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Abstract: The equation 2% + L (H@fw+ (1 - Hx)g(w) = 0, where H is
Heaviside’s step function, appears for example in continuous sedimentation of solid
particles in a liquid, in two-phase flow, in traffic-flow analysis and in ion etching.
The discontinuity of the flux function at « = 0 causes a discontinuity of a solution,
which is not uniquely determined by the initial data. By a viscous profile of this
discontinuity we mean a stationary solution of u, + (F®), = euy,, where FO is a
smooth approximation of the discontinuous flux, i.e., H is smoothed. We present some
results on the stability of the viscous profiles, which means that a small disturbance
tends to zero uniformly as ¢ — co. This is done by weighted energy methods, where
the weight (depending on f and g¢) plays a crucial role.

1. Introduction

The scalar conservation law with discontinuous flux function

ou(x,t) O

+ 2 fw), >0
ot dzx

g(uw), =<0

(Fo(u(x,t),x)> =0, where F'(u,z) = { (1.1)

arises in several applications, for example in continuous sedimentation of solid par-
ticles in a liquid, see Diehl [4] and Chancelier et al. [1], in two-phase flow in porous
media, see Gimse and Risebro [5], in traffic-flow analysis, see Mochon [15], and in
ion etching in the fabrication of semiconductor devices, see Ross {17]. The Cauchy
problem for a more general equation than (1.1), including a point source s(t) at z = 0,
has been analysed by Diehl [3]. Generally, solutions of (1.1) contain a discontinuity
along the {-axis and curves of discontinuity that go into and emanate from it. This
discontinuity along the f-axis is not uniquely determined by the initial data w(z, 0)
and a uniqueness condition, Condition /°, was introduced in [3]. Another way to pick
out the physically relevant discontinuity is by means of the viscous profile condition.
By a viscous profile we mean a stationary solution of 1, + (F%), = euy,, where F?
is a smooth approximation of the discontinuous flux, i.e., H is smoothed. In [2] the
equivalence between Condition [ and the viscous profile condition is presented, as
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well as the non-unique augmentation of Eq. (1.1) to a 2 x 2 triangular non-strictly
hyperbolic system. In terms of such a system, depending on f and g, the discontinu-
ity at = 0 is either a regular Lax, under- or overcompressive, marginal under- or
overcompressive or a degenerate shock wave.

To examine the stability of viscous profiles, the elementary energy method was
introduced, independently, by Matsumura and Nishihara [13] and by Goodman [6].
Some other important references, where the energy method has been used for systems
of viscous conservation laws, strictly hyperbolic and with convexity, are [10, 11, 19].
In [12] Liu and Xin present stability results for a non-strictly hyperbolic 2 x2 triangular
system, which qualitatively corresponds to letting f(u) = u?> and g(u) = u*> + C with
C >0in (1.1).

In the scalar case with f = g and under various assumptions, stability results have
been obtained by several authors, e.g. [8, 9, 10, 14, 16, 18]. In particular, Matsumura
and Nishihara [14] and Jones, Gardner and Kapitula [9] present stability results as
well as decay rates for non-convex flux f =g.

In this paper we consider the case of general non-convex f and ¢ in (1.1). In
Sect. 3 we investigate the stability of the different viscous profiles in the sense that
we show that a small disturbance decays to zero uniformly as ¢ — oc. In terms of
the 2 x 2 system, there is only a disturbance in the first equation. We use weighted
energy estimates, where the weight (depending on f and g) plays a crucial role. If the
total initial mass of the disturbance is zero, we show stability for any type of wave.
For non-zero initial mass, we show stability for undercompressive waves without any
further assumption and for overcompressive waves if the absolute integral of the initial
disturbance is small. Some cases are not resolved. Matsumura and Nishihara [14] also
use the weighted energy method (for the case f = ¢) and it is interesting to note that
their weight behaves asymptotically precisely as ours. The weight is constant if the
characteristics have different slope than the discontinuity (the shock is compressive)
and it increases linearly if the characteristics have the same slope as the discontinuity.

The main results of this paper are contained in Theorems 3.2, 3.3 and 3.4.

2. Definitions and Notation
Equation (1.1) should be interpreted in distribution sense and a solution is defined

as a weak solution in the standard way. In the class of piecewise smooth functions
u(zx,t) the Cauchy problem can be formulated

uy + f(u), =0, x>0,t>0,

ur + gu), =0, r<0,t>0, 5
' ®) =g ®)., t>0, &1
U(I,O)-_—UQ(.T), (OS] T—Kv

where u*(t) = u(0,t). We assume that f,g € C™ and that they both satisfy
[f'(w)| = C > 0 for |u| > R, for some R > 0.

The existence of viscous profiles corresponding to the different types of shock
wave is shown in [2]. We now recall the notation. Let A be a scalar smooth function
of one variable with h’(z) = 0 for |z| > 1 and h(x) strictly increasing from O to 1 in
|z] < 1. Then h(z/6) — H(x) as 6 \, 0 in distribution sense and

Fo(u,2) = k(@ /8) f(w) + (1 — Mz /8)) g(w) — FOlu,x), & \,0.
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For physical reasons, we are interested in solutions of (1.1) that are limits of solutions
of the parabolic equation

ug + (F° (w(z, ), x)), = tps (2.2)

as 6 and £ \_ O at the same speed. By a viscous profile for a discontinuity between
u~ and u* of a solution of (1.1) we mean a stationary solution w(x, t) = v(£), with
€ =x/e, of (2.2) satisfying v(€) — u™ as € — +o0. Hence v satisfies

V(&) = F* (v(€),e€) — g(u) . (2.3)

Note that g(u™) = f(u") by (2.1).
Equation (1.1) can be written as a system

i af(w)+(1 —a)gw)) _ (0
(@), (7% ™).~ (0): e

where k is defined such that the second equation has the stationary solution a(z,t) =
H(x) (i.e. kK(0) = k(1) =0, k(u) > 0 for 0 < u < 1). The function k is not uniquely
determined; see [2] for a natural definition. The eigenvalues of the Jacobian of the
flux matrix are

A, a) = af'(w) + (1 — a)g'(u),
A2(“7 (I) = k/(Q) 3

so generally (2.4) is a non-strictly hyperbolic system. Consider a shock wave between
(u™,0) and (u*,1) of the system (2.4). The first eigenvalue satisfies A\j(u™,0) =
g'(u™), Ay(ut, 1) = f/(u*) and the second A(u™,0) = k'(0) > 0, \(u*, 1) = k(1) <
0. We say that the wave is

undercompressive if g W) <0, f'(ut) >0,

marginal undercompressive if ¢'(u™) =0, f/(u*) > 0 or ¢'(u™) <0, f'(u*) =0,

overcompressive if g W)y >0, f(ut) <0,

marginal overcompressive if ¢'(u7) =0, f'(u") <0 or ¢g'(u™) >0, f/(u*) =0,

a regular Lax wave if g ) <0, f'(u)y<0or g )>0,f(u") >0,
degenerate if g )= fu)=0.

