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Abstract: We extend the results of our previous paper [1] from knots to links
by using a formula for the Jones polynomial of a link derived recently by
N. Reshetikhin. We establish a relation between the parameters of this formula
and the multivariable Alexander polynomial. This relation is illustrated by an ex-
ample of a torus link. We check that our expression for the Alexander polynomial
satisfies some of its basic properties. Finally we derive a link surgery formula for
the loop corrections to the trivial connection contribution to Witten's invariant of
rational homology spheres.

1. Introduction

This paper is an expansion of our previous work [1]. We will try to extend the
results of that paper from knots to links. Our main tool will be the formula for the
Jones polynomial of a link proposed recently by N. Reshetikhin2 [2].

We start by briefly reviewing the notations of [1] (they will be used throughout
this paper) as well as some of its results. Let i f be an ^-component link in a
3-dimensional manifold M. We assign an α7-dimensional SU(2) representation to
each component if, of if. E. Witten introduced in [3] an invariant Zaiv..>a/J(M, j£?;&)
which is a path integral over the gauge equivalence classes of SU(2) connection
Aμ on M:

Z^XM^ k) = f[®Aμ]exp (^cs) ΠTr«,Pexp I §AμdxΛ , (1.1)

here Scs is the Chern-Simons action

Scs = ^Tr ε^Jdx(AμdvAp + \AμAyAp), (1.2)
2 M J

1 Work supported by the National Science Foundation under Grant No. PHY-92 09978.
2 I am indebted to N. Reshetikhin for communicating the results of his research.
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ft is a "Planck's constant":

Λ = y , keZ, (1.3)

the trace Tr in Eq. (1.2) is taken in the fundamental (2-dimensional) representation
and Tr^Pexp {§^ Aμdxμ) are the traces of holonomies along the link components

££j taken in the αy-dimensional representations.
The path integral (1.1) can be calculated in the stationary phase approximation

in the limit of large k. The stationary points of the Chern-Simons action (1.2) are
flat connections and Witten's invariant is presented as a sum over connected pieces
Mc of their moduli space Ji\

(1-4)
w = l

here SCs is a Chern-Simons action of flat connections of Mc and S^ are the
quantum «-loop corrections to the contribution of Jίc. The 1-loop correction is
a determinant of the quadratic form describing the small fluctuations of Scs(Aμ)
around a stationary phase point. Its major features were determined by Witten [3],
Freed and Gompf [6], and Jeffrey [5] (some further details were added in [7]):

dim//(9-dim//£!

,5(0 _ (2πft) i _ / i „ _ _ in,

(1.5)|τΛ |ΠTrαPexp

here Hc is an isotropy group of Jic (i.e. a subgroup of SU(2) which commutes

with the holonomies of connections Aμ

c) of Jίc\ A/ph is expressed [6] as

Nph = 2IC + dim//c° + dim/ζ} 4- 3(1 + bι

M), (1.6)

Ic is a spectral flow of the operator L- = * D + £ ) * acting on 1- and 3-forms, D
being a covariant derivative, H® and //J are cohomologies of D, and bι

M is the first
Betti number of M. τR is a Reidemeister-Ray-Singer torsion. It was observed in
[5] that y/ΪR defines a ratio of volume forms on Jic and Hc.

In a particular case of a rational homology sphere (RHS), the 1-loop correction
to the contribution of the trivial connection is

Xr)(M) = ^n[Kor^H^M,Z)]-32 . (1.7)

Based on our calculation of Witten's invariant of Seifert manifolds we conjectured
in [7] that

S^(M) = 3λcw(M), (1.8)

here λcw is the Casson-Walker invariant of M (it was calculated for Seifert mani-
folds by C. Lescop in [11]).

Witten has suggested in [3] a surgery formula for the invariant Z(M;k). We
need to introduce some notations in order to describe it. We pick two basic cycles
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on the boundaries of the tubular neighborhoods Tub(^fy) of the link components =£?y.

A cycle CJ7 is a meridian of j£?y, it can be contracted through Tub(=£?y). A cycle

Cψ has a unit intersection number with Cj7 , it is defined only modulo CJ7 . We
denote as lυ the linking numbers of the link components. The self-linking number

IJJ is a linking number between 5£j and Op.

A surgery on a link component ify is determined by an SL(2,Z) matrix U^pJ^:

(Ό r\
jjiPjVj) = I PJ 0 \ e SL(2,Z), PjSj - qjrj = 1 . (1.9)

V Qj SJ )

The surgery means that we cut Tub(JSfy) out and glue it back in such a way that

the cycles PjCψ + qjCψ and Tjόf* Λ-SjCψ on the boundary of the complement

M\Tub(J2y) are glued to the cycles Cψ and Op on the boundary of Tub(ify).

