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Abstract: A 2-dimensional Navier-Stokes equation perturbed by a sufficiently dis-
tributed white noise is considered. Existence of invariant measures is known from
previous works. The aim is to prove uniqueness of the invariant measures, strong
law of large numbers, and convergence to equilibrium.

1. Introduction

Consider a viscous incompressible fluid in a bounded domain. The following ergodic
principle lies at the foundation of the statistical approach to the fluid dynamic (see
[17,23]): there exists an equilibrium measure μ over the phase space (a space of
velocity fields) such that, for every regular observable defined over the phase space,
and for every initial velocity field (except for a set of initial fields that is negligible
in some sense), the time average of the observable tends, as time goes to infinity,
to the mean value of the observable with respect to μ. A rigorous justification of
this principle is not known. The aim of this paper is to prove this result in the case
of the 2-dimensional Navier-Stokes equation perturbed by a sufficiently distributed
white noise. The existence of invariant measure for such equation has been already
known (cf. [23,4, 11, 12], under different conditions). Here it is proved, under proper
assumptions on the noise, that the invariant measure is unique, it satisfies a strong
law of large numbers, and the convergence to equilibrium takes place.

In the case of finite dimensional differential equations, it is well known that a
non-degenerate white noise perturbation yields the previous ergodic results. How-
ever, the analysis of this problem in the infinite dimensional case is considerably
more difficult, and only the recent development of suitable techniques (cf. for
instance [7,15,16,19,20,21,3,6,8]) gave the possibility to prove the result for
Navier-Stokes equation. Some of the restrictions that we have to impose on the
noise are quite standard compared with the current literature on ergodicity of infi-
nite dimensional equations, but it is reasonable to expect that they could be removed
by future improvements of the methods.
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2. Preliminaries on the Navier-Stokes Equation

Let D be a bounded open domain of R2 with regular boundary dD. We consider the
2-dimensional stochastic Navier-Stokes equation in D for an incompressible fluid
flow:

^l+(u(t,ξ). V)u(t,ξ)-Au(t,ξ)+Vp(t,ξ) = f(ξ) + n(t,ξ), (1)

t e [0, T], ξ e D, subject to the incompressibility condition

divu(t,ξ) = 0, te[0,T],ξ€D, (2)

the boundary condition

u(t,ξ) = o, te[θ,T],ζedD, (3)

and the initial condition

u(O,ξ) = uo(ξ), ξED. (4)

For simplicity, we have written the equation in dimensionless form, and with the
physical constants (density and viscosity) equal to 1. Here n(t9ξ) is a Gaussian ran-
dom field, white noise in time, satisfying the conditions imposed below. Definitions
and assumptions concerning this equation will be given at the level of the classical
abstract formulation that we are going to introduce.

Note that we use the symbol ξ for the spatial variable in the formal equation
(1) while symbols like x, y, z, etc. are reserved for elements of the Hubert spaces,
in the framework of which the abstract counterpart of (1) is introduced.

Let y be the space of infinitely differentiable 2-dimensional vector fields u(ξ)
on D with compact support strictly contained in D, satisfying άivu(ξ) = 0. We
denote by Kα the closure of "K in [//α(Z>)]2, for α Ξ> 0, and we set in particular

H=Vθ9 V = Vι .

We denote by | . | and (., .) the norm and inner product in H. Identifying H with
its dual space H\ and identifying H1 with a subspace of V (the dual space of V)
we have V C H C V, and we can denote the dual pairing between V and V by
(.,.) when no confusion may arise.

Moreover, we set D(A) = [H2(D)]2 Π V, and define the linear operator A :
D(A) C H -> H as Au = -PAu, where P is the projection from [L2(D)f to H.
Since V coincides with D{Aλ/2), we can endow V with the norm ||w|| = \Aι^2u\.
The operator A is positive selfadjoint with compact resolvent; we denote by
0 < λ\ ^ Λ,2 ύ ''' the eigenvalues of A, and by e\,e2,... a corresponding complete
orthonormal system of eigenvectors. We remark that ||w||2 ^ 2i|w|2.

We define the bilinear operator B(u,v) : V x V —> V as

D

for all z G V. By the incompressibility condition we have

(B(u9v),v) = 0, (B(u,υ),z) = -(B(u,z),v) .
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In place of Eqs. (l)-(4) we shall consider the abstract stochastic evolution equa-
tion

j du(t) + Au(t)dt + B(u(t),u(t))dt = fdt + Gdw(t), te[0,T]

Here we assume that / G H (this can be relaxed in some of the next statements,
but we omit this level of generality), w(t) is a cylindrical Wiener process in H (cf.
[9]) defined on a complete probability space (Ω,^,P), with expectation denoted
by E, and

(A\) G : H —+ // is a bounded linear operator, injective, with range M(G) dense
in H and satisfying

D(Al2) C @(G) C D(Ai+ε)

for some ε > 0.
Assumption (Al) is the basic condition on the noise that we have to impose in

order to obtain the main ergodic result of the paper. Some preliminary results will
hold true under more general conditions, indicated later by (A2), etc., that will be
stated when it is necessary.

We shall denote by £FS the σ-algebra generated by w(τ) for τ ^ s.

