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Abstract: We study infinite volume limits and Gibbs states of disordered lattice sys-
tems with bounded and continuous potentials. Our main tools are a generalization
of relative entropy for random reference measures and a large deviation theory for
nonstationary independent processes. We find that many familiar results of invariant
potentials, such as large deviation theorems, variational principles, and equivalence
of ensembles, continue to hold for disordered models, with suitably modified state-
ments.
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1. Introduction

This paper studies disordered lattice systems, utilizing some recent large devia-
tion theory for nonstationary processes. Our three interrelated goals are to establish
infinite volume limit theorems, to describe Gibbs states by variational principles,
and to find the natural entropy functions for these models and study the role of
entropy in the limit theorems and variational principles.

Disordered lattice models are interacting spin systems on an integer lattice TLd

whose interaction potential is not necessarily shift invariant. The loss of invariance
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is compensated by making the interaction Φ x dependent on an auxiliary parameter x,
called the quenched variable, in a way that respects the TLd action: ΦΘ[X = Φx o θ-\.
(Precise definitions follow in Sect. 2.) Thus the mathematical description of the
model involves two spaces with Έd actions, the space Ω of spin configurations
and the space X of quenched variables. TLd acts on Ω by shifts or translations and
on X by some homeomorphisms we need not specify. In Sect. 2 we explain how
three familiar models, namely the random field Ising model, the ApB\-p-moάQl of a
quenched mixed magnetic crystal, and the Edwards-Anderson spin glass model, fit
into our framework. We refer the reader to [Z] for a general overview of disordered
models and for references to past work.

As usual in equilibrium statistical mechanics, our interest focuses on various
aspects of the thermodynamic equilibrium of the spins in the infinite volume limit.
The quenched variables do not participate in the thermodynamic equilibrium, but
they function as constraints of the equilibrium by specifying an "environment" for
the spins: The equilibrium of the spins takes place under a fixed quenched variable
x or under a fixed distribution π on X. This situation is called quenched disorder.

We study the setting from two points of view, called the skew model and the
sample model. The skew model lives on the product space Ω := Ω x X and prob-
ability measures describing equilibria are joint distributions of spins and quenched
variables. The special role of the quenched variable is reflected in the marginal dis-
tribution on X: Either a point mass δx or a fixed distribution π, while the spins are
either independent under an a priori measure or governed by a Gibbs distribution.
The sample model lives on the space Ω, and is obtained from the skew model by
projecting all the relevant functions and measures to Ω. Stating results for the skew
and sample models separately may seem like an unnecessary duplication, but we
shall find that the large deviations and variational principles of the two models have
interestingly differing mathematical descriptions.

We restrict to absolutely summable interactions that are continuous functions of
the spin and the quenched variable. These are certainly not optimal assumptions for
many of our results. But with this restriction we can vary the distribution π of the
quenched variable freely over the space of all invariant measures on X and treat the
thermodynamic quantities, pressure, entropy, and energy, as functions of π. We also
get deterministic results for fixed quenched variables in addition to π-almost sure
results. And local specifications are well-defined for all configurations, so infinite
volume Gibbs states can be defined by DLR-equations. In contrast, other treatments
typically fix an i.i.d. distribution π on the quenched variables and prove results for
a.e. x. The advantage of this approach is that the interaction need not be uniformly
bounded, but only sufficiently integrable under π. No doubt many of our results
continue to hold under such assumptions.

Next a brief overview of the contents. Section 2 describes the setting. Section 3
introduces a generalization of relative entropy suitable for handling situations where
the reference measure is random. This entropy function is useful for the large devia-
tion theory of nonstationary, independent processes, which we summarize in Sect. 3
for later use. In Sect. 4 we characterize Gibbs states of finite volume skew and
sample models in terms of variational principles, paving the way for the infinite
volume variational principles of Sect. 8.

Section 5 moves from finite to infinite volume considerations. We prove the
existence of the thermodynamic limit of the pressure. (The remark on p. 180 of
[Gr] is in order here, namely that pressure may have to be interpreted as free energy,
depending on the model. We follow [Is] and [Z] and call this quantity pressure.)
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The pressure is a function of the interaction and the quenched variable. Via the idea
of variables generic for a measure we can treat the pressure also as a function of the
distribution π of the quenched variable. Additionally, we prove the thermodynamic
limit for a function that formally assumes the role of energy in the finite volume
variational principle of the sample model. In Sect. 8 we see that this limit takes on
the role of specific energy in the infinite volume variational principle.

Section 6 defines various classes of measures and measurable families of mea-
sures on Ω and Ω that satisfy DLR-equations and hence are Gibbs states of the
infinite volume models. Section 7 studies the large deviations of empirical measures
under conditioned skew Gibbs states and under sample Gibbs states. The rate func-
tions are expressed in terms of entropies relative to Gibbs kernels. In Sect. 8 we
show that infinite volume Gibbs states satisfy variational principles. Sections 9 and
10 apply the large deviation theory to derive equivalence of ensembles results. In
Sect. 9 we repeat the results of [La] for observables. In Sect. 10 we look at equiv-
alence of ensembles at the level of measures, seeking results that parallel those of
[DSZ] and [Ge2] for invariant potentials.

Throughout the paper we find that results familiar from the invariant theory
continue to hold for the skew model, often with only small changes. The sample
model picture is not as complete: Under large deviations and variational principles
our results cover the sample model as well as the skew model. However, since the
Hamiltonian is a function of both the spin and the quenched variable, it is not clear
what "conditioning on an energy surface" might mean in the sample model, hence
our equivalence of ensembles results are worked out in the skew model setting.

The obvious shortcoming of our results is that they are very general and soft-
analytic in nature. Explicit computations for interesting statistical mechanical models
are often much harder than general theorems, and it remains to be seen whether our
approach can say anything interesting about particular models. For some disorderd
mean-field models large deviation techniques can yield exact numerical results: In
[Se4] this approach is used to rigorously calculate critical exponents of a Curie-
Weiss version of the ApB\-p-moάe\. A mean-field model is more amenable to
large deviation techniques because its Hamiltonian is a function of the empirical
distribution (a "level 2" object in the Donsker-Varadhan large deviation theory)
whereas the Hamiltonian of a Gibbsian model with an interaction potential is a
function of the empirical field (a level 3 object), and level 2 rate functions are
much easier to calculate explicitly than level 3 rate functions.

The use of large deviation theory in the statistical mechanics of invariant poten-
tials has been well-established since the pioneering work of Lanford [La]. Further
examples of this work and references can be found in [Coml,DSZ, E, FO,Ge2,01,
Str, and SZ]. An early use of large deviation theory to study spin glasses was made
in [HEC]. Their mean-field-type Hamiltonian can be formulated as a function of
order parameters to take advantage of the i.i.d. large deviation theory of the spins
under the a priori measure. But to develop large deviation techniques for spin glasses
that yield the same results as the tools for invariant statistical mechanics requires a
large deviation theory for nonstationary processes. Such results were first presented
in [Com2] for i.i.d. quenched variables. The reader will find numerous physical
examples described in [Com2], whose assumptions of continuity and boundedness
of the interaction are the same as ours. The idea of generic variables appears in
[Le] in a proof of the thermodynamic limit of a random Ising model. A recent
related paper is [Z], which also lays down elements of a theoretical framework for
disordered lattice systems. With techniques completely different from ours it proves
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thermodynamic limits and variational principles for interactions that are unbounded
but integrable under the distribution of the quenched variable. In Sect. 8 we connect
our variational principle with that of [Z].

