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Abstract: The structure of the constraint set in the Yang-Mills-Dirac theory in a
contractible bounded domain is analysed under the bag boundary conditions. The
gauge symmetry group is identified, and it is proved that its action on the phase
space is proper and admits slices. The reduced phase space is shown to be the
union of symplectic manifolds, each of which corresponds to a definite mode of
symmetry breaking.

1. Introduction

In a previous paper we have proved the existence and uniqueness theorems for
minimally interacting Yang-Mills and Dirac fields in a bounded contractible do-
main M C R¥, [1]. The aim of this paper is to study the structure of the space of
solutions.

Our results were obtained for Cauchy data A € H*(M), E € H'(M), and
¥ ¢ HX(M), where H"(M) is the Sobolev space of fields on M which are square
integrable together with their derivatives up to the order k, satisfying the boundary
conditions

nE=0, B=0, iny ¥ ="You, (1.1a)

nA =0, iny {7°0 ok + im) ¥ Yo = "1 0 + im) P oy (1.1b)

Here we use the notation established in [1]. In particular, nE denotes the normal
component of the “electric” part, /B the tangential component of the “magnetic”
part of the field strength on the boundary 0M of M. Thus, the extended phase
space of the theory under consideration is

P = {(AE, V)€ HX (M) x H'(M) x H*(M)| satisfying (1.1a,b)} . (1.2)
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The variational principle underlying the theory gives rise to a (weak) symplectic
structure on P. Let 6 be a 1-form on P such that, for every p = (A,E, ¥) € P and

0 0 0
ag +CE+WW ETPP,

<9(A, E, %)

B B B
O el N [(E .- t
a(SA+e5E+‘p5'I/> A{(E a+ Phy)dsx, (13)

The symplectic form w of P is the exterior differential of 6,
w=df. (14)

Let G be the structure group of the theory, presented as a matrix group, and
g be the Lie algebra of G. We assume that G is compact, and that g admits
an ad-invariant metric. The group GS(P) of gauge symmetries consists of maps
¢ : M — G such that their action on the variables (A, E, V), given by

A dAd™ +dpgradd™!, E gE¢T, ¥ =9VP, (1.5)
leaves the extended phase space P invariant. The infinitesimal action of an element
¢ of the Lie algebra gs(P) of GS(P) is given by
where

Dpl = grad{ +[A, (] (1.7)

is the covariant derivative of ¢ with respect to the connection defined by A. It gives
rise to a vector field &p on P such that

s
55 (1.8)

The action of GS(P) preserves the 1-form 6. Hence, it is Hamiltonian with the
equivariant momentum map J : P — gs(P)* such that

(J(AE, ¥)[&) = (01Ep(AE, ¥)) = [{~E - D¢+ P1E¥} dax. (1.9)
M

Go(AE, ) = ~(Dad) o — (B, €10+ &%

Here gs(P)* denotes the L? dual of gs(P), that is the space of square integrable
maps from M to the dual g* of the Lie algebra g of the structure group G. For
each ¢ € gs(P), the function J: : P — IR given by

Je(AE, ¥) = (J(A,E, ¥)|¢) (1.10)

is called the momentum associated to &. The vector field &p is the Hamiltonian
vector field of Jg, i.e.
&p Jw=dJs. (1.11)

Integrating by parts on the right-hand side of Eq. (1.9), and taking into account the
boundary condition nE = 0, we obtain

(J(AE, P)|&) = [{(divVE + [A;E])¢ + PTEP} dsx . (1.12)
M

For every ¢ € gs(P),
Pley =—j . ¢, (1.13)
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where j is the source term in the Yang—Mills—Dirac theory. Hence, the constraint
equation of the theory

divE +[AE] =, (1.14)

is equivalent to the vanishing of the momentum map J.

The presentation of the constraint set as the zero level J~!'(0) of the momentum
map J, enables one to study its structure in terms of the action of the group of
gauge symmetries. It was first done by Arms [2], who discussed the structure of
the constraint set for pure Yang-Mills fields in compact spaces (no boundary) in
general terms, without specifying the topology of the function spaces under consid-
eration. The structure of the zero level of the momentum map, corresponding to a
Hamiltonian action of a Hilbert-Lie group on a Hilbert manifold was studied, un-
der additional technical assumptions, by Arms, Marsden and Moncrief, [3]. Special
cases were considered by Mitter and Vialet [4], Atiyah and Bott [5], Kondracki and
Rogulski [6] and Huebschmann [7, 8].

Functional analytic assumptions made in this paper are consequences of the
results of [1]. They fail to satisfy two basic assumptions made in [3]: (i) neither
the differential of J nor its adjoint are elliptic, (ii) the extended phase space P is
not invariant under the interchange of A and E. Hence, we cannot use the results of
Arms, Marsden and Moncrief, [3]. Instead, we follow the main idea of their paper,
and prove the necessary intermediate steps. In particular, we prove the properness
of the action of GS(P) and of the existence of slices for this action. From this we
show that the reduced phase space is the union of symplectic manifolds labelled by
the conjugacy classes of compact subgroups of GS(P). Each of these symplectic
manifolds consists of the fields (A, E, ¥) with a definite mode of symmetry breaking.

In the finite dimensional case the partition of the reduced phase space into
symplectic manifolds can be described algebraically in terms of the Poisson algebra,
cf. [9, 10]. Similar results for central Yang-Mills connections on surfaces has been
obtained in [8]. An adaptation of this approach to our phase space will be studied
elsewhere.

The paper is organized as follows. In Sect. 2 we discuss, in a proper functional
analytic framework, the gauge symmetry group and its action. The structure of
the zero level of the momentum map is analysed in Sect. 3. A stratification of
the reduced phase space is studied in Sect. 4. Section 5 contains discussion of
symmetry breaking corresponding to each stratum. The almost complex structure in
the L? completion of P is discussed in Appendix A. The properness of the action
of GS(P) is proved in Appendix B. The slice theorem is proved in Appendix C.