Remark 2.1. An example of the noise satisfying condition (Al) is

dw(t) °° dβn(t)

^ G = S S *
where {βn} is a sequence of independent 1-dimensional Wiener processes, and {σn}
satisfies

cn~l2 ^ σn S Cn~\-* WneN

for some constants c, C > 0. It is so because the eigenvalues λn of the Stokes
operator A, in 2-space dimension, behave like n (cf. [22]).

Remark 2.2. Another example of operator G satisfying (Al) is

G=A~L

with L an isomorphism in H and

8 r ~ 2

Let us summarize some definitions and results concerning Eq. (5). The main
results of the paper will be given in Sect. 3.

2.1. Existence, Uniqueness and Regularity. A classical definition of solution to
Eq. (5) would require, among other properties, that the trajectories of u are square
integrable in time with values in V. This condition is too strong in the present
context, due to the low regularity of the noise. We shall adopt the following natural
(although not classical) definition of solution. This definition and the subsequent
results are discussed in more details in [11].
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Definition 2.1. We say that a stochastic process u{t,ω) is a generalized solution
ofEq.(5)if

for P-a.e. ω G Ω, u is progressively measurable in these topologies, and P-a.s.
Eq. (5) is satisfied in the integral sense

(u(t\φ) + j{u{s\Aφ)ds - J(B(u(slφlu(s))ds

= (uo,φ)+J(f,Φ)ds+(w(t)9G*φ)
0

for all t G [0, T] and all φ e D(A).

Remark 2.3. Since

\(B(u(s),φ),u(s))\ £ C\\φ\\ \u(s)\2

L4 ̂  C\\φ\\ \u(s)\2 !
D(A4)

the integral term with B is well defined. Moreover, since formally

{B(u(s\φ\u(s)) = -(B(u(s)Ms)),Φ)

we see that the integral equation corresponds to Eq. (5).

Consider the auxiliary Ornstein-Uhlenbeck equation

r dz(t) + Az(t)dt = G dw(t) t ^ 0

lz(0) = 0 .

This equation has a unique progressively measurable solution with P-a.e. trajectory

z(.,ω) e D(A*) under assumption (A2) below, and z(.,ω) e D(A%) under (A3)
(see [9], Theorem 5.16).

Equation (5) is studied by the change of variable v(t) — u{t) — z(t). This is the
reason for the uniqueness statement of the following theorem; uniqueness in the
case (i) below is an open problem. On G we need to impose weaker conditions
than (Al). We shall need one of the following conditions:

(A2) G : H —> H is a bounded linear operator, with range M(G) satisfying

for some ε > 0;
(A3) G : H —> H is a bounded linear operator, with range ${G) satisfying

St{G) C

for some ε > 0.
Clearly (Al) => (A3) => (A2).
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Theorem 2.1. Assume that condition (A2) is satisfied. Then
i) For each initial condition uo G H, there exists a generalized solution u of

Eq. (5) satisfying

u(. ,ω) G C([0, Γ];i7) Π Z2(0, Γ;

/or P α.e. ω G O.
ii) One and only one of such solutions satisfies the additional property:

for P a.e. ω G Ω; in the sequel, all the statements will be referred to this canonical
solution.

iii) The process u defined in part ii) is a Markov process in H, and it satisfies
the Feller property.

iv) Assume now that condition (A3) is satisfied. If in addition UQ £D(AΪ),
then

u(.,ω)e C([0,T];D(Al4))nL2(0,T;D(A3*))

for P a.e. ω G Ω; moreover, for every to G (0, Γ), and every u0 G H the corre-
sponding solution satisfies

u{.,ω)eC([to,T];D{A\))

for P a.e. ω G Ω.

This theorem is a particular case of a result proved in [11] (except that the
operator G was diagonal with A in that paper, but the proof in the present case
is the same). Anyway, the main ingredients for the proof will be derived in the
Appendix for independent purposes, so that the reader may easily complete the
proof, along classical lines (cf. [2,22,23]).

2.2. Invariant Measures. Let Pt be the Markov semigroup in the space Cb(H)
associated to the stochastic Navier-Stokes equation (5), defined as

(P,φ)(x) = Eφ(u(t,x)\ φ e Cb(H) ,

where u(t x) is the solution of Eq. (5) (given by Theorem 2.1 (ii)) with initial
condition x G H. This defines a dual semigroup P* in the space Pr(H) of probability
measures on H:

for all φ G Ct,(H) and v G Pr(H). A measure μ G Pr(H) is called invariant if
P*μ = μ, or equivalently if

Jφdμ = JPtφdμ
H H

for all t ^ 0, φ G Cb(H). The invariant measures are, in other words, the equilib-
rium measures of the Markov process.
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In [11] it has been proved (see [12] for a more general result):

Theorem 2.2. Under the assumption (A2), the stochastic Navier-Stokes equation
(5) has an invariant measure.

