
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From (i), (ii), (iii), it follows that
(39) < min{NF(Ny A N3)°, NiN3(Ni A N3 )%, NaN3(Ny A N3 )¥ + N2,

NoNi(Ny A Np)* + N2} (43)

In case {N2,N3} = {\,,N3} and N3 > N,, write N2(N; A N3)* < NZN§ < NoN3N3
and similarly if {N2,N3} = {N, N, }.

This proves the lemma.

Lemma 2. Consider the set
S = {(n1,nz,n3) | na%=n1,n3 and (ny — ny,ny —n3) = p}.

(i) For fixed ny, #S(n1) < NoN3(N> A N3 ) and #S(n1) < N32Nf.
(ii) For fixed ny, #S(ny) < N1N3(Ny A N3)E.
(iii) For fixed ny,ny, #S(ni,ny) < Nj.
(iv) For fixed ni,n3, #S(n1,n3) < Nj.

Proof.

(1) Fix n; and consider estimate (i) in Lemma 1, with n < ny, n; < ny, ny <
n3. This gives the bound NZNj. Apply next estimate (iii) of Lemma 1 with n <
n, n3 <> my, ny < n3, giving the bound N,N3(N, A N3)° + N7. In case N, > N,
use the NZN} bound.

(i) Follows from (ii) of Lemma 1.

(iii) Immediate.
(iv) Follows from lattice point estimate on circles.

We list the different (u;,un,u3)-cases to be considered in bounding (18). As
mentioned earlier, we may assume n; = N'. Cases (20), (21) are already considered:

Case (a) : ny = N'(I), ny = N¥(I), n3 = N3(ID).
Case (b) : ny = N'(I), np = N3(Il), n3 = N2(1).
Case (c) : ny = N'(1), np = N*(Il), n3 = N3(1D).
Case (d) : my = N'(1), ny = N3(1l), n3 = N2(II).
Case (e) : ny = NI(ID, ny = N2(1), n3 = N3(1).
Case (f) :ny = N'(Il), ny = N3(I), n3 = N*(I).
Case (g) : n; = N'(1), np = N*(I), n3 = N3(Il).
Case (h) : ny = N'(1), ny = N3(1), n3 = N2(1I).
Case (i) : n; = NY(I), n, = N*(I), n3 = N3(D).
Case (j) : n; = NI(I), n, = N3(1l), n3 = N2(1).
Case (k) : ny = N'(I), n, = N*(1), n3 = N3(D).
Case (1) :n; = NY(I), ny = N3(D), n3 = N*(D).

Consider first cases (k), (1) depending only on the data ¢ = ) %ei("”‘).

Thus we have to estimate (36), where a;(n;) = 5%(:)—), |n;| ~ N;. Assume ny,ny,n3
distinct. We may assume o satisfying
2
®) Gny (@) gny (@ S
Z gn[( ) ny Vl3( ) << (Nl)g . Z ]V1 2N2 2N3 2 ,
n=nj—ny+n3 'nl , |n2| In3 I n=nj—ny+n3
In[2=lng 2= |y 2+ |3 2 +4 (2=l [ = mp [2-+ {3 |2 40

(43)
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the w-exceptional set being of size e~V "’ Summation of (43) yields for (36) the
bound

1/2
(Nl )E(Nl)s{ Z N1—2N2—2N3—2} < (Nl )S—1/2+8 (44)
ny #ny +n3, |m|~N,
(my—ny,my—n3)=5
applying Lemma 2, (iii) with n; < n3. We take s < %

Next assume n; = n3 #n,. The conditions n = 2n3 — ny, |ny — n3)* = 5 yield a
number of terms at most (N, A N3)¢. Hence the (43)-bound is still valid. Thus (44)
gives a bound on (18) in cases (k), (1).

We analyze the cases (a)—(j). Some of them will require additional arguments.