However, analysis of a general solution of (2.1), see [3], yields that there are three
qualitatively different types of discontinuity, depending on f and g. Furthermore, see
[2], the viscous profiles of (2.2) are naturally divided into these three cases. The
description of these three cases in terms of f and g needs, in the context of this
paper, cumbersome notation and we refer to [3, 2]. In this paper we are concerned
with the stability of a given viscous profile, so we define the three cases in terms
of the qualitatively different viscous profiles obtained. Conditions on the existence
of viscous profiles and their behaviour are given in [2]. In some cases the ratio 6/¢
must be small enough (depending on f, g, v~ and u*) in order for a profile to exist.
By symmetry we can assume that v~ < u*. Some examples of the three different
cases are given in the figures below, where orbits of Eq. (2.3) are shown. The figures
are obtained by computer simulations, with 6/ = 1 and h(z) = (1 + sin(x7r/2)) /2 in
|z] < 1.

Case 1. u* = u~ with f and g such that there is a unique viscous profile of (2.3),
v(€) = u* = u~, see Fig. 1. Generically, the wave is undercompressive, but it may
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Fig. 1. Case 1. Solutions of (2.3) (right) when g(u) = —u, f(u) =uw and u* =u~ =0.

also be marginal undercompressive or degenerate.

Case 2. u~ < u* with f and g such that there is a unique viscous profile of (2.3)
which satisfies v(€) = u~ for € < —§/e, see Fig. 2. If the ratio §/¢ is small enough,
the profile is increasing for £ > —§/e. Generically, the wave is a regular Lax shock,
but it may also be marginal under- or overcompressive or degenerate.

Fig. 2. Case 2. Solutions of (2.3) (right) when g(u) = —u, f(u) =1 —u, v~ =0 and u* = I. Notice that
there is a unique profile.

Case 3. u~ < u* such that there are infinitely many viscous profiles of (2.3), see
Figs. 3 and 4. Generically, the wave is overcompressive, but it may also be marginal
overcompressive or degenerate.

3. Stability of the Viscous Profiles

By simplicity we shall from now on let 6 = ¢ = 1. Then £ = = and we write F'
instead of F°. In Subsect. 3.1 we treat a generic situation of Case 1, covering the
undercompressive waves. Stability is shown without any restriction on the initial
disturbance. In Subsect. 3.2 stability is shown for any viscous profile assuming that
the total initial mass of the disturbance is zero and its absolute integral is small. If
the initial mass is non-zero we give, in Subsect. 3.3, conditions on when this problem
can be brought back to the zero-mass case by jumping to another profile. We shall
make use of the following theorem, the proof of which can be found in Appendix A.
For n > 0 and 7" > 0O introduce the norm
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Fig. 3. Case 3. g(u) = u, f(w) = 1 —u, v~ = 0 and u* = 1. All orbits are viscous profiles. The
corresponding shock wave is overcompressive.
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Fig. 4. Case 3. Phase plane diagram (right) when g(u) = u, f(u) = (I — w)?, v~ =0 and u* = 1. There
are infinitely many viscous profiles. The corresponding shock wave is marginal overcompressive.

”an,T = sup |u(lt)|(1 + 132)"/2 ]
(z,t)ERX[0,T1

In particular, the norm of the initial data u(zx,0) = ug(x) is
[[ullu0 = sup Juo()|(1 + %)™/ .
zch

Theorem 3.1. Consider the Cauchy problem

ut+(F(u,:1:))I=um, TER, t>0,

3.1
u(x, 0) = up(x), rzelR.

Assume that F € C(Ik?) with F(0,x) = 0 and that F, and its higher derivatives
(Fuzr Fuves Fuza €etc.) are bounded for all u, x € . If, for some n > 0, ug € C°(R)
satisfies

102ullno <oo, a=0,1,2,..., (3.2)
then (3.1) has a unique solution uw € C*°(R x R,), which for every T > 0 satisfies

max(ce,F+1)

1020 ullnr < Crap Y. 0%5ullno. 0.8=0,1.2,... . (3.3)
k=0
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Furthermore, if uF,(u,x) > 0, for all u,z € B, and ug(x) — 0 as |z| — oo, then

inf up(z) < w(z,t) < supup(z), (z,t) € R x[0,77].
zeR reh

In the situations below when we shall use this result, the boundedness of the
coefficients F),, etc. will be implied by the assumption that f’ and ¢’ are identically
constant far away. In Case 1 we require that n > 1/2, so that u € L. In Cases 2 and
3 we require n > 2, since we shall integrate functions of the type U?y, where U is
a primitive function of u and the weight ¢ fulfils 0 < p(z) < Clz|.

3.1. Case 1.

The viscous profile in this case is constant, say v(x) = 0. A disturbance u will thus
satisfy

ui+ (h@)(fw) = gw) + 9@) =urs, @R, >0,
u(x,()) = Uo(if), zeR s

3.4

where the flux functions are assumed to satisfy

g(u) z 0

fwso VSO 3.5)

cf. Fig. 1. Concerning f and g this is the generic situation, see [2]. The other cases
that do not satisfy (3.5) but still yield a unique constant viscous profile are covered
by the more general but weaker Theorem 3.3.