The emerging theory of Markov chains with random transitions (MCRT), also
called Markov chains in random environments, deserves to be pointed out to the
reader here, though we will not pursue this direction in the present paper. But there
is an obvious connection between MCRT's and noninvariant interactions, just as
between time-homogeneous Markov chains and invariant potentials (for the latter,
see [Gel]). [Cogl-Cog3 and Or2] have studied MCRT's and contain numerous
references to earlier work. A large deviation theory for MCRT's is developed in
[Se3].

2. The Setting

Let TLd be the d-dimensional integer lattice, and Ω := SfΈ a configuration space
with spins in a Polish space £f. TLd carries the ^-topology normed by |i| := |ii| +

\-\id\. The shift maps θ\ on Ω are defined by (^σ)j = σj+j for i, j e Έd and
σ £ Ω. For finite A C Έd, write A CC TLd, and define finite volume configuration
spaces ΩA := 9Λ. & stands for the class of finite rectangles in 7Ld'.

The space X of quenched variables is another Polish space, equipped with a
continuous TLd action: there is a group of homeomorphisms {θ\ : i G Zd} on X
satisfying θioθ] = 0 i + j. Set 9> = Sf x X, ΩΛ = ΩΛ x X, and Ω = Ω x X. The TLd

action on Ω is given by θ\(σ, x) = (θ\σ, θ\x). As a rule, boldface notation will
distinguish the skew model from the sample model.

The Borel fields of 9* and X are denoted by $$> and ^x, respectively. 3FA is
the σ-field generated by the spins (σ, : i G A\ and 3PA •'= ^A V ^ x Cb(Ω) denotes
the Banach space of bounded continuous functions on Ω under the supremum norm
|| ||. <€A is the subspace of <FA-measurable functions in Q,(ί2). The class ^ of
local functions is the union of the <β& o v e r Λ CC TLd. Similarly on Ω we have the
classes %Ά of 3FΛ -measurable C/,(ί2)-functions and their union (€. The uniform
closure ^ of ^ is a Banach subspace of C&(Ω). Note that while X may also be an
infinite product space, a ^-function need not be local in the x-variable.

Jί\{9) denotes the space of Borel probability measures on £f. Spaces of prob-
ability measures are always endowed with their weak topologies, generated by
bounded continuous functions. It is important to note that the weak topologies of
Jί\(Ω) and Ji\(Ω) are also generated by the classes ^ and ^ , respectively.

For each x G X, assume given a probability measure λ* on 9 so that the
integral

W) = ϊfdλl
is a continuous function of x, for each / G Ct,{9). λ* is interpreted as the a priori
measure of the spin at site 0, in the sample specified by the quenched variable x.
In view of the Έd action, a natural way to extend λ* to Ω is

λx(dσ):= ® $\dσι),
ieπd

fl v

so the spins are independent under λx and the distribution of σ[ is λo

ι . The a priori
measure on Ω is λx := λx <S> δx. Restrictions to finite volume configuration spaces
are denoted by
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λx

Λ(dσΛ) : = <g> λθόX

ΊeΛ

and λx

Λ := λ\(g) δx. The continuity of the integrals ensures that these measures are
continuous functions of x in the weak topologies. We shall leave out the superscript
"x" to indicate that the quenched variable has been integrated out, as for example
in λ := / λxπ(dx).

2.1. Definition. An absolutely summable, continuous, invariant interaction poten-
tial on Ω is a collection Φ = {ΦA : A CC Zd} C %> of bounded local functions
satisfying

(a) Each ΦA is 3FA-measurable.

(b) ΦA o 0j = Φi+A far A C C TLd and i G Έd.

(c) 111*111 : = Σ II *^ II < oo.Σ
A:A30

Let IB denote the space of such objects Φ. IB is a Banach space under the norm

Ill-Ill-
Let A CC Έd. The Hamiltonian

HΛ := Σ ΦA

is a function in C6. QA is the probability kernel from (Ω, £FAc) into (ί2, 3F) that
acts on bounded Borel functions / on Ω by

^A Ω

with the partition function

It is clear from the formula that Gσ

Λ'
x is a continuous measure-valued function of

(σAc, x) It acts as a continuous map on probability measures Q £ Jί\(Ω) by the
rule

Ω

A Hamiltonian without an external condition σΛc is defined by

A .ACΛ

with the corresponding probability kernels

dGλ •= ^Έe Λ d λ

ΔA

Q\ : x ι—) G^'x is a continuous map from X into J(\{ίϊ).
The sample model is obtained by considering x-sections of functions / on Ω,

defined by / x ( σ ) := /(σ, x). Thus each Φ G IB and x e X give a potential

Φ x := {ΦX

A :A C C ^ }
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on Ω, no longer necessarily invariant. The Hamiltonians are H\ and H^x. The
partition functions are the same as for the skew model, and the probability kernels
G^'x, σ G ΩU {0}, are the Ω-marginals of the corresponding skew kernels G^'x.
Note that x remains constant when the kernels of the sample model act on measures:

for μ G Jί\(Ω) and bounded Borel functions / on Ω.
The contribution of the spin at site 0 is measured by

ΦΔ

-= Σ τjr (2-2)
\A\

The assumption | | | Φ | | | < oc guarantees that φ G Ή. Throughout the paper, we take
infinite volume limits along the fixed sequence of cubes

Vn : = [-n, n]d Π TLd .

To simplify the notation, the subscript Vn is replaced by n, as in Hn = HVn.
Invariance and ergodicity under the ΊLd action on X play a major role in our

development. Write ^#o(X) for the space of invariant Borel probabilities on X.
Call a quenched variable x generic for π, if π G Jf\(X) and

lim —— V δnsχ = 7i

in the weak topology of J%\(K). It follows that π G ̂ #0(X). Say x is generic if
the above holds for some (unspecified) π. By the ergodic theorem,

π{x : x is generic} = 1

for all π G JίQ{\). In particular, π G Jiβ(X) is ergodic if and only if

π{x : x is generic for π} = 1 .

When working with a fixed π G Jί\(X), we write M\{Q) for the set of probability
measures on Ω with X-marginal π. Mn

θ{ίl) := ^#^(ί2) Π ̂ o ( β ) is the subclass
of invariant probability measures.