Case (a). Use the estimate (34). The number of terms in the second summation is
at most N2N31+8, by Lemma 1. Thus, by Holder’s inequality, Lemma 2 (iv),

1/2
(34) <<(N2)8{ NN Y |a1(n1)|2N;2“las(m)P} (45)
ny*ny,n3
(nz—nl,n2~n3)=%

12
N-
< (W) (i) NS < NS5 (46)

Observe that for Ny > N,, the w-expressions corresponding to different dyadic val-
ues of N; are orthogonal and hence the ||||||;-norms of the corresponding contri-
butions to the nonlinear term add up in /°. This leads to a bound of the form
M|\ |un]||s |||us]|ls, if we restrict N, > M. On the other hand, exploiting the
small time interval [0,7] and the |4 — |n|?|-factor in the definition of the ||| |||S
norm, one also has an estimate of the form MSt?|||u;]||s|||u3]||s» using for in-
stance a straightforward L* x L* x L* x L* estimate (after projection) on (29) and
fluslls < MVATV4= | |u;||| for i = 1 or 3. Consequently an estimate ©°|||u1|||s sl
in (18) is obtained, for some & > 0. We don’t repeat those considerations again
later on.

Case (b). Use estimate (34). Applying the Holder’s inequality in the inner summa-
tion w.r.t. the ny-summation, an lax(np)> < N2—2s‘ This gives

}1/2

1/2
< Nsz_S{ > lal(’ll)lzNa—zH}
ny *ny,n3
(nz—"l’"z—"3>=%

NfN{S{ >

n,ny

Z al( l) I |

n=ny—ny+n3,ny +ny,n3
(my=ny,my—n3)=5

< NiN;S(NaNsNiN; )2 < NET5 47)

Applying the estimate from Lemma 1 (i) (replacing n; by n3) and Lemma 2, (i).
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Z gn1 (w)

Case (c). Use estimate (36). Proceeding as in case (b), we estimate by
24172
Nf”N{S{Z as(n3) }
n=n)—ny+n3,ny +ny,n3 Inll
(my—ny.my—n3)=4

n,ny
1/2
< N{’“N{s{ » Ny %|az(ns )|2}

(np—ny,my—n3)=%

1
N\ 2
< NFPNTNTEINS NNV < N (—1) N, (@8)
applying Lemma 1 (i) and Lemma 2 (i) with n; replaced by n3.

Next, we make another estimate using the Gaussians {g,, ()| |n1| ~ Ni}. Ap-
plying Holder’s inequality with respect to n3 in the inner summation, estimate by

25 172
Nf“N;S{E } . (49)

n,n3
Fix n3, |n3| ~ N3. Define the matrix 4 = %o, = (Gnn, ) |n| <Nj.nsn; DY

gn (@)
> = ay(ny)
n=n|—ny+n3,ny Fny,n3 'nll
(ny=npmy=n3)=%

|n2|<N2
N i, — if (n3 — —m)y =4
O-n,n2 ={ 1 gn+n2 ng(w) 1 <n3 n,ny n3> 2)"2 4:713 (50)
0 otherwise .
Estimate (49) by
NN Ny N3 || %] (51)
and
2\ 1/2
[99°) < max ( Slownl) + (£ | S| ) - 2
" n n%n’ | ny
The first term in (52) is bounded by NN, ***. Write
2 2
Z Zo.nnzan’nz =N1—4 Z E gn+n2—n3(w)yn’+n2—n3(w) 5 (53)
n#n' | m nEn' L (ny—nny—n3)=4
“
2

(n3—n’,ny—n3)=
ny $n3

which expression depends on the initial data ¢,. Observe that the Gaussian
2-products in the inner sum are at most repeated twice. Hence (53) may be es-
timated by

N1_4#{ (n,n',my) | n£n',nn3,n' £n3,ny%n3, (n3 — n,ny — n3)
(n3 —n',nz —}13) = g} .

The condition (n3 —n,ny — n3) =

B

N=

(54)
u

£ allows NN} *¢ pairs (n,7n,), by Lemma 2 (ii).
2 2
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Next, since np +n3, there are at most N; possible choices for n’. The resulting
estimate on (54) is N1‘2N21+8. Consequently, from (51) and the preceding

1
_1 /N \TTH
(49) < NJFEN; SNy S(NTANJ A = Ny 4 ( Ni‘) NS (55)

Combining (55) with the previous bound (48), one easily gets the bound Nl—%ﬂ in
Case (c).