3. Main Result

Recall that u(t;u0) stands for the solution (given by Theorem 2.1, (ii)) of Eq. (5)
with initial condition w(0) = UQ>. The aim of this paper is to prove:

Theorem 3.1. Assume that condition (Al) is fulfilled. Then:
i) the stochastic Navier-Stokes equation (5) has a unique invariant measure

μ;
ii) for all uo G H and all Borel measurable functions φ : H -^ R, such that

fH \Φ\dμ < oo,
1 τ

lim -fφ(u(t;uo))dt = fφdμ
T-+OC 1 0 H

P-a.s.;
iii) for every Borel measure v on H we have that

\\P*v-μ\\v -+0 as t -^ oo ,

where \\.\\v stands for the total variation of a measure. In particular\ it follows
that

P*v(B) -> μ(B) as t -> oo (7)

/or euerj ^ore/ seί B C H.

To prove this theorem we use the following general results. Denote by P(t,x,.)
the transition probability measure defined as

P(t,x,B) = P;<5X(£) = P(u(t;x) e B)

for t ^ 0, x G H and 5 G

Theorem 3.2. Assume that the probability measures P(t,x,.), t > 0, JC G //, ^re
<?// equivalent\ in the sense that they are mutually absolutely continuous. Then
properties i), ii) and iii) o/ Theorem 3.1

Parts (i), (ii), and the weaker version (7) of (iii), have been proved essentially
by Doob [10]; see also Khas'minskii [14]. The part (iii) is due to Seidler [20],
Proposition 2.5, and Stettner [21], Theorem 1.

It is known that ίrreducibility and strong Feller property imply the equivalence
of the measures P(t,x,.) (cf. [14]). By irreducibility we mean that for all t > 0, all
x,y<EH, and all p > 0, denoting by B(y,p) the ball in H of center y and radius
p, we have P{u(t;x) G B(y,p)} > 0. By strong Feller property we mean that Pt

can be extended to a continuous operator from B(H) to Cb(H), where B(H) is
the space of bounded measureable functions on H. In the case of the stochastic
Navier-Stokes equation we can prove the irreducibility in //, even in a stronger
sense, but we cannot prove the strong Feller property in H. On the other side, we

can prove the strong Feller property in D(A*), even in a stronger sense, but not
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the irreducibility in D(A*). Then we have to merge carefully the special kind of
irreducibility and strong Feller property that we can prove, to obtain the equivalence
of the measures P(t,x,.). This requires a new result on the equivalence problem,
that is proved in the next section. The following Sects. 5 and 6 will be devoted to
the proof of the particular irreducibility and strong Feller properties available for
the Navier-Stokes equation.

4. A Sufficient Condition for Equivalence of Transition Probabilities

In this section we work under the assumption (A3), but notice that Theorem 4.1
below is a general statement, independent of the particular framework of the Navier-
Stokes equation.

For y G D(A*),ε,M > 0, let

U(y9ε9M) = {z e D(A*);\z - y\ < ε,\A*z\ ^ M} .

We introduce the following version of the irreducibility property:

(I) For all x9y e D{A*) there exists M > 0 such that for all ε > 0:

P(t9x9U(y9ε9M)) > 0

for every t > 0.
Moreover, we introduce the following version of the strong Feller property:

(SF) For all Γ e ®(D{A*)) (the Borel σ-algebra of D{Δ))9 all t > 0, and all

xn,x e D(AA ) such that xn —> x in H and \A*xn\ ^ C for some constant C > 0, it
holds

P{t9xn9Γ) ^ P(t9x9Γ) .

Condition (I) implies the irreducibility in H but not in D(A*). On the other

hand, condition (SF) implies the strong Feller property in D(A*) but not in H.

For the sequel, note that the elements of the set &(D(A4)) are the intersections

of Borel sets of H with D(A*).
The following result is general, and does not depend on the fact that P(t,x,.)

arises from the Navier-Stokes equation.

Theorem 4.1. Let P(t,x,.)9 t > 0 and x e D(A*), be a family of Markov transition

probabilities on D(A*\ satisfying conditions (I) and (SF). Then the distributions

P(t,x,.) are equivalent, for all t > 0 and x G D(AA ).

Proof Assume P(t,x0, Γ) > 0 for some t > 0, x0 € D(A*)9 Γ e 3»φ{A)\ Let
s > t9 x eD(A*) be given. Let us prove that P(s9x9Γ) > 0. By (SF), for each
M > 0 there exists ε > 0 such that P(t9y9Γ) > 0 for all y e U(xo9ε9M). Take for
this M the one from (I) (corresponding to x — x, y — x0, t = s — t). So we have
that for some M > 0 and ε > 0,

P(s-t9x,U(xθ9ε9M)) > 0
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and
P(t,y,Γ) > 0

for y G U(xo,ε,M). Now, by the Chapman-Kolmogorov equation, we obtain

P(s,x,Γ) ^ / P(t,y,Γ)P(s - t,x,dy) > 0 ,
U(xo,εM)

so we have proved that P(s,x,Γ) > 0 holds for any x G D(A*) and s > t.

If s < t, take 0 < h < s and write

0 < P(s9xo,Γ) = J P(t- h9xo9dy)P(h9y,Γ),

D(A4)

so there exists yo € D(A*) such that P(h,yo,Γ) > 0. We can now repeat the first
step to show that P(s,x,Γ) > 0 also in this case, which completes the proof.

