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Abstract: A spin-statistics theorem and a PCT theorem are obtained in the context
of the superselection sectors in Quantum Field Theory on a 4-dimensional space-
time. Our main assumption is the requirement that the modular groups of the von
Neumann algebras of local observables associated with wedge regions act geomet-
rically as pure Lorentz transformations. Such a property, satisfied by the local alge-
bras generated by Wightman fields because of the Bisognano-Wichmann theorem,
is regarded as a natural primitive assumption.

Introduction

In this paper we shall reconsider from an intrinsic point of view two well known
fascinating theorems in Quantum Field Theory: the PCT theorem and the Spin and
Statistics theorem.

Both of them have a long history, see [28,43]. The spin and statistics theorem
first appeared in the context of free fields in the work of Fierz [20] and Pauli [37]:
one cannot second quantize particles with integer spin by anticommuting fields, i.e.
fields obeying Fermi statistics, nor particles with half-integer spin by local fields,
i.e. fields obeying Bose statistics.

The PCT theorem originated in [35] as a relation between the existence of the
space-inversion symmetry P and the existence of the product of the charge and the
time-inversion symmetry CT. Pauli proved in [38] that PCT is always a symmetry
of Lorentz invariant field equations.

It was a success of the Wightman axiomatic approach [46] to establish model
independent results: the connection between spin and statistics was obtained by
Burgoyne [13], see also [36,14], and a PCT theorem by Jost [29], see also [19,39],
both relying on the general holomorphic properties of the w-point functions. A spin
and statistics theorem in the algebraic approach [27], see also [5], was later given by
Epstein [21] and has a version for (Doplicher-Haag-Roberts) DHR superselection
sectors [16] and for more general topological charges [10].
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All these approaches heavily rely on arguments of analytic continuation, whose
nature give some mysterious effectiveness to the results. Moreover they make use
of certain detailed structures, either because they deal with Wightman tempered
distributions or because they treat the case of finite mass degeneracy, where a
superselection sector has to contain only finitely many particles of the same type
and all of them are assumed to have strictly positive mass.

The approach to Quantum Field Theory by local observable algebras [27] sug-
gests however that a PCT symmetry and spin-statistics correspondence should be
intrinsically associated with the net of local algebras and manifest itself as the
consequence of the locality principle.1

From the mathematical point of view the spin-statistics correspondence is a
relation between two quantities of different nature, the univalence and the statistics
phase, and one is led to tie up these concepts on general grounds, somehow in the
spirit of an index theorem.

We shall establish both a PCT and a spin-statistics theorem in the following
general context.

Let Θ —> stf(Θ) be a net of von Neumann algebras on a Hubert space 2tf,
i.e. an inclusion preserving association between regions Θ in the four-dimensional
Minkowski space and von Neumann algebras of local observables, that we assume
here to be irreducible.

We make the following assumptions.
Locality. If G\ and $2 are space-like separated regions, then s/(Θ\) and si($2)

commute elementwise.
Modular covariance. There is a vector Ω £ Jf, the vacuum vector, cyclic for

the algebras s/(W) associated with all wedge region W in the Minkowski space,
such that

^it = s/(Λw(t)Θ), t G K.

where G is any region, A is the Tomita-Takesaki modular operator [44,41] associ-
ated with (s/(W),Ω) and Aw is the one-parameter rescaled group of pure Lorentz
transformations preserving W.

Reeh-Schlieder property. The vacuum vector Ω £ &e is also cyclic for the alge-
bras £/(&*) associated with all space-like cones £f.

Locality is the well-known expression of Einstein causality and we do not dwell
on it. The Reeh Schlieder property is known to hold for the vacuum vector in a
Poincare covariant theory as a consequence of the positivity of the energy and the
weak additivity assumption for the local algebras [7].

Modular covariance needs however further comments. Postponing for a while
the justification for such an assumption, we recall that this entails the net to be
covariant with respect to the universal covering $P\ of the Poincare group ^\,
with positive energy [9]. Indeed we shall prove here that it is actually covariant
with respect to 3P\ as a special case of our general Spin and Statistics theorem and
taking to completion our previous work. Therefore modular covariance is a way to
intrinsically encode the Poincare covariance property in the net structure, providing
a canonical representation of the Poincare group 0>\ (cf. also [12]).

1 The spin-statistics relation depends on sharp locality. In the second quantization of Bose
particles by anti-commuting fields, microscopic causality is still asymptotically present and its
violation is sizeable only at distances comparable to the Compton wave length [4]. This is perhaps
an indication that the spin-statistics relation might be different in contexts like Quantum Gravity
where a sharp causality principle does not occur.
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Let now p be a superselection sector of s0 in the sense of Doplicher-Haag-
Roberts [15] or more generally of Buchholz-Fredenhagen [11].