Empirical measures are defined as follows: The empirical distributions are

L ( ) Σ K d L ( ) Σ ^L * ( C 7 ) = W\ Σ K a n d Ln(σ,x) = T Σ ^{,9{x)
\yn\ i£Vn \yn\ \eVn

for the sample and skew models, respectively. The empirical fields are

^ ( σ ) = ΠΓl Σ <W a n d R/i(^,X) = 7TTT Σ ^0i(σ,x) .
\Vn\ieVn \Vn\i£Vn

The results of this paper rest on a Donsker-Varadhan type large deviation the-
ory for independent but nonstationary random fields. To remind the reader, here is
the conventional form of the large deviation principle (see [DS] or [V]): Suppose
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ξn are random variables with values in a Polish space °U. We say that the distri-
butions P{ξn G •} on <% satisfy a large deviation principle with rate / if these two
requirements are met:

(a) / is a lower semicontinuous function from % into [0, oc] with compact
sublevel sets {/ g c} for all real c.

(b) For Borel subsets A of °U,

- inf / ^ lim inf - ^ l o g P{ξn G A}
A° π-oo \Vn\

S lim sup -^rlog P{ξn G A} S - inf/,
V\ A

where A° and A are the interior and the closure of A, respectively.
In our applications ξn will be an empirical measure and % the appropriate space of
probability measures.

We conclude this section by describing how three familiar disordered models fit
the setting described here. We give only the simplest versions of the models with
spins that take values in the space £f — {—1, +1}, as generalizations are easy to
write down.

2.3. Example. The random field Ising model (RFIM) with nearest-neighbor inter-
actions can be given in terms of the Hamiltonian

together with the a priori measure

Λ . (2.5)

The disordered magnetic field variables make up the quenched variable x= (h[ :
i G Έd). However, requirement (c) of Definition 2.1 of an interaction would force
us to bound the h\ uniformly. The way around this requirement is to subsume the
disorder into the a priori measure. Thus we shall describe the RFIM by taking

λx

0 = —jΓ-ί— r(e-*oa_!
0 h «

and superimposing on λx an ordinary Ising Hamiltonian, namely the first term of
(2.4). See [AW] and [BK] for recent rigorous work on this model.

2.7. Example. The ^i?!-^-model describes the situation where 2 different types
of atoms, A and B, interact on the lattice. The quenched variable x = (xj : i G Έd)
comes from setting Xj = 1 or 0 according to whether site i is occupied by an A- or

a B-atom. The measure π on X = {0, 1 }z describes the random mechanism that
determines the occupations X\. This situation is often called site disorder. The point
is that the model can simultaneously contain opposing types of magnetic ordering,
ferromagnetic and antiferromagnetic, depending on the choices of the coupling con-
stants JAA, JBB, a n d JAB for the three different possible pairs (we are again restricting
to nearest-neighbor interactions). The Hamiltonian is given by
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I H I = I

and the a priori measure is that of (2.5). See [Ah] for physical background.

2.8. Example. The Edwards-Anderson spin glass model (EA) is an Ising model
with random coupling constants. Its Hamiltonian is

H°Λ

x(σ)= Σ ^ , , } ^ j . (2.9)

For the sake of illustration, we allow a general finite range of interaction R ^ 1.
Let

D : = { i G ^ : i > 0, |i| ^ R} ,

where > on Z^ denotes strict lexicographic ordering. To adhere to our bounded-

ness requirement 2.1(c), we need to pick a number K > 0 that gives the maxi-

mum coupling strength, /£ .-, ^ K. Let £ := [—AT, K]D and X := £ z . A quenched

variable x G X is a doubly indexed configuration x = (Xk,k+i k £ Z J , i £ Z>) with

- ^ ^ Xk,k+i ^ ^ Z ί / a c t s o n x bY (^jx)k,k+i = Xk+j,k+i+i S e t

0 otherwise .

Exactly one of the cases happens for each 2-point set {i, j}; this was the point of
requiring that D be lexicographically strictly above 0. On the other hand, whenever
0 < |i - j | ^ R, then either j G i + D or i G j +D. The desired Hamiltonian (2.9)
is got by defining the interaction potential as

π '\σiσ\ if ^ = {ΐj j}
if \A\+ 2.

This arrangement allows nonstationary correlations among some coupling constants:
The law of the variable Xk = (Xk,k+0ie£> can be any probability measure on £, while
the unvalued process (Xk)kGZ^ n a s *° b e stationary with law π. This formulation is
general enough to contain Example 2.7 as a special case.

For general background on the physics of spin-glasses and this model in partic-
ular, we refer the reader to [FH].

2.10. Non-Example. The Sherrington-Kirkpatrick spin glass model, with the
Hamiltonian

Hn(σ)=-±= Σm< JijWj

and i.i.d. coupling constants GΛ,y)î z<y<oo? does not fit our setting.
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3. Entropy

Recall the entropy of a probability measure α relative to another probability measure
p defined by

{ *««>• (3.1)
[ oo otherwise .

The relative entropy functional is at the heart of the link between large deviation
theory and equilibrium statistical mechanics: In large deviations, //( |p) is the rate
function in Sanov's theorem for i.i.d. random variables with common law p [DS,
Theorem 3.2.17], and in statistical mechanics —H(a\p) is the entropy of α as a state
of a system with a priori measure p [Is, p. 38]. An alternative variational formula
for the entropy is

H(a\p) = sup {α(/) - log p(«/)} . (3.2)

Now suppose that the probability p relative to which entropy is measured
in (3.1) is replaced by a random probability measure. To be precise, let λ'o de-
note the Jί\{£f)-valued random variable χt->l j , defined on the probability space
(X, J^χ, π). Then (3.2) generalizes naturally in the following fashion:

# ( α μ ; , π ) : = sup {α(/)-J log^(£? ' )π(r fx)} . (3.3)

Facts about this entropy (proofs can be found in [Sel] and [Se2]):

(3.a) H{μ\λ'o, π) ^ 0, with equality if and only if α = λ0 := f λ*π(dx), the ex-
pectation of the random measure Λ,* under π. The inequality H(μ\λ*0, π) ^ H(oc\λ0)
holds for all α £ Jt\(£f\ with equality for all α £ Ji\(^) if and only if λ*0 = Ao π-
a.s.

(3.b) If x is generic for π, the distributions λx{Ln £ •} on Jί\(^) satisfy a large
deviation principle with the convex rate Sπ(oc) := H(ot\λ'0, π). The new notation Sπ

is introduced to reserve the notation H for the general object defined in (3.3), for
we will encounter //-entropies relative to four different random measures: the a
priori measures and the Gibbs measures of both the sample and the skew model.

(3.c) In the skew model, the distributions λx{hn £ •} on Jt\{£f} satisfy a
large deviation principle with the rate function Sπ(v) := H(v\λ'o, π) defined for
v € JM\{ £f). In the skew model we have the representation

Sπ(v) = ( J ^ ( v X l ί W ^ x ) = H(v\λo) if the marginal vx = π ^A)
I co otherwise .

