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Abstract: We introduce a Lie bialgebra structure on the central extension of the Lie
algebra of differential operators (with scalar or matrix coefficients) on the line and
on the circle. This defines a Poisson-Lie structure on the dual group of pseudodif-
ferential symbols of an arbitrary real (or complex) order. We show that the usual
(second) Benney, GL/rKdV (or GL/rAdler-Gelfand-Dickey) and KP Poisson struc-
tures are naturally realized as restrictions of this Poisson structure to submanifolds of
this "universal" Poisson-Lie group. Moreover, the reduced (=SL,2) versions of these
manifolds (or PF/7-algebras in physical terminology) can be viewed as certain sub-
spaces of the quotient of this Poisson-Lie group by the dressing action of the group
of functions on the circle (or as a result of a Poisson reduction). Finally we define
an infinite set of commuting functions on the Poisson-Lie group that give the stan-
dard families of Hamiltonians when restricted to the submanifolds mentioned above.
The Poisson structure and Hamiltonians on the whole group interpolate between the
Poisson structures and Hamiltonians of Benney, KP and KdV flows. We also discuss
the geometrical meaning of W^ as a limit of Poisson algebras Wh as ε —» 0.

Contents

0. Introduction 476
0.1. Structure of the Paper 478
0.2. Motivations and Different Viewpoints 479

1. Lie bialgebras and Poisson-Lie Groups 481
1.1. Basic Definitions 481
1.2. Poisson-Lie Subgroups and Poisson-Lie Actions 482

2. The Lie Algebra of Pseudodifferential Symbols and log (d/dx) 483
2.1. Algebra of Symbols 483
2.2. Logarithm of the Derivative Operator 485

3. The Group of Pseudodifferential Symbols 487
3.1. Classical Symbols 487

* Current address: Department of Mathematics, Ohio State University, Columbus, OH 43210,
USA.



476 B. Khesin, I. Zakharevich

3.2. Exponential Map for Integral Symbols 488
3.3. £\s=QDs = logD 489
3.4. Exponential Map 490

4. The Extended Algebra of Pseudodifferential Symbols as a Lie Bialgebra... 492
4.1. Double Extension 492
4.2. Manin Triple 493

5. The Poisson-Lie Group Structure on Pseudodifferential Symbols 495
5.1. From Manin Triple to a Poisson-Lie Structure 495
5.2. Benney Structure 497

6. Poisson-Lie Geometry of the Extended Lie Group of Pseudodifferential
Symbols 498
6.1. Gelfand-Dickey Structure 498
6.2. The Key Observation 499

7. Applications to the KdV and KP Hierarchies 501
7.1. From KP to KdV: A Restriction to a Poisson Submanifold 501
7.2. Poisson Properties of the Operator Multiplication and Miura

Transform 501
7.3. The Dressing Action 502

8. Relation of the GL-and SL-Poisson Structures 504
8.1. Poisson Quotients 504
8.2. The Case of Gmt 506
8.3. A Poisson Reduction 508
8.4. The Result of the Poisson Reduction 509

9. KP Hamiltonians on the Poisson-Lie Group 511
9.1. Invariant Functions are closed under Poisson Bracket 512
9.2. Invariant Functions on Gint 512
9.3. The KP Hamiltonians 514
9.4. Poisson-Lie Structure and the Exponential Mapping 517
9.5. A Different Proof of Closedness under Poisson Bracket 519

10. 4-Dimensional Extension and the Reduced KdV and KP Hierarchies 520
10.1. "Universal" Central Extension and the Lie Bialgebra Structure 520
10.2. The First Decomposition 522
10.3. The Second Decomposition 523
10.4. The Fourier Transform 524

11. Results for Hopf Algebras 525
11.1. KP Hamiltonians 525
11.2. Wso and the Second KP Poisson Structure 526

References 529

0. Introduction

Being a fashionable exercise during the last twenty-odd years, the theory of inte-
grable systems looks now like a patched quilt. Numerous teams carried out profound
investigations of their patches, and if one restricts attention to a particular point of
view, the picture is usually transparent now and looks rather complete. Problems
start to arise whenever we remember that a particular phenomenon in integrable
systems can be described from two (or more) different points of view. Usually both
explanations are satisfactory, but often there is no clear way to relate them one to
another.
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The result is a sophisticated "manifold" where the "transition functions" are no
less important (and much more difficult to establish) than "local charts" themselves.
In this paper we describe a "transition function" from the "quantum groups" chart
(more precise, its quasiclassical limit dealing with Poisson-Lie groups) to the chart
dealing with geometry of differential operators. The pivotal point in this transition is
the equipment of the Kac-Peterson central extension of the Lie algebra of differential
operators with a Lie bialgebra structure.