An index-statistics relation [34] shows that

Ind(p) = d(pf

where Ind(p) is the Jones index of p and d(p) is the DHR statistical dimension,
namely

where the statistical parameter λp G 1R classifies the statistics in 3 + 1 space-time
dimensions [15].

Therefore the index is an intrinsic quantity that determines the statistics up to
the Fermi-Bose alternative, i.e. the sign of λp.

On the other hand, the Poincare representation in the vacuum sector being fixed
by modular covariance, the representation of 0>\ associated with a covariant irre-
ducible sector p is uniquely determined, therefore the univalence (integer or half-
integer spin alternative) is intrinsically associated with p. Since p is automatically
^|-covariant if d(p) < oo (assuming a regularity property for the net [22]), it is
natural to expect a general algebraic Spin and Statistics theorem connecting these
two intrinsic quantities for any sector with finite statistics.

Our result in this respect will in fact show that on these general grounds

signup) = C/P(2π)

where Up is the representation of Φ\ in the sector p and Up(2π) denotes the
corresponding rotation by 2π.

Modular covariance also implies that the anti-unitary involution Θ, definable
by the modular theory according to the Bisognano-Wichmann prescription [3],
implements a complete space-time reflection. As shown in [22], this entails
that Θ intertwines a sector with its conjugate. We therefore obtain a PCT
symmetry.

We come now back to the origin of the modular covariance property. Its main
justification certainly comes from the Bisognano-Wichmann theorem [2,3], to the
effect that this property holds if the local algebras are constructed from Wightman
fields.

An algebraic version of the Bisognano-Wichmann theorem does not exist yet,
except in the case of conformal theories where it holds in full generality [8]. How-
ever a theorem of Borchers [6] shows part of the geometric properties of the modular
group for wedge regions to be always present and in particular every 1 + 1 dimen-
sional Poincare covariant net satisfying essential duality has the modular covariance
property.

At the present time no counter-example to modular covariance is known to exist
within Poincare covariant theories (see however [33,48]). There are nevertheless
counter-examples to the spin-statistics theorem [42]: these are constructed by infinite
multiplicity fields where the Poincare group representation is not unique. It turns out
that the wrong connection between spin and statistics depends on the wrong choice
of the Poincare group representation, while our canonical choice for the latter has
the desired properties. We remark that an intrinsic way to eliminate pathological
examples of the above kind comes by requiring the split property [17]; this indeed
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implies the uniqueness of the Poincare group representation [8] and we propose it
as a natural candidate for a derivation of the modular covariance property by first
principles.

On the physical side modular covariance manifests an interesting analogy with
the Unruh effect [45] and with the Hawking black hole thermal radiation [26],
as first noticed by Sewell [40]. We sketch the essential ideas, see also [24]. As
is known the modular group of a von Neumann algebra with respect to a given
state is characterized by the Kubo-Martin-Schwinger condition [44] and, on the
other hand, the KMS condition is peculiar of thermal equilibrium states in Statis-
tical Mechanics [25]. By the Bisognano-Wichmann theorem the boosts satisfy the
KMS condition with respect to the vacuum, as automorphisms of the von Neu-
mann algebra of the corresponding wedge W and, on the other hand, the orbits
of the boosts are the trajectories of a uniformly accelerated motion for which the
"Rindler universe" W is a natural horizon; the equivalence principle in Relativity
Theory then allows an interpretation of the thermal outcome as a gravitational ef-
fect. On this basis Haag has proposed long ago to derive the Bisognano-Wichmann
theorem.

The role of the modular covariance assumption may be also understood by
its consequences. Among other things, it implies the positivity of the energy
for the constructed Poincare group representation [47,9]. As is known the pos-
itivity of the energy is lost on a curved space-time, and the modular covari-
ance seems to be the appropriate substitute in this case. Moreover, as already
mentioned, it gives rise to the KMS condition, namely an analytic continuation
property. It turns out that this analytic aspect of the modular covariance
assumption incorporates all the holomorphic properties present in Quantum Field
Theory. But, as a matter of fact, the modular group is an algebraic object, a
manifestation of the *-operation, thus providing us with an algebraic approach to
our problems.

We pass now to a description of the methods of our work. This paper relies
on the modular theory of Tomita and Takesaki and on an analysis by the unitary
representations of SL(2, 1R).

We shall find a key relation arising from the comparison of the modular groups
of different algebras, and we shall regard it as an identity concerning operators in the
space of a representation of SL(2, IR), because of the well known fact that the 2 -f 1
dimensional Lorentz group is isomorphic to SL(2, 1R)/{1,—1}. Section 1 contains
the proof of this identity by the Mackey machine of the induced representations
(e.g. [32]) and a free field verification.