Case (d). Same estimate applies as in Case (c).
Case (¢). We have to estimate (34) with n; € J, where J is a subinterval of length
~ N, in [|n;]| ~ N;]. Thus

2 12

Nzg z Z al(nl)gnz(w) gn3(w)

neJ | n=ny—natnz,ny Eny,n3 InZI 'n3|
(n—ny,n—n3)=p

, (56)

where (ai(n)),,es satisfies anej lai(m)]> < 1 and J is a doubling of J. Define
the matrix ¢ = Y, = (Tnn Jpejnes bY

Onn = ]\',2_1]\/‘3—1 Z gnz(w) Gny (Cl)) s (57)

n=n| —np+n3,ny *¥ny,n3
(n—ny.n=ny)=p

where the summation extends over indices ny, n3.
Estimate (56) by N5||9%*||'? and

2\ 1/2
) . (58)

199%] < max T Joum 2+ ( >
n neJ

n%n’

Z O'nnlan’,nl
meJ

Since n, +n; in the summation (57), we get

Z |0nn1 |2 < (N2N3)_2 *
mes

#{(n1,ny,n3) |n=ny —ny +n3,ny$ny,n3, (n—ny,n—n3) = u} - Ny
< (N2N3)2NEN,Ni < N5~ 1, (59)

assuming
132 gy (@) gy (@) < N3 YT, (60)
where 3" denotes the (57)-summation.
Write explicitly

2
=(NN3)™ Y

n*n’

2

% Iy (@) Gy (@) Gy (@) Gy (@)| -, (61)

2

n+n’

Z o'nnlﬁn',nl
neJ
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where (x) refers to the set of (ny,ny,n3,n5,n4) such that

nmeJ
n=mn —ny+ny, mpEn,ny, (n—n,n—n3)=p (62)

/ / ! ! ! / ! /
n=n —ny+ny, nyEn,ny, (0 —nm,n —n) =pu.

Consider the following cases:

case (i). The indices ny,n3,n),ny are distinct.
case (ii). ny = njy (n3%nj).

case (iii). n3 = nj (ny $£nj).

case (iv). np = njy, n3+nj.

case (v). ny%njy, n3y = nj.

case (vi). ny = njy, n3 = nj.

Case (i). Denote Z(l*) the corresponding subsummation of Z(*). Clearly each of

the order 4 Gaussian products in Z(l*) can only appear a bounded number of times.
Hence we may assume

2

<N (63)

11— R
D= Gny 9ny Gy G
) &

Hence, the corresponding contribution to (61) is bounded by
(N2N3) N3 (#S) , (64)
where S stands for the systems (ny,n,,n3,n5,n5) such that

ny €J, |m| ~ Ny, |n3| ~ N3, |ny| ~ Ny, |n§| ~ N3
ny&ny,n3, nyEny,ng (65)
(ny —mi,my —n3) = p, (nh —ny,ny —nj) = .

Hence
#S < N}(N3N3)?

fixing n; € J and applying the second estimate of Lemma 2, (i). Hence
(64) < Ni72. (66)

Case (ii). ny = nj) = n3+nj. Denote Zf*) the corresponding subsummation of
> (x)- Thus

2
" Gy Gns Ot G| < N5 32 (BS(my'ymz,md))’ (67)
(%) ny,nj
where
S(l’l, nl, ns, ”g) = {(nl s nZ) | (nla hy,n3, ny, n;) SatiSﬁeS (*)} . (68)
Thus

#S(n,n',n3,ny) < #M{(m,m)|m eJ, n=n —m+ny,(n—ni,n—ny) =p} <Ny,
(69)
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and the contribution of Y_(,, to (61) is bounded by
(NaN3) Ny Ho(#S) (70)

where now S consists of the systems (n;, 72, n3,n5) such that (ny, ny, n3, np, n}) fulfills
(65). Hence clearly
#S < NiNEN;N; (71)

and
(70) < NiIN; (72)

Case (iii). n3 = ny = ny +n). Denoting Zg*) the corresponding subsummation of
() We have