Lemma 4.1. Assume (A3). Let P(t,x,.)9 t > 0 and x e H, be the transition prob-
abilities associated to the Navier-Stokes equation (5). If they are equivalent on

D(A*\ for all t > 0 and x G D(A*), then they are equivalent on H, for all t > 0
and x e H.

Proof Assume P(t9x0,Γ) > 0 holds for some t > 0, x0 G H, Γ e 08(H). We have
to prove that P(s,x,Γ) > 0 for every s > 0 and x G H. Take 0 < h < min(s,t).
We have that

0 < P(t9xo9Γ) = JP(t - h,xo,dy)P(h,y,Γ)
H

= f P(t-h,xo,dy)P(h,y,Γ).

D(A4)

The last equality holds since, for every r > 0, the distribution of U(Γ;XQ) is con-

centrated on D(A*), by Theorem 2.1 (iv), therefore

P(t-h,xo,D(Ai4))=l.

Therefore, there exists an y0 G D(A*) such that

By the equivalence of the transition probabilities on D(A*), we get that P(h,y,Γ Π

D(A*)) > 0 holds for all y e D{A*). Therefore

P(s9x9Γ) = P(s9x9ΓnD{Aτ))

= J P(s-h,x,dy)P(h,y,ΓΠD(A*)) > 0.

D(A*)

The proof is complete.
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Collecting the previous theorem and lemma, and recalling Doob's Theorem 3.2,
we see that, in order to prove the main Theorem 3.1, we have to check conditions
(I) and (SF). This will be the object of the next two sections.

5. Irreducibility (Condition (I))

In this section we work under the following assumption:
(A4) G : H —• H is a bounded linear operator, with dense range M(G), satisfy-

ing

S) C i

for some ε > 0.
Of course (Al) =» (A4) => (A3) => (A2). Some of the following partial results

will be stated assuming only (A2) or (A3).
Our aim is to prove the following result.

Proposition 5.1. Assume that (A4) holds true. Then the irreducibility property (I)
is satisfied.

In order to prove this proposition we need several technical lemmas.

First, note that the assumption &(G) C D(Ai+ε) implies that A%+εG is a

bounded operator in H (by the closed graph theorem). Since A~2~ί is Hilbert-

Schmidt in //, we obtain that

is Hilbert-Schmidt in //. This fact will be used below.
Let z be the Ornstein-Uhlenbeck process defined in Sect. 2.1. It is given by the

formula

z{t) = Je-{t-s)AGdw(s) .
o

By the condition (A3) (which is part of assumption (A4)), z can be represented as
the stochastic convolution integral

where w(s) is an //-valued Wiener process with nuclear incremental covariance
operator

Thus, by Theorem 5.16 of [9], we obtain the following lemma. For a Banach space
7, set

Co([O, T];Y) = {he C([0, T]; 7); Λ(0) = 0} .

Lemma 5.1. Under the assumption (A3) {hence under (A4)), we have that

P{z(.,ω) e C0([0,T];D(AI))} = I .
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In particular,

} =P{z(.,ω) G C0([0,T],D(Ai))} = 1 .

Furthermore, since the function g(t) = ||S(OI| i belongs to Z2(0, T) by
UflXHA 8 ))

the analyticity of the semigroup e~tA, and since the range ${G) is dense in H, we
can use Proposition 2.13 in [16] to obtain the following lemma:

Lemma 5.2. Under the assumption (A4), the Gaussian measure induced by z in

the space C0([0,T];D(AI)) is full, that is

P{z(.,ω)£ Uo} > 0

for every nonempty open set Uo C Co([O9T];D(A^)). Consequently,

P{z(.,ω)eU{} > 0 , P{z(.,ω)eU2}>0

hold true for all sets Ux c L\QJ\D{Δ)) and U2 C C0([0,T];D(A*))9 U{ and
U2 nonempty and open in the respective topologies.

For the sake of brevity, set

tfi =L\0,T;D(A*)), Ki = L4(0,T;D(AI)) ,

and for x G H a n d ψ:[0,T]-+H set

where v(t,x,ψ) stands for the solution, when it exists, of the equation

\v(0)=x.

As it is sketched in the appendix (see [11] or [22] for more details), this equation
has a unique solution

veC([0,T];H)Γ)L2(0,T;V)

for all x G H and φ e K\, under the assumption (A2). Moreover, the process u(t) —
4

v(t,x,z) + z(t), where z is the Ornstein-Uhlenbeck process, is the solution of the
stochastic Navier-Stokes equation (5), described in part ii) of Theorem 2.1. If in
addition x e D(A*) and ψ e Kλ, and (A3) is assumed, then υ G C([0,T];D(A*)).

Lemma 5.3. (a) Under the assumption (A2), for every x e H, the mapping

Φ:KλΠ C0([0,Γ];//) - C([0,T];H)
4

defined as Φ(ψ) = u(.,x, ψ), is continuous.

(b) Under the assumption (A3), for every x G D{A*), the restriction of Φ:

Φ : K3_ Π C0([0, T];D(A*)) -> C([0, Γ];

bounded sets in bounded sets.
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(c) Under the assumption (A3), for every T > 0 and every x9 y G D(A*)9 there

exists z eKiΠ C0([0, T];D(A*)) swc/z rΛα/ u(T9x,z) = y.