In Sect. 2 the PCT theorem and the Spin and Statistics relation are proven in the
context of the field algebras,2 where the formalism is close to the classical formula-
tion. Then, in Sect. 3, we obtain our result in the context of local observables. This
is done by rephrasing the statements in terms of the Doplicher-Roberts field algebra
[18]. This last step has certain pedagogical advantages, but has to be avoided in
order to extend our work to more general settings where the field algebra does not
exist.

In forthcoming papers [23] we shall indeed provide a more intrinsic approach
in terms of local observables only, that will cover low dimensional and conformal
theories in particular. The general picture will be clarified by examples.

2 We have recently been informed by Kuckert of an independent complementary analysis based
on assumptions of week geometric type for the modular conjugation [31].
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1. An Identity for Operators Associated with Representations of SL(2, 1R)

Let us consider two one-parameter subgroups of SL(2, 1R)

coshπί - s inhπίλ
)

If U is a unitary representation of SL(2, IR) on a Hubert space J f we look at
the corresponding selfadjoint infinitesimal generators

We shall denote by G the group PSL(2, IR) given by the quotient of SL(2, IR)

by its center {—1,1} and by G the universal covering of G, which is of course the

universal covering of SL(2, IR) too. We take the same definition for H and K in

the case of a unitary representation U of the universal covering group G.

We will consider the following properties for a representation U of G:

(i) The operator Tt — eϊκeιtH e~ϊκ is densely defined for all t G IR.
(ii) Tt is densely defined and

where the symbol c denotes the extension of operators. These properties refer to a
representation U, but we omit the symbol U when no confusion arises.

Theorem 1.1. (a) Property (ii) holds for the regular representation λ of G.
(b) Property (i) implies Property (ii).

In order to prove this theorem, we first observe that it is enough to check
Property (ii) on dense sets of vectors, not necessarily on the full domain of Tt.

Lemma 1.2. Let us assume that, for each real t, there is a dense subset 3ιt of
the domain of Tt such that Tt\@t C e~ιtH. Then Property (ii) holds for the given
representation.

Proof Note first that the matrix ( ^ *) £ SL(2, IR) conjugates μ(t) with μ(-t)

and v(t) with v(—t) therefore the assumption of the lemma remains true if we

replace K with —K and H with —//, in particular e~ϊκeιtHe2κ is densely defined.
Now

therefore T* is densely defined and Tt is closable. Since Ttξ = e~itHξ for all ξ in
a dense set and e~itH is bounded, the equality Ttξ — e~itHξ must hold for all ξ in
the domain of Tt. D

Corollary 1.3. Let Uι,U2 and U be unitary representations of G.

(a) If Property (i), resp. (ii), holds for both U\ and U2 then it holds for
Ux (8) U2.
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(b) If Property (i) holds for both U\ and U2 and Property (ii) holds for
U\ (g> U2, then Property (ii) holds for both U\ and U2.

(c) If U = / Θ U(λ)dm(λ) is a direct integral decomposition of U, then Prop-
erty (i), resp. (ii), holds for U iff it holds for U(λ), for m-almost all λ.

Proof Part (a) and (c) are immediate by Lemma 1.2 since one can check Property
(1.1) on natural dense sets.

If Property (ii) holds for U\ ® U2 then it holds for U\ and £/2 up to a con-
stant, namely, considering for example the representation U\, there exists a phase

z(t) such that Tt c z(t)e~itH and Tt is densely defined. Equivalently eitHe~τκ is

densely defined and extended by z(t)e~ ϊκ e~ιtH and this implies that z(t) is a one-
dimensional character. Of course z( ) remains unchaged if we replace μ and v by
a pair of conjugate one-parameter subgroups. As in the proof of Lemma 1.2 we
may thus replace μ(t) by μ(—t) and thus z(t) by z(—t\ hence z(t) — z(—t) = 1
and the proof is complete. D

We need now to verify Property (ii) in some specific representation. To this
end recall that [43], if Wj is the wedge in the 3-dimensional space-time along the
axis Xi,i = 1 , 2 , and Aj(t) is the associated one-parameter group of pure Lorentz
transformations (see Sect. 2), there is an isomorphism of PSL(2, IR) with the 2 + 1-
dimensional Lorentz group JSf+(3) determined by

μ(t)->Λι(t) and v(t) -* Λ2(t).

Accordingly, we shall identify G with a subgroup of the 2 -f 1-dimensional Poincare

group ^1(3).

Lemma 1.4. Let V = Vm$ be the positive energy representation of ^+(3) of spin
0 and mass m > 0. Then Property (ii) holds for the restriction U = V\Q of V
to G.