2. Gauge Symmetries and the Momentum Map

The requirement that (1.6) gives an action of ¢ € gs(P) in the space P, defined by
(1.2), implies that grad ¢ € H*(M). Since M is bounded, it follows that & € H3(M).
Moreover, the action of & has to preserve the boundary conditions. The conditions
(1.1a) are the usual bag boundary conditions and are gauge invariant. The conditions
(1.1b) are satisfied if and only if n - grad ¢ = 0. Hence,

gs(P) = {&: M — g|¢ € H*(M) and n - grad &= 0} . (2.1)
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The L? dual gs(P)* of gs(P), considered here, is the space of square integrable
maps from M to the dual g* of g, that is

gs(P)* = {v: M — g*|v € L*(M)}. (2.2)

The evaluation of v € gs(P)* on & € gs(P) is given by pointwise evaluation and
integration

(&) = [v - &dsx. (2.3)
M

The momentum map J defined in Eq. (1.9) is a continuous map from P to gs(P)*.

GS(P) has a manifold structure with the tangent bundle space spanned by gs(P).
The presentation of the structure group G as a matrix group, and boundedness of
M, enable us to present GS(P) as a group of maps ¢ from M to G of Sobolev
class H3(M). Moreover, the boundary conditions (1.1) require that n - grad ¢ = 0.
Hence,

GS(P)={¢: M — G| € H*(M) and n - grad ¢ = 0} . (2.4)

Since M is contractible and G is connected, GS(P) is connected. However, it need
not be simply connected.

Proposition 2.1. The exponential mapping exp : gs(P) — GS(P) is a diffeomor-
phism of a neighbourhood of 0 € gs(P) onto a neighbourhood of the identity in
GS(P).

Proof. Let U be a neighbourhood of 0 € g and ¥ a neighbourhood of the identity
e € G, such that the exponential mapping exp : ¢ — G is a diffeomorphism of U
onto ¥, and let In: ¥ — U be the inverse of this diffeomorphism. Since, by the
Sobolev embedding theorem, each ¢ € GS(P) is a continuous map from M to G,
the sets

V={¢cGS(P)|rangep C V'}
is open in GS(P). Similarly, the set

U = {¢ € gs(P)|range ¢ C U}

is open in gs(P). For every ¢ €V, Ino¢ is in gs(P), and its range is in
U. Hence, Ino¢ € U. Let exp: gs(P) — GS(P) denote the exponential for the
gauge algebra. For every ¢ € gs(P),exp(¢) =expo&. Hence, for every ¢ €V,
exp(lno ¢) = expolno ¢ = ¢, which implies that exp(U)=V. O

The main property of the action of GS(P) in P used in this paper is its
properness.

Theorem 1. The action of GS(P) in P is proper. That is, for every sequence p,
converging to q in P and every sequence ¢, in GS(P) such that ¢,p, converges
to p, the sequence ¢, has a convergent subsequence with limit ¢, and ¢q = p.

Proof is given in Appendix B.
For each p € P, we denote by Oy the orbit of GS(P) through p,

Op = {¢plp € GS(P)} . (2.5)



Yang-Mills and Dirac Fields in a Bag, Constraints and Reduction 99

All orbits Op of GS(P) are closed since, if ¢,p is a convergent sequence of points
in O, with limit q, then the sequence ¢, has a convergent subsequence with limit
¢ and q = ¢p, which implies that q € Op.

For every subspace V of T,P, we denote by V* the symplectic annihilator of
V, that is

VO = {we T,Plo(v,w) =0 VYveV}. (2.6)
Note that V¥ is closed, and if V is closed, then (V*)? =V.
Proposition 2.2. For each p € P,

T,0p = (ker dJ,)” . (2.7)

Proof. If &p is the Hamiltonian vector field of J:, cf. Eq.(1.11), then for every
ve TP,

(&p(p), V) = (dp(V)[E) . (2.8)
Since T0p = {&p(p)|E € gs(P)} it follows that v € (7,0,)” if and only if v e

ker dJy. Hence, (T;0y)” = ker dJj, and therefore T,0, = (ker dJ;)®, since ker dJj
is closed. [

Proposition 2.3. For every p € P, rangedJ, is a closed subspace of gs(P)* with
finite codimension.

Proof. For p=(AE,¥) and (a,e,y) € T,P, Eq. (1.12) implies that

(dJp(a, e, ¥)|&) =A£{—(div (e)+[A,e] + [E,a])¢ + ¢ ¥ + PTey} dax.

Hence, dJp = T + S : TyP — L*(M,g), where

T(a,e,y) = —div(e) and S(a,e, )= —[Ae]l—[Eal+y o¥+ ¥ oy.

The Hodge decomposition, cf. [11], applied to square integrable zero forms on M,
implies that L>(M,g) = ¥ & A, where # is the space of constant g-valued func-
tions and € = {div (v)|v € H'(M,g), nv = 0}. Both % and # are closed subspaces
of L>(M,g). Since range T = &, it follows that the range of T is closed. Moreover,
cokernel T = L?>(M,g)/range T ~ # has finite dimension, since dim # = dim g.
Hence, T is semi-Fredholm.

Further, if v, = (a,,€,,¥,) is a bounded sequence in T,P, then the sequence

{sv,} = {-[Ae] - [Ea]+y @ ¥+ ¥ @y}

is bounded in H'(M, g) C L*(M,g). Since the embedding of H'!(M, g) into L>(M, g)
is compact, it follows that the sequence {Sv,} has a convergent subsequence. That
is, the operator S is compact. This implies that dJ, = T + § is semi-Fredholm, that
is it has closed range and finite codimension, cf. [12]. O

For each p € P we denote by gs, the gauge symmetry (isotropy) algebra of p,
that is

gsp = {& € gs(P)|&p(p) = 0}, (2.9)
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and by GS, gauge symmetry (isotropy) group of p,
GS, = {¢ € GS(P)|¢p = p} . (2.10)

By propemess of the action of GS(P) in P, each sequence {¢,} in GS, has a
convergent subsequence, which implies that GS, is compact. Consequently, the Lie
algebra gsp is finite dimensional. It is isomorphic to a subalgebra of the structure
algebra g; a construction of such an isomorphism is given in Sect. 5.
The annihilator of a subalgebra §) C gs(P) is the subspace §? C gs(P)* defined
by
b = {v € gs(P)*|(v|¢) =0 V E € b}. 2.11)