Theorem 3.2. Let the initial data ug € C°(R) for problem (3.4), with the assumption
(3.5), satisfy (3.2) for some n > 1/2. Then the solution, guaranteed by Theorem 3.1,
u € C®(R x R,) satisfies infug < u < supugy and
sup |u(z,t)] - 0, t—oo.
xT

Firstly, (3.5) implies uf,(u,z) = uh/(z)(f(u) — g(v)) > 0, so by Theorem 3.1
infug < u < supug holds. To prove the decay to zero we need the following lemma.
Lemma 3.1. Let M be a constant satisfying

'@l < M, || <M for infug<u<supug,

m = sup h’ and introduce
d(u) = f(u) — g(u) and D(u) = /d(v) dv .
0

The solution u of (3.4) satisfies
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5:? / + / R (z)D(u) dx + / uldr =0, (3.6)
1d T T ’ 2
53—/ dx——/h(x)d(u)d:r——/u dr <0. 3.7

Proof. Multiply the equation of (3.4) with v and integrate to obtain

DN =
&l
|
8 3

W dx + / (Mx)d(u) + g(w)) ude = / Upp dT .

Partial integration of the second term yields

/ WMz)d(uw)u, dr — / g, dz = / K (z)D(u) dzx —

Doing the same with the right-hand side, [u,,udzr = — [u2 dz, we obtain (3.6).
Differentiating (3.4) with respect to x, multiplying by u, and integrating yields

gdi / uz dz — / W (@)d(w) gy dz — / (M@)d (u) + ¢' (W) up gy do =

o0
_ 2
=— / Uy, dT .
— 00

Here, the second and third term can be estimated by, respectively,

é/h(az)(mdz(u)+ zz)d <—/h($)d2(u)da:+;/ uizdac

0 —o0

and

[ee]

M 7 u?
/ _ / < 2, Zzx —
/ [hf" + (1 = h)g'||ugtgs] de < 7 / <Mu$+ M) dzx

—0C

Hence (3.7) follows.
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Proof of Theorem 3.2. Equation (3.6) implies % f u? dz < 0, hence

tlim w?dz  exists > 0. (3.8)
Add s times (3.7) to (3.6):
11 7(u2 +sul)dr + /oo h(x) (D(u) — —Sﬁdz(u)) dx +
2.dt « 2

+/(1~82 )uidasgo. (3.9)

— o
Let 0 < s < 537 min(:-, 1), then the last term is non-negative. The second term is

non-negative too, because d'(u) < 2M, ud(u) > 0 for all v and d(0) = 0 imply

0< / (2M — d'(v))d(v) dv = 2M D(u) — %dz(u) ,
0

which in turn implies

d*(u) S

4M 20.

D(u) — %dz(w > D(u) —

Thus (3.9) is reduced to % [(u? + su)dr < 0, so the limit limy_oo [(u? + su?) dz
exists. Hence, by (3.8)

oo
lim / utdr exists = A>0.
t—oo
— o

Integrating (3.6) from 0 to T implies (h'D > 0)

T oo ! [e's)
//uidxdtﬁi /ui(x,O)dx YT >0,
0 —oc —0
which implies that A = 0. Finally,
u2=2/uuzd1§2 /uzdx/uidx
—oC — OO — o0

shows that sup,, [u(z, )] — 0 as t — oc.
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3.2. Cases 2 and 3 with Zero Initial Mass for the Disturbance.

Let v be any viscous profile of Case 2 or 3 and consider a disturbance w. Then
w(z, t) = v(z) + w(z,t)
satisfies the viscous equation

u + (Fu,2)) =1,y where F(u,x)=h(z)f(u)+ (1 = h(x))g(u) .

Using this equation and that v satisfies (F (v,:::))gc = v,, we obtain the Cauchy
problem for the disturbance

we+ (Fw+w,2) = F,2)) | = W, | (3.10)
w(z,0) = wp(x) .

In order to prove that the disturbance w decays to zero as t — oo we shall
use weighted energy estimates, where the weight function ¢ depends on the viscous
profile v and on the flux functions f and g. In Subsect. 3.4 we show the following
lemma.

Lemma 3.2. Given v, f and g, there exists a ¢ € C*(X) such that for all z € R

0<Ci < p(z) < C2+C3;33| s
¢/ (@)] < C'o(a)
l"(2)] < C"p(z) (3.11)

d
— (@ (v@) + (1 = h@)g (@) ) pl@) + (@) < 0.

The main result is the following and the proof is given at the end of this subsection.

Theorem 3.3. Let the initial data wy € C*°(R) for problem (3.10) satisfy

oo

/ wo(x)dx =0, (3.12)
/ lwo(x)|dz < €, (3.13)

and (3.2) for some n > 2. If € is sufficiently small, then the solution, guaranteed by
Theorem 3.1, w € C®(R x IR,) of (3.10) satisfies (3.3), and there exists a © € C*(R)
satisfying (3.11) such that

sup wz(a:./t)np(x) —0, t—o0.

For the proof we need the following estimates.



54 S. Diehl, N.-O. Wallin

Lemma 3.3. Let (3.12) and (3.13) hold. Then the solution w of (3.10) satisfies

1 d o0 o0
5%/W2¢dx+K/w2<pdx§O, (3.14)
%% /(W2+3w2)g0d:v+—}2i /wzgod;r+§ /wigoda:go, (3.15)
d 2 2 2
P W=+ sw” +rwy)ede <0, (3.16)

where W, =w and K, s and r are non-negative constants and @ satisfies (3.11).

Proof. The conservation law (3.10) implies % ffooo w(z,t)dx = 0. The assumption
(3.12) then implies

/ w(z,t)ydr =0, Vt>0. (3.17)

—oC

Let

€T

Wiz, t) = / w(y,t)dy .

— 00

By the decay property (3.3) it follows that W; = ffoo we(y,t)dy — 0, Wy =w — 0
and W, = w, — 0 as ¢ — oo. Hence the integrated equation of (3.10) is

Wi+ Flo+ Wy, o) — F(v,2) = W, . (3.18)

By (3.17) we can write

[ w.tdy, =<0
W(CC, t) = ‘Oooo
— [w(y,tHdy, z=>0

xT

and conclude that W satisfies (3.3) with n > 1. Write
Fu+w,x) = F(v,2) = wi(@) + w’ pr(w, z) ,
where

P(@) = Fy (v(@),z) = k@) f (v(@)) + (1 = k@) g (v(@))

and

|
pa(w, ) = /(1 — O)Fyu (v(z) + fw, x) df .
0
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Both these expressions are bounded because of the assumption that f/, ¢/, f” and ¢”
are bounded functions. The integrated Eq. (3.18) can thus be written
Wi + (@)W, + po(Wo, 2)W2 = W, (3.19)

Since this equation has no W-term and the coefficients are bounded, the maximum
principle holds (see Appendix A), that is,

sup |[W(z,t)| < sup |W(z,0)| < / |wo(z)| dzx . (3.20)
T€R,t>0 zER .