Consideration of the corresponding Manin triple (or Manin-Drinfeld double) in-
troduces into the cast the Lie algebra of pseudodifferential symbols. The algebras of
differential and pseudodifferential symbols play an important role in the theory of
integrable hierarchies (Korteveg-de-Vries or Kadomtsev-Petviashvili type systems)
[33] and in conformal field theory (with Wn- and ^^-symmetry in physics-speech).
There exist several approaches to these algebras describing their central extensions,
pairs of compatible Poisson brackets (so called Gelfand-Dickey brackets), connec-
tions between KP and «-KdV equations. In this paper we describe these structures
from the unified viewpoint of the Poisson-Lie group of pseudodifferential symbols
and of a certain extension of this group. There are two different ways to introduce
this extension, that correspond to two mutually dual Poisson-Lie "groups."

The first approach starts with the introduction of a new element log D. It turns
out that the (Lie) algebra of integral symbols ^2l<QUjDί (i.e., the Volterra algebra)
extended by the new symbol log D can be integrated to a remarkable Lie group.
This group consists of classical pseudodifferential symbols of an arbitrary real (or
complex) order, and carries a natural Poisson-Lie structure.

The second approach starts with the Lie algebra of differential operators
Σz>oM^ ^ tums out mat me 1-dimensional central extension of this Lie algebra
introduced by Kac and Peterson [15] also carries a natural Poisson-Lie (=Lie bial-
gebra) structure. Although this Lie algebra cannot be integrated to a Lie group,
it is the dual Lie algebra of the Poisson-Lie group of extended integral symbols
mentioned above.

Our main object of study is this Poisson-Lie structure on the Lie group of
classical pseudodifferential operators. We verify that this structure restricted to the
submanifold of differential operators coincides with the second Gelfand-Dickey
Poisson structure, and it coincides with the quadratic KP structure upon restric-
tion to a KP-phase space. Moreover, when extended on the whole group, KP and
KdV Hamiltonians correspond to the center

Adr

Cent fpunc (Group) j

of the Poisson algebra of invariant functions on this group.
This puts the schemes for KP and KdV hierarchies into the framework of the

Poisson-Lie geometry on the group of pseudodifferential symbols. The analogous
properties are valid for a submanifold of operators of order 0, the corresponding
Poisson structure is the second Benney structure. As by-products of our construction
we obtain the Poisson properties of the Miura mapping (or the Kupershmidt-Wilson
theorem [22]), and of multiplication of arbitrary differential operators. We also
generalize the Radul theorem [30] on the Poisson action of the Lie algebra of all
differential operators on the set of fixed order differential operators (with the leading
coefficient 1) equipped with the second Gelfand-Dickey Poisson structure. Due to
all this we can conceive the Poisson structure on the above group as a structure
that interpolates between (second) Benney, KP and GL/7-Gelfand-Dickey structures.
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Note also that this scheme automatically introduces into the picture Lax equa-
tions. Indeed, we can describe the center space above as the intersection of the
space of invariant functions with its centralizer in the space of all functions on
the group. By its definition this centralizer is the space of Hamiltonians such that
the corresponding Hamiltonian flow is tangent to orbits of adjoint action, i.e., the
Hamiltonian flow corresponds to a Lax equation of the form

9 = adx(g)g .

Here X is some element of Lie algebra that depends on the point g in the group.
In the case of linear group we get a standard form of the Lax equation

Thus it is possible to describe the set of Hamiltonians as invariant functions on the
group such that their flows are Laxian.

0.1. Structure of the Paper. The paper is organized as follows. In Sect. 1 we
recall the basic notions of the theory of Poisson-Lie groups and of Lie bialgebras,
as well as the relation of one to the other. In Sect. 2 we define the Lie algebra
of pseudodifferential symbols and discuss how to add to it a new symbol log D.
Here we also discuss an extension of the Kac-Peterson cocycle to the Lie algebra
of pseudodifferential operators. In Sect. 3 we integrate the Lie algebra consisting
of integral symbols together with the symbol log D to a Lie group. In Sect. 4
we introduce a Lie bialgebra structure on the preceding Lie algebra. To do this
we construct the Manin triple of the would-be Lie bialgebra. In fact we fuse two
approaches described above and add simultaneously the symbol log D and the
cocycle to pseudodifferential operators. As the results of Sect. 1 show, this defines
a Poisson-Lie structure on the group from Sect. 3. This brings to an end the first
logical part of the paper, the part devoted to definition of this Poisson-Lie structure.

Beginning from Sect. 5 we study the resulting Poisson structure. In fact this sec-
tion is just a warm-up: the Poisson-Lie structure on the Volterra group of classical
symbols of order 0 turns out to be known among specialists as the so-called second
Benney structure. In Sect. 6 we generalize this description to the ambient group of
pseudodifferential symbols of arbitrary order. The Poisson bracket written in global
coordinates is the generalized Gelfand-Dickey-KP structure. In Sect. 7 we use this
to give one-line proofs' of some facts about the (second) «-KdV- and KP-structures
that usually demand intricate calculations. Among them there are the Jacobi iden-
tity for the bracket and the facts that composition of differential operators, and, in
particular, the Miura transform are Poisson mappings.