Let M' be a manifold constructed by n surgeries U^p^q^ on the components of
the link $£'. Then, according to [3],

k + λ n ~{p q)

Z(M/',k) = el(i)fτ Y2 ZOίu_Arl(M, J£;k)Y[ U^ {'J , (1.10)
α l v..,αn = l y=l

here Uap is a representation of the group SL(2,Έ) in the k + 1-dimensional space
of afΉne ££/(2) characters:

[pa2 - 2a(2Kn + μβ) + silKn + μβf] ,

1 S α,β ̂  A :- 1, K = k + 2 (1.11)

(see e.g. [5] and references therein), Φ(U^p'q)) is the Rademacher function:

) , (1.12)

( M 3 >

s(p, q) is a Dedekind sum:

φfτ is a framing correction (all Witten's invariants are reduced to the canonical
framing, see e.g. [6]):

πK-2
ψϊr = T4 K j=ι

(1.14)

here I ( t o t ) is an n x n matrix

y . (1.15)



300 L. Rozansky

The mathematical proof of the invariance of Eq. (1.10) was given by N. Reshetikhin
and V. Turaev [4]. They also formulated general conditions on the elements of that
formula that would guarantee its invariance.

In our previous paper [1] we gave a "path-integral" proof of the following
conjecture which P. Melvin and H. Morton [10] formulated for M = S3:

Proposition 1.1. The trivial connection contribution to the Jones polynomial of a
knot Jf in a RHS M can be expressed as

Z^\M^-k) = Z(tr)(M;£)exp fev(α2 - 1)1 aJfaK), (1.16)

here v is a self-linking number of JΓ and J(ot,K) is a function that has the
following expansion in K~ι series:

J(a,K) = Σ J2Dm,n<xmK-n . (1.17)
/7=0m=0

The dominant part of this expansion is related to the Alexander polynomial of

(1.18)πaΣDn,na = [ord#i(M,Z)] ? J „ λ ,
»=o A A \M,XΊe m2d)

the integer numbers πi2 and d are defined in [1], πi2 — d = 1 if M = S3.

We combined the results of this proposition with the finite Poisson resummation
formula in order to derive a knot surgery formula for the loop corrections to the
trivial connection contribution to Witten's invariant of a RHS:

Proposition 1.2. IfM and M' are rational homo logy spheres and M' is constructed
by a rational surgery U^P^ on a knot C/C in M, which has a self-linking number
v, then the trivial connection contribution to Witten's invariants of M and M1 are
related by the formula

exp t (l2s(P,q) -(Z

- K 3 s i g n ( - + v ) ) / doίsm ( ^ j αJ(α,AΓ)exp ^-[
\q J J\ _oo \ ^ / L 2 j ^ \

[α*=0]

(1.19)

here the function J(ot,K) comes from Eq. (1.16), it is a Feynman diagram con-
tribution of the trivial connection to the Jones polynomial of C/C. The integral
J _ ^ in Eq. (1.19) should be calculated in the following way: the preexponen-

[α*=0]

tial factor ύn{ψ)aJ{a,K) should be expanded in K~ι series with the help of

Eq. (1.17), then each term should be integrated separately with the gaussian fac-
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Corollary 1.1. Only a finite number of Vassiliev's invariants participate in a
surgery formula for Z^tr\Mf;k) at a given loop order.

A 2-loop part of Eq. (1.19) coincides with Walker's surgery formula for the
Casson-Walker invariant. This proves the conjectured relation (1.8).

A generalization of Eq. (1.16) for links was derived recently by
N. Reshetikhin3 [2]. He observed that if the dimensions αz in Eq. (1.1) are big
enough, then the representation spaces can be treated classically: the matrix elements
of Lie algebra generators in the αy-dimensional representation can be substituted by
functions on the coadjoint orbit of radius α7 and a trace over the representation can
be substituted by an integral over that orbit.

Proposition 1.3. Let 5£ be an n-component link in a RHS M. Then the trivial
connection contribution to its Jones polynomial can be expressed as a multiple
integral over the SU{2) coadjoint orbits:

Z%ln,(M,J?,k) = 2P\M;k) / ft

f iπK °°
x exp — - X ) I w ( α i , . . . , an)

oo

1+ Σ K-mPmJ(aλ,...,an)
l,m=O

/+/»ΦO

(1.20)
V 2 ti

here άj are 3-dimensίonal vectors with fixed length

l«;l = | (1-21)

and Lm(3\,..., 3n), P/ ? m(3i,..., 3n) are homogeneous invariant {under S0{3)
rotations) polynomials of degree m. In particular,

n

L2(3ι,...,3n)= Σlij3i- άj , (1.22)

ltJ is the linking number of the link components J^z and ify .

An example of this formula for a torus link is derived in Appendix 1.
In our paper [12] we proved this proposition by deriving a set of Feynman rules

to calculate the coefficients of the polynomials Lm and Pmι. These rules allowed us
to establish the following property of the polynomials Lm:

Proposition 1.4. The polynomials Lm(3\,...,3n) are produced from invariant

homogeneous polynomials Fm{b\,..., bm) of order m by substituting n vectors

άj in place of m vectors bj. The polynomials Fm(b\,..., bm), m ^ 3 are equal to

zero if at least m — 1 of m vectors bj are parallel.