Here vx is a conditional distribution of v on £f, given x £ X, λo := J λ*π(dx), and
we used the conditional entropy formula [DS, Lemma 4.4.7]. A contraction principle
connects the skew and sample model:

Sπ(a) = inf Sπ(v) = inf H(v\λ0) . (3.5)
vχ=π
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Next we look at these entropies on configuration spaces. Suppose μ and y are
invariant probability measures on Ω. Write μ^ for the restriction to #4, with the
convention μn— μVfl. Specific relative entropy is defined by

A(μ|y)= lim -±-H(μn\yn) (3.6)
n-+oo \Vn\

whenever the limit exists. As is well-known, if y is hypermixing or a Gibbs measure
for an absolutely summable invariant potential, then h(μ\y) exists for all μ G Jίe(Ω)
and governs the large deviations of Rn under γ, see for example [DSZ] and [Ge2].

Suppose now that π is invariant and, as above, μ G MQ{Q). By Theorem 3.19
in [Se2] the limit

h{μ\λ\ π) := l̂im j^H(μn\λ'n, π) (3.7)

exists and satisfies

h(μ\λ\ π) = sup -λ-H(μΛ\rΛ9 π) . (3.8)
\A\

It is perhaps worthwhile to point out that (3.7)-(3.8) follow from the independence
built into λx, so no restrictions on π are needed, except for invariance. Furthermore
(proofs again in [Sel] and [Se2]):

(3.d) Suppose x is generic for π. Then the distributions λx{Rn G •} on Ji\(Ω)
satisfy a large deviation principle with the convex rate function

sn{μ)._\h{μ\λ\π) ifμ£JΐΘ(Ω),
\ oo otherwise .

sπ(μ) — 0 if and only if μ = λ := / λxπ(dx). In case π is ergodic, s is affine on

Θ{Ω\
(3.e) Analogous results hold for the skew model: The convex rate function

. = ί h(Q\λ\ π) if Qe Meitt) ,
I oo otherwise

governs the large deviations of λx{Rn G •} on M\{Ω\ For Q G JiΘ{Q), let Qn be
its restriction to 3Fn. The entropy

h(β|A):= lim -±-H(Qn\λn) (3.9)
«-.oo \Vn\

exists for Q G Ji%

Θ(ίϊ), and we have

sπ(β) = ί h ( β μ ) i f β e u ^ ( O ) , ( 3 1 0 )

I oo otherwise .

sπ is affine on Jin

Θ(ίϊ)^ and on all of Jίe(Ω) in case π is ergodic [Sel, Theorem
3.4 and Remark 3.8]. Contraction is again in force:

sπ(μ)=mf sπ(β). (3.11)
Q

In the typical case X is a product space with TLd action by translations and
Xx — χx* depends only on the xo-coordinate. Then h(g|A) in (3.10) can be replaced
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by the ordinary specific entropy h(Q\λ) (To justify this take U = {0} in Theorem
3.4 of [Sel]). The difference between h(Q\λ) and h(Q\λ) is that in (3.9) each finite
volume entropy involves all x-coordinates, because 3Fn contains &χ, whereas in
(3.6) only those in the box Vn.

The difference between the skew and sample models alluded to in the introduc-
tion is evident here: As (3.4) and (3.10) show, the familiar relative entropy rates
govern large deviations under the skew a priori measure, but for the sample model
the new entropy H does not reduce to the old one.

Neither (3.3) nor (3.5) is very useful for computing the entropy H(oc\λ^,π)
unless an obvious maximizing / or minimizing v suggests itself. A special case
where this happens is when a "generalized derivative" exists: Say a nonnegative
Borel function φ on ίf is a generalized derivative of α if

/ π ( Λ ° (3 12)

for all bounded Borel functions g.

3.13. Lemma. If φ is a generalized derivative for α in the above sense, then

(3.14)

Note that φ is not necessarily unique, but the function Ψ{s, x) := φ(s)/λ*(φ) is
λo-a.s. unique. In case the measures λ* are sufficiently close to each other over π-
a.e. x, we can strengthen this lemma to give the entropy H(μ\λ°o, π) an expression
analogous to (3.1), with the Radon-Nikodym derivative dec/dp replaced by the
generalized derivative. As for the degree of closeness among the λ* required, the
following result is sufficient for the three models presented as examples. This can
be regarded as a correction to [Se2], where the conclusion of Lemma 3.15 was
erroneously believed to always hold.

3.15. Lemma. Assume that λ* <C λl for π 0 π-a.e. pair (x, y) and that

dλx

I f II log j± | | i 0 O ( Λ ? ) π{dx)π{dy) < oo . (3.16)

Then for all a 6 Jί\(Sf), either oc has a generalized derivative φ and H(ot\λ'0, π)

is given by (3.14) or H(OL\X*0, π) — oo.

Before proving Lemmas 3.13 and 3.15, let us look at the entropies of the three
examples 2.3,2.7, and 2.8:

3.17. Example. In the ApB\-p and EA models the disorder is confined to the
Hamiltonian, and consequently both the sample and skew model entropies are equal
to familiar specific relative entropies: Let ζ be the fair coin-tossing measure of (2.5).
Then sπ(μ) = h(μ\ζ) and s π (β) = h(Q\ζ ® π).

3.18. Example. The RFIM offers a chance to illustrate the computation of the gen-

eralized derivative and entropy. Suppose π is an i.i.d. measure on IRZ and its

marginal πo on IR is symmetric and nondegenerate. Then λ is the coin-tossing

measure ζ. For - 1 ^ m rg 1, let ocm := ^=^(5_i + ^ψ-δ+\ be the unique probabil-

ity measure on £f = {—!,+!} with expected spin m, and let μm := α®z be the
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corresponding i.i.d. measure on Ω. Then sπ(μm) = Sπ((xm), and to compute this we
look for the generalized derivative φm of ocm in the form φm{s) = ecs for some
number c. Define a function m(c) by

}h( cs\ pc+h _ e~c-h

m ( c ) : = f 7,1 }π0(dh) = f h τn0(dh) .
λh(ecs) ec+h + e~c~h

The measure λ% was defined in (2.6). m(oo) = — m(—oo) = 1 and m'(c) > 0 for all
c, hence a well-defined inverse c = c(m) exists for — 1 < m < 1. As probability
measures on 5^ are uniquely determined by expectations, φm(s) = ec^s. A final
thing to notice is that

m(c) = ^

Now we can compute, from (3.14), that

Sπ(ocm) = m c(m) - / log(ec+/ί + e-
c-h)π0{dh) + / log(e'1 + e-

h)πo(dh)
C

= m c(m) — f m(b) db
o

We used the identity m(0) = 0 = c(0) (from the symmetry of π0) and did an inte-
gration by parts for the last equality.

In this example sπ(μm) > h(μm\λ) for all mΦ — 1,0,1, so the new entropy dif-
fers from specific relative entropy. (This is easiest to check by first computing
h(μm\λ) = \ [(1 - m)log(l - m) + (1 -f m)log(l + m)] and then Taylor expanding
to see that sπ(μm) > h(μm\λ) holds for small m; it follows for all m from convexity
and the inequality sπ(μm) ^ h{μm\λ) that is always valid.)