Proof As is known, V extends to a (anti-Representation of the proper Poincare
group ^+(3), namely there exists a anti-unitary involution (9, on the same Hubert
space, that commutes with U and implements the change of sign on the translation
operators in any space-time direction.

By the one-particle version of the Bisognano Wichmann theorem (which follows
of course from the Bisognano-Wichmann theorem in the free field setting, see [30]
for a short direct verification of this special case) we may identify the rescaled boost
transformations with the modular group of the real Hubert subspace of the one-
particle Hubert space associated to the corresponding wedge region. Then Property
(1.1) holds because it is equivalent to the commutativity of Θ with the boosts (see
Proposition 2.6). D

Remark 1.5. The proof of Lemma 1.4 makes use of a one-particle version of the
Bisognano-Wichmann theorem; as we mentioned this can be proved directly by
mimicking the proof of the Bisognano-Wichmann in this special case. Since this
quick verification requires an analytic continuation argument that does not fit with
the spirit of this paper, we sketch here an algebraic derivation of Lemma 1.4. To
begin with note that Lemma 1.4 would hold if V were the irreducible positive-
energy massless representation of ^+(3) with helicity 0. Indeed in this case V
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extends to a representation of the conformal group and the algebraic argument
in [8] applies. Now V 0 V has a direct integral decomposition into irreducible
representations where massive representations occur and thus Lemma 1.2 implies
Lemma 1.4 for some m > 0. However the representation U = V\Q in Lemma 1.4
does not depend on m > 0 up to unitary equivalence by the following proposition,
hence Lemma 1.4 holds for all m > 0.

Proposition 1.6. The representation U = V\G in Lemma 1.4 is equivalent to
the quasi-regular representation of G corresponding to the rotation subgroup

K = < I _ . n n) ,0 ^ θ < 2π>/{l,—1}, namely U is the representation

of G induced by the identity representation of K. The representation U ® U is
equivalent to an infinite multiple of the regular representation λ of G

U® U = oo λ.

Proof The m > 0 hyperboloid Hm = {x e R3/jt§ -x]-x\= m2, x0 > 0} is
a homogeneous space for G whose stability subgroup at the point (m,0,0)
is K. U is the corresponding representation on Z2(//W,μw), with μm the Lorentz
invariant measure on Hm, and this is by definition the quasi-regular representation
with respect to K. The last statement is a consequence of the Mackey tensor
product theorem for induced representations, see [32, Theorem 2 and
Example 5]. D

Proof of Theorem 1.1. (a) Property (ii) for λ follows by Lemma 1.2 and Propo-
sition 1.6. Here is an alternative verification of this fact. By Proposition 1.6,
taking tensor products and making use of Corollary 1.3, we check that Prop-
erty (1.1) is valid for the irreducible representation VmfS of ^+(3) of any mass
m > 0 and any integral spin s. Now Um,s = Vm^\Q is the induced
representation

where χs is character of K ~ T associated with the integer s. By inducing at stages
one has

λ = Inά^yiid) = Ind£ακ)

where XK = I n d ^ ( / J ) is the regular representation of K, hence

/ oo \ oo oo

λ = Ind£(Λκ) = Ind£ 0 χs) = φ Indg(χ,) = 0 !/„,,
Vs=—oo / s=—oo j = — oo

and the statement follows by Corollary 1.4.

(b) Let U enjoy Property (ii). If U is a general representation of G, then it
determines a projective representation of G, namely £/(/( )) with / a Borel section
for the quotient map of G modulo G. The tensor product U ®U of U with the
conjugate representation is a true representation of G, hence Property (ii) holds for
U 017. Then, by Lemma 1.2, Property (ii) holds for U. •
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2. PCT, Spin and Statistics on the Field Algebras

In this section we consider a pre-cosheaf & —• ^(Θ) of von Neumann algebras
acting on a Hubert space J1^, where Θ is any open region of the 4-dimensional
Minkowski space M. We assume the following properties:

(1) Reeh-Schlieder property for space-like cones: there is a vector Ω e J^
(vacuum) which is cyclic for the algebras associated with all space-like cones.

(2) Normal commutation relations: there is a vacuum-preserving self-adjoint
unitary Γ (statistics operator) that implements an automorphism on every local von
Neumann algebra and the normal commutation relations between Bose and Fermi
fields hold, i.e. setting

&±(Θ) := {A e &(G) : TAT = ±A}

we have that if Θ\ and Θ2 are space-like separated then $F+(β\) commutes with
^(Θ2) and ^-(Θ\) anticommutes with ^-(Θ2).

(3) Modular covariance property with respect to the vacuum vector Ω (cf.
Definition 2.3).