In Sect. 8 we investigate the relation of the extended (= GL) KP structure and
the usual (= SL) KP structure. We show that in the Poisson-Lie language it is a
Poisson reduction with respect to the (dressing=adjoint) action of Lie subalgebra of
functions on the circle. (After taking the Kac-Peterson central extension of differen-
tial operators this subalgebra ceases to be commutative and becomes a Heisenberg
algebra).

In Sect. 9 we provide a Poisson-Lie framework for the Hamiltonians of various
integrable systems contained inside our Poisson-Lie group. In particular, we inter-
polate the KP and n-KάV hierarchies into a unified hierarchy on the group. One of
the byproducts is a purely algebraic description of these (KP type) Hamiltonians
that is valid for any Poisson-Lie group. In Sect. 1 1 we discuss the quantization of
this notion.
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In the same Sect. 9 we present an expression of the Poisson bracket on a
Poisson-Lie group in exponential coordinates that is of independent interest. Note
that this expression makes it possible to reduce the usual two-step process of con-
struction of the Poisson-Lie structure to a new one-step process: instead of con-
structing a Manin triple based on the corresponding r-matrix, and describing the
Poisson-Lie group as a Poisson submanifold in this triple, we can directly construct
the Poisson structure in a neighborhood of the unity using Formula (9.1).

In Sect. 10 we introduce two more Poisson-Lie groups. Both these groups are 1
dimension bigger than our main object of study. The Manin triples of these groups
coincide, and this triple is in some sense a universal extension of the Volterra group.
This corresponds to the fact that the Lie algebra of pseudodifferential operators
allows two nonhomotopic cocycles. At last, in Sect. 11 we sketch what are impacts
of results obtained here on a would-be quantization of the KP structure. First of all,
we describe analogues of KP Hamiltonians for any Hopf algebras, in particular, for
such a quantization. Secondly, we describe a relation between W^ -algebra and this
quantization. We show that W^ -algebra is a "linearization" of this quantization up
to a change of the order of two limits. Here "linearization" is a vague resemblance
of the relation between a Lie group and a Lie algebra (up to a fact that Hopf
algebras are intrinsically nonlocal).

Another approach leading to an explicit construction of Hopf algebra structure
on quantized differential operators is described in [40].

0.2. Motivations and Different Viewpoints. In a sense we describe in this paper a
fusion of two ways to generalize the KdV equation, considered as an Euler-Arnold
equation on the dual space to the Virasoro algebra [2, 13, 28]. This dual space
carries a linear Poisson structure, what is "the same" as a Lie algebra structure
on the dual space. Two principal ways to generalize the KdV equation come from
generalizations of structures on these two mutually dual vector spaces. We can
diagram these ways as

Vir*, KdV equation
Poisson Generalization Algebraic Generalization

/ \
GL-Gelfand-Dickey

structures, Algebra gDO,
Wn -algebras, W^ -algebras

ft-KdV equations

\ /
Poisson - Lie group

of fractional order ΨΌO,
KP-KdV hierarchies.

The first approach (earmarked by physicists as "classical ^-algebras") comes
from consideration of quadratic Poisson structures instead of linear ones. It leads
to the (quadratic) Gelfand-Dickey Poisson structure on coefficients of differential
operators of order n. The second approach (earmarked as "W^-algebras") leads
to consideration of the bigger Lie algebra, namely the Lie algebra of differential
operators of arbitrary orders (instead of vector fields).

Here we show that the long-time recognized correspondence between the
quadratic brackets and Poisson-Lie groups allows one to fuse these two approaches
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together. The only missing step was the Lie bialgebra structure on the central ex-
tension of the Lie algebra of differential operators and integration of the dual Lie
algebra to a Lie group.

There is another point of view on the results obtained here. In this paper we
start with definitions of some extensions of Poisson-Lie groups and show that the
second Gelfand-Dickey Poisson structure arises on submanifolds of those groups.
We conclude that the dressing action determines the (Radul) action of the Lie
algebra of differential operators on a Poisson manifold consisting of differential
operators (of fixed order). On the other hand, we could begin with the Radul action
as the base object. This action can be considered as an action of a Poisson-Lie
algebra (= Lie bialgebra) on an abstract Poisson manifold.

Let us consider the corresponding momentum mapping. The usual construction
of the momentum mapping can be carried out in the case when the action of a
Lie algebra preserves a Poisson structure. In this case we can construct (locally) a
central extension of the Lie algebra and a mapping from the manifold to the dual
space to this central extension. However, a Poisson-Lie action preserves the Poisson
structure only if the Poisson structure on the Lie algebra vanishes.