Proposition 2.4. The range of the map dJ, : TyP — gs(P)* is given by the anni-
hilator of the symmetry algebra of p, that is

range dJp = (gsp)” . (2.12)
Proof. By (1.11), for each & € gs(P), and p € P,
(dJp(-)IE) = Ep(p) ) . (2.13)
Since w is non-degenerate, it follows from (2.9) that
gsp = {& € gs(P){dJp(V)|&) =0V v € T,P} = (range dJ,p)” . (2.14)
Since rangedJp is closed, taking annihilators of both sides we obtain
(gsp)” = (range dJy)* = rangedJp ,

provided that (range dJ,)* is the closure of range dJp.
In order to prove the last assertion, denote by R, the closure of range dJ, in the
topological dual gs(P)" of gs(P). The polar of R, is

(Ry)’ = {£ € gs(P)|(v[&) =0V v € Ry},
and the bi-polar
(Rp)® = {v € gs(PY|(v|&) =0 V & € (Ry)°}

is the closure of R, in gs(P)', cf. [13]. By definition R, is closed so that R, = (Rp)".
Since range dJp is dense in Ry, it follows that
(Ryp )° = (range dJy)* .
Hence,
(range dJy)* = (Rp)oo Ngs(P)" =R, Ngs(P)*,
which implies that (range dJ,)™ is the closure of rangedJ, in gs(P)*. O

We conclude from Proposition 2.4 that p is a regular point of the momentum
map J if and only if p has no infinitesimal symmetries, i.e. gs, = {0}. In this case
J~Y(J(p)) is a manifold in a neighbourhood of p with the tangent space

TpJ ' (J(p)) = ker dJ, .
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Singular points of the momentum map have non-trivial algebras of infinitesimal
symmetries.

The next essential property of the action of GS(P) in P needed here is the
existence of slices. A slice through a point p € P for the action of GS(P) is a
submanifold Sy of P containing p, and such that

(1) S, is transverse and complementary to the orbit O at p, that is

TpSp ® T,0p, = T,P. (2.15)
(2) Sy is transverse to all GS(P) orbits, that is, for each q € Sp,

TgSp + TqOq = T4P . (2.16)

(3) Sy is invariant under the action of the gauge symmetry group GSp of p.
(4) For q € Sy and ¢ € GS(P), if ¢q € S, then ¢ € GS,.
The last condition implies that

GSqCGS, VqeS,. (2.17)
A slice Sy through p gives rise to an open neighbourhood Uy, of p € P of the form
Up =S, xVp, (2.18)

where Vj is an open neighbourhood of p in the orbit Op. It will be referred to as
a slice neighbourhood of p. A slice S, will be called affine if it is an open subset
of a closed affine subspace of P.

Theorem 2 (Slice Theorem). For each p € P, there exists an affine slice S, through
p for the action of GS(P), which is L*-orthogonal to T,O.

Proof is given in Appendix C.

Let H be a compact subgroup of H of GS(P). We denote by Py, Py, and
Py the sets of points p in P such that GS, = H, GS, 2 H, and GS, is conjugate
to H, respectively,

Py = {p€P|GS, =H}, (2.19)
P[H] = {p € PIGSp ) H} . (2.20)
Py = {p € P| 3 ¢ € GS(P) such that GS, = pHP™'}. (2.21)

Note that Py is the union of the GS(P) orbits through the points of Py,
Py = {¢pl¢ € GS(P), p € Py}. (2.22)
Propeosition 2.5.

(1) Py is a closed affine subspace of P.
(2) For every p € Py,

PyunNS, =PuNSy, (2.23)

where Sy is an affine slice through p, is an open subset of a closed affine subspace
of P.
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(3) Py is locally a submanifold of P, that is connected components of P
are submanifolds of P.

Proof.

(1) Follows from the fact that the action of GS(P) is continuous and affine.

(2) Clearly, Py NS, C Py N'S,. Suppose q € Py NSy, By definition, GSq 2
H. However, (2.17) implies that GSq C H. Hence, GSq = H and q € Py. Therefore,
Py NSy = Py N'S,. Since Py is a closed affine subspace and S, is an open subset
of a closed affine subspace, it follows that P; NSy is an open subset of a closed
affine subspace of P.

(3) Each q € P(y) has a neighbourhood in Py of the form Vi x (Sq NPy),
where H = GSq and Vg is a neighbourhood of GS(P) orbit through g, cf. (2.18).
Since both factors are submanifolds of P, it follows that Py is locally a subman-
ifold of P. O

3. Constraints

The constraint set is the zero level of the momentum map J. It follows from Propo-
sition 2.4 that J~!(0) need not be a manifold in neighbourhoods of points admitting
infinitesimal symmetries. We shall show that it is partitioned by presymplectic sub-
manifolds labelled by conjugacy classes (H) of compact subgroups of GS(P).

For each compact subgroup H of GS(P), we denote by My, the intersection
of J=1(0) with the submanifold Py,

M) =J 71 (0) NP . (3.1)

If (Hi1)#(H,), then P, ) NP,y = 0. Hence, the constraint set is the union of
disjoint sets Mx),

J7H0) = (%J)M(H) , (3.2)

where the union is taken over the conjugacy classes of compact subgroups of GS(P).

Theorem 3. For every compact subgroup H of GS(P), Mu is locally a submani-
fold of (P,w). The null distribution of w restricted to My consisting of the
vectors tangent to the GS(P) orbits in M.

The proof of this theorem will be given in a series of propositions.