Multiply (3.19) by Wy and integrate to obtain

oo o0 o o0
1d
- — / W3pdz + / YW, W dr + / pW2Wdx = / WeaWodr .
2dt (3.21)
—oc —o0 —o0 -0
Partial integration of the second term gives
o0 1 (o]
[owawpds=—; [worwta,

and the right-hand side of (3.21) can be written

o0 oo o0 oo
/Wngodx=— / Wo(W ), d = — / W2pdx — / W, W' dx =
—oc —oc — 00

—0C

o0 o
1
=—/VV§fpdm+§/W2ap”dm.
—oC —o0

Hence (3.21) can be written

o0 o
l d 72 1 / / /" 2
3a W godx~§ / ((wcp) + ¢ )W dz +
—o0 —oc
+/p2W§W¢d$+/W§¢dQJ=O.
—00 —o0

The second term is positive by (3.11). Because of the maximum principle (3.20) we

can choose f_oo |wo(x)| dz so small that there exists a constant K € (0,1) so that
the third term can be estimated

/pzﬂfgW(pdx §(1—K)/W§<pd:c.

Hence we get (3.14).
Now consider Eq. (3.10). Let F'(v +w,z) — F(v,x) = wp(w, ), where
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1

pr(w, z) = /Fu (v(z) + 6w, z) db .
0

Notice that, since f’ and ¢’ are bounded,
(3.10) by wy and integrate to obtain

p1] < M for some constant M. Multiply

N =

d%/wzg;da:+ /(plw)chpdx= /wmwgod:c. (3.22)

— 00

The right-hand side can be treated as above and with ¢” < C”p of (3.11) we get

oo [ee] o0 o0
1 C//
- / wicpdm+§ /wzap”d:cg - / wi:pda:+~—2— /leLpdaj,
e . A .

The second term of (3.22) can be estimated, using |¢'| < C’¢,

/(plw)zw@dm = /plw(wgo)xdx < /}pll(iww,;)(p+w2}cp’}) dx <

oo
Muw*  w? 5
< / z o4 T =
_/Z\f(( > +2 >np+wC<p> dx

M 0 oc
=M <~2—~ +C”) /wzapd:c+% /'wigodm.

— 0o —0oC

Hence (3.22) yields

0 o0 oo
1d 2 M?+C" , ) 1 2
—— pdr — [ ————— 2 — <0.
T wopdr ( 5 +MC /wapdz+2 /wmgad:c*O
— 00 — o0 — 00
Multiplying this inequality by an s > O small enough and adding to (3.14) yields
(3.15).
The third step is to differentiate (3.10) with respect to x, multiply by w,¢ and
integrate to obtain

1d T 7 o0
55/w§<pdz+ /(mw)mwxwda@= /wzmwz@dm, (3.23)
o e .

As before the right-hand side is

oo o0 o0 C[/ oo
1
_/wimfpdx+§/wigz”dxg—/wimapdx+~é—/winpda:.
—o0 -0 —o0 —o0
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The second term of (3.23) is — f (p1w) (W), dz and the two factors of this integrand
can be estimated as follows, with positive constants C1, ... ,Cs. Boundedness of f”,
g, f” and g” implies

w

d w
[(pr1w)a| = %/Fu(v(x)w,x) dy| = v’(ﬂ:)/Fuu(v(zHy,x) dy+
0 0

+ /Fugc (v(@)+y,z) dy + F, (v(@) +w, 2)w, | < Cy(Jw]+ |wg]) ,
0
and, since |¢'| < C'¢,
|(wx¢)m] < (‘wwxl +C/|wa:|)90 .

The second term of (3.23) can thus be estimated by

[ o0 o0
C’z/wchda:+03 /wig&daz+()4/wiz<pda:,
—oo — 00 —00

where Cy < 1 can be obtained by using the arithmetic-geometric inequality as we
have done several times above. Hence (3.23) becomes

1 d 2 2 2
il . _ 2 2 <0.
¥ wypdr — Cs /(w +wy)pdr <0

— 00

\8

8

Multiplying this by an 7 > 0 small enough and adding to (3.15) gives (3.16).

Proof of Theorem 3.3. The three inequalities (3.14), (3.15) and (3.16) imply in turn
that the limits

o o o0
lim / W?pdz, lim / w?pdz, lim / wip dzx (3.24)
t—o0 t—oo t—oo ‘
— 00 —00 —0o0

exist. Integrating (3.15) from O to 7" gives

oo T oo T
/(Wz(:v,T)+sw2(a:,T))<,9dx+K/ / wzwd:cdt+s//wigodxdt§
—o0 0 —o0 0 —o0

< / (W3(z,0) + sw(z,0))p dz .

Particularly,

(o cliNe o) o

K//wchdacdt+s/
0

0 —oo

wigodxdt < oo,

\8

3



58 S. Diehl, N.-O. Wallin

which implies that the second and third limit of (3.24) are zero. Finally,

T T

wz(x,t)go(:c)=2/wwz<pda:+/wzapldxg
< /(w2+wi)cpdx+0'/w2<pd:c

implies that sup, w?(x, t)p(z) — 0 as t — oo.

3.3. Case 3 with Non-Zero Initial Mass for the Disturbance.

Given a profile ¥ and a disturbance @ with non-zero initial mass, i.e.,

[o0]

my = /w(x,O)dm;’O.

— 00

We shall investigate when this case can be brought back to the zero-mass case so that
Theorem 3.3 can be applied. Put w = ¢ + . If we can find a profile v with

/ (v(x) — B(x)) dz =my ,

then w = u — v will satisfy ¥ + @ = v + w and

o0

/ w(z,0)dx =0,

— o0

i.e., (3.12) will be satisfied. Assuming that @w(z,0) satisfies the other conditions in
Theorem 3.3, we shall investigate when w(x,0) also does. Parametrize the solutions
of

v' = h(z) f(v) + (1 — h(z))g(v) — g(u™) (3.25)

with their intersection with the v-axis, that is, v,(0) = «. Basic results on ordinary
differential equations imply

o <oy = Uy <V, (3.26)
v(z) is continuous with respect to « , (3.27)

so that
A={a € R v, satisfies (3.25); v4(0) = @; v, (z) — ut, z— +oo}

is an interval. (In Cases 1 and 2 the set A is a single point, since the profiles are
unique.) Furthermore, the properties (3.26) and (3.27) together with Lebesgue’s ma-
jorant theorem imply that given ¥ = v,, With ap € A and
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/ [V0(@) — Vo, (@) dz < 00, VYa € A, (3.28)
then
I(a) = / (va(:v) — vao(x)) dx

is continuous and increasing.