We also conjectured a relation between the coefficients of the polynomials Lm and
Milnor's linking numbers:

Conjecture 1.1. If Z,/(2i,..., 3n) = 0 for all I < m, then the coefficients of the
polynomial Lm(3\,...,3n) are proportional to the mth order Milnor's linking

I am indebted to N. Reshetikhin for sharing the results of his unpublished research.
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numbers fζ lm of the link i f :

/• \m-2

m(au...9an) =—-— 2 ^ / I l v < ! > I . w T r ( σ ah) (σ a i m ) , ( 1 . 2 3 )

σ = (σi,σ2,σ3) w α 3-dimensional vector formed by Paulί matrices.

We will need especially the polynomials L3, L4 and Po,2 '

I3(3i,.-.,3B)= Σ ' a V ( ^ « i ) . (1-24)

I 4( 3 L . . . , 3B) = E # « ( 3 , x 3,-) (3* x 3,), (1.25)
ιj\k,l=l

/ > 0ί (3 i , . . . ,3 Λ )= Σ Ay3, - 3 y . (1.26)

We demonstrated in [12] that the coefficients /• J and /|-kι are proportional to triple
and quartic Milnor's linking numbers.

An obvious condition

Z^ (M,^;k) = Z^r\M;k) (1-27)

imposes a relation between the polynomials Lm and Pmj. It allows us to express
the numbers Pmβ through the coefficients of other polynomials. For example,

In this paper we will extend Propositions 1.1 and 1.2 to links by using
Reshetikhin's formula (1.20) for the Jones polynomial of a link as a generaliza-
tion of Eq. (1.16). In Sect. 2 we derive a formula for the multivariable Alexander
polynomial of a link in terms of the components of Reshetikhin's formula (1.20)
(Proposition 2.1). In Sect. 3 we calculate the first terms in the Taylor series ex-
pansion of the multivariable Alexander polynomial. In Sect. 4 we check that the
Alexander polynomial as given by Eq. (2.15) does satisfy some of its basic proper-
ties (Propositions 4.1 and 4.3). In Sect. 5 we use Reshetikhin's formula in order to
derive the link surgery formula for loop corrections to the trivial connection contri-
bution to Witten's invariant of a RHS (Proposition 5.1). In Appendix 1 we derive
Reshetikhin's presentation for the Jones polynomial of a torus link. In Appendix 2
we give a brief description of the structure of the moduli space of flat connections
in a link complement in the vicinity of the trivial connection. We demonstrate that
those connections are in one-to-one correspondence with the stationary points of the
phase in Reshetikhin's formula (Proposition A2.1) at least in the linear approxima-
tion around the trivial connection.

Path integral arguments are used for the derivation of propositions of Sects. 2
and 5. Therefore these propositions are not mathematically rigorous and should be
considered as "physical." The arguments of Sects. 3 and 4 do not involve path
integrals. The propositions of these sections are rigorously derived from "physical"



Jones Polynomial and Witten's Invariant of 3d Manifolds, II 303

propositions of Sect. 1 and 2. The calculations in the appendices do not rely on
physical methods. They are completely clean.

2. The Multivariable Alexander Polynomial

We will follow the method of Sect. 2 of [1] in order to relate Eq. (1.20) to the
multivariable Alexander polynomial which we define here as the inverse of the
Reidemeister-Ray-Singer torsion of the link complement:

ΔA(M9 if; e2πia',..., e2πia") = τ~ι (M\Tub(if); e2πiaι,..., e2πia"), (2.1)

here e2πιa< are the holonomies of the U(\) flat connection in M\Tub(if) around

the meridians C\ of the link components S£}.
We take the limit K —» oo of the integral in Eq. (1.20) while keeping the ratios

oίj/K fixed. Then according to Eq. (1.4) the partition function can be presented as a
sum over flat connections in the link complement which satisfy (up to a conjugation)
the boundary condition for each meridian C\ :

Pexp § Aμdxμ = exp — α, , \ ^ j ^ n . (2.2)

In contrast to the knot complement considered in Sect. 2 of [1], there may be
irreducible flat connections in M\Tub(if) even if the phases oij/K are arbitrarily
small (see, e.g. Appendix 2). Besides, there is not just one but 2n~γ reducible
flat connections due to the fact that a diagonal SU{2) holonomy fixed up to a
conjugation by Eq. (2.2) corresponds to two U{\) holonomies related by a Weyl
reflection, i.e. differing by the sign of the exponent (the overall change of signs
however does not change the gauge equivalence class of the SU(2) connection).

We calculate the integral of Eq. (1.20) by the stationary phase approximation
method. Let us first assume that all |3 7 | Ĉ 1. Then we should look for the extrema
of the quadratic form (1.22) constrained by conditions (1.21). These extrema satisfy
equations

IΛ 0, 1 S i S - n . (2.3)

The solutions to these equations do indeed correspond (up to an overall SO(3)
rotation) to flat connections in the link complement for small phases \aj\ (see
Appendix 1, for more details on flat connections in the link complement see [12]).
Equations (2.3) are obviously satisfied when all the vectors a} are parallel:

dP = ajn, (2.4)

here n is a unit vector and

\°j\ = I (2-5)

There are 2n~λ such inequivalent configurations depending on the choice of signs for
a,j in Eqs. (2.5). They correspond to 2n~λ reducible flat connections. If the phases
I άj I are not small, then we should also account for the higher order polynomials
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Lm, m ^ 3. However Proposition 1.4 guarantees that the parallel configurations
(2.4) still remain the stationary phase points of the full phase in Eq. (1.20).