The momentum map J restricted to Py has values in the annihilator §? of the
Lie algebra ) of H because (J(q), &) = (6,&p(q)), and Ep(q) = 0 for all £ € I and
q € Py. The Ad* action of GS(P) in gs(P)* is given by,

(Adju, &) = (1, Adyd) = (1,0 7'E9) . (33)
for all ¢ € GS(P), u € gs(P)*, and & € gs(P). Since J is Ad* equivariant,
AdgJ(q) =J(¢q) V ¢ € GS(P), (34)

it follows that,
Ad}‘,J(q) =J(qQV deH. 3.5)
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Let b denote the subspace of gs(P)* consisting of the u € h? satisfying
Adyp=pvV pecH. 3.6)
It is a closed subspace of gs(P)*, and hence,
gs(P)* = by ® (b)) ", (3.7)

where (h% )" denotes the L? orthogonal complement of hZ. We denote by 7 : P —
b4, the projection on the first component, and by Ky the composition of J with 7y,

KH=7EHOJZP—->I)?_I. (38)

Proposition 3.1.
JH0)NPy =K;'(0) NPy . (3.9)

Proof. Clearly, J(p) =0 implies Ky(p)=0. Hence J~'(0)NPy is contained
in K,}I(O)HPH. Conversely, let peK;l(O)ﬂPH. Equations (3.5) and (3.6)
imply that J(p) € bj,. Since the projection Ky(p) of J(p) to bf vanishes, it
follows that J(p) = 0. Hence, J~'(0) NPy D K;[I(O)OPH, and J7H0)NPy =
K;' (0)nPy. O

For each p € Py, we denote by S, an affine slice through p which is L? ortho-
gonal to the tangent space 1,0, of the GS(P) orbit through p.

Proposition 3.2.

K;'(0)NPy NS, is a submanifold of P in a neighbourhood of p .

Proof. By Proposition 2.4 range dJ, = b?. Hence, for every u € bj,, there exists a
unique vector u, € TP, L?-orthogonal to kerdJ,, such that

dy(u,) = p. (3.10)
By definition of Ky, Eq. (3.10) is equivalent to
dKp(u,) = . (3.11)

Since the action of GS(P) in P preserves the Riemannian structure given by the
L? scalar product, and kerdJ, is invariant under the action of H it follows that the
L?* orthogonal complement of kerdJ, is H invariant. Hence, Egs. (3.4) and (3.6)
imply that u, is A invariant. This implies that the action of H fixes every point of
the affine line q(¢) = p + tu,, in P. Therefore, for every 1 € R, GSy;) 2 H so that
q(t) € Ppyy. Differentiating with respect to ¢ we get u, € TP
For every & and ( € gs(P), (dJp(&p)|0) = (J(P)I[& (]). Hence, J(p) =0 im-
plies that {p(p) € kerdJ, for all ¢ € gs(P). Since {&p(p)|E € gs(P)} spans T,0,,
it follows that
Tp,0, C kerdJ, . (3.12)

By assumption 7S, is the L? orthogonal complement of 7,0, and u, is L? ortho-
gonal to kerdJ,. Hence, it follows that u, € TS,

The above results imply that u, € Tp(Pry; N'S,). Taking into account (3.11),
we see this means that p is a regular point of the restriction Ky |(Piz1 N Sy) of Ky
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to Pz N'S,,. Hence, Kl;l(O) NP NSy = (Ku|(Pry N'Sp))~1(0) is a submanifold
of PpN'Sy in a neighbourhood of p. By Proposition 2.5 K 0)NPy NS, =
K;7'(0) NPy NS, and it is a submanifold of P in a neighbourhood of p. [J

Corollary 3.3. My is locally a submanifold of P.

Proof. For each q € My NSy, GSq is conjugate to / and contained in /7. Hence
GSq = H, and M) NS, € Py. Hence,

My, NSy =J 1 0) NPy NS, =7 H(0)NPr NS, =K;'(0)NPy NSy,

which is a submanifold of P in a neighbourhood of p by Proposition 3.2.

As a consequence of the Slice Theorem, each point p € Mg has an open neigh-
bourhood in My obtained by the intersection of My with slice neighbourhood of
p € P. By (2.18) it is of the form (M) NSy) x V,, where V; is an open neigh-
bourhood of p in the orbit Oy. Since (M(z) N'Sy) X Vp is a submanifold of P, it
follows that Mz is locally a submanifold of P. [

Proposition 3.4.
To(K7'(0)NPy NSy) = kerdJp N Tp(Preny N'Sp) - (3.13)
Proof. In the proof of Proposition 3.2 we have shown that p is a regular point of

the restriction Ky(PryN'Sp) of Ky to Py N'Sp. By Proposition 2.5, Py NS, =
Py NS, so that

To(K7'(0) NPy N'S,) = (ker dKy) N Ty(Pu N'Sy) - (3.14)

Since Pz NS, is an open subset a closed affine subspace of P, it follows that,
for each u € Tp(Py; N'Sp), a neighbourhood of p in the affine line q(¢) =p +
is contained in Py NS,. Equation (3.5) implies that AdiJ(q(z)) =J(q(¢)) for
all ¢ € H. Differentiating with respect to ¢, we obtain Ad;de(u) = dJy(u) for
all ¢ in H. Taking into account Proposition 2.4 we obtain dJp(m) € hf. Hence,

dKp(u) = ny o dJy(u) = dJy(u) for every u € Typ(PryN'Sy). Hence,
dJ | Ty(Puy N Sp) = dKu|Ty(Pun N Sp) . (3.15)

In particular, kerdJ N Tp(Pa1N'Sy) = kerdKy N Tp(PpN'Sy) which, together
with (3.14), implies (3.13). O

Proposition 3.5. For each p € Py, the restriction of w to Ty(MyN'Sy) is non-
degenerate.

Proof. Propositions 3.1 and 3.4 imply that

Tpo(Mzy N'Sp) = (ker dJp) N TP N TS,y . 3.16)
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In order to show that it is symplectic we need the almost complex structure ¢
discussed in Appendix A.

By assumption 7,Sp is L? orthogonal to 7,0,. Hence, Eqs.(2.7) and (A.7)
imply, that

F(kerdJp) = ((ker dJy)*)” = ((ker dJp)°)*: = (T,0p)* C TpSp

and
A(TySp) = (TpSp)™H)” = (1,0,)° = kerdJj,

so that
F((kerdJp) N TpSy) = (ker dJp) N TS, . (3.17)

Moreover, the action of GS(P) preserves _#, which implies that
F(TPiy) = TyPra - (3.18)

Let v € Tp(My N'Sp) be such that w(v,w) = 0 for all w € T,(Mzy N'Sp). Then
@(v,W) = 0 for all W in the L? closure Tp(Mz) N'Sp) of Ty(M(z) N'S,). By (3.17)
and (3.18), # maps T"P(M(H) N'Sp) to itself. Hence, taking W = ¢v, we get

||V”iz =(V[V)2 = &(FV,v) = 0.