2

3 s Gy 0, | < N5 3 (#S(nn mamy)Y’ (73)
(*) nz,né
where
S(n,n',ny,ny) = {(n1,n3) | (n1,n2,n3,ny,n3) satisfies ()}, (74)
and thus
#S(n,n',na,my) < #{(ny,m3)|n=ny —ny +n3,(n3 —na,n —n3) = u} < N§.
(75)
The contribution of Zf*) to (61) is bounded by
(N2N3)"* N5 (#S) , (76)

where S consists of the (n1,n,n3,n5) such that (n1,ny,n3,n5,n3) fulfills (65). Thus
#S < NZNZN3 (77)

and
(76) < N, 2N 2 (78)

Case (iv). ny = nj, n3#n). Denoting Z?*) the corresponding subsummation, we
have

2
3 G Gy 0, | < N5 T (#S(nn'mam))? (79)
(*) n, n)
where
S(n,n',n3,ny) = {(n1,ny) | (n1,m,n3,ny,ny) satisfies ()}, (80)
and thus

#S(n,n',n3,my) < #{(n1,m)|m €n=mn; —nmy+ny,(n—n,n—n3) =pu} <N,.

(81)
The contribution of Z?*) to (61) is bounded by

(N2N3) N, TE#S) (82)
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where S consists now of the (ny,nz,n3,n5) such that (ny,np,n3,n5, ny) fulfills
(65). Hence
#S < NZTNE, (83)

by Lemma 2 (i) and Lemma (2) (iv) and
(82) < Ny '*eN; 2, (84)

Case (v). ny#njy, n3 = ny:Same as (iv).

Case (vi). np = n}, n3 = nj. Denoting Zgi)) the corresponding subsummation, we

have
2

<Z>(6)%Egn3 9y Gur | < N3(HS(n,n))? (85)
where
S(n,n") = {(n1,n2,n3) | (n1,n2,n3,n3,ny) satisfies (+)}, (86)

meaning that ny,ny,n; are different and

nlznl—n2+n3 (n/—nl,nl—ng):u 87)
W=n-—-m+n @#—n,n—-m)=u.
Thus n + n’ = 2n; and #S(n,n’) < N;.
The contribution to (61) is thus
Ni(NN3) ™4 S (#S(n,n'))? < Ny HFEN;3(#S), (88)
n%n’
where S consists of the pairs (n1,n,,n3) such that
(ny —mi,my —n3) =p, (n3—ni,n3 —ny) =p, (89)
hence
|ny —n3* =2u. (90)
Thus
#S < NEN5N, (1)
and
(88) < Ny >*eNg Tt (92)
Collecting the various bounds (66),(72),(78),(84),(92), it follows that
(61) < Ni(N,N3) ™! < Ny e (93)
From (59),(93),
|99 || < N; /2 (94)
Hence
(56) < Ny V4*e (95)

which is the bound on (56) and thus for Case (e).
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Case (f). By Lemma 1 and Lemma 2, (i) we get applying first Holder’s inequality

12
(56) < NiN; < > a1 (m )IzN{zN{Z)
ny #ny,n3,n €J
(my—ny,my—n3)=n

< NiNy(N[FeNs Ny 2N )2 = NeNy PNy 2 (96)

. g . — . .
Hence, if N, < N, 10 we get an estimate N, 3 say. Otherwise the estimates

_ 1
made above in case (e¢) will yield a saving of N; ** also.

Case (g). We use estimate (36)

Z gnl(w) gnz(w)

n=n| —ny+n3,ny +ny,n3 Inll |n2|
(n—ny,n—n3)=p

2\ 12
) 7)

az(n3)

s

n

with 3" |as(n3)|* < N; *. From Hélder’s inequality and Lemma 1, we get

172
(97)<<Nf+8(NzN3)‘/2< > Nszz'zlas(ns)Iz), (98)
ny%ny,n3
(ny—ny,ny—n3)=p

and from Lemma 2 (i)

1

N3\ 27°
(98) < NS (N N3 )V/A(NT2N, 2N N )2 NS < N (F?) . (99)

1— ks .
Thus we may assume N3 > N, '® and we can use then the estimates from cases

(), (e).