Proposition 2.1. (Twisted Locality). Let Z be the unitary operator defined by

Then
c &(&)' . (2.2)

Proof. A direct computation shows that

ZBZ* =B, Be^+

ZFZ* = iΓF, F G f _ . (2.3)

Hence, if Θ\ and Θ2 are space-like separated and Fj e #"_ ($,•)> J ~ 1>2 we have

[ZFXZ\F2] = iΓ(FιF2+F2Fι) = 0

and the thesis holds. D

We recall that a wedge region is any Poincare transformed of the region
W\ := {x G RΛ : |JCO| < ^ I } The boosts preserving W\ are the elements of the
one-parameter subgroup ΛWχ(t) of 2P\ which acts on the coordinates x§,x\ via the
matrices

cosh 2πt — sinh 2πt \

—sinh2πί cosh2πί /

and leaves the other coordinates unchanged. The boosts Λψ(t) for any wedge W
are defined by Poincare conjugation. We denote by iV the family of all wedges
in M.

By twisted locality and the Reeh-Schlieder assumption the vacuum is cyclic
and separating for the algebras associated with all regions 0& such that both $ and
St1 contain some space-like cone. In particular, this property holds for any wedge
region W, with (^(W\Ω) are defined for each region W e ΊV.
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Lemma 2.2. The following commutation relations hold for all W e ΊV :

JψZJψ = Z .

Proof Since Γ preserves the vacuum and maps ^(W) in itself, it commutes with
the modular operators. Then the relations follow by the definition of Z. D

Definition 2.3. The pre-cosheaf Θ —• ^(Θ), with the Reeh-Schlieder property with
respect to Ω as above, satisfies modular covariance if for all regions Θ,

pt = gr(Λw(t)G\ W e IT . (2.4)

Proposition 2.4. Let Θ —> W{Θ) be a modular covariant pre-cosheaf of von
Neumann algebras satisfying the Reeh-Schlieder property and normal commu-
tation relations. Then the modular unitarίes associated to the wedges determine a
positive energy unitary representation U of the covering group &X of the Poincare
group such that

U(gW(Θ)U(gy = άF(σ(g)Θ) g € SP\, &CM

where σ : 8P\ —> 0>\ is the covering map, and

A% = U{λw(t)\ WeiT (2.5)

where Λw(t) denotes the lifting of Λw(t) in 3P\.

Before proving Proposition 2.4 we observe that twisted essential duality holds
if modular covariance is assumed.

Proposition 2.5. (Twisted essentail duality). If the pre-cosheaf ^ satisfies modular
covariance, then

As a consequence,
Alt _

Proof By modular covariance, twisted locality and Lemma 2.2, Z^(W)Z^ is a
globally invariant subalgebra of tF{Wr)f under the action of the modular group
Δu

w, for which the vacuum is cyclic, therefore it coincides with &(W')'. The last
equality follows by Lemma 2.2. D

Proof of Proposition 2.4. The steps of the proof are essentially the same as in the
proof of Theorem 2.3 in [9], but Lemma 2.5 [9] should be reconsidered because we
do not assume additivity, and Fermi statistics is allowed, Indeed the first part, in
which it is shown that the set H = {g e &\ : ^(gΘ) = &(β\ (9 C M} is a normal

subgroup of 0>\, still holds. Therefore, with the same arugument as in Lemma 2.6

[9], we get a central extension of 0"\lH.
When H is {1} or the translation subgroup, the triviality of the central extensions

for &l and for i f | concludes the theorem. When H — 0>\ then the algebras associ-
ated to all wedges coincide and, in particular, ^(W) = ^(W). In this case
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is abelian and two Fermi fields localized in W anticommute. Then if A G £F~(W)
we have A*A +AA* = 0 which implies ^-(W) = 0. As a consequence !F(W) is
abelian for any wedge W and the representation of 2P\ implemented by the modular
unitaries is the trivial representation. D

We notice that in the proof of the preceding theorem the Reeh-Schlieder property
was needed only for wedge regions. When this property does not hold for double
cones it is possible to construct theories for which the group H in the proof is
the translation group, namely the translations act identically on the pre-cosheaf (see
[23]).

Our next step is to show that, as a consequence of Theorem 1.1, the represen-
tation U extends to (some covering of) the proper Poincare group ^ + .

Proposition 2.6. Let W\, W2 be orthogonal wedges, and let us denote by Δ^Ju
i— 1,2 the modular operators of {£F{Wi),Ω\ Then the following relation holds

A\/2A%A;l/2 cJiAp!, (2.6)

and the left hand side is densely defined.

