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Abstract: We show that the Floer cohomology and quantum cohomology rings of
the almost Kahler manifold Af, both defined over the Novikov ring of the loop space
3PM, are isomorphic. We do it using a BRST trivial deformation of the topological
A-model. The relevant aspect of noncompactness of the moduli of pseudoholomor-
phic instantons is discussed. It is shown nonperturbatively that any BRST trivial
deformation of A model which does not change the dimensions of BRST cohomol-
ogy does not change the topological correlation functions either.

1. Introduction

The "quantum cohomology" ring HQ (—(c,c) ring in terms of N = 2 sigma models)

was introduced in [1], see also [2-6]. The infinite volume limit of HQ coincides with

the ordinary cohomology ring H*(M) of the target space M. For any finite volume,
HQ is a deformation of//*(M). A natural question arises about the meaning of this
deformation in classical geometry.

One way to do this in terms of the moduli space of holomorphic instantons was
introduced in [2, 6, 5]. It is more or less standard by now and we refer the reader
to [5], for a review of that approach. Closely related to, but not quite the same as
the latter one, is the interpretation in terms of geometry of the parameterized loop
space J^M of the target space, conjectured in [1, 3]. It turns out that an appropriate
object to deal with in this context is what the mathematicians call a Floer symplectic
cohomology H£ [7-9].

Hp appear via the Witten-Floer [10,11,7] complex in J2?M, whose vertices
are the fixed points of some symplectomorphism φ of M and the edges are the
"pseudoholomorphic instantons" (defined below) connecting these fixed points. It
is graded by the same abelian group 2Γ as the quantum cohomology HQ (and
for the same reason), a phenomenon known to physicists as the anomalous con-
servation of fermionic number. Under some natural assumptions [7, 12] one has
άimHp = Σyer bl+2y(M), where on the left-hand side we identify the index of Betty

numbers modulo 2Γ. Moreover, there is a natural action of //*(M) on Hp. It is
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defined in terms of intersection numbers in S£M of a finite dimensional cycle -
a cell of the WF complex - with a finite codimensional one - a pullback of the
cocycle on M under the natural projection 3?M —> M. Having fixed the isomor-
phisms of vector spaces hl : H1

F ~ H1

Q, we may think that we have a new multipli-
cation law (a ring structure) on H*(M). This is quite similar with how it happens
for the quantum cohomology ring.

The whole ideology of the Floer theory renders it almost obvious, that there
should be an isomorphism

H£=H£. (1.1)

Still, there are two obstacles for just the naive identification (1.1).
The first obstacle is that, as in [7-9], Hp is naturally defined over integer num-

bers Z. In particular, it cannot depend nontrivially on any continuous parameter.
On the other hand, the quantum cohomology HQ is defined over complex numbers
and its ring structure depends on the Kahler structure of the target space.

The second problem is that in Floer theory by "pseudoholomorphic instantons"
one understands the solutions of the equation

*,«„, (,.2,

where J* is an almost complex structure on M which relates the metrics G// and
the Kahler form kif.

G,j=J?knj. (1.3)

The function H on the right-hand side of the equation (the Hamiltonian) depends
on the point on M and also periodic (with period 2π) on variable t. Fix some initial
moment t — 0. The hamiltonian flow, generated by H, maps M to itself at each t.
A map, generated when t = 2π, called a period map, gives a symplectomorphism
φ. Thus the fixed points of φ are in one to one correspondence with the peri-
odic with period 2π trajectories - the points of 5£M. By difficult analytic methods
[7, 8] Floer has proved that in fact Hp is independent of H(X, t), for generic H.
Unfortunately, H = 0 which gives the usual holomorphic instantons equation, is by
no means generic for the Morse type theory.

It turns out that the first problem can be dealt with quite easily if we rede-
fine both HQ and Hp to be defined over some new ring, called a Novikov ring

[13-15]. This trick is well known to mathematicians [16,17]1. It also makes possi-
ble to work with Floer theory on the Calabi-Yau manifold, which otherwise would
be impossible.

Our strategy in dealing with the second difficulty will be to show how the
"pseudoholomorphic instantons" appear in topological sigma model [4,5,18],
properly deformed by adding a BRST-trivial piece to the action. Thus instead of
trying to continue the Floer cohomology to the point H = 0 we extend the quantum
cohomology to arbitrary H and show that it does not depend on H.

We obtain a family of topological theories parameterized by the Hamiltonian
H. For H — 0 we get back a topological sigma model of Witten [4]. The local
physical operators, given by BRST cohomology, are in one-to-one correspondence
with elements of de Rham cohomology of M. The correlation functions of these

1 In the last reference the Novikov ring is different from ours and used for another reason (to
work with nonexact symplectomorphisms).
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operators can be localized to holomorphic instantons. The operator algebra is given
by the quantum cohomology HQ.

For #ΦO, the (off-shell) BRST operator is the same as for H = 0. There-
fore the physical operators are the same. Moreover, as the deformation by H is
BRST trivial, the topological correlation functions are the same. Hence the op-
erator algebra is always HQ. An important feature of theories with //φO is that
it is possible to characterize also the states in a simple fashion. The states of
topological theory are the ground (zero energy) states of the corresponding TV = 2
supersymmetric sigma model. It turns out that perturbatively, these states are in
one-to-one correspondence with the loops - critical points of the Floer functional.
The non-perturbative effects of instantons "lift" some of them, leaving as the true
ground states only those annihilated by the BRST operator. The whole picture is
a direct generalization of one which appears in Witten's supersymmetric quantum
mechanics.

Using localization, it is possible to compute the matrix elements of the BRST
operator between the perturbative ground states. They turn out to coincide with
matrix elements of the Floer complex. Therefore the true ground states coincide
with the elements of Floer cohomology groups Hp. The operator algebra HQ of the
theory acts on the space of states = Hp. This action is what we are after. Using the
same localization technique, one can find the matrix elements of this representation
of HQ on Hp to be the same as appear in Floer's theory under the other name. The

state-operator correspondence of topological sigma model leads to identification of
these matrix elements as (topological) correlation functions.

This is the outline of both the idea and the techniques used in this paper. Cer-
tainly, it does not contain a mathematically rigorous proof. For example, we take it
for granted that the operator algebra HQ of topological sigma model is commutative

associative. (Recently this fact was proven [19].) There are many other fine points,
part of them discussed in the last section of this paper. We explain there why the
BRST trivial deformation which does not change the ranks of BRST cohomology,
does not change the topological correlation functions either. In doing this, we can-
not use the perturbative argument since we do not know the right vacuum of the
theory apriori. The reason is that due to the noncompactness of the moduli spaces
of pseudoholomorphic instantons, the state operator correspondence could furnish a
singular map at some points. The standard example is the deformation of LG model
by the relevant operator W = xn+2 -> W + εxn+3. (In this example, the BRST co-
homology does change.) In the last section we show that such phenomenon does
not occur in A model, the state operator correspondence is always smooth and the
correlators are independent of the BRST trivial deformation.