Therefore v = 0, which implies that the restriction of w to T,(MzyN'Sp) is non-
degenerate. [

Corollary 3.6. My) is locally a submanifold of (P,w). The null distribution
of w restricted to My consisting of the vectors tangent to the GS(P) orbits in
M(H).

Proof. 1t follows from Proposition 2.2 and (3.12) that T,0p = (ker dJp)® C (ker dJp).
Hence, w(v,w) = 0 for every v € TOp and w € TpMy). Since TpMzy = Tp(Mzy N
Sp) + Tp0p, and Tp(My N'Sp) symplectic by Proposition 3.5, it follows that T,0p
is the null space of TyM(x).

4. Reduction

The reduced phase space P of the system is defined as the space of GS(P) orbits
in the constraint set J~'(0),

P =J"10)/GS(P) . 4.1

We denote by p:J~1(0) — P the natural projection, assigning to each p € J~!(0)
the orbit O, € P,
p(p) = Oy . (4.2)

Since the action of GS(P) in P is proper, the quotient topology in P is Hausdorff.
This can be seen as follows. If p,q € J~!(0) are such that p(p) and p(q) cannot
be separated by open sets, then there exists a sequence p, in J~'(0) such that
p(p,) converges both to p(p) and p(q). Let Sy and Sq be slices through p and g,
respectively. For sufficiently large n, there exist ¢,, ¥, € GS(P) such that ¢,p, € S,
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and ¥,p, € Sq. Hence, ¢,p, — p and ¥,p, — q as n — oo. Thus, ¢y, ' (Ynp,) —
p, while ¥,,p, — q, which implies that ¢, "' has a convergent subsequence with
limit ¥ and yq = p. Hence, p € Oq and p(p) = p(q).

For every compact subgroup H of GS(P), we denote by f’(H) the projection of
M(H) = J_I(O) N P(H) to 13,

Puny = pMar) (4.3)

and by pgry: My — Pury the restriction of p to M), considered as a map to
lv)(b). Thus,

P=UPu, (4.4)
(H)

where the union is taken over the conjugacy classes of compact subgroups of GS(P).

Theorem 4. For each conjugacy class (H), lS(H) is a quotient manifold of M)
endowed with a weakly symplectic form

By = dOur (45)

such that 5
pimbany = mt  and  plyydury = 1{myo , (4.6)

where 1gy: Mgy — P is the inclusion map.

Proof. For each p € M(g), let Sy be an affine slice through p normal to 7,0,. By
Proposition 3.1, Mgy NSy is a submanifold of P in a neighbourhood U of p and
it is contained in Py, where H = GSp. The image of U under p(y) is the space of
the equivalence classes under the equivalence relation ~ in U, given by p; ~ p, if
and only if p, = ¢p, for some ¢ € GS(P). The Slice Theorem implies that ¢ € H.
Since U C Py, it follows that ¢p, = p,. Hence, p)|U is a bijection of U onto its
image, and it is a local homeomorphism in the quotient topology of ﬁ(H).

Since U is a submanifold of P, the collection of maps {(p)|U)~'} induces
an atlas in P. Suppose that p € py(U1) N py(Uz). Then, there exists an open
neighbourhood V of p in py(Ur) N pery(Us). Let V; = p(’Hl)(\V/) N U;, and p; be in
the intersection of V; with the fibre p("Hl)(ﬁ), i = 1,2. Then, there exists ¢ € GS(P)
such that p, = ¢p,. Consider the affine slice Sp, through p; orthogonal to Ty, Op,
such that p)(Sp, N Mzy) =V (such a slice always exists for a sufficiently small
V). Since V; and S, N My are smooth submanifolds of P, projecting onto V
and p; € Vi N(Sp, N M), it follows that there exists a smooth map @;:S, N
My — GS(P) such that the map

(ﬁl : Spl M M(H) — Vi q— é](q)q

is a diffcomorphism. In a similar way we can construct a diffeomorphism @,
Sp, N My — Va, where Sy, = ¢Sy, is an affine slice through p, orthogonal to

s, a1 A1
Ty,0p, and such that p)(Sp, " M(y) = V. The map q— P2(¢P; (q))¢?P; (q)
is a diffeomorphism of V; onto V,. This guarantees that the atlas induced by the
maps {(pur)|U)~!} defines a differentiable structure in P of class C*°.
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For each p € M(y) and & € GS(P), (0|&p(p)) = J:(p) = 0. Hence, 0, is annihi-
lated by the vectors in 7,0,. Moreover, 0 is GS(P) invariant. Hence, the pullback
1yt of 0 to M) pushes forward to a 1-form 6 onP satisfying (4.6).

By Proposition 3.5, the restriction of w to Tp,(M)N'Sp) is non-degenerate.
Since pgyy is a diffeomorphism of a neighbourhood of p in M(y) NSy onto its
image, and 7,0y is the null space of 1y wp, it follows that 17 @ pushes forward

to a non-degenerate form ¢ on P which satisfies (4.6). Equation (4.5) follows from
Wy = din0). O

5. Symmetry Breaking

Yang-Mills potentials represent connections in a right principal bundle Q over M
with structure group G. Since M is contractible, the bundle Q is trivial,

O0=MxG (5.1)
and the action of G in Q is given by

O xG = Q:((x,9),h) = ((x,9) - h) = (x,gh) . (5.2)

The associated bundle Q[G] of Q with typical fibre G and the adjoint action
of G on itself is called the group bundle of Q. Sections of Q[G] correspond to
automorphisms of Q covering the identity transformation in M. In this context, the
group GS(P) of gauge symmetries of P can be identified with the group of sections
of Q[G], of class H3(M), which satisfy the boundary condition (2.4).