The arguments of Sect. 2 of [1] suggest that the 1-loop (that is, leading in
the K~ι expansion) approximation to the contribution of "reducible" stationary
phase point (2.4) to the integral (1.20) is proportional to the Reidemeister-
Ray-Singer torsion of the link complement and inversely proportional to the multi-
variable Alexander polynomial as defined by Eq. (2.1). To obtain this approximation
we introduce the local coordinates xj in the vicinity of the stationary phase point
(2.4):

aj = 4°' +ajXj+l- 4 0 ) ή + ®tf), n • Xj = 0. (2.6)

We may retain only a quadratic part of the exponent in Eq. (1.20):

ίπK " 2

- ^ - Σ ΣMwv(2 δ . ^ . (2 7)
£ ιj=\ μ,v=l

here Xμ are coordinates of the vectors jcy. A quadratic form A%/ίV may receive
contributions from all the polynomials Lm:

2
lvIιj,μv\u\i - •> an)xμ Λ

v

μ,v=l

oo

aιn9...,aiXi9...,ajXj9...9ann). (2.8)

m=3

The matrix Ly comes from L2:

n

Lυ = Ujdτdj - διJ Σ UkCiiak . (2.9)

k=\

In our approximation the integration measure for jζ is reduced to

ftf kl^ (2-10)

Also we should retain only the following part of the preexponential factor in
Eq.(1.20):

1=2

(the polynomials Poj(a\n,...,ann) do not depend on the orientation of n). What
remains is a gaussian integral over x7, which would produce a square root of the
determinant of the 2n x In matrix M ^ v . However there is a small problem: this
matrix has two zero modes:

x μ

n = δ μ l 9 \ ύ j ύ n a n d x ψ = δ μ 2 , l ^ j £ n 9 (2.12)

which originate from SO(3) rotations of n. Zero modes appear quite often in calcu-
lations of the Alexander polynomial. They should be removed from the determinant
and the integration over the direction of n should be performed with an appropriate
measure. The removal of the zero modes is achieved either by taking a second
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derivative of the characteristic polynomial of MiJίμv at zero, or by taking any of the
non-zero second rank minors of two diagonal elements:

det'My,μv = ^δ2det(Λ%μ v + xδijδ^)\χ=0 = n2 detM" , (2.13)

here M" is a (In — 2) x (In — 2) matrix obtained from MI7 jjUV by crossing out the
columns and rows to which the two diagonal elements Mi,π a n d K̂/7,22 belong (det
M" does not depend on the choice of i and j). Finally after using Eq. (1.7) as the
1-loop formula for Z( t r)(M;&), we get the following formula for the contribution
to the Jones polynomial coming from the reducible flat connection related to the
configuration (2.4):

= exp (ψ £ lιja,a\

x (2π)2~n (fllaΛ |detM"|4 (ί
\i=l / V /=2

(2.14)

here sign (MιJiμv) is the difference between the numbers of positive and negative
eigenvalues of M ί J ? μ v. It is easy to relate the factors of this expression to those of
Eq. (1.5): π 2 Σ " y = 1 Ujcucij is the classical Chern-Simons action, \/y/lK is the factor

v ^ ^ υ and [ord//i(M,Z)]~1/2 is the contribution of the diagonal part of 577(2) to
the square root of the Reidemeister-Ray-Singer torsion. What remains is (up to
a phase) the U(\) torsion. According to Eq. (2.1) its inverse is the multivariable
Alexander polynomial.

Proposition 2.1. The formula for the multivariable Alexander polynomial of the
link £? is

ΔA(M, JSf β2 π / α i,...,e2 π ι a") = -ie-^M'

(2.15)
1=2

here detM" may be expressed through the characteristic polynomial of the ma-
trix My μv according to Eq. (2.13), while the matrix Mυ μv itself is expressed by
Eq. (2.8).

Let us denote as SAA=Q the set of zeros of the Alexander polynomial ΔΛ in the
space of the phases a\,...,an. Obviously, SAA=O is an invariant of ££. Let us assume
that there exists a finite neighborhood V of the origin of the α-space, in which the
series Y^jl2 PojiaΛ - ,ann) is at least asymptotically convergent. Then according
to Eq. (2.15) in this neighborhood SAA=O is also a set of zeros of the function

. (2,6)
/=1 aj
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Neither the function Δ^ι) nor the factor 1 + Σ J ^ 2 A),/(#i^ 5fl»«) are the invariants
of the link ££ by themselves because they depend on the choice of the zero-points
on the link components and the choice of the propagators (i.e., the choice of the
gauge fixing) as described in [12]. Only their ratio in Eq. (2.15) is an invariant.
However the set of zeros of Δ% coincides with S/\A=o in the vicinity y and is the
invariant of J£f.