One can understand the relations of the physical approach developed here with
the mathematical approach developed by [19,20] as follows. Mathematicians want
to construct a homotopy of the Floer complex to H = 0. It is a technically difficult
problem. It turns out that it is easier to work with generic almost complex structure.
From the point of view of physical approach developed, it is straightforward to
generalize to that situation. Since any variation of the almost complex structure
corresponds to BRST trivial deformation of the theory, the topological correlation
functions and operator algebra are independent of it [4,5]. Then, one can interpret
the constructions of this paper as a realization of required homotopy on the ground
states of the topological sigma model given by the state-operator correspondence
map. Smoothness of this map is crucial.
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2. Morse Theory for Multivalued Functions: Novikov Rings

In order to organize the material better it seems convenient to begin with the expla-
nation of ideas of the Novikov theory before having defined the Floer cohomology
Hp in detail. The only thing we should know about HF now is that it appears
in a Morse theory for a multivalued function S on the loop space. That func-

tion is defined on the universal cover <£M of ^M (it is necessarily abelian) and

changes by j>^k as one moves along &M by y £ π\(£PM) = τi2(M\ A: is a Kahler

form.
Consider first a situation in general, following closely the presentation of [13].

Let X be a closed manifold. We do not specify whether it is finite dimensional or
not. Of course, in the latter case, which appears in Floer's theory we have problems
with compactness, but here we want to forget about it for a moment. Let y\,...,γn

be a basis for the first homology group of X. For every closed 1-form ω on X we
have n periods

kj = fω. (2.1)
yj

The numbers k\,...,kn are in general irrational and their linear combinations with
integral coefficients form a free abelian group. The rank k of this group is called
the irrationality of 1-form ω. Obviously, k ^ n. From now on we suppose that
k = n which means that ω is "generic enough."

There is a minimal free abelian covering p : X —-> X such that the form /?* ω is
exact:

p*ω = dS . (2.2)

The monodromy group is Zn = H\(X\ generated by the covering transformations
Tl :X —>X, satisfying Tj*S = S + ki. Take on X a smooth metric such that the
hamiltonian flow generated by ω lifts smoothly to a oo-contmuous flow on the
covering space X: each trajectory ends in a critical point or intersects all the level-
surfaces of the function S on X. Consider now a cellular decomposition ^ (with the
structure of complex) of X. For example, it can be a Morse decomposition defined
as a collection of the surfaces of steepest descent starting from the critical points.
This gives a collection of cells

σq, q=l,...,mi . (2.3)

The complex ^ lifts to a complex ^ in X with a free action of the monodromy

group Zn on it. We can denote the cells of ^ by

^...fX, q=l,...9ml9 (2.4)

then the generators T^1 of the monodromy group act by multiplication by ί^1. We

define the boundary operator on ̂  by

dθiq = Σ,<*pq(t\> '>*n)σiϊl , (2.5)
P

where the coefficients apq(t\,...,tn) are the formal series in tι,t~l. To be precise,
let us give a definition
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Definition. A ring Kn (a Novίkoυ ring) consists of all such formal power series
in t\ , . . . , tm ί j~ l , . . . , t~ l that the following two conditions are met:, . . . ,

a) There exists a number N(a) such that if

(2 6)

then the coefficient MS,,...,^, = 0 if ΣjSjkj < N(a).
b) There is only a finite number of nonzero coefficients in any domain

JV, < Σsjk> < NI (2 7)
J

Example. If n = 1, then

(2.8)
n^N(a)

- the Novikov ring coincides with all formal series with the finite negative part.
There is a natural embedding of the group ring of the monodromy group Zk

to Kn:
0-+Z[tι,...,tn9tΐ

l

9...9t-
}]-+Kn . (2.9)

This embedding generates the local system Jf on X with coefficients in the ring
Kn and the corresponding homology groups H*(X,Jff) are Kn -modules. It is the
boundary operator of this local system complex that we have written in (2.5).

Having established the basic facts about Novikov rings in general situations, we
are back to the loop spaces <£M. We have the canonical isomorphism2

= H2(M) = π2(M) . (2.10)

To define a basic 1-form ω on the loop space ^M let us notice that the value
of vector field ξ(z) G Vect(^M) in the point z = {^(0,0 ^ t ^ 2π} G ̂ M is
a vector field ξ(t) on the circle z C M. Then the value of the form ω on ξ in
z G JzfM equals

ω(£)(z) = /*(£(0), (2.11)

where A: is a Kahler 2-form3 on M. Now let us apply what we have developed
above to the quantum cohomology ring. One notices immediately that HQ is in fact
already defined over Kn, if one identifies

X A,

(2.12)

Indeed, both the fundamental two- and three-forms, defining HQ take values in series
in t\,...,tn with integer coefficients and it is easy to see that actually they take
values in Kn. Moreover, we know that there can only appear the positive degrees of
the generators t\,...,tn in all these formulas. This is because we only consider the
holomorphic maps into M; for such maps the degree is always nonnegative. Thus
in the definition of the Novikov ring given above, we can restrict ourselves to the

2 We suppose that M is simply connected.
3 That is, \k\ € H2(M) is positive on all the pseudoholomorphic curves in M.
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series having no negative part. With this remark, we will use the term "Novikov
ring" meaning the ring for the loop space constructed above.

From this point of view on the quantum cohomology we think of the variables
tι,...,tn as indeterminates, but define HQ over a bigger ring Kn instead of complex
numbers C, so the Betti numbers do not change (generically).

3. A Brief Review of Floer Symplectic Cohomology

The purpose of this section is to briefly discuss the Floer theory in a way clarify-
ing its resemblance to the quantum cohomology (modulo two obstacles, mentioned
in the introduction). For example, from the very beginning we define it over the
Novikov ring. Also, we don't try to give any proofs in this section, referring the
reader to [7-9, 12, 16, 17,21,22].

Let M be a Kahler manifold with a Kahler form k. This closed 2-form defines a
symplectic structure on M, providing a one to one map between vector fields υ and
1 -forms ω on M given by the formula ω = k(v, ). A vector field v preserves k
iff ω is closed; v is called hamiltonian iff ω = dH is exact. A function H is called
a Hamiltonian.