If (3.28) holds and mg € I(A) (which is an interval), then we may bring the prob-
lem back to the zero-mass case (Theorem 3.3). Firstly, (3.13) holds if f [D(x, 0)| dx
is sufficiently small, because then |my| is small and

— 00

/ [w(z, )| dz < / [0(z) — v(x)| dx + /OO [®(x,0)| dx =

= |y +/ [(x, 0)] dx .

— 00

Secondly, assume that @ satisfies (3.2) for some n > 2. Since w = ¥ — v + 0, then
(3.3) holds for w and for some n > 2, if and only if #(z) — v(x) and its derivatives
decay as o(|z|72), |z| — oo.

In the following lemma, which we also need in Subsect. 3.4, we focus on the
asymptotic behaviour of the profiles as © — +oc. Similar results are easily obtained
for large negative x. Recall that a profile is either v(z) # u* or v(z) = u* for all
x> 1.

Lemma 3.4. Let v be a viscous profile with v(x) — u* as x — oo and v(x) # u”,
x> 1 If f'(u*) < 0, then there exists an a > 0 such that

jv(x) —u*| =0 (e_‘”) , forlarge x. (3.29)

If fOW =0,i=1,....p—1, and fP(u*) #0 for some integer p > 2, then there
exist a constant | and a function L such that

O(ogx), p=2

1
= |L@)|= p=2 large x,

(v(x) — u+)p~1
where a = (1 — p)fP(u*)/p.

Proof. Let u* = 0 in the proof. Put k = f®(0)/p!. Then for x > 1, Eq. (3.25) for the
viscous profile becomes

o' = f(0) — F(0) = ko + r(z, vyt = %’-p— =k+r(z e, (331

where |r(z,v(x))v(z)| < |k|/2 for x large enough. Thus (3.31) implies
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k _ v(x)

5 < @) k>0, (3.32)
V') ko

g S0 k<O (3.33)

First let p = 1, i.e., k = f/(0) < 0. Then integrating (3.33) from zy > 1 to = > g
implies (3.29) with a = —k/2 = —f'(0)/2 > 0.

Now let p > 2. Integrating (3.32) from z( to = with x > zy > | implies, in the
case k > 0,
1 1

p—1 + p—1 ’
vP~i(z)  vPT (o)

k
= D7(r—x0) < —

Since the left-hand side is positive and v(x) — 0, z — oo, we conclude that vP~!(x) <
0 for = > zy. Hence p is even and v(z) < 0 for z > z(. Rearranging gives

C
()P~ < ==, for large z.
x

Similarly, this can be obtained from (3.33) in the case £ < 0. Now (3.31) implies

J

L—p =k+r(x,v)v, withr(z,v)v=0 (x'”—l?) (3.34)
v
Integrating this from xy > 1 to x > x( gives
1
p—1 = __
v@ ar+1+Lx)’

with a = (1 — p)k, I = 1/vP~Y(zg) — (1 — p)kzo and
I ’ p O(log x), p=2
(x)=(1 —p)/r(x,v(x))v(x) T = o (:Bz:;) >3 (3.35)

Zo

The lemma implies that if f'(u*) < 0 (p = 1) the difference o(z) — v, (x) decays
exponentially as © — oo for all @ € A. This together with the arguments preceding
the lemma gives the following result.

Theorem 3.4. Given a profile © of Case 3 with f'(u*) < 0, ¢'(u™) > 0 (overcom-
pressive wave) and a disturbance W with mass mo = [ @(x,0)dz. If mg € I(A),
[ |\w(z,0)| dz is sufficiently small and @(x,0) satisfies (3.2) for some n > 2, then
there exist a profile v and a weight ¢ such that w(x,t) = 9(x)+0(z, t) — v(x) satisfies
(3.3) and

sup w2(:v, tp(x) -0, t—o00.

As an example, consider Fig. 3, where ¢’(v™) > 0, f'(u*) < 0 (p = 1) and
all profiles are solutions. Thus A = R, hence I(A) = IR. We have thus stability for
any disturbance, provided [ |[@(z,0)|dz is small enough. For other examples where
A#R, see [2].

In the following we write h;(x) ~ hy(x), © — oo, when there exist positive
constants Cy, C, and zg such that C < hy(z)/hy(z) < C, for all x > x.
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Now let p =2 and u* =0, and use the notation of Lemma 3.4. The proof of that
lemma gives that v(z) < 0 for = > x¢ and f”(0) = 2k > 0. Then (3.30) gives

1 b [+ L(x)
ar+1+L(x)  ax ax(a:):+l+L(:v))’

v(x) = L(z) = O(logz) .

Firstly, this implies that given &(z) = 0, z > 1, the difference |8(z) — v, (2)] ~ 27!

as z — oc for all v, # ¥, & € A. Hence any disturbance of @ can not result in
an asymptotic state v, ¥ 9. Secondly, assume that both #(x) < 0 and v(z) < 0 for
x > 1, i.e., the two profiles are increasing. Then the difference

L-L+l—-1 __O(logx)

(x) — v(x) = (3.36)

a2z + O(zlogx) 22

used in (3.35) gives |L(x) — f)(x)l < C.,. Since [ # 1 (see the proof of Lemma 3.4),
(3.36) gives

|5(z) — v(z)| ~ 272 asz — o00.

For p > 3 the difference decays even slower, for example p = 3 gives 9(z) — v(x) =
O (logz/2*/?). As will be seen in Subsect. 3.4 the weight functions, for p > 2, grow
as (x) ~ x, so that W2y ~ 27! is not integrable, where W, = w = © — v + 0.
Consequently, for p > 2, stability can not be shown with the present method.