1
Case (h). Estimate (36) as in case (g) with the same result. Again if N3 > N,1 00
the estimate in case (f) applies.

Case (i), (j). Estimate (36)

Z gn] (CO)

n=nj —ny+n3,ny +ny,n3 |n1|
(n—nj,n—n3)=p

ax(n) (100)

Gny(@) D 12
3 '

|n

b

n

12
<<Nf“(N2N3)”2< > N1_2N3_2|‘12(n2)|2)
ny *ny,ng
(ny—ny,ny—n3)=p

1

AN
< NSTE(NoN3 ) 2NN NG (N N3) V2 < N§ (172) ) (101)
1
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We may also apply the estimate from case (e), introducing an extra factor Nj to
control #* in H*. This yields the bound

_1
N % N (102)
_1
from (55). Thus it follows from (101),(102) that we may assume N, > Nll 100

Ns > N7,
We next prove one more estimate, repeating mainly the argument from case (e).
Define 4 = 9, = (Onn,) nj<y; DY

[ |~N,
Onny = Ny'N;! > Gy (@) Gy () - (103)
n=n[—n2+n3,n2¢n1,n3
(n—ny,n—n3)=p
Estimate (100) by
NN 9|1, (104)

where

2\ 12
) . (105)

By the condition (n — ny,n; — ny) = p, the number of summands in the definition
of 6, ,, is at most N}. Hence the first term of (105) is bounded by

Z Onny On',ny
n

J99°] < mgx (Slonnf?) + (T

ny n+n’

NZNINTANT2 < NP (106)

since we assumed N3 > Nll/ ’,
We analyze again the second term in (105). Write explicitly

2

2
> X Oum G| = NN 3 Y Gy O G G| > (107)
n#n’ | m nEn’ | (%)
where (x) refers to the set of (ny,n,n3,n},n5) such that
n=ny—ny+n, mFn,n, (n—n,n—n)=yu (108)
W' =n)—m+ny, mEn,ng, (0 —nj,n—nj)=u.

Consider the following cases:

case (i): The indices ni,n3,n},ny are different .
case (ii): m =n] (n3=%n}).
case (iii): n; =nf (n3=*n}).

There are the symmetric cases. Observe that if n; = n3 say, we get gﬁl and the

{g2} are still independent of mean zero, since the g, are complex Gaussians. Hence
this case does not require a separate argument.

Case (i). Denote Zl the corresponding subsummation. If the ny,n3,n},n} are all
different, each of these order 4 Gaussian products only appears a bounded number
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of times in the summation and
2

<N
(%)

1 .
Z gn1 gn3 gn{ gn;
(%)
Thus
(107) < (N1N3s)*N{(#S) ,
where S stands for the systems (n,#ny,n3,n},n%) such that
{nz % ny,n3,n},n4
(’12 —n,hp — n3) =K (n2 - n'pnz - né) =H.

Hence
#S < NENZ(NiN3 )

and
(110) < NiN72NZN;2 < NP

Case (ii). Denoting Zz the corresponding subsummation,

2
2 -
Z gnlgn3 gni gng << Nis E (#S(n’ nla ”’3,”:/3))2 bl
(%) n3,ng
where
S(”a”/;”%ng) = {(nlan) | (nlanZs n3,n1,n§) satisfies (*)} .
Hence

#S(n,n',ng,,ng) < #{n1| |n1| ~ Ny, <}’l —np,n— n3> = ﬂ} <N,

and the contribution of Zz to (107) is bounded by
(NiN;) AN ()

441

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

where S consists of the (n1,n2,n3,n3) such that (ny,ny,n3,n;,n}) satisfies (111).

Thus
#S < NFN{N;N3N3

and
(116) < NiNT2NZN;2 < NP

Case (iii). Denoting 23 the corresponding summation,

2
3 .
> G Gy G G| <N 32 (#S(mon', 3, i),
(*) n3,n]
where
S(n,n',n3,n\) = {(n1,n2) | (n1,n2,n3,n1,m) satisfies (%)} .
Hence

#S(nan,’n:hni) < Nl 5

(117)

(118)

(119)
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and the contribution of 23 to (107) is bounded by
(NiN3) N[ HE(#S) (120)

where S consists of the (n;,na,n3,n]) such that (ni,ny,n3,n},n;) satisfies (111).
Thus
#S < NEINZNSN,
and
(120) < NiN;2 < N1 (121)

Summarizing, it follows from (113), (117), (121) that (107) < N]_l, thus by
(106)
| 9% | < N7VS. (122)

Hence s
e— N; P A
(36),(100) < NZ~1/12 (#) < NjTETTO (123)
2

From the preceding, we get in case (i), (j) the estimate

1

N, W (124)

This completes the analysis of the different cases (a)—(1).