The Hamiltonian equation

i i

/(*, 0 (3.1)

defines a family uH(t) of diffeomorphisms of M, preserving k (called symplecto-
morphisms). They are characterized by the condition that Xl(t) — ul

H(t,X) solves
(3.1) for all X G M. The Floer theory studies fixed points of the period map
Per: uH(t,X) — > uπ(t + 2π,X) for the Hamiltonian flows with periodic in t
hamiltonians:

H(X,t + 2π) = H(X,t) . (3.2)

Such points are in a one to one correspondence with the periodic trajectories of
(3.1) having a period exactly 2π. It coincides with the ordinary Morse theory on
M when H is independent of t, as the fixed points of un(t) are just the critical
points of H(X) then. For the time dependent hamiltonians H(X,t) the Floer theory
is a sort of a Morse theory on the loop space ££M of M .

Let us consider a (multivalued) function SH on

(3.3)
£>2 51

Here z is a point in J&fM

z = {X(t)\X(0)=X(2π)} , (3.4)

and a smooth function φ furnishes a map of a disk φ : D2 — > M with the boundary
values X(t\ so 3D2 — Sl . Since dk — 0, SH depends only on the homotopic type
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of φ with fixed boundary. This function becomes single valued on the minimal

abelian cover 5£M of 5£M (with monodromy group Zk, where k = rank//2(M)).

When π2(M) has no torsion, <£M coincides with the universal cover of <£M.
For a smooth vector field ξ on «£?M (in the point z G J^M it gives a vector

field over the contour z in M) the ^-derivative of *$// is well definite:

(ξ (3.5)

A point z is a critical point of SH iff (3.5) vanishes for all ξ, which happens
iff z = X(t) satisfies (3.1). As z E =^M is periodic with the period 2π by definition,
it gives the fixed point of the period map we are after.

The trajectories of the gradient flow of SH are the solutions4 Xl(t,τ) : Sl x R — >
M of the partial differential equation (1.2). Two terms

Gi(X(t,τ))=J'~-ffH(X,t) (3.6)

may be considered as a vector field on S£M evaluated at z(τ) so (1.2) is a gradient
flow equation on

= -G(Z) . (3.7)

On the other hand, when H(X,t) — 0 (1.2) is just the Cauchy-Riemann equation
for the holomorphic instantons.

The function S//(z) decreases along the trajectories of (3.7),

3SH(z)

dτ = -§ dτ
dt . (3.8)

Thus the set of trajectories for which JR $sl

 c ^ dtdτ is finite coincides with

one of those for which SH is bounded. Such trajectories connect the critical points
of SH. We define the Morse complex ^// as the set of bounded trajectories

= {X(t,τ) - a solution of (1.2)| / /
dX(t,τ)

dτ
dtdτ < 00} . (3.9)

Let us define ^//(z+,z_) as a set of trajectories in #// such that z(τ) —> z± when
τ —> ±00 and a set of ^-trajectories ^k

H(x,y) going from x to y as the set of all
A:-tuples z\(τ\.. .,z^(τ) such that z/(τ) G (6n(xi-\Λ\ ^o — *> ^/t = JF A shift of
the variable τ preserves ^//(z+,z_), so it makes sense to consider the quotient by
the translational symmetry

(3.10)

The set 2£ of the critical points is graded by the analog of the Morse index
μ. But unless c\(M) = 0, i.e. unless M is a Calabi-Yau manifold, this is not a Z

They are also called the pseudoholomorphic instantons.
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grading. Let Γ C Z be a lattice generated by the set of periods of c\(M) on π2(M),
then there is a function μ : 2£ — > Z/2Γ such that

dim'M^jO^OO-μO')] (mod2Γ). (3.11)

There is the same situation for the quantum cohomology, where μ is called a
fermionic number. The ambiguity in (3.11) occurs because [23,7] a sequence of
paths in ^M can diverge by splitting off a (pseudo)holomorphic sphere (instanton)
w, and for a joint of a path z(τ) G #//Ot, ,y) with w we have

μ(z#w) - μ(*) - μ(j ) + 2c,(w) . (3.12)

This "splitting off a sphere" phenomenon also results in that the compactness prop-

erties of the cells #//(z+,z_) are not so good as they are in the finite dimensional
Morse theory. But it can happen only for those components with dimensions bigger
than 2 (basically, because an Sl action on the 2-sphere gives an additional degree
of freedom). Thus, as it was in the finite dimensional case, the 0-dimensional com-
ponent of ^//(z+,z_) is finite and the 1 -dimensional component is compact up to

the boundaries from ^(z+,z_).
Now let Z* be a free module generated by the critical points 3? over the Novikov

ring K. This module is graded by μ. For every isolated trajectory z(τ) belonging
to the 0-dimensional component of ^//(z+,z_), let σ(z) denote its orientation Wi,

F and p(z) = ̂ l(z) . ..^/ϊ(z) denote the homomorphism which the local system Jf .
(defined in Sect. 2) associates with the path z(τ). We define the matrix element of
the coboundary operator by the formula

<δj>,*> = Σ>(z)p(z) , (3.13)

where the sum is taken over all isolated trajectories in ^//(z+,z_). Then the action
of the coboundary operator on Z* is given by

These formulas are to be compared with that obtained in [11] for the finite dimen-
sional situation:

When the Morse function is single valued, as in [11], the factors eh(x) can
be absorbed by redefinition of the vertices x. When this is not the case, as in
the Floer theory, the set of "phase factors" p(z) = eh(y^~h^ forms the nontrivial
1-cocycle on ̂  and cannot be canceled out by any renormalization. We see that the
formula (3.15), which naturally appears in the context of supersymmetric quantum
mechanics, knows already about the Novikov ring. The formula (3.13) should be
considered as its counterpart for the topological sigma model where it computes the
matrix element of the BRST operator between two wavefunctionals localized on the
loops x and y respectively.

Computing the intersection numbers (weighed by p) of cycles in <£M with cells
^//(z+, z_) of the Floer complex, we could define the cup product U : H*(£fM) x
Hp — >• Hp . But because of noncompactness the intersection numbers are only defined
for the particular dual classes of H*(<£M\ pulled back from M by the zero time
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evaluation map π : z = {X(t)\X(Q) = X(2π)} -+ X(Q). This is similar to what we
have for the quantum cohomology where we should compute the intersections of
only those cycles on the moduli space pulled back from M.