Proof Part (a) is proved in the Appendix, Remark A.2, while (b) in Remark A.I.
Thus we have only to prove (c).

Given x j G D(At) and T > 0, choose any 0 < to < t\ < T. Define ΰ as:

ΰ(t) = e~tAx, t G [0,tΌ],

5(0 = ΰ(to) + f—τ-(«
t\ - to

We have ΰ e C([0,T];D(A*)). Moreover, by the analyticity of the semigroup,

JHs)\\2ds Z Ϊ ^0

^ C2f\ds < oo
0 5*2

(9)

and similarly on [t\,T], while on [to,t\] the function ΰ is even continuous with
values in D(AN) for each N > 0. Therefore w G £2(0, Γ; F). Along with the previous
property of M, and a classical interpolation inequality, this implies

f\A*ΰ(s)\4ds S C3f\A*u(s)\2\A?u(s)\2ds < oc . (10)J
0 0

Define now v as the solution of the equation

I J ( O ) = J C .

It is well known that if x eD(A4) and the right-hand side is in L2(0,T;D(Aϊ)f),
then

v e C([0, T]',D(Al4)) ΠZ2(0, Γ;D(^?)) (12)

(cf. [22]). Note that, for all ξ e D{A*) with norm 1,

\(B(ΰ,ΰ),ξ)\ S C4\A*ΰ\\\ΰ\\,

so that, by (9), \B(ΰ,ΰ)\ i is square integrable. Since x G D(A*)9 we have (12),
D(A4 )

so that, by (10) (since D(A*) C V), we finally obtain v G L\θ,T;D(Ai)).
If we now set z — ΰ — v9 it is straightforward to check that it satisfies all the

requirements of the lemma, part (c). This completes the proof.

Proof of Proposition 5.1. Let T, x and y be given as in the proposition. Let f be
given by part (c) of the last lemma. By part (a), there exists δ0 > 0 such that

ι z\co([O,T];H)
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\u(.,X,z)-u(.,X,Z~)\c([0,T];H) < 1

z - zI i < δ\
C0([0,T];D(A4))

\z —

\z - z\κ

implies

for z eK3_n Co([O, T];D(Al4)). By (b) we have that

M = sup< \u(.,x,z)\ i ;\z-z\κ3+|z-z|

Now take any 0 < ε < 1 and find δ > 0, 5 < <5o> such that

\U(.,X,Z) - u(.,X,z)\c{[Q,T] Jί) < £

holds for z satisfying

oo .

z~Λκx
4

and then take Δ > 0, A < δ\, such that

z £ UΔ = <z e K3_ ΠC0([0,Γ];j

implies

δ,

z-z \ i

C0([0,T];D(A4))
< A

\z-Aκ δ .

For z G ί/zi, we have that

and

|κ(. , * , * ) ! <M

\u(T9x9z) - y\ < ε .

Recall now that the solution u of the stochastic Navier-Stokes equation is equal to
Φ(z), z being the Ornstein-Uhlenbeck process. Then it remains to show that

P{z(.,ω)eUΔ} > 0,

which follows from Lemma 5.2. The proof of the proposition is complete.

6. Strong Feller Property (Condition (SF))

In this section we prove that the condition (SF) of Sect. 4 holds true, which will
complete the proof of Theorem 3.1. To this end we adopt the following strategy: at
first we prove the classical strong Feller property on H for Eq. (13) below which
differs from the Navier-Stokes equation by a regularizing multiplicative term ΘR
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(we are not able to prove the strong Feller property for the original equation di-
rectly). Then we prove the condition (SF) for the original equation by the limit
passage for R —> oo.

In order to prove the strong Feller property for Eq. (13) with R > 0 fixed we
use the finite dimensional Galerkin approximation. For the crucial estimation of the
derivative of the transition probability functions in Lemma 6.2 we use an interesting
formula involving directional derivatives of the stochastic equations, which can be
derived from the backward Kolmogorov equation and the Ito formula (cf. [7, 19]
for details).

6.1. Modified Navier-Stokes Equation. Fix R > 0 and let ΘR be a CΌo function
equal to 1 in [-R,R] and to 0 outside [—R - 1,R+ 1]. Consider the equation

ί du^R\t) Λ-Au^R\t)dt + θR (V*>|2 , ) B{u^R\t)MR\t)) dt

I =fdt + Gdw(t), te[0,T]
1uR(0) = u0 .

Lemma 6.1. Assume condition (A3). Then, for all UQ ED(A*)9 there exists a
unique generalized solution of Eq. (13) (in the sense of Definition 2.1, modified
by the term with ΘR) satisfying

u(.,ω) e C([0, T];D(A*)) Π Z2(0, T;D(A*))

and

u(.,ω)-z(.,ω)&L2(0,T;V)

for P-a.e. ω G Ω, and it generates a Markov process, with the Feller property, in

*)

The proof is the same as that of Theorem 2.1, and it is based on the estimates
1 and 2 of the appendix and the limit argument recalled in Remark A.I, which are
completely similar for the original Eq. (5) and for the modified Eq. (13). Denote
by PR =PR(t,x,.) the transition probabilities corresponding to (13), and set

for x eD(A*) and φ G Cb(D(A*)) (the space Cb(D(A*)) includes the restriction
of the functions φ G Cb(H)).