Proof of Lemma 3.13. Set v(ds,dx) := ψ(s)/λ*(ιl/)λo(ds,dx). The goal is to com-
pare the right-hand side of (3.3) with H(v\λo) which equals the right-hand side of
(3.14). We shall begin by proving H(a\λ'o,π) ^ H(v\λ0). Let φb = ψ A b for b large
but finite. The hypothesis of the lemma implies that 0 < λ*(\l/b) = λ*(ψ) < oo for
π-a.a. x. Let log+x = log(x V 1) and log~x = - log(x Λ 1).

Claim 1. For all b,ε > 0, we have 0 < ^ - log" fb^ + C < - .

- λζ(φ) λϊ(φb) + ε e
Make these observations:

(i) If 0 < x < y and y > 0, then - ^ ^ - ^ .
y 7 + s

(ii) If φ(s)*φb(s), then φ(s) > φb(s) = b^ λ*(φb) and hence log

φ(s) _ φ(s)
(iii) The function log is decreasing, hence log ^ log

Now the following steps prove Claim 1:
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0 ί ^ - r r log ^ ^VTT log ^ ( ^ } = ^ ^ log ^ ^

log" -r-^-r ^ -

~ λ°\J

Fix b. Whenever φb(s) =£; λ*(φb) and ε' < ε, then < - —

W)los ^)T^J= κ \mlog ij

Thus

holds by monotone convegence. Claim 2 follows as b /* oo by Fatou's lemma.
The definition (3.3) remains unchanged if the supremum is taken over bounded

Borel functions. Thus for all positive b and ε,

J/(αμ;, π) ^ α(log(^ + ε)) - / log λx

0(ψb + ε)π(dx)

Φ λ + Ψb + ε \ * ( Ψ
λn

Claim 1 implies that the second term above is finite and justifies splitting the inte-
gral in the above fashion. Secondly, again by Claim 1, the dominated convergence
theorem applies to the second term as we let first ε \ 0 and then b / oo. Applying
Claim 2 to the first term we get

» ϊ J. ( j i log* JL) κ (JL

= //(v|A0).

To prove the opposite inequality H(a\λ%

o,π) ^ //(v|λ0), we may assume that

from which it follows that λ*(ψlogιjj) < oo π-a.s. Let / G Cb(£f) be arbitrary, and
write

For almost every x, the integrand equals

_ f
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λ*0(ψ)

This completes the proof of Lemma 3.13. D

Before we turn to the proof of Lemma 3.15, an auxiliary fact about entropy-
minimizing measures:

3.19. Lemma. Suppose μ and v are probability measures on some measurable
space X, C is a convex set of probability measures, v e C, and H(y\μ) S H{ρ\μ)
for all p £ C. Then j o C v for all p € C such that H(p\μ) < oo.

Proof Write φ(x) = xlogx for short. Suppose p £ C is such that H(p\μ) < oo but
p « v fails. Let A be a measurable set such that p(A) > 0 = v(^). For 0 ^ t ^ 1
set vt = (1 — t)v + tp. In the next calculation, note that dv/dμ — 0 on A, use the
convexity of φ and rearrange:

dμ \dμJ A

μ) + t [H(p\μ) + p(A)\ogt]

For small enough t,H(p\μ) + p(A)logt < 0 and so H(vt\μ) < //(v|μ), contradict-
ing the choice of v as vt G C by convexity. D

Proof of Lemma 3.15. In view of Lemma 3.13, we only need to show that α has a
generalized derivative φ whenever H(a\λ'0,π) < oo. Let v be the unique minimizer
in (3.5), which exists by the compactness of the sublevel sets and strict convexity
of H( \λ0). Let φ = doc/dλo which exists by (3.a). The proof of Lemma 3.15 is
divided into four steps.

Step 1. H(a®π\λ0) < oo.
This follows from the hypotheses of the lemma. Let v(ds,dx) — vx(ds)π(dx)

be a decomposition of v into conditional distributions on £f given x, so that α =
Jvxπ(dx). By the conditional entropy formula and convexity,

H(OL 0 π\λo) = fH(a\λl)π(dy) S f fH(vx\λl)π(dx)π(dy) .

Note first that H(v\λo) < oo implies that H(vx\λx) < oo for a.e. x, secondly that, by
assumption, λx <^ λy

o for a.e. x and y. Thus vx <c λx <C λl and logdvx/dλx e Lι(vx),
for a.e. x and y. And we can write

dλx

Integrate against π(dx)π(dy) to get
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H(a®π\λ0) ^ H(v\λ0) + JJ\\\og^\\LOO(λ,)π(dx)π(dy)

and apply (3.16). Step 1 is completed.

Step 2. α 0 π ~ v. Lemma 3.19 and Step 1 imply α 0 π <C v. On the other hand,
the hypothesis implies λ* ~ λ0 for a.e. x, so integrating x out gives λo ~ λo 0 π. v
is supported by the set {φ > 0} x X, and on this set v <C λo ~ 2O 0 π ~ α (8) π.

5. There are measurable functions 0 < a(s),b(x) < oo and a Borel subset
dv

of <9* such that -—fox) = φ

0

Let Ffox) = log£/v/ί/Λ,ofox) , an element of Lι(v). We borrow an argument
from Csiszar [Cs]. Let V be the linear subspace of Lι(v) of functions of the form
g(s) + A(x). Suppose / e L°°(v) is such that v(/G) = 0 for all G G F. In other
words,

v(/) = ff(s9x)g(s)v(ds9dx) = Jf(s9x)h(x)v(ds9dx) = 0

for all g and A, hence rfvε = (1 +εf)dv defines a probability measure vε with
marginals α and π, for all ε small enough. Since ε = 0 minimizes i/(vε |λ0), cal-
culus forces v(/F) = 0. Since / was arbitrary, F must lie in the closure of V in
Lι(v). It follows that there are measurable functions gn(s) and hn(x) such that
gn(s) + AΠ(x) —> Ffox) v-a.s., hence by Step 2 also α 0 π-a.s. By Lemma 2.3
of [DV], there are finite measurable functions u(s) and v(x) such that Ffox) =
u(s) -h v(x) cc 0 π-a.s., and thus v-a.s. (Lemma 2.3 in [DV] is stated for a measure
of the type λ ® λ, but the proof is easily seen to work for any product measure
α 0 π.) Take a(s) = eu(s) and b(x) = e v ( x ) to have dv/dλ0 = a®b v-a.s., and then
let W = {dv/dλo > 0}.

dv
Step 4. There is a nonnegative measurable function Ms) such that —-fo x) =

dλ0

Put \j/(s) = a(s)l{φ>0}(s). Then for bounded Borel functions / on

JfίΦ ® b] dλo = ffl{φ>o}xχ[a 0 b]lwdλ0 + //l{φ>0}Xχ[fl 0 b]lWcdλ

= ffι{Φ>o}xx dv + if [a 0 ^]l^n{^»o}xx dλ0 .