In order to define a restricted cup operation αU : Hp —> Hp we represent

the cohomology class α eHp(M) by the dual singular simplex α : \Jt zl j —> M,
|α = dimM — p and set

αn<M*,;0 - {(/,z) e UJIΊ x #//(*, jOlαW =*(0)} . (3.16)

We have dim(α n ^//(*, y)) — p - dimM. Then we define the weighed intersection
number as

(x, *\Jy)=Σ<r(P)P(P), (3 17)

where p runs over 0-dimensional part of dim(α Π #//(*, y)) and σ(p) is the usual
relative orientation factor ±1. The point p lies on one particular path zp(τ) and

p(p) = p ( z p ) = t^ - t*n (3.18)

is the homomorphism which the local system 3C associates to zp. Finally, the cup
operation α U : Z* —> Z* is defined as

So defined the cup operation commutes with the coboundary operator δ and therefore
descends to Hp . The subtlety here is that for two arbitrary x,y G Z* the matrix
element (3.17) depends on α itself, not only on its cohomology class5. It becomes
independent of the choice of any particular representative for [α] G //*(M) only
after we descend from Z* to Hp. We will understand this better in the next section,
in terms of decoupling of BRST-trivial states from the correlation functions of
topological sigma model.

From the point of view of the topological sigma model the bracket (jc, α U y) =
(x\u\y) should be interpreted as a matrix element of the operators corresponding to
α, taken between vacua x and y. In the next section we give such interpretation and
relate these matrix elements with three point correlation functions of the A-model.

In the Floer theory, we consider the elements of de Rham cohomology of M as
linear operators, acting on Hp9 so there is a homomorphism

v:#d*eRham(M)-End(tf;). (3.20)

It is not obvious that the image of v is a ring, i.e. that it is preserved by the
operator multiplication6. We shall see it is true only when we identify this image
as the operator algebra of topological A-model, which is closed (and associative
[19]). It would be very interesting to be able to prove this fact directly from the
definitions (3.17), (3.19).

5 I thank D. Kazhdan who pointed out this fact.
6 I thank I. Singer and C. Taubes for the discussions that helped to realize importance of this.
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4. Floer Theory as a Topologίcal Quantum Field Theory

4.1. Pseudoholomorphic Instantons in the Topological A-Model In this section we
give a physical interpretation of the Floer theory in terms of the topological sigma
model [4, 18,5]. It leads to identification of Up as a quantum cohomology ring.

As usual, we start from the N = 2 supersymmetrίc sigma model and perform a
topological twist so that one of the SUSY generators becomes a 1-form. Then the
corresponding charge is the BRST operator Q. The N = 2 chiral multiplet of fields
of the model contains

Bosons : world sheet scalar X l — target space coordinates ,

world sheet one form F1^ — target space vector ,

Fermions : world sheet scalar χl - target space vector ,

world sheet one form p\ - target space vector . (4.1)

The field F1^ is what is called the auxiliary field. Both p'α and F^ satisfy a self
duality constraint

F'Λ = 4/,!F£ (4.2)

The name "auxiliary" stresses that F^ serves to close the N = 2 algebra off shell
and that it can be set to zero on shell. Here we want to show how it can be used
to localize the path integral of the topological theory to the pseudoholomorphic
ίnstantons satisfying (1.2) with a nontrivial right-hand side.

The BRST action on the fields of the multiplet is given by

[Q,X>-\ = iχ' ,

{Q,P'*} = F'* + 8aX' + εζjjdβX; - ir .̂ pί + fa^tf p>β . (4.3)

We don't need an awkward explicit formula for the commutator [<2,F^]; it is enough
to know that it is fermionic and equals to zero on the subvariety χl = 0, p7

α = 0 in
the field space.

The local physical operators (observables) of the model are the BRST co-
homology, isomorphic to de Rham cohomology of M [4, 18]. To any p-form
ω = Aiλ ... ipdx11 . . . dxlp there corresponds an operator7 (9ω = Aιλ . . . ipχi\ . . . χlp and

[Q,0ω] = βdω (4.4)

The isomorphism //BRST = ^deRhamC^O follows from (4.4). It is important to note
that we computed the off-shell BRST cohomology. We see that the auxiliary field
FX does not show up in the formula for Φω. (It does appear in the nonlocal physical

7 This local operator is a scalar on the world sheet. Besides, there are the nonlocal physical
operators which are integrals of 1- and 2-forms, the whole hierarchy related by the "descent
equation" [5].
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operators though. But in this paper we are only concerned with the local operators,
which by the state operator correspondence are related to the ground states.)

The next step is the computation of the matrix elements of the physical operators
(the correlators). First of all, we should specify our two dimensional action. The
standard choice, coming from N = 2 sigma model, is

Ά0 = f X * ( k ) + Q, / \g^Gi]ft\ daXJ - { F j . (4.5)

Then using the BRST fermionic symmetry, the path integral

(0ι 0m) = / ®Xl®JΪ®ρlβ)F^ 0ι φmeA^x^P^ (4.6)

can be localized [5] on the variety £$ of fixed points of Q (classically, we should
treat Q as a vector field in the field space).

But first we want to get rid of the auxiliary field F1

Λ. It can be done either
by taking the Gaussian in F1^ integral (4.6) or by using the equations of motion
for Flχ. If we choose the standard action (4.5), the (algebraic) equations of motion
give F^ = 0 so in (4.6) we can drop simultaneously the integration in F1^ and the
FX -dependent piece of the action in the exponent.

From (4.3) we see that on £$ the fermions vanish: χl = 0, p*α — 0 and the fields
Xl(z,z) satisfy the Cauchy-Riemann equation for the holomorphic maps from the
world sheet into M .

Up to now this was a well known story [5] about A-model, leading to the
notion of the quantum cohomology ring, characterized by the two- and three-point
correlation functions on sphere. At this moment we can note that the auxiliary
field FX is bosonic. Hence there is nothing wrong if it has a nontrivial expectation
Φl

x(X9z,z) on shell. The expectation Φ^(Jf,z,£) should satisfy the same self duality
condition (4.2) as Fl

x. We can actually give to F1^ the expectation Φ^(X) on shell,
if we add to the action AQ a BRST trivial piece

A=Av + {Q9fg*f>p>ΛΦ'β}. (4.7)

In the sense of topological theory, the deformation (4.7) is trivial. We explicitly
see that the local physical operators are independent of Φ^, since off-shell they do
not contain Fl

x. Also, all the correlation functions (4.6) remain the same. This last
point is not quite trivial because of the possible problems with noncompactness. In
Sect. 6 we argue that these problems do not really appear in our setup.

The conditions (4.3) give now for the X1 fields on the fixed points locus $H

the equation

dtX'+εtjjdβX^-Q (4.8)

(and the fermions vanish on $H as before).
To study the Floer theory, we only need the case when the worldsheet is a

cylinder S] x R} . Then we can introduce the global coordinates (t G S\τ e Rl),
the same as in Sect. 3. The field Φ^ has two components, related to each other by
(4.2):

Φι

t=j}Φ'τ. (4.9)
On the cylinder we can consistently take Φl

Λ(X9t) to be a (periodic) function of
the space coordinate t independent of the time coordinate τ. Then the energy is
conserved.
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Also, we need to consider only the hamiltonian vector fields Φ{, that is

Φ( = -djH . (4.10)

The function H(X,t) is a hamiltonian. Then (4.8) is just the pseudoholomorphic
instantons equation (1.2) we know from the Floer theory.