Proof We may suppose that Wt := {x G IR" : |xo| < */}, i = 1,2. With the same
arguments of Lemma 1.2, it is enough to show that, for each t G IR, there exists a
dense set 2>t such that

We claim that we may take

9t = {JXAΩ : A e &(W\ Π Λ2(-t)W{)} .

First we observe that Relation (2.6) holds on Q)t. Indeed, for ξ —J\AΩ G

Δβ λitci τ c Δβ Ait /j —1/2 y

= Δx Δ2b\J\ζ = Δ{ Δ2Δχ ζ.

Now, by the Reeh-Schlieder property for space-like cones, it is enough to show
that Λ2(-t)W\ Π W\ contains a space-like cone in order to prove that Θt is dense.
Indeed the space-like cone

V2cosh2πίJ

is obviously contained in W\ and, if y = vl2(0χ

9

 x £ ^u then

l̂ oI = |cosh2πίxo ~ sinh2πίx:2| ύ v2cosh2πίA/X^ +X\ < x\ ,

namely Λ2(t)%t C W{. D

Corollary 2.7. Let W\, W2 be orthogonal wedges, and let us denote by At, Ju i —
1,2 the modular operators of (ίF(Wi\Ω). Then, for each t G IR, the following
relation holds:

JιΔpι=Δϊu . (2.7)
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Proof. By proposition 2.6 it is enough to show that, for each t G IR,

Since the two wedges are orthogonal, the homomorphism φ : SL(2,]R) —• &\
determined by φ(μ(t)) = ΛWι(t) and φ(v(t)) = Λψ2(t) is injective. Then we ap-
ply Theorem 1.1 and the proof is complete. D

Let us consider the automorphism α of the Poincare group given by oc(g) = I\gl\,
where I\ is the diagonal matrix which changes the sign of the xo and x\ com-
ponents and leave the other coordinates fixed. The proper Poincare group &+
is generated by I\ and 0*1, as a consequence it may be seen as a semidirect
product:

^ + = # ! x α Z 2 . (2.8)

The action α gives rise to an action on the Lie algebra of 3?\ and therefore to an

action on the universal covering 0>\ of ^ | .

Since the center of β?\ has order 2, α is trivial on the center.

Now let us denote that ^ + the semidirect product of the universal covering of

&\ with Έ2 via α. It follows that ^ + is a central extension of the proper Poincare

group ^+ via the homomorphism σ extended by σ(ϊ 1) = I\, where ί\ denotes the

non-trivial element in the Z 2 component of ̂ + .

Proposition 2.8. The representation U extends to a (anti-)unitary representation

(still denoted by U) of the group 0>+ with U(ϊ\) = ZJ\.

Proof. We only have to show that the following relation holds:

g e 3>\ . (2.9)

Relation (2.9) holds for Awγ(t) by Tomita-Takesaki theory, for the translations by
Borchers theorem [6] and for λw(t) when W is a wedge orthogonal to W\ by
Lemma 2.2 and Proposition 2.5. Since the lifting of the boosts associated with a
maximal set of orthogonal wedges and the translations generate @+, we get the
thesis. D

We may associate a dual pre-cosheaf $Fd to the given pre-cosheaf 3F. If & is a
convex causally complete region the algebra ^d(Θ) is defined by

where W is a wedge. For any more general region M we set

where Θ is a convex causally complete region. It is easy to see that !Fd is a pre-
cosheaf satisfying Reeh-Schlieder property, locality and duality for convex causally
complete regions.
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Proposition 2.9. The representation U of &+ implements a coυariant action on
the wedges, i.e.

V# G ̂ + , WeiT .

As a consequence, the action is coυariant on the dual pre-cosheaf G —> 3Fd(G\

Proof. By Proposition 2.4, we have to prove covariance only for the element ZJ\.

For each W G iV we may find a g G 0>+ such that W = σ{g)Wχ. Then

f = ZJχU{gW{Wχ)(ZJχU{g)Y

= Z.Λ U(g)ZJxF{h Wx )(ZJχ U(g)ZJ{ )*

Since the dual pre-cosheaf 3Fd is described in terms of the restriction of $F to the
wedges, the second part of the statement follows. D

Theorem 2.10 (PCT). Let G —• ^(G) be a modular coυariant pre-cosheaf satis-
fying Reeh-Schlieder property and normal commutation relations as above. Then
there exists an antiunitary operator Θ which implements the PCT symmetry on
the dual pre-cosheaf i. e.

Θ^d(G)Θ = ^d(-Θ). (2.10)

Proof. Since the dimension of the space-time is even, the transformation which
changes the sign of all coordinates belongs to the proper Poincare group ^ + . Then
we choose a preimage θ G ̂ + via σ of this element and set Θ := U(θ). Obviously
θ verifies Eq. (2.10) and is anti-unitary. D

We remark that Proposition 2.9 is an abstract form of the PCT theorem and
is indeed what we can prove in an odd dimensional Minkowski space, where the
global space-time inversion does not belong to the proper Poincarέ group.