Let us now extend Conjecture 1.1 beyond the well-defined lowest level Milnor's
numbers:

Conjecture 2.1. For any choice of parallels and meridians of the link components
5£j which determines the values of all Milnor's linking numbers through the Mag-
nus expansion, there exists a choice of propagators in the quantum Chern-Simons
theory and a choice of the zero-points on ££j for the Feynman diagrams of [12]
such that Eq. (1.23) holds for all values of m.

A combination of Eqs. (1.23) and (2.8) expresses the coefficients of the matrix
Mihμy entering Eq. (2.16) in terms of Milnor's linking numbers iζ im. Therefore
we conclude that the set S^A=o of zeros of the Alexander polynomial in the vicinity
of the point a\ = = an = 0 is determined by Milnor's linking numbers. In other
words, the set of zeroes of Δ% is an invariant of the higher order Milnor's linking
numbers. Note that this set is generally not empty, since if the link has at least 3
components, then ΔA\aχ=-=an=o = 0.

Usually it is said that the higher order Milnor's linking numbers are the in-
variants of the link only modulo the greatest common factor of the lower order
numbers. It seems that the set of zeroes of Δ^ι) is a sharper invariant. For example,
if all ordinary linking numbers of a 3-component link are equal to 1 then the higher
linking numbers modulo the lower ones are obviously equal to zero. If there exists
a choice of meridians and parallels which actually makes them all equal to zero,
then according to Eq. (3.4) the set of zeroes of Δj* is a flat plane

a\ +a2 + a?) = 0. (2.17)

However this is not necessarily the case for a general 3-component link with unit
linking numbers.

3. Taylor Series

The bilinear form Σ" = 1 ΣμV=iMy,μv*μ *v includes o n ly t w o basic bilinear struc-
tures coming from the r.h.s. of Eq. (2.8): xι x3 and n (xt x x7). Therefore the
matrix MιJ}μV has the following block structure:

M =
A

-B
B

(3.1)

here A and B are a symmetric and an antisymmetric n x n matrices. As a result,
the characteristic polynomial of My,μv is a square of another polynomial of x and
matrix elements My,μv Also a matrix element My,μV is proportional to at and α7. This
together with the particular form of the zero modes (2.12) guarantees that det M"
is proportional to (Πy=i aj)2 Thus we conclude that the r.h.s. of Eq. (2.15) can be
expanded in Taylor series in phases ax. The first two terms of this expansion are
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used in C. Lescop's surgery formula for the Casson-Walker invariant, so we are
going to find their expression.

To get the first term in the Taylor series we retain only the terms Ltjxt xj in
the r.h.s. of Eq. (2.8). Then the matrix Mzy>/iV splits into a direct sum of two equal
matrices Lx]\

Mj v = Lj-δ v + Θ(a3). (3-2)

Therefore

(3.3)

here V is any of the minors of diagonal elements of L,j (they are all equal). Thus
the first term in the Taylor expansion of the Alexander polynomial is a polynomial
in a, of degree « - 2:

(3.4)

This expression coincides4 with the formula of [13].
Obviously, Eq. (3.4) provides the leading term in the Taylor series expansion

of the multivariable Alexander polynomial if detLf(a\,...,an) is non-zero. If the
linking numbers Uj are zero then, in view of Conjecture 1.1, the dominant term
will be expressed through higher Milnor's invariants.

To get the second term in the Taylor expansion we have to account for the
polynomials L3 and L4 in the r.h.s. of Eq. (2.8) as well as for the polynomial
Po,2 in the preexponential factor of Eq. (2.14). We can expand the exponential of
Eq. (1.20) in L^ and L4. Only the second power of L3 and the first power of L4
contribute to the leading power in K. We make a simple rearrangement

/ (alλ ah ) (aiχ aJ2) \
(ah x ai2) (ah x ah) = det [ _̂  ^ ^ , (3.5)

\(al2 - ajχ) (al2 aJ2)J

[ah {ah x ah )] [aΆ (ah x ah)]

(
{alχ - ah) (alχ aJ2) (ah aJ3)\

(al2 - ah) (ah aj2) (ah ah) . (3.6)

Multiplying the preexponential factor of the integral of Eq. (1.20) by an extra
scalar product (αz Sj) is equivalent to taking a derivative δ/ . By applying this

4 I am thankful to C. Lescop for checking this.



308 L. Rozansky

trick to the factors (3.5) and (3.6) we arrive at the formula

= -(-2πi)n-2[ordHι(M,Z)]

2« i,'2./3,£2.Λ=i l i 2 ' 3

- Y p, Mia; +4 y

1 det l '

1 1 / = 1 W 7

(3.7)

We consider ltj and lJt as independent variables when we take derivatives in this

formula. The coefficients pιj9 /-^ 3 and ή*]2jj2 come from Eqs. (1.26), (1.24) and

(1.25).

Proposition 3.1. The expression (2.15) for the multivariable Alexander polynomial
can be expanded in the Taylor series in phases aj:

(3-8)
7=0

Each term Δ{%~2+2j) (M, if au , an) is a polynomial of degree n-2 + 2j. The
first two terms in this expansion are given by Eqs. (3.4) and (3.7).