The only geometry of the world sheet we need to consider to compute the matrix
elements (3.13), (3.17) in the Floer theory is that of the cylinder. Suppose now that
our A-model lives over an arbitrary Riemann surface. Let us briefly discuss what
are the restrictions on Φ^(Jf,z,£). First, there is no good way to divide globally
the coordinates into space and time. If we want, as we usually do, that the energy
be conserved we have to consider only the coordinate independent fields Φl^(X).
Second, the consistency of the fermionic sector now requires that both components
of Φ^(X) be the hamiltonian fields. This condition, together with selfduality (4.2),
forms an overdetermined system of equations for two hamiltonians H^(X}. The
compatibility condition for this system is equivalent to the requirement for Jj to be
a complex structure on M.

4.2. The Operators and the States . The family SH of deformations of the standard
variety $ 0 gives a family of localizations of the same topological field theory. Hence
the set of the observables for $H is the same as for ^0 and coincides with the de
Rham cohomology ^deRhamC^O What is new is that for generic //φO it is possible
to localize the states in the theory to the critical loops set ̂  of the Floer complex.
Indeed, the action is (we work on the cylinder):

A = ${(dτX
l+J]dtχ1 + Φ'τ)

2 + ig^pfox* + }dtdτ , (4.11)

so the bosonic piece of the potential energy of the string configuration z is given
by

/ JVl \ 2

E[Z} = $jj— + Φ'r dt. (4.12)

The set of the minima of E[z] coincides with 2£ . Note that the potential energy
functional comes entirely from the BRST trivial piece of the action. Making the
coefficient before it arbitrarily large we make the walls around minima arbitrarily
steep, so classically the string never flies away from the minima. Thus the wave-
functionals Ψ of the physical states should be the linear combinations of those |jc, )
localized to c/ £ 3?9

ψ = Σ M*i) > (4 13)
jc,e^

additionally satisfying the BRST condition QΨ = 0, modulo (^-trivial vectors.
The quadratic in fermions piece of the action is (we have used the equations of

motion for X1 to simplify it)

AF = ${-ίGljP(dτγJ + p'MjχJfidtdτ . (4.14)

The mass operator M,j here is given by

Mtj = Jijd, + (DkJij)JkmΦmτ + D,Φjτ . (4.15)
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Note that the mass operator (4.15) is just a Hessian of the Floer functional S[z]:

*'-
From the usual interpretation in the quantum field theory, we conclude that the
modes having positive masses (eigenvalues of M/7), correspond to the particles
and those having negative masses correspond to antiparticles8 . In order to have the
stable fermίonic vacuum at each minimum z £ «2Γ of E, the Dirac sea of antiparticles
should be completely filled. The different minima x, y £ ̂  have the different mass
matrices Mtj and hence the different fermionic vacua. Their fermionic numbers differ
by μ(x) — μ(y) modulo the anomaly lattice 2Γ (generated by evaluation of 2c\(M)
on the group π2(M )).

It should also be possible to say this another way [24, 25], using semi-infinite
differential forms on the loop space <£M. The Hessian (4.19) defines a polarization
of the tangent bundle T '&M at the critical point

T^M = ΓJ^M_ Θ T^M+ . (4.20)

In turn, it gives a polarization in the Clifford algebra Cliff of T^M (Cliff is gen-
erated by taking the canonical anticommutators for the fields χl and pl

τ). We may
consider a Verma module of Cliff associated with this polarization and formally
present its vacuum vector as detΓ^fM_ - a "semi-infinite form". For the different
critical points in JΓ, the corresponding polarizations in Cliff are hopefully compat-
ible with each other and it is possible to define (modulo 2Γ) a relative degree
μ(jc) — μ(y) of two different vacua x and y.

To find the physical states (4.13) we should compute the BRST cohomology on
the space of the wavefunctionals localized to «3Γ. The action of the BRST operator
Q on their space is encoded in the matrix elements (jc|β|y}, where x, y £ Z. We
use the path integral representation

(x\Q\y) = $2Xl3>ιl2ρlzQeA[X^p} , (4.21)

where the path integral is computed with the boundary conditions

X(τ = -oo, f ) =x(t) ,

X(τ = +oo,t) = y(t) , (4.22)

and localize it to the pseudoholomorphic ίnstantons. The term multiplying the ex-
ponent is the BRST charge

X* + J>dtX* + <W + {DkJljP

l

τI

kγJ} dt (4.23)

with fermionic number 1, so (4.21) is zero unless the space of the instantons con-
necting x to y is one dimensional modulo 2Γ. It means that μ(jc) — μ(y) = 1 and
that (4.21) is localized to the sum over the same instantons as appear in the ex-
pression (3.13) for the coboundary 6 of the Floer complex. For each such instanton
the g-nontrivial piece of the action A gives a factor p = ts\ - ts

n" exactly the same

8 In the language of the Morse theory, the particles correspond to the stable and antiparticles
to the unstable cells of the minimum z.



90 V. Sadov

as the multiplier of the local system Jf . The integration over fermions brings the
factor σ = ±1 the same as in (3.13). We see that the matrix elements (4.21) of
the BRST operator Q coincide with that (3.13) of the coboundary operator δ of the
Floer complex. Thus the Floer cohomology Hp computes just the physical states of
our topological sigma model.

Actually, we can find the matrix elements of any observable (9ω in the same
fashion:

(x\Θω y) = f @Xi@χi@p(ΘωeA[x>x>f>] , (4.24)

computing the path integral with the same boundary conditions (4.22) and localizing
it to the instanton configurations. If ω has a fermion number p, then (4.24) is
zero unless the space of instantons connecting x to y is ^-dimensional, so μ(x) -
Mj) — P Repeating the computation for the matrix elements of Q we see that
(4.24) coincides with the matrix element (3.17) of the operator ωU in the Floer
theory.

Now we can understand better the remark following the formula (3.17). Unless
Q\x) = Q\y) = 0, i.e. unless x) and \y) are the physical states, the matrix element
(x\@dΩ y)^® in general, so (4.24) depends on the choice of the representative (9ω

for the BRST cohomology class or equivalently, on the choice of the representative
ω for de Rham cohomology H^eRham(M). Only after we restrict to the physical
states (4.13) that the matrix elements of the observables become the functions on

So far we dealt with operators and states independently. But it is a general fact
that in the topological theories there is a one to one correspondence between the
operators and states. Now we want to work out this correspondence explicitly. It
will enable us to identify the matrix elements (4.24) with the 3 -point correlation
functions in the A-model and thereby to establish the isomorphism of the Floer 's
and quantum cohomology.