Theorem 2.11 (Spin and Statistcs). Let G —> ̂ (G) be a modular covariant pre-
cosheaf of field algebras as in Theorem 2.10. Then

Γ = E / ( 2 π ) . (2.11)

Proof Let W-i be the wedge along the axis *2 It is well known that the generator of
the rotations r(ϋ) on the xx — X2 plane and such that r(π/2)W\ = Wι is a multiple
of the commutator between the generators of Λ\(t) and A2{t). Then, by definition,
α(r(#)) = r(—ΰ), where r denotes the lifting of r in 0>\. Therefore we have

= C/(rC-π)) .

On the other hand, since I\Wι = W2, Proposition 2.9 shows that ZJ\ leaves
globally stable, hence it commutes with J2. Therefore

ZJXZJ2 = ZJλJ2Z* = J2ZJλZ* = Z*J2ZJX = ΓZJ2ZJχ .
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Finally,

U{2π) = (ZJλZJ2f = (ΓZJ2ZJι)(ZJιZJ2) = Γ . D

3. PCT and Spin and Statistics Theorems for Superselection Sectors
with Finite Statistics

In this section we shall prove the Spin and Statistics theorem in the framework
of local observable algebras [24], i.e. we shall prove that a para-Bose (resp. para-
Fermi) superselection sector with finite statistics is covariant with respect to the
group &l (resp. &\\

For the sake of simplicity, in this section we shall make the usual assumption
the von Neumann algebras associated with unbounded regions are generated by
additivity by the ones associated with double cones within the region, so that the
Doplicher-Roberts theorem on the reconstruction of the field algebras applies [18].

We shall consider morphisms of the local observable algebras localized in space-
like cones in a 4-dimensional space-time [15,11]. The same techniques would prove
the Spin and Statistics theorem for sectors localized in space-like cones in the
^-dimensional Minkowski space for any n ^ 4 and for sectors localized in double-
cones if n = 3. We omit here the treatment of these cases in view of a more general
intrinsic proof [23], valid also in the low-dimensional case, that will be carried on
in the setting of the of pre-cosheaves of von Neumann algebras on wedge regions.

In the following we consider a net of local observable von Neumann algebras
[27], i.e. a map

si : Θ -> s/(Θ), Θ e JΓ

where JΓ is the family of the double cones in the 4-dimensional Minkowski space
M, such that

Θλ CΘ2=> s/(Θλ) C si(Θ2) (isotony)

st{G) C st(G')' (locality).

If $ is an unbounded open region of M, we shall denote by si($) the von
Neumann algebra generated by the von Neumann algebras si(&), Θ C $, so that
si extends to a pre-cosheaf of von Neumann algebras on more general regions. The
local algebras are supposed to act on a separable Hubert space Jfo, with a common
cyclic vector ΩQ.

The modular covariance property with respect to ΩQ is assumed. As a particular
case of the analysis in the previous section, this property gives rise to a positive
energy representation of the Poincare group which leaves ΩQ invariant. By locality
ΩQ is cyclic and separating for the von Neumann algebras associated with all non-
empty open regions whose complement have non-empty interior (Reeh-Schlieder
property).

Proposition 3.1. si has a unique direct integral decomposition into irreducible
modular covariant nets.

Proof. If ξ e J^Q is a /^-invariant vector for some wedge W, then ξ is also
Aiι

Wχ-invariant for all other wedges W\. This follows by the representation theory
of SL(2,R), since the modular operators generate a representation of the Poincare
group. Therefore the centralizer & of s/(W) with respect to ΩQ does not depend
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on W. By locality 3£ is an abelian von Neumann algebra. The direct integral de-
composition with respect to 2£ has then the desired properties. The uniqueness is
clear since 2£ is canonically constructed. D

Because of Proposition 3.1 we shall always assume in the following that the
net is irreducible. We summarize now the results so far obtained in the following
theorem.

Theorem 3.2. Let Θ -» stf(Θ) an irreducible local, modular coυariant net of von
Neumann algebras on M as above. The extended pre-cosheaf satisfies essential
duality, and there is a {unique) positive energy unitary representation g G Θ+ —>
Uo(g) with the following properties:

(a) Uo(g)^(&Wo(gT = siijgG),
(b) U0(Λw{t)) = Δ%, W € 1T,
(c) [PCT Theorem] There is an antiunitary operator Θ {PCT operator) satis-

fying

[ad<9 p] = [p],

where p is a morphism localized in a space-like cone, and the PCT operator is
given by Θ = JψRw where W is any wedge whose edge contains the origin and
Rw is the space reflection w.r.t. all directions contained in the edge of W.