Sections of associated bundles correspond to equivariant maps from the principal
bundle to the typical fibre. Thus, each element ¢ € GS(P) corresponds to a map
¢%: O — G such that, for every (x,9) € O,

' ((x,9)) =g " Pp(x)g . (53)

The adjoint bundle of Q is the associated bundle Q[g] with typical fibre g and
the adjoint action of G on g. The space of sections of Q[g] is the Lie algebra of
the group of sections of the group bundle Q[G]. The Lie algebra gs(P) consists of
sections of the adjoint bundle, which are of Sobolev class H*(M) and satisfy the
boundary condition (2.1). Each ¢ : M — g in gs(P) corresponds to an equivariant
map & : P — g such that

tx,e) = &x). (54)

The aim of this section is to describe the symmetry breaking by the fields
(A, E, V) € Py, that is the fields with gauge symmetry group H, where H is a
compact subgroup of GS(P).

Let xo be a fixed point in M, then

Hy = {¢(xo)| € H} (5.5)

is a closed subgroup of G isomorphic to . We denote by Z[H,] the centralizer of
Hy, defined by

Z[Ho] = {g € Glhg = gh ¥ h € Hy}. (5.6)
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It is a closed subgroup of G with the Lie algebra

3[Hol = {¢ € glheh™ = £V h € Hp}. (5.7)
The subset Qy of O, given by
Qo = {(x,9) € P|¢*(x,9) = dp(x0) V ¢ € H}, (5.8)

is a right principal bundle over M with structure group Z[Hp]. Since M is con-
tractible, Qp is trivial, that is it is diffeomorphic to the product of M and Z[H,].
Actually, we could have chosen the product structure (5.1) in Q in such a way that

Qo = M x Z[Hp]. (5.9)

For the sake of simplicity of presentation, we assume that (5.9) holds. With this
choice of the trivialization elements ¢ € H are constant maps from M to G with
values in Hy. By assumption (A, E, ¥) € Py, and (1.5) implies that

PAP' =AV pecH. (5.10)

Comparing with (5.7) we see that the Yang-Mills potential A takes the values in
3[Hp]. This means that the connection in Q described by A reduces to a connection
in Qp. Similarly, the electric component E of the field strength is a g-valued 1-form
on M. The transformation law (1.5) implies that

¢Ep ' =EV pcH. (5.11)

Hence, E has values in 3 [Hj].

The matter field ¥ is a section of the associated bundle of Q, with typical fibre
R" ® C*, where IR” is the space of the fundamental representation of (the matrix
group) G, and the factor €* describes the spin degrees of freedom. It follows from
(1.5) that

QY =¥V pecH. (5.12)
Hence, ¥ has values in the space
Vo={ze R"®@C*|hz =2z Y h € Hy}, (5.12)

and it corresponds to a section of the associated bundle Qy[V)] of Qp with typical
fibre V. Thus, we have proved

Theorem 5. For every (A, E, ¥) € Py, the Cauchy data (A, E) for the Yang-
Mills theory with the structure (internal symmetry) group G reduce to Cauchy
data for a Yang—Mills theory with the structure (internal symmetry) group

Z[Hy] = {g € Glgd(x0) = dp(xo)g ¥V ¢ € H} .

The matter field ¥ reduces to a section of an associated bundle with typical fibre
Vo = {Z € IR"@(E“]}IZ =zVh EH()}.

It should be noted that the change of the point xo € X, used in the definition of
Hy, Eq. (5.5), corresponds to passing from Q) to another principal sub-bundle of O
with conjugate structure group.
Symmetry breaking can now be described in terms of the centre C[H,] of H
given by
ClHyl = Z[Hy] N H, . (5.13)
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It is an abelian Lie group with Lie algebra ¢ [Hj]. Elements of the center C[H]
of H, analyzed in terms of the principal bundle Qy, correspond to sections y of
the associated bundle Qy[C[H,]]. As before, we denote by y* the Z[Hp]-equivariant
map from Qp to C[H,] corresponding to a section y of Qo[C[Hp]]. In analogy to
(5.8) we define

01 = {(x.9) € Qoly*(x,9) = y(x0) ¥V y € C[H]} . (5.14)

It is a principal sub-bundle of Qy with structure group C[H,]. The assumption (5.9)
about the product structure of Qy gives the product structure

O1 =M x C[Hy], (5.15)

and we shall continue our discussion in terms of this product structure. If ¢ [Hy] =0,
we can decompose 3[Hp] into ¢ [Hp] and its orthogonal complement by,

3[Ho] = ¢[Ho] ® by . (5.16)
Similarly, we can decompose the Yang—Mills potential
A=A +As, (5.17)

where A, has values in ¢[Hy], and Ay in by. The component A, describes a
connection in the C[Hy] principal bundle Q;, while Ap gives rise to a tensorial
form on Q). In terms of the terminology used in the Higgs mechanism for symmetry
breaking, they correspond to the residual Yang—Mills potential and the vector boson
field, respectively, [14].

It should be noted that the symmetry breaking described here is purely intrinsic.
There is no need for the Higgs field. However, the vector boson fields corresponding
to Ap are massless. In the Higgs mechanism the mass of vector bosons is derived
from the kinetic energy term for the Higgs boson, [15], which is absent here. On
the other hand, the mass of the vector bosons might appear in quantization as an
anomaly, [16].

Appendix A. Completion and Almost Complex Structure

One of the technical assumptions in [3] is the existence of an appropriate almost
complex structure, which in Yang-Mills theory acts by interchanging A and E.
However, in our phase space P the variables A and E appear asymmetrically, and
we do not have existence and uniqueness theorems in spaces symmetric under the
interchange of A and E.

Let P denote the completion of P in the L? norm. The weak symplectic form
o in P induces a strong symplectlc form @& in P. The L? scalar product (|- )2
defines a Riemannian metric in P. Let # : TP — TP be defined by

J(0A,SE,6¥) = (—0E, 6A,id¥) (A.1)
for every (JA,JE,0%) € TP. Then, #2 = —1, and

A Ju, fv) = d(w,v) = (Julv) 2 = —(ulfv)2 (A2)
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for all u,v € TP. Thus, # is an almost complex structure on P. The action of GS(P)
in P extends to an action in P preserving its symplectic form, the Riemannian metric
and the almost complex structure.