To do that, we specify to the hamiltonians H(X) independent of t and such that
the corresponding Hamiltonian flows on M have no periodic trajectories at all9. For
such H(X\ the critical loops of the Floer functional S[z] are just the points and
coincide with the critical points of H(X) on M and the critical set ̂  is described
by the usual Morse theory. In [11], which we try to generalize in this paper, the
Morse theory on M is related to Supersymmetric Quantum Mechanics (SQM). This
SQM is nothing but the zero-modes approximation of the string theory, described
by our topological sigma model.

Let us show that the SQM approximation for the matrix elements of the BRST
operator Q is exact. To see it is true it suffices to show that the instantons,
which appear in (3.13), (4.21) are point-like, i.e. correspond to the propagation
of the string as a point, not as a loop. It would mean that only the zero modes
are important. But this follows from the fact that the relevant in (3.13) instan-
tons are isolated, i.e. belong to the one dimensional cell of the Floer complex. If
an instanton could be represented as a joint of a point-like trajectory with a 2-
sphere, there would be 2-parametric freedom to move this sphere around, so such
an instanton would belong to at least a 2-dimensional cell. This proves that the
matrix elements of the coboundary operator of the Floer complex coincide with
that of the coboundary operator of the Witten complex on M, so their coho-
mology, as abelian groups, are canonically isomorphic. This is the statement of

It is always possible to choose a pair J', H such that this condition is met, see [7].
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the Theorem 5 of [7], and our dimension-counting argument is borrowed from its
proof.

Of course, the matrix elements (4.24) of the observables &ω are localized to the
2- and higher dimensional cells of the Floer complex and cannot be computed just
by SQM.

We are ready now to construct a canonical isomorphism between the states
Hp and the operators H*(M) of the topological sigma model. Let us define two
nondegenerate pairings of AΓ-modules (K is a Novikov ring)

(4.25)

in the following way. The lowest- and highest degree cohomology H®y C Hp and
Hψ C Hp of the Witten complex on M are always generated by one element each.
Let us call them bot and top respectively. They are the in and out vacua of the
theory dual to each other:

(bot|0Ω|top> - 1 , (4.26)

where Ω is the top class in H"(M) and the correlation functions (4.6) of the sigma
model are

(4.27)

The formula (4.27) is the fundamental relation in the quantum field theory. Then
the pairings we want to define are:

|*) , (4.28)

where ω e HP(M\ x G #/ and

{ω,y} = (y\Gω\ top) , (4.29)

where ω £ Hp(M),y £ Hp~p. Both these pairings are nondegenerate, because in the
SQM approximation, when t, = 0 for all /, the pairing (. , ) is the Poincare duality
and {.,} is the Poincare isomorphism (using the canonical duality (HP(M))* —
HP(M)). Hence their determinants, as functions of t\,...,tm, are not equal to
zero.

These pairings are related to the two-point correlation functions of observables
(the quantum intersection numbers)

(0ωA.2)= Σ (bot|6%|*}(x|6 2̂ top}- Σ (0Wp*){0W2,*j , (4.30)
x€//; x€H*

which is just a statement of completeness of the physical states of the quantum
theory. Thus the pairings above give both the isomorphism between the operators
and the states: hp : /// — HP(M) and the quantum intersection matrix. The 3-point
functions are related to the matrix elements (4.24) by the formula

{0<oAA) = Σ (ΰ^χ)(χ\®«>Ay}{®^y} (43 1)
χ,y£H*

Note that the ( super )commutativity and associativity of the algebra of observables
Θω give the relations for the matrix elements (4.24), equivalent to the super-
commutativity and associativity of the cup operation ωU in the Floer theory.
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In other words, the cohomology H*(M) with the cup product multiplication
from the Floer theory is isomorphic to the quantum cohomology ring.

5. Some Examples

Now we would like to present some computations, partly described in [7], showing
how our "matrix" approach really works.

5.7. Projective spaces. This is the simplest possible example. The homology Hp
and the action of H^eRham(CPl) on it were computed by Floer himself in [7]. It is
very instructive to repeat his argument.

Let us take the hamiltonian vector field

ϋ=z|-+Z-|:. (5.1)
dz dz

It does not have periodic trajectories and only fixed points are the north (N) and
the south (S) poles of the sphere S2 = CP1. Thus in the loop space J^CP1 the
critical set of the Floer functional (3.3) consists just of these two points. By

the universal cover map J2fCP — > J^fCP the set C/V,S) is covered by the points
(...,N(-l\S(-l\N(0\S(()\N(}\S(l\...} so that N^ -> N and S(k} -> S. In fact,

this picture represents [25] the aίfine Weyl diagram for sl(2).
The trajectories going from N^ to S^ are the "classical" ones. Downstairs

they cover a 2-parametric set of trajectories of the vector field v. As a set of points,
this set coincides with the base project! ve line itself.

On the other hand, the trajectories from S(k^ to N(k+l^ are essentially stringy -
they have homotopic type of CP1. Again, there is a 2-parametric family of them
due to the action of C* on the world sheet (a sphere with two marked points).
Each such trajectory covers the base CP .

Again, this can be represented by the aίfine Weyl diagram, if we denote the
2-dimensional cells of the Floer complex by the arrows connecting the vertices

As in the usual Morse theory for CP1, there are no 1 -dimensional cells, hence
the coboundary operator is trivial and the Floer cohomology is represented by N
(of degree 0) and S (of degree 2). Integrated over CP1, the first Chern class of the
tangent bundle gives 2, so the fermionic number anomaly is 4.

Now let us find the matrix elements of the generator x of //d*eRham(CP!) between
S and N. The element (JV|^|5) comes from integration of (the pullback of) x on

^C(N,S) = CP1, each trajectory is homotopicaly trivial in the loop space. Therefore,
the "classical" answer (Λf|jc|S) = 1 holds true.

Unlike the usual Morse theory, there is also a nontrivial matrix element (S|jχ;|7V).
Formally it is possible because μ(N) - μ(S) = 2 — 4 = -2 = 2(mod4). There
is indeed a 2-parametric family of stringy trajectories from S to N as we saw
above. The integral of the pullback of x over it is again the integral of Λ: over
CP . But now the homotopic type of each trajectory is not trivial and to obtain
the matrix element (3.17) we need to multiply the integral o f* by (3.18) equal
to t — exp — f k. Thus (5|jc|^V) = t. Therefore, the matrix representation of the
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operator &x is

»-(?ί)
It satisfies the relation

0*0* = t, (5.3)

well known foί CP sigma model.
A straightforward generalization of the example above is CPn. It was also done

in [7]. Again, there are no 1-dimensional cells in the Floer complex and Hp is
spanned by the critical points of (Sl equivariant) Morse function on CPn of degrees
0,2,..., 2n. The fermionic number anomaly is 2(n -f 1).