Proposition 6.1. Assume (Al). Then for every R > 0, t > 0, there exists a con-
stant L = L(t,R) > 0 such that

\P\R)φ(x)-P\R)φ(y)\ ύL\x-y\

holds for all x, y G D(A*\ and all φ G Cb(D(A*)) with \φ\ i ^ 1.
Cb(D(A4))

The proof will follow from a corresponding result for the following Galerkin
approximations of Eq. (13). Let Pn be the orthogonal projection in H defined as
pnx = Y™=1 (χ9 ej)ej9 xeH. Clearly, Hn := PnH c D(AN) for every N > 0.
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Consider the equation in Hn\

\t) dt + ΘR (\u{R)\2

 ι ) PnB(u{R\t\u{R\t)) dt

= pnfdt + pnGdw(t\ te[θ,τ] y }

R\θ) = PnU0 .

This is a finite dimensional equation with globally Lipschitz nonlinear functions, so
it has a unique progressively measurable solution with P-a.e. trajectory uiR\.,ω) G
C([0,T];Hn), generating a Markov process in Hn with associated semigroup Pnt

defined as

for all x e Hn and φ G Cb(Hn).

Lemma 6.2. Assume (Al). Then for every R > 0, t > 0, ί/zere exists a constant
L = L(t,R) > 0 such that

holds for all « G N , x j G Hn, and all φ e Cb(Hn) with \φ\Hn ^ 1.

Proof The following remarkable formula holds true for the differential in x of Pnt φ
(cf. [7,19]):

Π P^ώίrΛ . h — -F [ tidbit- rWΐl(P GG*P Λ~ϊD iλR^(κ'r\ h dR (κ\\
ΐ \ 0

for all h e Hn, where βn is a ^-dimensional standard Wiener process. We have used
the fact that PnGw(t) is a ^-dimensional Wiener process with incremental covariance
PnGG*Pn. Therefore,

i

\DxP^φ(x) h\^-E (j\(PnGG*Pn)-2-Dxu(RXs;x) h\2ds) * .

We use now the fact, proved below, that there exists a constant C > 0, independent
of ft, such that

\{PnGG""Pn)~l2y\2 ^ C\\y\\2 My eHn. (15)

It follows that

\DxPiRU(x) h\ ί -C E (J\\DxuiR\s;x) A| | 2 ^) '

by the estimate 4 of the appendix (note that C(R) is independent of x € Hn

and « e N . Indeed, u\ \t\x) is given by vn(t;x) + Pnz(t), where z is the Ornstein-
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Uhlenbeck process, and vn is the solution of Eq. (16) with φ = z). Therefore,

\P(

n

RU(x) - PiRU(y)\ ϊ sup \DxP
{

nfφ(k) .h\\x- y\
\h\J

ί -tC{R)\x - y\ .

We have to prove (15). For all x £ Hn,

(A?PnGG*PnAix,x) =

for some constant C > 0, since, by the assumption D{Aϊ) C

is bounded in H. Indeed,

and, for every J J G V,

Therefore,

{(^iPπGG'P^iΓV,y) ^C\y\2

for all y e Hn, so that

KΛ.GG^H f = {(PnGG PnT
λy, y)

S C\\y\\2.

The proof of the lemma is complete.

Proof of Proposition 6.1. Let x £ D(Aϊ) and ψ G Q,(D(Λ5)) be given (note that

φ G Cb(Hn)). From the appendix, Remark A.I, we know that un (. x) converges

to u{R\.;x) strongly in Z2(0, T;D(A*)), P-a.s. Fix ω e Ω such that this property
holds. For this ω, by a simple argument on subsequences that converge a.s. in t, we
see that φ(uiR\.;x)) converges to φ(u^R\.;x)) in Ll(0,T) (we use the continuity



134 F. Flandoli, B. Maslowski

and boundedness of φ on D(A*)). Again by the boundedness of φ and Lebesgue
dominated convergence theorem, we have

Ef\φ(uiR\t;x)) - φ{u(R\t;x))\dt -* 0,
0

which implies that for some subsequence rik

Eφ{u%Xt;x)) - Eφ(u<R\t;x))

for a.e. t e [0,T].

Take now x,y E D(A*). By the previous argument, we can find a subsequence
rik such that the previous almost sure convergence in t e [0, T] holds true both x
and y. Thus, from Lemma 6.2, we have

\P{R)φ(x)-P{R)φ(y))\ SL\x-y\

for a.e. t £ [0, T]. It is now standard to show that P(;R)φ(x) is continuous in t, for

all x G D(Aΐ), since the Markov process ιλR\t\x) has continuous trajectories with

values in D(A*). It follows that the previous inequality holds for all t e [0, Γ],
completing the proof of the proposition.

Lemma 6.3. Under the assumption (A3), we have that for every t > 0, M > 0,

as R —> oo, uniformly with respect to

xeBM :={x

Proof Let ι/(ϊ, JC, ̂ ) have the same meaning as in Lemma 5.3. Since we have that

sup{\A*u(t9 x, φ)\ : x e BM) < oo

for every φ E Co([O,T];D(A*)) (cf. Remark A.I in the appendix), we obtain

P(sup{|^?w(ί;x)| : * e BM) > oo) -^ 1

as i? —> oo, where u(t x) stands for the solution of the original Eq. (5) satisfying
u(0;x) = x. This completes the proof of Lemma 6.3, since the trajectories of the
processes u(. x) and u^R\.;x) coincide on BR for x e BM.