Since v({φ > 0} x X) = 1, the above line equals v(/) if λo(^Fc Π {φ > 0} x X) =
0. But this is equivalent to λ0 ® π(Wc Γ\ {φ > 0} x X) = 0, which in turn is equiv-
alent to α 0 π(Wc) = 0 (see the proof of Step 2), and by Step 2 this follows from
v(Wc) = 0. Thus dv/dλ0 = ψ ® b. For Borel subsets B of X,

π(£) = v(^xB)= f fψ®b dλo = f
B

hence Z?(x) = ^(i/f)""1, π-a.s. It is clear that ψ is a generalized derivative of α, and
so this completes the proof of Lemma 3.15. D
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4. The Finite Volume Model

Fix A CC ΊLd and π e Jtι(X). For each x G X, the equilibrium state G0/ on Ω^
defined by

is the unique probability measure that satisfies the variational principle [Is, p. 46]:

\λ*Λ). (4.1)

In this section we identify the energy and entropy functions that permit this vari-
ational principle to hold for the skew and sample model, while averaging over
quenched variables. For probability measures q on ΩA, the energy in q is defined
by

V(q) = VA(q):=q(H°A), (4.2)

and we set
(4.3)

The skew equilibrium state is the probability measure v on ΩA defined by

v(dσΛ,dx) = G°/(dσΛ) π(dx) . (4.4)

Let

ff(dx) (4.5)

be the averaged finite volume pressure.

4.6. Theorem. For all probability measures gφv on ΩA, we have

V(q) + S(q)> - p = U(v) + S(v).

Proof. By convex duality and (3.3) applied to S^,

-p= inf {U(tf) + S(ςr)}.
qe.Jίx{ΩΛ)

Integrate (4.1) against π(dx) and use (3.4) to get — p = U(v) + S(v). Let q be
an arbitrary measure such that — p — \J(q) + S(q). Then S(#) < oo, so by (3.4)
qx = π and

By the first equality of (4.1), the integrands on the left and right must coincide

π-a.s., and so by the uniqueness in (4.1) qx = G^'xπ-a.s. Hence q — V. D

Next we find the form that Theorem 4.6 takes in the sample model. For a
probability measure α on ΩA, set

S(<x) = Sϊ(«) := H(*\λ'Λ,π). (4.7)

For α such that S(ot) < oo, define the quantity U(cc) = ί/J(α) by the equation
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= inf {V(q) + S(q)} . (4.8)

Let y := VQΛ be the Ω^-marginal of v. The next statement is immediate from
Theorem 4.6.

4.9. Corollary. For all probability measures αφy on ΩΛ,

At this point the quantity U(μ) is purely an ad hoc construction designed to
reproduce the finite volume variational principle in the sample model. It gains some
mathematical legitimacy once we see in Sect. 5 and 8 that it has a well-defined
infinite volume limit that occupies the natural role in the infinite volume variational
principle. From (3.5) it is immediate that U(cc) = α(//Jj) whenever the Hamiltonίan
H^x is independent of the quenched variable x. Thus U is a generalization of the
energy function of statistical mechanics without disorder.

U(oc) has an alternative expression as the difference of two convex duals of
pressure-type functionals. For bounded continuous functions / on ΩΛ, set

P(f):=flogλx

Λ(ef-HΛί)π(dx)9

its convex dual on measures defined by

P*(α) := sup {<x(/) - />(/)} .
fecb(ΩΛ)

4.10. Lemma. ί/(α) = P*(α) - S(oc) whenever 5(α) < oo.

Proof. Extend P to functions g G Cb(ΩA) by defining

The arguments used in the proof of Lemma 5.25 below can be used to see
that Π is weakly lower semicontinuous and convex, Π = Π**, and that, for
η G Cb(ΩΛ)*,Π*(η) < oo only if η is given by a probability measure on ΩΛ with
X-marginal π. Let

F(α) := inf Π*(q)
qaΛ=*

for measures α on Ώ^; it is finite only for probability measures. From

valid for all g, we see that the sets {27* ^ c} are compact. Thus F is convex and
lower semicontinuous and consequently F = F**. For / G Cb(ΩΛ),

P(f) = Π(f) = 77**(/) = sup {qΩΛ(f) - 77

- sup { * ( / ) - F ( α ) }

Then, for α G
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P*(α) = F**(α) = F(α) = inf sup {q{g) - Π(g)}
q°Λ=(X gecb(ΩΛ)

= inf sup {q(g)-f logλx

qΩΛ-* ec(Ω)

= inf
qaΛ=

= U(a) + S(OL) . D

The measures v and y also minimize entropy under an energy constraint. For
the skew model it is clear from Theorem 4.6 that if U(v) = c, then q — v is the
unique minimizer of S(q) subject to \J(q) = c. The same holds also for the sample
model:

4.11. Proposition. Let c be real and suppose that U(y) — c. Then α = y is the
unique minimizer of S(OL) subject to U(a) = c.

Proof Suppose that U(μ) = c and 5(α) ^ S(y) for some α G M\{ΩA) By the
lower semicontinuity and compact level sets of the function U + S on J?\(ΩΛ),
there is a q with qΩ/ί = oc that realizes the infimum on the right-hand side of (4.8).
Then

JJ(q) + S(q) = c + S(a) ^ c + S(y) - U(v) + S(v) .

By Theorem 4.6 q = v, and consequently α = y. D

Let us compare v and y with the equilibrium state μ under annealed disorder
where the quenched variable x participates in the thermal equilibrium. The a priori
measure is now λΛ := /Λ,* π(dx), the partition function is

nΛ x

and the equilibrium measure on ΩΛ, as given by the usual Gibbs prescription, is

A

To read off the effect of annealed disorder, let us rewrite this as

μ(dσΛ,dx) = — 70,x
^A ~Λ -A

Thus when we restrict to that part of the space ΩA where x is fixed, the equi-
librium of the spins σA under μ is still given by GΛ'X. Mathematically speaking,
G^'x is the conditional distribution of μ on Ω^, given x. But the probabilities of
quenched variables change from the a priori distribution π(dx) to the equilibrium
distribution Z^'x/Z^π(c/x). In the annealed equilibrium the spins do not obey the
sample equilibrium state y = jG^' x π(Jx) but another mixture of the kernels Gj*,
namely

70,\
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5. Thermodynamic Limits

Let π G </MQ(X). From the development in Sect. 3 we have the infinite volume
entropies sπ(μ) = h(μ\λ\π) for the sample model and sπ(Q) = h(Q\λ\π) for the
skew model that satisfy

sπ(μ) = lim -}-X(μn) = sup ̂ Sπ

Λ(μΛ) (5.1)
n*™\V\ \A\

and

sπ(β) = lim -J-S X&O = sup τ^S*A{QA) (5.2)
Λ -°° |PI \Λ\

for all invariant measures μ G J?Θ(Ω) and Q G Jfe(Ω). This section presents the
infinite volume limits of the other two central quantities, namely energy and pres-
sure. For the energy of the skew model this involves nothing but invariance:

5.3. Lemma. Let Q G JiΘ(Ω). Then

u(g) := lim -—Vn(Qn)
n-^oo \Vn

exists and satisfies u(Q) = Q(φ). In particular, u(Q) is a continuous function of Q.