The de Rham cohomology H^RhΆm(CPn) is generated as a ring by one element
x. We can again find the matrix representation for the operator @X9 which generates
the quantum ring. In this example it is also true that (9xk&xι = &xk+\, for k + I <
n -f 1 nothing like this should be true in general.

There are two simple remarks we want to make before we write the formula
for (9X. Let M be an almost Kahler manifold with c\ > 1 and x £ H2(M). Then
the matrix elements of x on the main diagonal and above, like {zw|jc|zm/}, m' ^ m,
do not depend on t\,...,tn and can be computed classically. Indeed, to get the
matrix element the pullback of x should be integrated over some two-cycle of the
Floer complex. But if this cycle consisted of stringy trajectories, (which would
lead to tt dependence), then by the index theorem it would belong to the cell of the
dimension at least 4. The other simplification for the matrix elements of x G H2(M)
is that the 2-cells of the Floer complex, for the purposes of intersection theory, are

representable by the 2-cells on M itself, just like it was for CP1. This is because
these 2-cells consist either of point-like classical trajectories or of a single 2-sphere
in M, reparametrized by C*.

All the matrix elements below the main diagonal are always due to the stringy
paths. The formula for Θx is

/O 1 0 - . . 0\
0 0 1 . . . 0

0 0 - . . 0 1
\t 0 ... 0 O/

(5.4)

To obtain (5.4) we note that as c\ = (n -f l);c, only (z2n\x ZQ) can be a nontrivial
matrix element below diagonal (as 0 — 2n + 2(n -f 1) 1=2). The 2-cell ^2(z2«,zo)
consists of paths from z2n to z0 of degree 1 and coincides with a straight line (z2w,z0)
for the appropriate choice of hamiltonian. It explains the degree 1 of t as well as
a numerical coefficient 1 before it in (5.4). The operator Θx satisfies

&n

x = t . (5.5)

5.2. Flag Spaces. A less trivial generalization of the example with CP is the flag
space Fln, which can be realized as a coset

(5.6)

gy of
Fln, as a ring [26], is generated by jc/ with the relations which are homogeneous
Its second cohomology group is Zn l generated by x\,...9xn-\. Cohomology of
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components of the single relation

Π ( 1 + * / ) = ! .
!=!,...,«

(5.7)

We will compute the matrix elements of x\,X2 in the Floer theory for the simplest
nontrivial example of 3-dimensional flag space F/3. A way we do this, using an

affine Weyl group for s7(3), can be generalized for all other flag spaces.
The Floer theory for the loop spaces of flags was considered in [25]. The critical

point set in ^Fln is parameterized by the elements of the finite Weyl group. The

cover map £?Fln —> &Fln covers it by the affine Weyl group. A simplest example

to look at is F/2 — CP1, considered in the previous section. There are no 1-cells
in the Floer complex; to describe all the 2-cells we need an auxiliary geometric
construction.

Let us think of the elements x\,X2 as of two simple roots of ,y/(3). There are two
standard embeddings of ,$7(2) to s7(3) sending a simple root of si(2) either to x\ or
to *2. These maps can be continued to the maps of groups SL(2) —> SL(3) which,

in turn, induce two maps CP1 —> F/3 which send the generator x of H2(CPl) to
either ci or x2.

This construction extends to give the maps of the (universal covers of) loop

spaces. Looking at the diagram for the affine Weyl group for 57(3 )10 we see that it
can be covered by the straight lines parallel to any simple root. Each such straight

line corresponds to some particular embedding =^CP —> J*?F/3. A pattern of critical

points along the straight line coincides with that one for «5?CP : when projected
downstairs to the base flag space F/3 it covers two (which ones, depends on the
particular straight line) critical points we denote by N, S. These two points we can

identify with the critical points on the preimage J&fCP1. The arrangement of critical
points upstairs is (...9N

(-l\S(~l\N^\S(0\N(l\S(l\...).
Now let us choose on F/3 such a hamiltonian vector field that it respects both

embeddings CP1 —> F/3. In the finite-dimensional Morse theory it means that the

whole flow, connecting N to S, belongs to the preimage CP . Then this prop-
erty is promoted to the loop spaces. It means that the matrix elements of x\,X2
between TV and S can effectively be computed within a Floer theory for a projec-

tive line CP1. Not every pair of critical points whose indices differ by 2(mod4)
lies on a straight line parallel to a simple root. For them, the degree count shows
that only the matrix elements (top|*/|bot) oc t\t2 can be non-zero, and the com-
mutativity of two matrix operators &Xl, &X2 fixes the integral coefficients in front
of t\t2

Ultimately, the operators 0X{ and ΦX2 are given by

(5.8)

0

t\
0
0
0

1
0
0
0
0
ΓV

0
0
0

-t\
0
ΓV

0
1

-1
0
0
ΓV

0
0

-1
0
0

0\
0
0
0
1
Γ\ i

It is a 2-lattice with hexagonal point group.
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/ 0 0 1 0 0 0\
0 0 0 - 1 - 1 0
t2 0 0 0 1 0
0 0 0 0 0 - 1
0 -f2 0 0 0 0

\-t\t2 0 0-f 2 0 O/

(5.9)

They generate an algebra with relations

(5.10)

which can be considered as a two-parametric deformation of (5.7).

5.3. Calabί-Yau Manifolds. Almost all the known nontrivial examples of quantum
cohomology of CY manifolds are obtained using mirror symmetry. Mirror symme-
try reduces the problem of computation of quantum cohomology HQ(M) to some
computation in the Variation of Mixed Hodge Structure Theory of the mirror pair
W. The latter problem is usually relatively easier.

As a first application of the general theory we may just transfer all these results
to the Floer theory, which give the first examples of the latter for the CY manifolds.
Note, that unless we consider the Floer complex over the Novikov ring, the boundary
operator is not defined - its matrix elements are represented by the divergent series
due to summation over all maps of the cylinder to itself. The same is true for the
matrix elements of de Rham cohomology.

On the other hand, in the string theory computations for the 3-dimensional
CY, we are mostly interested in the matrix elements of the second de
Rham cohomology (//1?1(M), to be precise), which generate the marginal de-
formations of the corresponding superconformal theory. A remark in the section
about projective spaces tells that these can be computed just looking at the 2-
cycles of the CY manifold itself, without going up to the loop space. We
hope it may make it possible to do a direct computation in some
examples.