It follows from this analysis that fixing an interval [0, 7], we have
(18) < ct? (125)

for some 6 > 0. Here w=utus with w; € S(t)p, + (||| |s-ball), ¢ =
3 %e*”*”, and (125) will hold outside an w-set Q of measure < e’l/fél, for
some &' > 0.

Observe also that if for one of the u; we consider 37, . 4 %ei((”’”*""z’),
there is an extra saving of M9, i.e.

(18) < er?M~° . (126)
The transformation 7 defined in (16) is a contraction, since

17w — Tolll; < ct®flju—vllls . (127)

In this estimate, one of the u;’s equals u — v € H*. Hence, for w ¢ Q, Picard’s
theorem gives a solution u to (11).

Let ¢ = ¢, be a “good data” as above with solution u, u(0) = ¢. Let Y € H",
llo — s < . Consider the map Tyv : S()W + i [y S(t — D)[(v[v|* — 2v(|v[*)(7)]dx.
Writing Thv = Tv + S(¢)(Y — @), it follows that

1
ITro = S@llls = ll¢ —vlls + lITv = SOSlls < 15+ @ <1.
Hence 77 maps S(¢)¢ + (||| |||s-ball) to itself and is a contraction, since T)(v) —
T1(v') = T(v) — T(v'). Thus (11) has also a solution v for initial data v(0) = ¥.
Moreover
e = olls < 2llo — il (127
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and also (cf. [B1] or the discussion in [B2], Sect. 2).
u(®) = v(Dllus = Cllo = Yllas for [t < 7. (1277)

5. Comparison and Convergence of Solutions

Let us compare next the solution of the truncated equation (10)

il — Au + Py [uV)? = 24" [V ) =0
. , (128)
ul = Pyu, uM(0) = ¢h(x) = 3, oy B2 00
and the solution u obtained above for
iy — Au+ (u|u)® —2u [ ju*) =0
gn(®) i(x,n) (129)
u(0) = ¢o(x) = 3 e .

In (128), vV € S(t)¢" + (||| |||s-ball) and in (129), u € S(¢)¢ + (||| |||s-ball). Fix
0 < 51 < s. Analyze the expression

ulul* = 2u [ juf? — Py > = 24" [V ?), (130)

writing it as a sum of products v;7,v3 where for some i, either Pyv; =0 or v; =
3

u — uV. Taking (126), (127) into account, we get
[ — S()p] — [ — S@)pn]llls,

SN N 4 o[- S(O)P] - [ = SOP]llls, - (131)
Here we perform the analysis of the nonlinear term in ||| |||s,. For P% v; = 0, either
v; appears in the ||| ||[;-ball in which case there is an N*1~* bound in ||| |||, or

. 2 . . . .
v = Z|n|>¥ g—’i%e’“””‘”'"' ) in which case we invoke (126). Write

u—u = (S — S(O¢w) + [(u = SO)p) — " — S()¢w)] ,

and apply again (126) if one of the v;’s equals S(#)¢ — S(¢)dn.
From (131), we get an approximation

Il = S(1)p) — (" — SO)")llsy < N+ N2, (132)
and also
ll(u — S@)p) — (" — S(t)¢N)||L;<;I(Tz)<o,T) SN ENTYL (133)
The conclusion is that for w outside a set Q of measure < e‘l/fél, ull — S(t)pV
will converge to u, — S(t)¢, in H® for some s > 0 and, more precisely
(4 — S()pw) — (uly — S@YPYls < CN™° for 1 €[0,7].  (134)

Denote SV(¢) the flow map associated to (128). Fix a large positive integer N and
denote uy the Gibbs measure e_HIVHd¢. Thus g is invariant under the flow of
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(6) and hence of (10), thus SV(¢). The solutions are indeed related by een(@)
2

multiplication, where cy(w) = Elnlé N J%Iz_l and thus only depends on |g,(®)|.