4. Basic Properties of the Alexander Polynomial

We are going to check whether the r.h.s. of Eq. (1.20) satisfies some basic properties
of the multivariable Alexander polynomial. Let us find the value of AA(M, <£\ e2maχ,
. . . ?£

2π«*«) when an = 0. Consider the matrix Mljμv. Suppose for simplicity that the
diagonal elements Mmn and Mnn^i do not belong to the two columns and rows that
were removed from MIJSV. Then it is not hard to see that the part of det M" which
is proportional only to the second power of an, must include both these elements.
As a result,

AA(M9 if; e
2πίa' 1) = -i

|detM£1(α1,...,αB_1)|ϊ

Π -n-n—l

here Mfa is a (« — 4) x (« — 4) matrix obtained by "reducing" the (n - 2) x (n - 2)
matrix M"\ two rows and two columns containing the elements Mnntn and Mnn^i
are removed and an = 0 is substituted in all other matrix elements.

Suppose now that we remove the nth component ££n of the link if\ We denote
the remaining link as ^[ny To calculate its Jones polynomial we have to substitute
an = 1 in Eq. (1.20). Then \an\ — l/K and the contribution of the configuration (2.4)
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for 1 g j ^ n — 1 to the integral (1.20) in the leading order in K is equal to

Σ hjataj

1=2

- e x p
V 2 ^=1

/=2

• Λ - lΠ n—

d2β
exp

^W—1

w—1
(4.2)

After extracting the U(l) Reidemeister-Ray-Singer torsion from this expression we
find that

1=2

- 1

jllaj sin(πΣ":! Ijnaj)
(4.3)

Comparing Eqs. (4.1) and (4.3) we conclude that

Proposition 4.1. The multicolored Alexander polynomial as defined by Eq. (2.15)
satisfies the following property:

Σ2/sin lπΣljΠaλ (4.4)

here S£\n\ is the link i f with nth component removed.

Now let us see what happens if we perform a U^p^ surgery on the nth compo-
nent of if thus constructing a new RHS M' with the link ££\n\ inside it. According
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to the surgery formula (1.10) and the results of Sect. 3 of [1],

2 K

Us(p,q)- - + 3 s i g n ( - + /„„
q \q

anx sm I π —

or, equivalently,

1+ Σ K~mPmJ(au...,an)

ί+mφO

(4.5)

x exp
iπ

ΪK

4π
nlίκdsΛ \ίπK

\
x -—sin π j

an\ V
oo

1+ Σ K-mPmJ(au...,an)
!,m=0

/+/«ΦO

(4.6)

The integral over an should be calculated in the following way. We first separate
the part of the sum X ^ 2 Lm(3\,...,an) which is linear in an\

m=2

and introduce a new variable x instead of an:

_ 1
a n = x - -

qlnn m=2

(4.7)

(4.8)

After substituting Eq. (4.8) into the integral (4.6) we separate the terms of the
exponent that do not depend on x. These terms form the exponent of the repre-
sentation Eq. (1.20) for zf^n_x{M'^Vnλ\k). We leave the term P±^-χ2 in the
exponent of Eq. (4.6) and expand that exponent in all other terms which are at
least quadratic in x (there are no linear terms thanks to the substitution (4.8)). This
expansion mixes up with expansions in powers of x of two preexponential factors
l + Σ°Sn=o K-mPmJ(άu...,άn) and sin ( T Γ ^ ) ^ ! " 1 (the latter factor is in fact

/+mφθ ' q
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analytic in an since its expansion contains only even powers of \an\). Thus, similar
to the integral (1.19), what remains is a bunch of gaussian integrals over x. The
limit on the powers of K versus powers of x in the expansion of the preexponential
factor is weaker than that of Eq. (1.19) (e.g. we now have positive powers of K).
However it is easy to see that the main property still holds (cf. Corollary 1.1):

Proposition 4.2. Only a finite number of the polynomials Lm and Pmj of Eq. (4.6)

are needed to express a given polynomial Lm,Pmj or a given term in the \/K expan-

sion of Z{iγ\M'\k)participating in the expression (1.20) for Z^τ

χl^n_x{M',^[n]\k).

To determine what happens to the multivariable Alexander polynomial under
the surgery U^M) on the link component 5£n we have to find the contribution of
the configuration (2.4) to the integral (4.5) to the leading order in K. In view of
Proposition 1.4, the integral over an is dominated by the stationary phase point

(4.9)
lnn ,=\

We need only the 1-loop approximation to this integral:

= J-π[ordHι(M,Z)]-ϊ\p + qlm\-hisin ^ ' /'" J sign(p-
V Λ \ P + Q1"" J

x / f[(Kd^
\S,U,\ ,=. V4π \dj\

I^l=l β / 7

S I

τ

oo

1 + £ ^ - m P m > / ( α 1 , . . . , α Π )
Λ/M=0

/+uίφθ

(4.10)

and we have to take only the contribution of the configuration (2.4) with an — aist)

to this integral. Comparing this expression with Eqs. (1.5) and the surgery formula
for the 1-loop correction

e's^M') = \p + vq\-hiS^M\ (4.11)

we conclude that

Proposition 4.3. If a U^p'q) surgery on the nth component of a link L in RHS M
produces another RHS M\ then for the remaining link JSf [M],