6. Conclusion: Noncompactness and Non-Generic Moduli of Instantons

Roughly speaking, there are two ingredients in the Floer theory. One of them,
the algebraic one, is very neat; we tried to stress it in Sect. 3. The second-
analytic - ingredient is what makes the Floer theory so difficult. In this paper we
tried to substitute the language of the topological quantum field theory for the
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analytic language of Floer et. al From the mathematician's point of view, it may
seem as trading a bad thing for the worse one.

A real advantage of our approach is that it makes the independence of Up of
the hamiltonian H and the almost complex structure J an immediate consequence
of the BRST invariance, without any assumptions about H. In particular, the choice
H = 0 is admissible. On the other hand, for H = 0 and J being a true complex
structure the path integral defining the sigma model has a combinatorial definition
[5] in terms of the moduli spaces of holomorphic instantons. It is an object of
study of algebraic geometry which does not require infinite-dimensional analysis to
deal with.

We hope that it may be helpful to think about the same object using two
languages. For the topological theory, it may also be useful to have a picture where
all the physical states are localized to the particular loops.

There are two fine points which we want to touch upon in conclusion. The
first is a problem of non-compactness of moduli space of (almost) holomorphic
instantons. The effects on the "infinity" can be crucial when considering the effects
of "BRST trivial" deformations. The Landau-Ginzburg An model with superpoten-
tial W = xn+2 is an example. The deformation W -» W + εxn+3 is "BRST trivial"
but changes the theory completely: An —+ An+\. It is important to realize that the
problem in this example appears already at the level of BRST cohomology: the
deformation brings "from infinity" one extra ground state or equivalently, makes
physical an extra operator xn+λ. This changes completely the structure of the op-
erator state correspondence. In particular, the dependence of the vacuum |top) cor-
responding to the unity operator is not continuous. This makes unapplicable the
standard perturbative argument used to prove the BRST invariance of the corre-
lation functions. And indeed, the correlation functions are not even continuous at
ε = 0.

Let us examine in light of that example the situation occurring in our the-
ory with H φ 0. We have seen in Sect. 4 that the set of local physical operators
(BRST cohomology) is independent of H (even at the level of representatives).
We need to prove that the correlation functions of these operators are also inde-
pendent of H. The correlation function can be considered as the matrix element
(0ι (9m) = (hot 10ι - 0m|top) of the product Φ\- Θm between two vacua. By
the state operator correspondence the vacuum jbot) is mapped to 1 and the vac-
uum I top) is mapped to ΘQ, where Ω is a top form on M. They are normalized
by

(bot|00|top) = 1 . (6.1)

//"the H deformation changes the vacua |top) and/or |bot) discontinuously the pertur-
bation theory argument cannot be applied and the correlation functions may change.
Let us show it does not happen. This is obvious when M is Calabi-Yau so that the
sigma model is conformal. Then the fermionic number is strictly conserved. Since
|bot) is the unique state with fermionic number 0 and |top) is the Unique state with
fermionic number n = dimM, any perturbation which preserves BRST cohomology
can only rescale them. But the relevant scaling factor is fixed by (6.1). This proves
the statement.

If M is not Calabi-Yau, the fermionic number is conserved only modulo
fermionic anomaly. Still we can define |top) and |bot) using the operator state
correspondence as above (one can also use the SQM approximation). Suppose that
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the deformation could lead to

|top) - |top'} = |top) + Σ W' -to"'\P) ,

|bot> -> |bot') - |bot) H- Σ V*ι P} ft* P* IX) <6 2)

In (6.2), |/?) and \pf) are the ground states of (multi) degrees (p\9...,pk) and
(p\9...9pk). ( N \ 9 . . . 9 N k ) is a multidegree of |top). The coefficients rp and spι
are ^-independent. The formula (6.2) gives the most general form of the defor-
mation compatible with anomalous conservation of fermionic number. Having the
^-dependence completely fixed, let us consider the quasiclassical limit ql —* 0. Since
the fermionic number is conserved in this limit, we expect that the deformation
should tend to zero with #/. We see this is true for |top) for any sp/. On the
other hand, it can only be true for |bot) if all the coefficients rp are equal to
zero.

Now let us compute the matrix element (bot'|(Pω top') of any operator $ω,
degω < n. On one hand, since |bot') = |bot), this matrix element is given by

(bot'|$ω|top') — (bot|(Pω|top) + Σspf(ϊ}1 Pl •••ft*' Pk foQt\®ω\p) -

On the other hand, one can compute it directly. Since deg0ω < deg|top)-
deg|bot) = n and c\(M) is positive, this matrix element does not have instanton cor-
rections, can be computed in SQM and equals zero. Of course, the same is true about

(bot|$ω|top), so we end up with the equation (ω9Σ[sp/q}

1 Pl ...qk

k Pk}p'} — 0 for
any ω £ H*(M\ where we denoted (ω, /?') = (bot|^ω|/?'). It was explained in Sect.

4 that the pairing (.,.) is nondegenerate over C[qi,q^1]. Therefore, the only solution
is spι = 0.

We just have derived that the vacua |top) and |bot) cannot be deformed by
any perturbation not changing the BRST cohomology. The H independence of the
correlation functions follows. Indeed, since the vacua remain the same we can treat
the H deformation within the perturbation theory:

(0, ...Θk)eH = (bot|0, . . .0** ε ^ | top) - (bot|0, ...Φk 1 + Σ-r{β^Γ |top)
n=\n

(63)

The second point we want to discuss is the problem of "non-generic" moduli
spaces of instantons. It might happen (and almost always happens in the (almost)
holomorphic case) that the dimension of some connected component of the moduli
space of instantons is strictly greater than its lower bound given by the Riemann-
Roch. (Then in order to obtain the correlation function one has to compute the
Euler characteristic of a certain vector bundle on this (properly compactified) com-
ponent of the moduli space [5,6].) From the point of view of the real differen-
tial geometry, this situation is not generic. The key point here is that there are
no "generic deformations" in the algebraic geometry in a sense of differential ge-
ometry, so we cannot resolve the "degeneration" within (almost) complex-analytic
setup.



98 V. Sadov

The way out is to break the holomorphicity. This is exactly what we did
with (1.2). Deformed by //, the theory is no longer complex-analytic. (For ex-
ample, the real dimension of cells of the Floer complex can be odd and the
intersection numbers can have arbitrary signs.) Thus the H deformations enable
one to reduce any degenerate situation to the generic one. The topological cor-
relation functions being H independent, the results of computation are not af-
fected. (That is why we do not have to discuss the multiplication in Floer's theory
when the situation is not generic. In principle, it could be done along the lines
of [5,6].)
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