Proposition 6.2. Assume (Al). Then (SF) holds true.

Proof Take t > 0, JCΠ, x e D(A*), \A*xn\ ^ C for a constant C > 0, xn —> x in H.
For every R > 0 we have that

. ) | | B = sup \P\R)φ(xn)\ - \P\R)Φ(x)\
WΦWcb(H)^

S L\xn-x\ ->0
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as n —> oo by Proposition 6.1. Furthermore,

\\PR(t, xn,.) - P(t, xn, . ) | | , + \\PR(t, x9.) - P(t, x9 OIL -> 0

as R —» oo, uniformly with respect to » € N, by Lemma 6.3. Therefore,

| |P(ί, *„,.) - P(t, x, .)\\υ ^ \\P(t, xn,.) - PR{t, xn, .)\\v + \\PR(t, xn,.) - PR(t, x, .)\\v

+ \\PR(t,x,.)-P(t,x,.)\\v^0

n —>• oo, and the proof of (SF) is completed.

7. Appendix: A Priori Estimates

Let ΘR, R > 0, be a C°° function as in Sect. 6. We allow also the value R = oo,
in which case we set (9y? identically equal to 1.

Consider the equation

[d-ft+AΌn + θR{\Όn+Pnψ\2 i )PnB(vn+Pnψ,vn+Pnψ) = Pnf, te[09Γ\

[ υn(0) - Pnx .
(16)

Here φ e KL (see Sect. 5) is a given function, x e H. In this appendix we prove
4

some a priori estimates on υn.
First we recall the following result from [11]:

Lemma 7.1. For all ε > 0 there exists a constant C(ε) > 0 such that: for all

v G V and z eD(A*),

(v + z,v + z)9v)\ S ε\\v\\2 + C(e)\Al4z\4\v\2 + C(ε)\Al4z\4 (17)

for all v e D(^?), z

(Aϊv,B(v + z, υ + z)) S ε\AΪv\2 + C(ε){\v\2\A]2v\2\A*v\2 + \Aiz\4}. (18)

In the following estimates, we shall denote by C a generic positive constant inde-
pendent of n, φ, x, R, f.

Estimate 1. We prove the following a priori bound in H: there exists a constant
C(\x\, \φ\κ ,Γ, I/I), depending only on the indicated arguments, such that

%

(19)

for every i?,n,x e H,ψ e K\_, T,f € H. The space ΛΓi is defined in Sect. 5.
4 4
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We have

\\υn\\2 = -ΘR(\vn+Pnιl/\2 i )(B(vn+Pnφ,vn+Pnφ)9vn) + (f9υn)
\ D(A4)J

^ ε\\vn\\2 + C(ε)\A-4φ\4\vn\
2 + C(ε)\Δφ\A + C(ε)|/ | 2

κ, + ε||t;| |2.

2 dt

Here we have used the first part of the previous lemma, and also the fact that Pn

commutes with A and is equibounded by 1 in L(H). Moreover, ε is an arbitrary
positive number and C(ε) is a positive constant. Taking ε sufficiently small (and
denoting the corresponding constant by C) we have

\jtK\2 + l-\\υn\\2 ί C\Aλ4φ\4\vn\
2 + C\Ahf + C\f\\,.

Therefore, for all t E [0, T] (renaming C)

^> 4 Λ * Γ + IΠK')^^ - (20)
0

Using this result and the previous inequality, we also obtain (renaming C)

jK(σ)fdσ ϊ \x\
0

\2 \2\f\2

v,)dσ . (21)

This proves (19).

Estimate 2. We prove the following a priori bound in D(A*): there exists a constant

, \φ\κ ,Γ, I/I), depending only on the indicated arguments, such that

I +\v»\ , 3 S C(\A4χ\9 \φ\κ ,T, \f\) (22)
'\,D{A*)) L2(0,T;D(A4)) Λ |

for every R, n, x e D{A*\ φeKl9T9f£H. The space Kι is defined in Sect. 5.

Assume that x G D(A 4), φ G Kι. We have

x (A*B(vn+Pnψ, vn+Pnψ),A^vn) + (A\f,

^ ε\AΪvn\
2 + C{ε){\vn\

2\Avn\
2\AUn\

2

by the second part of the previous lemma. For a suitable ε we have

\ + \\AΪvn\
2 S C\vn\

2Aυn\
2\A*vn\

2 + C\AΪψ\4 + C\f\2
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This implies, for all t G [0, T] (renaming C)

\A*Vn(t)\2 < ef0CMs)f^Vn{s)fds\A*x\2+ fefσC\vn(s)\2\Ahn(s)\2ds
o (23)

Moreover, we also obtain (renaming C)

Tr 1 2 1 2 r 2 1 2 1 2 1 4 2

J|^44t;Λ(σ)| dσ ^ |yί4jc| -|- j C7( | t?Λ | |^2f«| M4^?| + |̂ 48ι/Ί + \f\ )dσ. (24)
o o

Therefore, using also the bound (19), we have proved (22).