3.4. The Weight Functions.

Given a viscous profile v in Case 2 or 3, we need a weight function ¢ that satisfies
(3.11) to be able to prove the stability results above. We shall thus prove the statements
in Lemma 3.2 during the course of this subsection. In the following, let C, denote
any suitable positive constant and C' any real constant. Put

Y(@) = h@)f (v(@) + (1 = h(@)g (v(2)) ,

() = / W) dy .
0

Our weight functions should satisfy the differential inequality of (3.11), that is,

W) +¢" <0 <«

xT

o) =@ [ o / Ve dy | (337)
0

where V' is a non-decreasing function. We shall let |V] < 1 and V € C' (with
bounded derivative), so that ¢ € C?. Besides the dependence on v, ¢ depends on the
flux functions f and g. Because of this and since we want the weight functions to be
as close to a constant function as possible, we need five different weights to establish
the inequality 0 < C) < p(x) < Cy + Cslx] of (3.11). It is then straightforward to
check that the other statements of (3.11) are satisfied.
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Assume that [~ e?™ dy < oco. Let the constant in (3.37) be C' =
Iy Ve ™ dy. We get the first weight by letting V = 1:

o0

@) = e / e dy

T

and the second by letting V' = V" be non-decreasing with V;*(z) =0, x < —1, and
V@) =1,z > I:

o0 C,e V@), r < —1
e 4 v
i@ =e (I)/V;(y)e Wy = e V@ Te“’(y) dy, z>1.

T €T

If [ "W dy < oo, let C = — [ V(ye¥® dy. With V = —1 (3.37) implies

xz

oy @) =e '™ / e’Wdy

and with V =V,” = V7 — 1 <0 we get

2 W@ [ P
) e e dy, =< —1

Py (2) = —e~ "W / Vy (e’ dy = ER
N Coe V@), x>1.

The four weight functions above are easily seen to be strictly positive. The last
weight we need is defined in the following lemma.

Lemma 3.5. If f _OCOO ?W dy < oo, then there exist positive numbers A and B and a
non-decreasing function V3 € C'(IR) with bounded derivative, satisfying

-1, z<-A 7
/. = ’ W(y) 2] =
Va(z) {]) > B, and / Vi(ye" "V dy=0.

—0oC

Then we can choose C' = — fi)w Vie¥ dy = fooo Vie? dy in (3.37) to obtain

o0 T
0 < p3(x) = e~ V@ / Vie? dy = —e V@ / Vise¥ dy =
x — 00

T
e V@ [ "Wy z< A

— 00

oo
e~ Y@ / e!Pdy, z>B.
x
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Proof. Since [*_e?W) dy < oc we can choose positive numbers A and B such that

—A

/ e’ W dy = / e’V dy . (3.38)
B

—oC

Define the coordinate transformation z = z(y) by

y
z= /e‘p(e) dg, —-A<y<B, (3.39)
Y

and let v(z) be an increasing C'' function in the interval [0, z(B)], satisfying 1/(0) =
—1, v(2(B)) = 1, V() = v/ (2(B)) = 0 and [ 1(2)dz = 0. Tt follows that

_la y S _A
Vi = v(ay), -A<y<B
1, y>B
is C'. Then (3.38) and (3.39) imply
&S] —A B oo z(B)
/ Vie? dy = — / e dy + / u(z(y))eq’(y) dy+/ekp dy = / v(z)dz=0.
—0o0 —00 —A B 0

It remains to show that w3 > 0. Put I(z) = [° Va(y)e? dy. Then I(do0) = 0,
I'(z) = —Va(x)e?™ and the properties of Vi imply I > 0, hence ¢ = e~ %1 > 0.

In the following lemma we focus on the asymptotic behaviour of the weights as
x — oo. Similar results are easily obtained for large negative z. Recall that a profile
is either v(x) # u* or v(z) = u* for all x > 1. Let hy(z) ~ hy(x), © — oo, mean that
there exist positive constants C, C; and zg such that C; < hy(x)/hy(z) < C; for all
T > Zg.

Lemma 3.6. Let v be a viscous profile with v(x) — u* as © — oo. If f'(u*) < 0, then
e?@ ef/(w)r., T — 00 . (3.40)

If for some integer p > 2, fOu")=0,i=1,...,p— 1, and fP(u*) #0, then

L — 00 . (3.41)

@) C., if v(z) = u*, Vo > 1
1277, ifo(@) £ ut, Vo > 1

Proof. Let u™ =0 in the proof and put k = fP(0)/p!. Use the results of Lemma 3.4.

Let p = 1. Then, for some 0 < 0(x) < v(x),

F (@) = FO)+ f7(0@)v = f0)+0 (e=®) |

and, with zy > 1,
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/f’ (v@W) dy = C+ f'O)z + O (e ) |

zq

(o) = /w<y)dy= o
0

hence (3.40) follows. Let p > 2. Then (3.30) implies

, f(p)(o) B j‘(p+l) (9($)>
f(/“)z (p_ 1)!1)17 I+Tvp=
- ok S R W o .
_(1*p)k$+l+L(l.)+O(l‘ )—- (P*l);r-r_R(l)’

where R(z) = O (logf> if p=2and R(z)=0O (r‘f%'> if p > 3. Hence

xT

&D(x)z/w(y)dy=C+/f’<v(y))dy=C— (pﬁl)log:c+B(:c),
0

xo
where B(z) is a bounded function, and (3.41) follows.

Let us now deal with the different cases that may appear regarding v, f and g¢.
Case 2. In Case 2 the viscous profile is unique and it satisfies v(z) = v, r < —1
(assuming u~ < u*). Furthermore, ¢’(u ™) < 0 and f/(u*) < 0 hold.

L g'(u™) <0, ["(u") <O (regular Lax wave).

Forz < —1, ¥(x) = C + fflg/(u_)dy = C + ¢g/(u™)x holds, and at +oc we use
Lemma 3.6 to conclude that the weight ¢} is suitable. It satisfies ¢7(z) ~ C.,
|x| — oo, for

o0
—g'(u ")z 9wy gy = 1
. e f@ dU - gl (uy?
pix) ~

r — 0.

o+ on oo+ 1
e~z fe““ )ydy:_m7

€T

I ¢ (w™) =0, f'(u") <0 (marginal overcompressive wave).
Then ¢¥® ~ C, as & — —oc, which implies that we choose the weight ¢}, which
satisfies

oy (@)~ Cy, ] — .