Let V be a closed subspace of 7,P and let V be its closure in T,P. The
symplectic annihilator V* of V is defined by

V® = {u e THPlo(wv) =0V ve V}. (A3)

Similarly, the symplectic annihilator of V in TplS is

Vo = fue T,Plouy) =0V veV}. (A4)

Since V is closed, we have
(V*)* =V. (A5)

We denote by V* the L2-orthogonal complement of V in T,P, and Vl the L2
orthogonal complement of its closure V in T, pf’. We have

(Ve = (VYN T,P. (A.6)
Moreover, by Eq. (A.2),

(V)P ={ue LPlomv)=0VveV }={uecT,Plruc (V)‘} = V.

Hence, .
(VH)? = #VNT,P. (A7)

In the following we shall use the notation

IV =¢VNT,P. (A8)

Appendix B. Properness of the Action of the Gauge Symmetry Group

The gauge symmetry group GS(P) consists of map ¢ : M — G in the Sobolev
class H*(M) such that n - grad ¢ = 0, (2.4). Its action in P is given by (1.5.). In
order to prove that this action is proper, we need to show that, for every sequence
p, = (An, E,, ¥,) converging to p, = (A, Exo, P ) € P, and every sequence
¢n in GS(P) such that ¢,p, converges to p = (A, E, ¥), the sequence ¢, has a
convergent subsequence with limit ¢ and ¢p., = p.

The gauge transformations act on A, E, and ¥ independently. Hence, we may
consider first the action of GS(P) on the connections. For a sequence A, converging
to A, and a sequence ¢, in GS(P), let

C = PuAudy, ' + dud ;! (B.1)
denote A, transformed by ¢,. This implies
ddn = pnAn — Cy9y . (B.2)

By hypothesis, the sequences A, and C, converge in H>(M) to A, and A, re-
spectively. In particular, their H*(M) norms ||A,| 2 and ||C,||,2 are bounded.
Furthermore, the L*(M) norms |¢,||,2 of ¢, are bounded since M and G are
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compact. Equation (B.2) implies that also the L?(M) norms ||d@,||,2 of d¢, are
bounded. Hence, the H'(M) norms ||¢, |1 of ¢, are bounded. Repeating this ar-
gument twice, we conclude that the H3(M) norms of ¢, are bounded. By Rellich’s
Lemma the sequence ¢, has a subsequence convergent to ¢ in H2(M). Without
loss of generality, we can restrict our argument to this subsequence, and assume
that ¢, converges to ¢ in H>(M). Hence, the sequence C, = ¢,A,d; ' + Ppdep;!
converges t0 pA @' + ddp~! in H(M),

pAcd™ + pdp™ ' —Cplli =0 as n— 0. (B.3)
By hypothesis, C, converges to A in H*(M). Therefore,
[pAcd™ +ddd™! = Alln £ [[9Aod™" + ¢dd™" — Cyl|n
+IC, —All;3 =0 as n—o0.

This implies that
A=dAxd™ +ddop™", (B:4)
and hence,
dp = A — Ad . (B.5)
Since the right-hand side of (B.5) belongs to H2(M), it follows that d¢ € H*(M),
so that ¢ € H>(M).
Using (B.2) and (B.5), we observe that

lld¢n - d¢|IH2 = ||¢nAn - Cnd)n - (d’Aoo - Aqb)”[ﬂ
é [‘¢nAn - ¢A<>0“H2 + ||Cn¢n - A¢)”H2 .

As n — oo the right-hand side tends to zero, because ¢, — ¢, A, — A, and
C, — A in HX(M). Hence, ||d¢, —d¢|,2 — 0, which implies that ¢, — ¢ in
H3(M). This proves the properness of the action of GS(P) on the space of H*(M)
connections satisfying the boundary conditions (1.1).

In remains to show that ¢ takes E., to E and ¥ to ¥. By hypothesis
E, — E, and ¢,E,$, ! — E in H'(M). Since ¢, — ¢ in H>(M), and a pointwise
multiplication of functions in H'(M) by functions in H*(M) is a continuous map
from H'(M) x H3(M) to H'(M), we obtain

E = lim (¢,E,¢;') = ( lim ¢>,,> (lim E) (lim ¢;1) = ¢E 0" .
HY(M)

H3(M) HY(M) H3(M)

In a similar manner we obtain
¥ = lim (¢,¥,) = lim (¢,) lim (¥,) = ¢¥w .
H2(M) H3(M) HX(M)

This completes the proof of properness of the action of GS(P) in P.

Appendix C. Proof of the Slice Theorem

We establish here the slice theorem for infinite dimensional groups, cf. [17]. Since
the assumptions made here are more general than in the body of the paper, we use
an independent notation following that of Appendix 2 of [18].
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Let M be a Hilbert manifold, and G a Hilbert Lie group, with a continuous
proper smooth left action @ : G x M — M. In the following we use the notation
P,(m) = P(g, m). Let g be the Lie algebra of G. For each m € M, we denote by
Gy, the isotropy group of m, by g, the Lie algebra of G, and by O,, = G - m the
orbit of G through m. Since the action is proper G, is compact and the orbit O,
is closed. The tangent space 7,,0,, can be presented as g - m = Td(g,0)(e,m), and
Gm - m=0.

Hypotheses

(a) The group G is a Lie group in the sense that the exponential map gives
a diffeomorphism of a neighbourhood of 0 € g onto a neighbourhood of e € G.

(b) The action ® is proper.

(¢) Bochner Linearization Lemma, [19]. There is a G, invariant neighbour-
hood U of m € M and a diffeomorphism  : U — T,M such that:

Y(m)=0 and T,Y = identity (C.1)
and, for every g € G, and p € U,
Y(Py(p)) = Tn@y(Y(p)) - (C2)

These assumptions are stronger than needed to get slices, but they allow us to
control the topology of the space of orbits of the group action. They are satisfied
by the gauge symmetry group GS(P) considered in this paper. Proposition 2.1
guarantees assumption (a). Properness of the action of GS(P) is proved in Appendix
B. The Bochner Linearization Lemma follows from the fact that the action of GS(P)
is affine.