The "energy" JJ\ of the sample model was defined somewhat indirectly in terms
of convex duals, hence it is not as evident that it should behave well under the
thermodynamic limit. We have the following result:

5.4. Proposition. Let π G ̂ ©(X). For μ G MQ{Ω) such that sπ(μ) < oo, the
thermodynamic limit

uπ(μ) = lim^ — U*(μn)

exists and satisfies

uπ(μ) + sπ(μ) = inf {u(β) + sπ(Q)} . (5.5)

This defines a Borel function uπ on the nonempty convex subset {sπ < oo} of
), with \uπ(μ)\ ^ | |φ| | . If π is ergodic, then uπ is ajfine.

The thermodynamic limit of the pressure, as a nonrandom a.s. limit typically
under i.i.d. quenched variables, has been proved many times over for disordered
models. Our point of view is a little different: We do not work with a fixed dis-
tribution on the quenched variables, but we show that the infinite volume pressure
p x is a well-defined function on the set of all generic quenched variables, and that
px is naturally related to an infinite volume pressure p π defined as a function on
invariant distributions π.

5.6. Theorem.
(i) For each generic variable x there is an infinite volume pressure px such that

x H-> ρ x is a bounded Borel function and

lim sup|p*--^-logZ;H = 0. (5.7)
n*°° \V\
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(ii) For each invariant probability distribution π on X there is an infinite volume
pressure pπ such that π >—» pπ is an upper semicontinuous bounded affine function
on ^#<9(X), and

lim sup | p π - -^-f log Z^π(dx)\ = 0 . (5.8)
n-+°° σβΩ \Vn\

(iii) The functions px and jpπ are connected by

pπ = fpxπ(dx), (5.9)

valid for all π G JίΘ(X), and px = pπ whenever x is generic for π. In variational
terms,

-p«= inf {u(Q) + s«(Q)}= inf Mμ) + s"(μ)}. (5.10)
QβJίΘ(Ω) μeJtΘ(Ω)

Quenched randomness refers to the situation where thermal averages are taken
under a fixed quenched variable x. From this perspective, the interesting measures
on X are those that can be realized as a limit of averages \Vn\~lΣiev 0̂/χ ^ o r

some x, in other words those that have generic quenched variables. As remarked
earlier, all ergodic measures belong to this class, but there can be other measures

too, depending on X and the 7Ld action on it. If X is a configuration space X = EΈ

and ΊLd acts by shifts, then every invariant measure on X has a generic quenched
variable by Lemma 3.1 in [Sel].

Suppose π G Jίβ(\) has a generic quenched variable x but is not ergodic, and
% — Jv w(dv) is its ergodic decomposition. Theorem 5.6 tells us that

Jpvw(dv) = pπ = px= lim - l y logZ,°'x . (5.11)

The interesting point is that the quenched variables generic for nonergodic measures
are atypical in the sense that

v{x : x is generic for a nonergodic measure} = 0

for any v e Ji@(X), but nevertheless such a quenched variable yields the correct
limit in (5.11).

Write p (Φ) to indicate the dependence of the pressure on the interaction
Φ. The familiar result about pressure-bounded linear functionals on interactions
[Is, Theorem II. 1.2] now takes the following form:

5.12. Proposition. Let π G ̂ # Θ ( X ) and ξ G IB*. Suppose there exists a constant
C such that

ξ(Φ) S pπ(Φ) + C (5.13)

for all Φ G IB. Then there is a unique Q G Jtβ(Ω) such that ξ(Φ') = -Q(φ) for
all Φ G IB, where φ is associated to Φ as in (2.2).

The rest of this section is devoted to the proofs. For readers familiar with the use
of large deviation theory it perhaps suffices to say that Theorem 5.6 follows from the
large deviation principle stated in (3.e) and some convex analysis. Proposition 5.12
is proved as in [Is] with a few additional technicalities.
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Proof of Lemma 5.3. Note first that for any A C A CC 7Ld,

HΛ —

and

with
ΛA := \Λ\

3
A(£Δ

By β's invariance, (4.2), and (5.15),

253

(5.14)

(5.15)

(5.16)

(5.17)
for any r < n. Now let first n —» oo and then r —> oo and note that

lim lim p ^ = 0 . D

Proof of Proposition 5.4. For β G Jtθ(Ω\ set

For α G ̂ i ( Ω n ) and μ G Jίeiβ) such that *S (̂α) < oo and sπ(μ) < oo, set

FΛ(α) := C/Λ

π(α) + SΠ

π(α) = inf {UΛ(^) + Sπ

n(

f(μ):= inf f(β) ,
Q

(5.18)

f(μ) := lim sup - — Fn(μ r t), and /(μ) := lim inf -—Fn(μn) .
Λ—OO \Vn\ — «^oo |KΛ

Note that sπ(μ) < oo and (3.11) together imply that | / (μ) | < °°

Let us first show that

f(μ)= lim T^ΓT^ίμ,,),
« + o o | K |

(5.19)

by deducing / (μ) g / (μ) ^ /(μ) . By the compact sublevel sets and lower semi-
continuity of u + sπ, there exists a β G Ji@(Q) with β^ = μ and /(μ) =
Then

/(μ) = lim -J-tlWβ,) + SΠ

π(βrt)] ^ lim sup 4 τ ^ ( ^ ) = 700

Next, fix n and let q G ̂ i ( ί 2 n ) be such that q&n = μn and

(5.20)

Let g" be a version of the conditional distribution of q on Ωn, given x. // := (2n +
1 )Z r f is the subgroup of Έd that makes {j + Vn : j G //} into a disjoint covering
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of Έd. The following construction extends q to a probability measure q® on Ω
such that the variables {(σj+^x) : j G //}, have identical distribution g and are
independent, given x:

π(dx).

Qn -= \Vn\
 ιΣieVnq® ° 0-i defines an invariant probability measure. By (5.15),

(5.21)

For k odd, choose m/t so that /4 := {j G H : —m^ < j 1 ? . . . , \ d < m^} has cardinality

\Hk\ = kd and Vmk = Uje/^O + ^») F o r e a c n i ^ ^«. l e t ^i b e t n e u n i o n o f t n o s e

sets i -f j + Vn, j G //, that intersect Fm > r Then ) ĵ is a union of at most (k+\)d

disjoint shifted copies of Vn. By (3.4) and the independence built into q®',

Since S^(p) is convex in p and increasing in Λ,

^ (k ± l)dSπ

n(q) .

Divide by | Vm. \ and let k —> oo to get

Equations (5.20)-(5.22) combine to yield

τ^iFn(μn) ^ u(β") + s"(β") + O (^Λ .