Proof Since the net s& may be considered as a purely Bose pre-cosheaf of field
algebras (cf. Sect. 2), the thesis follows by Theorems 2.9 and 2.10 and by [22]. D

The previous theorem shows in particular that the Spin and Statistics theorem
holds in the vacuum sector, solving a problem that remained open in [9].

We recall now that a localized representation of the quasi-local C* -algebra

(norm closure) is a representation which is equivalent to the vacuum representation
when restricted to the space-like complement of any space-like cone. Such a repre-
sentation is equivalent a localized transportable morphism, that is to say a morphism
p of si into B(Jfo) which is localized in a given space-like cone 5^, i.e. p(x) — x
for each x e */(&').

A unitary equivalence class of localized representations is called a super selection
sector.

A localized morphism p is called Poincare covariant if there exists a unitary

representation Up of the covering of the Poincare group @\ verifying

Up(g)p(x)Up(gT = p(U0(σ(g))xU^(σ(g))l g e 0>\, x G s/ .

We recall that when the net satisfies a mild condition called regularity, all
localized transportable morphisms with finite statistics are poincare covariant [22].

As already mentioned, a sector carries a projective representation of the Poincare
group, i.e. Up(2π) is not necessarily the identity. If p is irreducible Up(2π) = ± 1 .

If an irreducible morphism p with finite statistics is localized in a double cone,
Doplicher, Haag and Roberts [15] showed that the statistical behaviour of p is de-
scribed by the statistical parameter λp, an analysis extended to topological charges by
Buchholz and Fredenhagen [11]. As explained in the Introduction, the spin-statistics
relation takes the form of an equality of complex numbers, i.e. Up(2π) = sign(lp).
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Theorem 3.3. (Spin and Statistics). Let Θ —•» s/(Θ) be an irreducible, local, modular
coυariant net of von Neumann algebras on the Minkowski space and let p be an
irreducible, coυarίant, localized morphism with finite statistics. Then

Up(2π) = sign(λp).

By the Doplicher-Roberts theorem [18], the superselection structure is described
by a field net G —> !F(G) of von Neumann algebras satisfying normal commutation
relations and by a vacuum-preserving unitary representation V of a compact group
G (the gauge group) on a Hubert space Jf, that implements automorphisms on any

There is a canonical net isomorphism π : s/(G) —• ^G(Θ) where ^G(G) is the
fixed-point algebra under the gauge action, and the covariance property of the sectors
gives a uniquely determined representation U of 0*\ on 2tf which commutes with
the gauge group representation and restricts to U$ on the vacuum Hubert space Jfo

Lemma 3.4. The representation U satisfies

U(Λw(t)) = Δ%, W eiT, ί € R .

Proof. With W a wedge region, denote by Δw the modular operator associated
with 1F(W). Observe that cψ(t) := U(Λψ(t))Δψlt implements an automorphism
of the algebra &(W) leaving β?G(W) pointwise fixed by Theorem 3.1(b). The
translations along W commute with cψ(t), since they commute both with U(Λψ(t))
and Δμr, and act ergodically on 1F(W) by the irreducibility of the net. By the Galois
correspondence [1], it follows that cψ{ # ) is a one-parameter subgroup of V(G).

We show now that cψ(t) = I. Indeed, on the one hand, by twisted duality
(Proposition 2.5)

cW'(t) = cw{-t\ weir, teR.

On the other hand cgψ(t) — U(g)cψ(t)U(g)* = cψ(t) because the gauge group
action commutes with the representation U of 3P+, which means that cψif) does
not depend by W. Then cw(t) = /, i.e. U(Λw(t)) = Δu

w. Π

Proof of Theorem 3.3. Each irreducible superselection sector p is associated in a
one-to-one correspondence with an irreducible representation Vp of the gauge group
G. The Hubert space ffl decomposes into a direct sum

9

where Jfp := f̂0 Θ ^d{p) and d(ρ) = \λp\~ι = dim(J^) is the statistical dimension
of p, so that the representation π of the observable algebra si on Jf, the represen-
tation U of 8P\ and the representation V of the gauge group decompose accordingly
as

p<EG

®J®Vp(g), geG,
p£G

where Up is the representation of $P\ in the sector p as before.
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In particular the statistics operator Γ is constant on the direct summands Jtfp,
and we have

Γ = @κpl^p

p

where κp = sign(λp) is the statistics phase.
Then the Spin and Statistics theorem follows directly by Theorem 2.10. D

Acknowledgement. We thank Klaus Fredenhagen for pointing out a gap in the proof of Theorem
1.1 of our original manuscript.
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