It follows from (134) that

1570 = 56) = (8 (0) = Se)Pw1g] | < N (135)

for N <N, t€[0,7] and ¢ = Py¢ taken outside a set A of measure uy(A4) < eV
Our next purpose is to extend (135) for ¢ in an arbitrary interval. Consider say
[0,1], fix a small number 7 > 0 and partition [0,1] in 1/7 intervals I, of size 7. We
will mainly repeat the invariant measure consideration from [B2].
Thus for ¢ ¢ A, (135) holds

sV = s"Py =S - P01 SN cel0).  (136)

and thus, denoting ¢; = Sﬁ(r)qf),
l¢1 = [S¥(0)Py + S(1)I — PW)Iglls S N2 (137)
Assume ¢; is again a “good” data, thus ¢; ¢ A, hence
¢ & AUSY(1)N(A). (138)
Repeating (136), one gets again for N < N, ¢ € [0, 1],

|57 = 5" 0Py = ST~ Pye|| = N2,

i }Hsﬁ(r + )¢ — [S¥(OPy + ST — Py W <N, (139)
It follows from (137) that

IS()I = Py)gr — S(z+6)I = Py)dlls < N2, (140)

IPv¢1 = S¥(@)Pyolls < N7 (141)

Since ¢; is a “good data”, SV(¢) acts in a Lipschitz way on Py¢; -+ (H*-ball),
t < 1, and (141), (127") implies

ISV )Py — SN (x+ t)Pyplls < N7°. (142)
Combining (139), (140), (142), it follows that for ¢ € [0, 1],
H[S’V(r 1) =S¥t 4+ )Py — S(x + )T — PN)qS]“ SN0, (143)

and thus (136) holds for ¢ € [0,21], provided (138).
The continuation of this process is clear. One gets eventually (136) on [0,1],
provided

p4AUST (D) (MU UST () HA) (k~Th, (144)

and since Sﬁ(r) is uy-preserving, the set A, defined in (144) satisfies

1 0
(A £~ 0. (145)
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It follows from (145) that given o > 0, there is a set A,, pz(A,) < o, such that
for ¢ ¢ A, and t € [0,1],

”[Sﬁ(t) _ SN(6)Py — S(e)I —PN)]¢H <N for N<N.  (146)

Since pz converges to the normalized Gibbs measure u defined in Sect. 1, letting
N — oo in the preceding shows that
(TSN (2) = S()IPy, — [S"2(1) = S(IPw,)Plls < (o) Ny ANy)™° (147)
for all £ € [0,1], ¢ & A, with u(A,) < o and any integers Ni, N,.
We get in particular from (147) for N, > Ny, ¢ ¢ A,
[Py, S™ (1)P, — SM(1)Py, ) lls < C(a)NT° . (148)
Also SN(t)Py¢ converges weakly to some S®(¢)¢ € S(t)¢ + Bys(C(c)) (take
N, =0 in (147) and let N; — o0). From (147), (148), for ¢t € [0,1], ¢ & A,
I(IS>°() = )] =[S (1) — S()IPY)P|ls < C(oIN? (149)
and
[(PyS>(1) — SY(1)Py)lls < C(aIN°. (150)

S°(2)¢ is the solution of (11) obtained in Sect. 4 and from (150), it easily follows
that u is invariant under the flow S°°(¢) (using again the invariance of uy for

SM()).
Coming back to Egs. (6),

OH,
W' =i==x,  WN0)=Pyo, (151)
ouN
. 2
we have u = e¥NOISN()Pyp, where cy(¢) = cy(w) = >l <N % for
o=> g—'i—;‘l"—)e“"’”. Thus cy(¢) converge u-almost surely to some co,(¢), and hence

the 4 (¢) converge weakly for N — oo to e¥¢=($) . §°°(¢)¢ for all time, p-almost
surely in ¢. In fact, from (150)

| (1) — NOPyS® ()|, < (o, TIN? (152)

for ¢ € A1, W(Ag,7) < 0. In particular, (ii) converges in H* for some s > 0.
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