First we need a lemma.

Lemma C.1. Given m € M, let L be a submanifold of G through e such that
§=gu®T.L, (C3)
and let S be a submanifold of M through m such that
TuM = TpOn ® TS . (C.4)

Then there is an open set U x V C L xS such that ®|(U x V) is a diffeomor-
phism onto an open neighbourhood W of m € M.

Proof. Let D® : TG x TM — TM denote the derivative of @, and D;® be the re-
striction of D® to the i™ factor. Since ®(e,m) = m for all m € M, we have that
Dy Py = identity, and so D®,, ) is surjective. Now ker D@D, ) = gy, by defini-
tion, and also, by definition image D@ m) = T5yOm.

Choosing L C g and S C T,,M so that we can make the identifications

T.L = g/gm , (C5)
TS 2 T,,M/TpyOp , (C6)

we have that D®|(T.L x T,,S) is an isomorphism. Since M is a Hilbert manifold
‘the lemma now follows by the inverse function theorem. [
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Corollary C.2. If ¢,V NV £0 for some gc U CLC G,and V CS, then g =e.

Proof. Let m € V be such that &(g,m) = d(e,m’) with m’ € V. Since @ is a local
diffeomorphism on U x V it follows that (g,m) = (e,m’), so that g =e. O

Lemma C.3. For every neighbourhood U on M containing m, there is a Gy, in-
variant open set U containing m with U C U.

Proof. Since M is a Hilbert manifold, it is first countable. Hence, there exists
a sequence {U,} of neighbourhoods of m in M such that U, C U,—1,( o, Un =
{m}. Suppose now that the statement of the lemma is false. Then G, - U, is not
contained in U for all n. Hence, there exist sequences m, € U, and gn € G, such
that g,m, & U. Since the action of G is proper, the isotropy group G, is compact
and the sequence g, has a convergent subsequence. Without loss of generality we
may assume that g, converges to g € G,,. The sequence m, converges to m by
construction. The continuity of the action of G in M implies that g,m, converges
to g - m = m, which contradicts the statement that g,m, ¢ U for all n. O

Slice Theorem. For each m € M, there exists a smooth submanifold S of M
through m such that

(1) TuM = T,,0, & TS . (C.7)
) M =T,0,+T,SVpeS, (C8)
3) Gn-SCS, (C9)
(4) For p€eS, and g € G, if Oy(p) €S then g € G, . (C.10)

Proof. We prove the existence of a slice by constructing a candidate S, and showing
that properties (1) through (4) hold.
Observe that if k € G, kg - m =kgk™' « m, or

Dy 0 Dy(m) = By 1(m) . (C.11)

If g = exp(¢£), ¢ € g, then the l-parameter groups ¢ — k[exp(¢£)]k~! and ¢ — exp
(tAd;&) have the same tangent vector Ad;¢ at ¢t = 0. Hence, differentiating (C.11)
with respect to ¢ at ¢t =0 we get

TkaTe‘@m(f) = Te(pm(Adké) (C‘12)

which tells us that 7,,®; leaves T,,0,, invariant.

Since G,, is compact, there is a G,, invariant inner product on T,,M. So (T},0,,)*
is a Gy, invariant subspace. Using the local linearizing diffeomorphism ¢ (from the
Bochner Lemma) the submanifold

S =¥ (TnOn) N B:), (C.13)
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where B, is a ball of radius ¢ in T,M (with respect to the G, invariant inner
product) is G, invariant. So S, has property (3). Moreover, T,,S; = (7,,On)*,
since T,y = identity. Hence, property (1) holds as well.

We argue that Property (2) is an open condition in S, as follows. Observe that
®|(G xS;):GxS; — M is a submersion at (e,m). Hence it is a submersion at
(e, p), for all p in a neighbourhood of m in S,.

Now it remains to show that we can find ¢ > 0 so that (4) holds. Suppose that
it does not hold for any ¢ > 0. This would imply that there is a sequence of points
{m,} with m, € Sy/,, and a sequence g, € G, such that g, ¢ G, and g,m, € Syp.
Hence, m,, — m and g,m, — m. Since the action of G in M is proper, it follows
that there exists a convergent subsequence of g,. Without loss of generality, we
may assume that g, — g. Moreover, g,m, — gm = m, which implies that g € G,.
Hence, g~ 'g, — e, g € Gy and g, & G,

G acts in G be multiplication on the left, and the orbit of this action through the
identity in G coincides with G,,. Applying Lemma C.1 to the action of G,, in G, we
conclude that there is a submanifold L of G transverse to G, at e, and an open set
U x V C Gy, x L such that the multiplication (%, /) — kI is a diffeomorphism onto
some open neighbourhood W of e in G. Thus, we may assume that g~'g, = k,/,,
with k, € G, and [/, € L. Since, g and k, are in G, and g, ¢ G, it follows that
I, =k, 'g7 g, ¢ Gy, for all n.

We now apply Lemma C.1 to U x V C L x S,. For sufficiently large n, g,m, =
gkyl,m, is in V CS,. It follows from Corollary C.2 that gk,/, = ¢ for n large
enough. Hence, /, =k, lg~1 € G,,, which contradicts the result above. This contra-
diction establishes (4). O

We should remark that for the case under consideration in this paper, that
is for G = GS(P), there is a natural GS(P) invariant weak inner product on
the manifold M =P given by the L? scalar product. In this case, we can take
(T,,Om)* to be the L? orthogonal complement of T,0,. As long as the ball B,
is defined with respect to the strong G, invariant inner product on M, the man-
ifold S, defined by (C.13) will satisfy properties (1) through (4). Hence, for the
gauge symmetry group GS(P) one can always choose a slice S through m satis-
fying the condition (3.8), requiring that 7,,S is the L? orthogonal complement of
T1nOn.

Acknowledgement. The authors are greatly indebted to Richard Cushman for numerous illuminating
discussions on the topic of singular reduction in a finite dimensional setting.
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