I gw™) <0, fOahH =0, i=1,....,p— 1, fPW" # 0 for some p > 2
(marginal undercompressive wave).
Combining I above at —oo and Lemma 3.6 at +oc yields

1
~Tay e
+ ) 0
T) ~ »
i) i [ Y =(p- Dz, z—00.
z yP-!

V. g/(w™) =0, fPu" =0,i=1,...,p— 1, fP@") # 0 for some p > 2
(degenerate wave).
Combining IT at —oc and III at +o0 yields
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T — —00

Gy~
2l p—-—Dzx, z— .

The weight functions ; and ¢, will be suitable for Case 2 with u~ > u™.
Case 3. Recall the symmetry of the behaviour of the viscous profiles between +oo
and —oo. We can for example use the analogue of Lemma 3.6 at —oc.

V. g'(u™) >0, f'(u") < 0 (overcompressive wave).
The weight 3 will be suitable and satisfy @3(z) ~ C,,
gives

x| — oo, for Lemma 3.6

RIEI LRI S dtes
ef’(ﬂ*)ﬂq/ T — 00,

and Lemma 3.5

T
e=d' W [ o'W gy =

—o

., T — —0Q
g'(u™)

993(-'17) ~ , o<
e~ W f el @y dy =

T

1
Ty

VL ¢/(u™) > 0, [P =0,i=1,....p—1, fPW") # 0 for some p > 2
(marginal overcompressive wave). There are two subcases:
A. v(r) #u* for x > 1. Lemma 3.6 gives

_1
g’(u")o"O
p3(x) ~ Jf%f d%’

:I‘ yp=1

=(p—-Dz, z—-o00.

B. v(x) = u* for x > 1. Since ¥ ~ C, as x — o0, we choose ¥, , which satisfies

@) {ﬁﬁvfﬁ—%
Py L)~

Cy, T — o0 .

The information in V and VI can now be combined to give the rest of the combi-
nations, having the mentioned symmetry in mind. For example, if v(z) # u* V|z| > I,
p is defined as in VI and if, analogously, g > 2 is the first integer with ¢/“(u™) #0,
then the weight 3 satisfies

2x(2) —(q— 1z, ©— —
w3l (p— Dz, T — o0 .

3.5. The Special Cuse f = g.

Let us see what the present method gives in the case of a single conservation law
uy + f(u), = 0, where f is generally non-convex. Consider a discontinuity with
u~ < u*. There are infinitely many viscous profiles v(- + xp), xo € [, which are all
increasing and satisfy u~ < v < u*. This is a special case of Case 3 with f = g,
so the results of Subsects. 3.2 and 3.3 hold. This means that stability is proved for
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a small disturbance with zero mass. Furthermore, if f'(u™) # 0 (compressive wave),
the asymptotic profile is determined by the excessive mass of the disturbance, see
Theorem 3.4. According to Subsect. 3.4 (Case 3V) the weight function then behaves
as @3 ~ C, as |z| — oo. However, if for example f/(u*) = 0 we can not show
stability with the present method, with the arguments at the end of Subsect. 3.3. The
weight satisfies in this case ¢3 ~ x as x — oo (Subsect. 3.4, Case 3VIA).

A. A Quasi-Linear Parabolic Equation

The assumption £(0,z) = 0 in Theorem 3.1 implies (F(u,:L')) = F(u, 2)u, +

~ - pa
Fo(u, ) = F(u, x)uy, + Fur (0, 2)u for some 6 between 0 and w. Theorem 3.1 will
thus follow from the following more general one. Let Cr s denote any suitable
positive constant. Recall that we use the norm

lulpr = sup  |ulz, D1 +2)V2.
(z,t)ERX[0,T]
Theorem A.1. Consider the Cauchy problem
Uy + F(u, x, g, + G(u, 2, Hu = Ugy, x € \%1, t>0, (A1)
u(x, 0) = up(x), reR,

where F,G € C* and its derivatives are bounded functions. If, for some n > 0,
ug € C>(IR) satisfies
102 ul|no < oo, a=0.1,2,...,
then (A.1) has a unique solution u € C>°(R x 1&,), which for every T' > 0 satisfies
max(a,F+1)
H(()?a,tjanY < CT.u,,B Z Haiulln,m x, /6 = Oa 1,2, D (A2)
k=0

Furthermore, if G > 0 and ug(x) — 0 as |x| — o0, then

inf ug(z) < u(z,t) < supug(z), (x,l) €k x[0,T]. (A.3)

€L TER

The construction and the smoothness of a solution of (A.1) in a strip [k x [0, T'] can
be shown by standard techniques, for example by using the ideas of Hormander [7].
The bound (A.2) and the uniqueness can be proved using the following maximum
principle.
Lemma A.1. Assume that u = u(x, l) satisfies
ug + F(u,x, Due + Gu, z, Hu + Hu, x,t) = Ugy, >0,

A4
ulx, 0) = ug(z), reR, (A4

with u, Uy, Uy and u,, temperate in the strip & x [0,T, that is, each satisfies an
inequality of the type

sup Ju(z, )] < Cp(1 + )N for some N.
0<t<T

Assume that F' is bounded and that G is bounded below. If ||ull,0 < oo, then

lullnr < Cr(lwllno + 1 Hillnr), where Hy(z,t) = H(u(z, ), x,t). (A.5)
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Proof. We can assume that | H;||,,r < oo, otherwise (A.5) is trivial. First we show
(A.5) for n = 0. Let m be a positive integer and 0 < ¢ € C*™(RR) satisfy ¢(z) ~ e~ !*!
as |x| — oo. Multiply the first row of (A.4) by u>"*'¢ and integrate to obtain

d < u2m+2 ®
g / T +2¢dx+/Fum 2m+1¢d:v+/Gu2m+2¢dm+
/ Hu?>™ g de = / Ugzt?™ N pdr . (A6)

With partial integrations we can write the right-hand side of (A.6) as

o

—Q2m+1) / umpdz + 2m1+ 5 / u?™2¢" dz .