ΔA (M,if;e 2 π ' f l >,..., e

2 ™->, exp (

sign(p +qlnn)

. (4.12)
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5. The Link Surgery Formula

Now we turn to the subject of our main concern: the surgery formula for the con-
tribution of the trivial connection to Witten's invariant. Suppose that a RHS M
contains an Λ^-component link ££ and we perform U^J^^ surgeries on its compo-
nents in order to obtain a new RHS M1'. Applying the arguments of Sect. 3 of [1]
to Eq. (1.20) instead of Eq. (1.16) we conclude that

Proposition 5.1. The trivial connection contribution to Witten's invariants of
RHSM and M' connected by JJ^i^^ surgeries on components of a link <£ in
M, are related by the following equation:

x exp
iπ

IK

Z ( t r )(M;£)exp --/πsign(L ( t o t ))

x / Π ί ~J%
[β,=0]7=l

'a

l,m=0

(5.1)

symbol J^ = 0, means that we take only the contribution of the stationary

phase point aj = 0, 1 ^ y ^ n, which should be calculated in the following way.
all the factors except for the last exponential should be expanded in powers of Sj
and then the gaussian integrals with polynomial pref actors should be calculated
one by one.

Although in contrast to Eq. (1.19) there will be positive powers of K in the preex-
ponential series, still.

Corollary 5.1. Only a finite number of the polynomials Lm and Pmj are required
to express Z^r\M'\k) at a given order in \/K expansion.

We can use Eq. (5.1) in order to derive explicit surgery formulas for the first
two loop corrections to Z ( t r )(M;&):

JS\tr)(Mf) _

which is consistent with Eq. (1.7) and

7=1

(5.2)

(5.3)
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here

1

π 2 d e t L ( t o t )

3 —

± (i(Pjq,) ζ

1 » / 1 π2

detZ ( t o t ) . (5.4)

In view of Eq. (1.8) we assume that

Acw(M') = λCψ(M) + Zlcw (5.5)

We did not compare Eqs. (5.5), (5.4), (3.4) and (3.7) directly to the surgery formula
of [13]. However the latter formula was derived from Walker's surgery formula by
using the properties (4.4) and (4.12) of the multivariable Alexander polynomial.
Since our formula also satisfies these properties, we assume that it is consistent
with the results of [13].

6. Discussion

The results of this paper are based on Reshetikhin's formula (1.20) which separates
the exponent of order K from the preexponential factor of order at most K°. This
separation allowed us to extract the large k asymptotics of the Jones polynomial of
a link and of the link surgery formula (1.10).

Assuming that Conjecture 1.1 is correct, we see the relation between the leading
part of the multivariable Alexander polynomial when its arguments are close to 1,
and Milnor's linking numbers of the knot. Slightly generalizing the results of [14]
and [15] we may say that the Alexander polynomial and Milnor's linking numbers
are the algebraic tools for the study of irreducible deformations of reducible flat
connections in the knot complement: the zeros of the Alexander polynomial indicate
the points where the deformation can be carried out and Milnor's numbers determine
the possible directions of the deformation.

The surgery formula for the loop corrections tfr) to the trivial connection con-
tribution to Witten's invariant of a rational homology sphere as defined by Eq. (1.4)
was derived in [1] at the "physical" level of rigor. The extension of this formula
to links provided by Proposition 5.1 gives it a better chance to acquire a rigorous
mathematical proof. In other words, the invariance of the r.h.s. of Eq. (5.1) under
Kirby moves has to be established.

Equation (5.1) is a surgery formula for the perturbative invariants S^ defined in
canonical framing. The same invariants can be calculated through Feynman diagrams
which require a certain regularization [17]. The relation between this regularization
and the choice of framing still remains to be understood.

Another open question is a calculation of the contributions of nontrivial con-
nections as well as the extension of this discussion beyond the rational homology
spheres. Some experimental results on Witten's invariant for these cases are pro-
vided in [6,5,7 and 1], while a study of Casson's invariant of the manifolds with
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nontrivial rational homology was carried out in [13]. However, all these results
seem to require a more detailed analysis.
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Appendix 1

We are going to derive Reshetikhin's formula (1.20) for the type (n,mn) torus link
^(n,mn)' This is a very simple link which consists of n parallel components which
are twisted m times.

Its Jones polynomial is easy to calculate:

exp

ι=θμ=

ιπ (Al.l)

The sum over / is a nuisance because it is nowhere present in the r.h.s. of Eq. (1.20).
However by applying the methods of Sect. 4 of [1] we can show that the contribution
of the terms with / Φ 0 is related only to irreducible connections which appear only
when the values of the phases <Xi/K are large enough (the n + 1 numbers OLJ/K and
211m should satisfy "polygon inequality" conditions). Ultimately for small values of
oίj/K we can use the expression

9 °£{n,mή)\ &) —

sin

π β

A simple formula

IHLfίL
'2K~m

(A1.2)

K d2a
τ=r e x P •b) =

n\b\
(A1.3)
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allows us to rewrite Eq. (A 1.2) as