Remark. A.I. It is now standard to show that, given x G H and φ £Kι, there

exists a subsequence (in fact the full sequence, a fortiori, by the uniqueness of
the limit), still denoted by vn, which converges to some v, strongly in L2(0, T H),
weakly in L2(0, T\ V), and weak star in L°°(0,T;H). Therefore, since

rlL°°([0,Γ];//) = ™,52 \Vn\L°°([0,T];H) '

and similarly for \v\L2^T.Vy we have that

}SC(\x\,\φ\Kι,T,

for every R,x £ H,φ eKi, T, f e H. When R = oo, υ satisfies Eq. (8).
4

If, in addition, x £ D(A *) and φ G Kι, then vn also converges strongly in

L2(0,T;D(A*)\ weakly in L2(0,T;D(Ai)), and weak star in L°°(0,T;D(A*))9 to
ϋ. Therefore,

< C(\A*xl\φ\κ ,Γ, I/I) (26)

1
for every R, x E D(A* \ φ £ Kz, T9 f £ H. Moreover, for each R, v satisfies

8

Eq. (13). Uniqueness of solution to these equations can be proved with compu-
tations like those of Estimate 3 below. Also the proof that v G C([0,T];H) in the
first case, and v G C([0,T];D(A*)) in the second one, is classical.

Estimate 3. We compare, only in the case R = oc for simplicity, two solutions
vι

n, v\ corresponding to the same initial condition x G H but to different functions
φ\ φ2: there exists a constant C(|x|, \φι\κ , \φ2\χ T, | / | ) , depending only on the

4 4

indicated arguments, such that

onH) Z C(\x\, \φ\t, \φ2\Kί T, \f\)\φι - φ2\Kι (27)
4 4 4

for every n, x G //, φ2, φ2 G KΪ9 T,f£H.

K - <C([0,Γ];J
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We have

(^+Avi

n+ PnB(vι

n + Pnφ\ tfn + Pntf) = Pnf, t e [0,T]

\ v'n(0) = Pnx

with i = 1,2. Set ξn = vι

n - v\, ζ = ψι - φ2. Then

ξn+ PnB{v\ + Pnψ\ ξn + Pnζ) + PnB(ξn + Pnζ, v2

n + Pnφ
2) = 0

«(O) = o.

Therefore, after a few elementary manipulations,

IIUI2 ^ \(B(vι

n+Pnφ\ ξn), Pnζ)\ + \{B(ξn+Pnζ, ξn), υ2

n+Pnφ
2\ξ\2 + IIUI2 ^ \(B(vι+Pφ\\

ί l-\\ξnf + C\Akvl

n+Pnφ
1)\2\Ai*ζ\2 + \\\ξn\\2

Since

\Akn\2 ύ\U\Ahn\, (30)

after some computations we have

c\ξn\
2μkv2

n + Φ2)f + c\Δζ\2\Ahv2

n + Φ2)\2 •

Using again (30) to estimate the terms \A*vl

n\ by means of (19), and applying
Gronwall lemma, we finally obtain (27).

Remark. A.2. By the convergence results of Remark A.I, the bound analogous to
(27) holds true for It;1 — v2\c^0T].Hy

Estimate 4. Let us now consider only the case R £ (0,oo), and denote by υn(t;x)
the solution of Eq. (16). Let Un(t) be the differential of the mapping x ι-> vn(t;x)
in the direction h at point x, for given x, h G H:

Un(t) = Dxυn(C,x) h.
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Set also

139

so that Un is also the differential of the mapping x \-* un(t;x) in the direction h at
point x. Thus Un satisfies

at
Un + Θ'R (\unζ j j (A*un,A*Un)B(un,un)

ΘR(\un\
2 i){B(un,Un) + B(Un,un)}.

We have

2dt] "'

ΘR

\A4un\\A4Un\\(B(un,un),Un)

\(B(Un,un),Un)

S 2C\Θ'R (\un\
2 x )\\Aiun\

3\AiUa\\\Ua

\ D(A4)J

Here we have used the equalities

(B(un,un),Un) - -(B(un,Un),un),

{B(Un,un),Un) = -(B{Un,Un),un)

and the estimates (following from Holder inequality)

I(B(un,Un),«B)| ^ 2

I(B(un,un),«B)| ^

Therefore, recalling that ΘR has compact support in [-R — l,R+ 1],

~ | £ / B | 2 + | | I / B | | 2 gC(Λ)μic/ Λ | | |C/ B | | ,

where here and in the sequel C(R) denotes a constant depending on R (but not on

n, φ, x, h, / ) . From the interpolation inequality |^4f/π| ^ C|C/πp | | t/ π | | 5 and the
Young inequality,

ι-jt\un\
2 + \\u£ iί c{R)\υn\i\\un

5 117"/.. II i

C(R)\Un\
2 .
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From the Gronwall inequality we have now

\Un(t)\2 ύC{R)\h\2 VfGfO.Γ],

and therefore, using again the previous inequality,

}\\Un{s)\\2ds S \h\2 + C(R)f\Un(s)\2ds
0 0

S C(R)\h\2

(having given different values to C(R)).
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