—0o0

Using the inequality (a,b > 0) 2ab < ra? + r~'6* with 7! = 2(2m + 1), the second
term of (A.6) can be estimated by

/ [Fu™ ! [u™ug|¢ do <

1 T 2, 2m+2 7 2m, 2
< — .
S fam+D /Fu ¢dr+(2m+1) v Muy¢dx

—0o0

The fourth term of (A.6) can be estimated similarly using the inequality (a, b, a , B3>0,

c:l+,8—1) a®b? < aa+ Bb with a = H>™*2, b = u*™*, o = -1 and B = 324 so
that
1 2m +1
H 2m+1 2m+2+ 2m+2 .
™ < 5003 Im+2

Now (A.6) becomes

d x u2m+2
i / ameadet

T F2 2m+l "\ arn
— — — m <
+/((G A2m+1) 2m+2)¢ 2m+2>” de s

/ H>™2¢dz . (A7)

—0o0

<
~2m+2

Assume first that G > 2. Since ¢(z) ~ e~ 1®l, |¢"’| < C"¢ for some constant C” > 0.
Then it follows that the second term of (A.7) is positive for large m (F' is bounded)
and we get
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(o] (e e] oo
d
— | WP™2¢d < / H™¢dr < sup  Hy(z,s)*™? / pdx .
dt z€R,0<s<T

—00 —00 —00

Integrating from O to ¢ implies

o0

/ W™ (2, H)p(x) dr <

—00

oo (e o]
< sup u(z, 0>+ / pdr+t sup  Hi(x,s)™™*? / odr. (A.B)
zeh z€R,0<s<T

— o0 — o0

If I is an interval and x € I, then

/ u?™ 2 de > / w2 ¢ dr > min u?m*? / pdx . (A.9)
I
I

—0o0

Combining (A.8) and (A.9) with the inequality (a + b)1/™ < a!/™ +b!/™ we get

mlinlul </I¢dx>m <

b b
< sup |u(z, 0)| (/¢dw) +tm%  sup |Hj (/qﬁda:) .
z€R z€R,0<s<T

First let m — oo and then let I shrink to the point xy. We get

|w(xo, t)| < sup |u(z,0)|+ sup |Hi|. (A.10)
z€R 2ER,0<s<T

If G does not satisfy G > 2, but only G > —K (K > 0), then put v = ue~E*2?,
Substituting this into (A.4) gives

v+ Fo,+(K+2+Gu+ He KDt =y
v(z,0) = up(x) .

Since K +2+ G > 2 we can use (A.10) to obtain

lv(z,t)] < sup |u(z,0)|+ sup |Hile”E*PS < sup |u(z,0)|+ sup |Hy|,
el

z€R,0<s<t z€R zchk,0<s<t
that is,
lu(z, t)] < eBE*D | sup |u(z,0)|+ sup |Hy|| .
zel z€R,0<s<T
Especially,

lullo.r < Cr(llulloo + [ Hillor) - (A.11)
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For n > 0 let p(z) = (1 +2%)~™ and v(z,t) = u(z,t)/ p(x). Then v, vy, v, and V4,
are temperate functions. Substituting u = vp in (A.4) gives

2/ / /! H
vt+< —i>vw+(FP—+G’—’l—)—)v+—=vm,
P P P P

v(z, 0) = up(z)/p(z) -
Since the coefficients for v, and v are bounded, (A.11) implies
[vllor < Cr(llvlloo +I1Hi/pllor)
which is equivalent to (A.5).

Proof of (A.2). Let u be the constructed solution of (A.1), which is bounded together
with all its derivatives. Since H = 0, (A.5) gives directly

lulln,r < Crlltflno - (A.12)

The composite functions Fi(z,t) = F(u(z,t),z,t) and G(z,t) = G(u(z,t), ,t)
and its derivatives are bounded. We can thus consider Eq. (A.1) as being linear:

ug + F1(z, Yug + G1(T, DU = Ugy

u(x, 0) = up(x) .

Differentiation with respect to = gives

8% (911@ 6F1
B e (%

ug(x, 0) = uy(z).

801 _ 82ux
+G1) Yo ¥ 5r T o (A.13)

Apply (A.5) with H = u0,G; and combine with (A.12), then
Juzllng < Cr(|ltallno + [[wln,r) < Cr(l[telno+ [ullno)-
Differentiation of (A.13) yields

OUgy OUgy
ot ox
Uge (T, 0) = Ug(x) )

Uy

Ox2 '’

+ F + Fyuge + Goug + Gau =

for some bounded functions Fj(x,t) and G;(x,t). Again (A.5) together with the
previously obtained bounds for u, and u gives

2

lueslln,r < CT(”um”n,O +||ug|ln,7 + ”u”n,T) <Cr Z llaﬁulln,o .
k=0

Now (A.1) implies that also u; satisfies such a bound. We can repeat this procedure
to obtain such bounds for all derivatives, hence (A.2) holds.

Proof of (A.3). Assume that u(zy, ty) > supup with (zg,%p) € R x [0,T]. Let e > 0
be so small that u(zo, to) — €ty — €x3 > supug. Then the function

u(zx,t) — et — ez?
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has a maximum at (z;,t;) with 0 < ¢; < T. Both uo and u are bounded in the strip
and decay to zero as |z| — co. Thus there exists a constant C with 3z < C and
u(z1,t1) > supup > 0 holds. Furthermore, at (x;, ;) the following hold:

ur—e>0,
uz——2e3x1=0,
Ugg — 26 < 0.
With |F| < M we get

1/2

C
us + Fug + Gu — Ugy 26—M2e3€37+0—263>0

for € > 0 small enough, which is a contradiction. Hence u < supuy. Similarly
(substitute € by —e above), u > inf uy.

Proof of the uniqueness in Theorem A.1. With H(u, z,t,w) = F(u, z, )w+G(u, z, t)u,
Eq. (A.1) can be written u; + H(u,z,t,uz) = Ugy,. Assume that u! and u? are two
solutions with the same initial data. Then

(ul - uz)t + H(u1>$)t>’u’;lz;) - H('U,Z,.Cl,‘,t, Ui) = (ul - uz)a:x )
@' —u’)(z,00=0,

where H(u!,z,t,ul) — H@?, z,t,u2) = Hy,(0),z,t, &) (u! —u?) +
Hy (6, z,t,&)(u! — u?),, which implies that we have an equation of the form (A.1)
where the coefficients and its derivatives are bounded. Hence (3.3) with a = 3 =0

yields u! = u?.
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