315

;k) = Z(S3;k) (l-~) exp - 1) - m

f
\a/\-T

« - 1
sin

aΊ\)3 \ύn(π\b\)
π\JA

x exp
iπK / " 2 Ί,- Λ . *

2 \ / = | / = | /M

After changing the integration variable from b to

x = b — m^a, >

(A1.4)

(A1.5)

expanding the preexponential factor in powers of x and calculating gaussian inte-
grals over x, we obtain the formula

exp m /_^ aι
2 Λ / = i

exp 2K
-m{n — 1 — m )

This is Reshetikhin's formula (1.20). In particular,

jlj = m for / Φy, //y = 0

and
Lw(<?i,..., an) = 0 for m ^ 3 ,

(this seems to be a general property of torus links), while

1+ £ K-mPmj(3u..-<an)
1 +•/» φ 0

(A 1.6)

(A1.7)

(A1.8)

= exp I _ „ ( „

(A1.9)
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It is easy to check the relation (2.15) between Eq. (A1.6) and the Alexander
polynomial if we recall that

and that in our case

sin"-1 (πmΣ,"ιaj
ί ) n - 2 /

sin

(ALII)
7=1

The torus link J£(n,mn) provides an example of existence of irreducible flat con-
nections in the link complement even for arbitrarily small phases \fij\. Equation
(2.3), which in view of Eq. (A1.8) is exactly valid for small phases, is reduced to
a condition

/

i = l

which is obviously satisfied if

7=1

The necessary and sufficient condition for the existence of this configuration is that
the phases \dj\ satisfy "polygon inequalities":

Σ\a,\ £ | α , | , l ^ j ύ n . (A1.14)

These inequalities can indeed be satisfied even for arbitrarily small phases. Note
that the extremal cases of these inequalities, i.e.

(A1.15)

are parallel configurations and also zeros of the multivariable Alexander polynomial
(A1.10).

It is possible to combine the calculations of Appendix in [1] and Eq. (A1.6) into
Reshetikhin's representation of the Jones polynomial of a general ^-component torus
link ££(mpίnp) (m and n are coprime). We present here the result without derivation
(it is similar to the one for Eq. (A 1.6)):

^"X\,...,oίp\^ 9 ~& (mp,np);k)

= Z(S2;k) J
'(Ktfa,

exp
iπK

ij=\

in m2n2 p — m2 — n2

IK ^n

W πmny \psin(nmy)sm(nny)

\_\sm(nmny) J nmy nny
(A1.16)
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Equations (A1.4) of [1] and (A1.6) are particular cases of this equation (set p = 1
or set n = 1 and put n instead of p).

The Alexander polynomial of S£{mp,np) is

•i=\uJ

sin \nmYfJ=xa^j sin [πnΣf^aή

(A1.17)
its relation to Eq. (A1.16) is easy to observe.

Appendix 2

Here we will briefly review the structure of flat connections in a link complement
and show that Eq. (2.3) describes them approximately in close vicinity of the triv-
ial connection. For more details on the structure of flat connections in the link
complement and their relation to Milnor's linking numbers, see for example [12].

Consider an ^-component link j£? in S3. We use Wirtinger's presentation for the
group πi(S3\Tub(if)). We project the link <£ onto a 2-dimensional plane and de-
note as Lij the pieces into which a link component L? is split when it is overcrossed.
With each such piece we associate an element gij G πi(S3\Tub(J2f)). These ele-
ments generate the whole group π\(S3\Ύub(^)) modulo certain relations. Let P{]

be a crossing point where a piece L^i overcrosses a junction of two pieces L^} and

LltJ+ι. Let sign {P^λ be a signature of this crossing. In other words, sign

is either +1 or — 1 depending on mutual orientation of Lz and L^ at the point of
crossing. The linking number of two link components can be expressed in terms of
the signatures of crossings:

/* = Σsign (/*') (A2.1)

The relation between the group elements corresponding to the crossing point Pfj is

sign(p* ' ) -sign (/>*•')

Gιj+ι - Gkj Gijdkj (A2.2)

The relations (A2.2) describe the structure of πi(53\Tub(J5f)).
Suppose that we have a one-parametric family of homomorphisms

3 ^ G,

M=\

here G is a Lie group and λ]™ are elements of its Lie algebra. The homomorphisms
(A2.3) describe (up to a conjugation) a family of flat connections in S3\Ύub(J£)
which includes the trivial connection at t = 0.
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We substitute the images of the homomorphism (A2.3) into the relations (A2.2)

and expand them in powers of t. At order t[ we observe that the elements λ^J do

not depend on j\ so we denote them simply as

λ, = λ(>) . (A2.4)

At order t1 we get a relation

<2Λi - λu = s i S n {PίJj) Vk, λt] . (A2.5)

If we go around a link component if, and add together all the relations (A2.5),
then we arrive at the equation

( J ) (A2.6)
k,ιj v ' J

which in view of Eq. (A2.1) is equivalent to Eq. (2.3) for the case of G = 5(7(2).

Proposition A2.1. The stationary points of the phase in Reshetikhin's formula
(1.20) are in one-to-one correspondence with the flat connections on the link com-
plement in the linear approximation around the trivial connection.
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