It is interesting to try to generalize the construction of the momentum map-
ping to the general case of an arbitrary Poisson-Lie action. Though there seems to
be no such generalization, in some particular cases one can construct a Poisson-
Lie central extension and a mapping from an open subset of the manifold to
the dual group to this central extension (the "prequantized" momentum
mapping).

Thus the results obtained here can be interpreted as constructions of this central
extension, of the corresponding dual group, and of the inclusion of the manifold
in question into this dual group in the case of Radul action. In the paper [39]
one of the authors shows that the second Gelfand-Dickey Poisson structure is a
structure on an open subset of some Poisson-Lie Grassmannian, and the Radul
action is the restriction to the Lie subalgebra of differential operators of the
natural action of gl on the Grassmannian. Therefore we can view the results of
this paper as a description of the "prequantized" momentum mapping for the
Grassmannian.

It should be mentioned that an alternative way to obtain the Gelfand-Dickey
brackets is the Drinfeld-Sokolov Hamiltonian reduction [7]. The actual Drinfeld-
Sokolov construction gives the Poisson structure on differential operators of an
integral order as a reduction of an appropriate aίfine Lie algebra. However, the
approach to the Gelfand-Dickey brackets via Poisson-Lie groups produces the Pois-
son structure not only on differential operators, but on all pseudodifferential sym-
bols of complex order. It turns out that the Drinfeld-Sokolov construction admits
a deformation (this conjecture of B. Feigin and C. Roger is proved in [17]). All
algebras glw can be unified into a family of matrices of "complex size" (alge-
bras gϊ;, see [9]). Hamiltonian reduction of affinization of the latter algebra pro-
duces the entire Poisson-Lie group of pseudodifferential symbols of complex order
simultaneously.

Certain main results of the present paper have been reported in [18]. We re-
fer to [8] for a nice survey and treatment of the Poisson-Lie aspects of pseudo-
differential operators; some questions related to the family of integrable KdV-type
hierarchies were considered in the paper [11], see [42, 43] for profound connec-
tions of the logarithmic extension of pseudodifferential operators with theory of
determinants.
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1. Lie Bialgebras and Poisson-Lie Groups

7.7. Basic definitions. In this section, following [27] and [35], we recall for the
reader some necessary facts about Lie bialgebras and Poisson-Lie structures.

Definition 1.1. A Poisson manifold is a manifold with a Poisson bracket on the set
of functions on this manifold, i.e., with a skew symmetric operation on functions
that satisfies the Leibniz

and the Jacobi identities.

Definition 1.2. A Poisson-Lie group (G, η) is a Lie group equipped with a Poisson
structure η such that the multiplication G x G — > G and the inversion mapping

are Poisson maps, where G x G carries the product Poisson structure, and G~ is
the group G equipped with the opposite Poisson structure.

This property can be formulated in terms of the corresponding Lie algebra ©.
Consider a pair of functions on G vanishing at e. The above property of the in-
version mapping / shows that the Poisson bracket of this pair also vanishes at e.
Moreover, the linear part of this bracket at e is determined uniquely by the linear
parts of the original functions. This defines a Lie algebra operation on ©*. A simple
check shows that it satisfies the restriction from the following

Definition 1.3. A pair (©,©*) of a Lie algebra © and its dual space ©* forms
a Lie bialgebra if ©* is equipped with a Lie algebra structure such that the map
© — » © Λ © dual to the Lie bracket map © * Λ © * — > © * on ©* is a \-cocycle
on © relative to the adjoint representation of © on © Λ ©.

Theorem 1.4 (see [27]). For any connected and simply connected group G with a
Lie algebra © there is a one-to-one correspondence between Lie bialgebra struc-
tures on (©,©*) and Poisson-Lie structures η on G. This correspondence sends
a Poisson-Lie group (G,η) into the Lie bialgebra (©,©*) tangent to (G,η).

Remark 1.5. We discuss the details of this construction in Sect. 5.

Equivalently, one can describe the structure on a Lie algebra of a Poisson-
Lie group using a Manin triple (©,©+,©_) (for which ©+ = ©,©_ = ©* and
© = ©Θ©*):

Definition 1.6. A Manin triple consists of a triple of Lie algebras (©,©+,©_)
and a nondegenerate invariant symmetric inner product {, } on © such that

(1) © = ©+ Θ ©_ as a vector space;
(2) both ©+ and ©_ are Lie subalgebras of ©
(3) both ©+ and ©_ are isotropic with respect to the inner product {,}.

Theorem 1.7 (see [35]). Consider a Manin triple (©,©+,©_). Then ©+ is nat-
urally dual to ©_, and the pair (©_,©!_ = @+) is a Lie bialgebra. Moreover,