(5.22)

(5.23)

Repeat this for all n. The sequence {Qn} is tight, for its Ώ-marginals converge to
μ and its X-marginals are constantly π. Hence {Qn} has limit points, and any limit
point Q satisfies Q G Jί@(Ω) and QQ = μ. Thus we may let first n —» oo in (5.23)
along a suitable subsequence, use the continuity of u and the lower semicontinuity
of sπ, and then let r -> oo to get f(μ) ^ u(g) + s π (β) ^ f(μ). This completes
the proof of (5.19). ~

Set

u\μ) := /(μ) - . π (μ) = lim n(μn) - Sπ

n(μn)] = lim

Equation (5.5) is the same as (5.18). The inequality \uπ(μ)\ ^
(5.5).

follows from
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Assume π is ergodic. Then sπ is affine by (3.d), so to prove uπ affine it suffices to
show that / is affine. f is affine, lower semicontinuous, and has compact sublevel
sets by (3.e) and Lemma 5.3, hence / is convex and lower semicontinuous by
(5.18). To show / is concave, it suffices to show that

f{μ) £ Jf(p)w(dp)

whenever μ — jpw(dp) is the ergodic decomposition of μ G JMQ(Ω). Choose
Q £ Jtπ

Θ(ίl) such that QΩ = μ and f(μ) = f(β), with ergodic decomposition
Q = fRw(dR). Since Q\ — π is ergodic, R\ = π w-a.s. Lemma 5.4.24 in [DS]
applied to f, (5.18), and the uniqueness of w in the ergodic decomposition give

f(μ) = f(β) - Jf(RMdR) ^ Jf(RaMdR) = Jf(p)w(dp). Π

For x e X and / G ¥ , set

pn(x,f) := i^

By (3.e) and Varadhan's Theorem [DS, 2.1.10], /?(x,/) := lim pn(x,f) exists and
n—>oo

is given by
p(x,f)= sup {Q(f)-sπ(Q)} (5.24)

Qe Θ

whenever x is generic for π. Every π G ,y#<9(X) is supported by generic quenched
variables, so it makes sense to define

p(π9f):=fp(x9f)π{dx).

For elements η of the dual space ^ * of the Banach space Ή we define the convex
dual of p(π, ) by

p*(π,η) :=

5.25. Lemma. Let π G JfΘ(X).

(a) % >7 G «*, p\n>η) oo otherwise.
(b)For fe%p(π,f)= sup

(c) p(π,f) — p(x,f) for / G ̂  whenever x w generic for π.

Proof, (a) Fix η £ Ή and suppose that c := p*(π,η) < oo. We wish to show that,
for some β G JίΘ(Ω\ η(f) = Q(f) for all / G W.

By the argument of Lemma 5.10 in [Sel],

p{πj) g ϊ^/logλV^IOπίrfx) (5.26)

for / G ̂ , and an application of Jensen's inequality gives

p(πj) ^ -ί-log^l^Ό (5.27)

Hence we deduce
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η(f) ^ p(nj) + c g -^logλ( el
κ^) + c (5.28)

\V\
for all / G %k. Applying this to both MΛQ and —MΛQ and letting M /* oo
gives ίy(lβ) = 1. Next, apply (5.28) to -Λf / for / ^ 0 and M > 0, and note
that p(π,—M'f) ^ 0 to get η(f) ^ 0. Finally, suppose /„ \ 0 pointwise in c€k.
Apply (5.28) to M / w , use the bounded convergence theorem to let n —» oo on the
right-hand side, and deduce lim s u p ^ ^ M η(fn) S c. This implies η(fn) \ 0 as
n —^ oo.

To summarize, we have shown that η is a pre-integral on <ίβk. By the Daniell-
Stone theorem [Du, 4.5.2] and by V\(\Q) = 1 there is a probability measure Qk on
£Fk such that ^ ( / ) = Qk(f) for all / G ̂ . The measures ft are consistent, so
by Kolmogorov's extension theorem they are the @*k -marginals of a probability
measure^ G Jtγ(Ω). Since J / ( / ) = Q(f) for all / G «, we get »/(/) = <Q(/) for
all / G ̂  by passing to uniform limits. Q has to be invariant by (5.28) because
P(π>f - / ° 00 = 0 for all / and i.

It remains to show p*(π,η) = s π (β). Let / G ̂  Then |F Λ |R Π (/) G ̂ n + ^ , so
by (3.3) and g ' s invariance,

Sπ

n+k(Qn+k) ^ \Vn\{Q(f)-fPn(xJ)π(dx)} .

Divide by | Vn+k \ and let n -» oo to get

s π (β) ^ β ( / ) - />(π,/) = »7(/) - p ( π , / ) .

Since k and / G «* were arbitrary, s π (β) ^ p*(π,η). By (5.26)

for / G ̂ jb whence p*(π9η) ^ l ^ p ^ ^ f t ) , and since A: was arbitrary, p*(π,η)

(b) The functional f *-> p(π,f) is continuous in the norm topology of ^ and
convex. By [DuS, V.3.13] the sets {/ G W: p(π,f) S b} are weakly closed for
real b, which says that / *—> p(n,f) is weakly lower semicontinuous. Thus p(π, •)
is equal to its double dual [ET, Proposition 1.4.1] and this, in light of part (a), is
equivalent to part (b).

(c) Compare (5.24) and part (b). D

Proof of Theorem 5.6. Define px := p(x,—φ) and pπ := p(π,—φ). Boundedness
of px and pπ is trivial.

(i)By(5.14)-(5.15),

sup sup \Pn(x,-φ) - T7F-AogZ^\ ^ ^ (5.29)
xeXσeΩ \rn\ \V n

Letting first n —> oo and then r —> oo gives (5.7) and proves part (i).
(iii) (5.9) holds by definition, and Lemma 5.25(c) gives the statement about p x =
p π . (5.5) and Lemma 5.25(b) give (5.10).
(ii) Integrating over (5.29) gives (5.8). Affinity of π —> pπ is trivial. It remains to

prove its upper semicontinuity.

Claim. If A CC TLd,b is a real number and A is a compact subset of JP\(X), then
the set B := [jπeA{q G Jt\(ΩA) Sπ

Λ(q) S b} is compact.
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To prove the Claim, let {qn} be a sequence in B, with nn G A so that S7^'(qn) ^
b. By passing to a subsequence we may assume πn —> π. Let μΠ := λ^(dσΛ)πn(dx),
so that μn -* μ := /l*(dσvi)π(<ix). Let M > 0 and pick a compact subset ^ of ΩΛ

such that /*„(£*) < e~M for all w. Since Sπ

Λ"(qn) ^ H(qn\μn\ taking f=MΛKc
in (3.2) gives

M ^ i T ) g l o g / α e ^ 1 ^ ) + 6 ^ log 2 + b .

Since M was arbitrary, this shows that {qn} is tight. Suppose qn —» g, by passing
to a subsequence if necessary. The variational formula

Sπ

Λ(q) = sup {q(f) -J\ogλx

Λ(ef)π(dx)}
Ω

shows that S^(q) is jointly lower semicontinuous in the variable (τc,q), and hence
SπAq) S lim infSπ

Λ

n(qn) ^ b, implying that q G B. This proves the Claim.

Now we prove that, if πn —-> π, then p π ^ lim sup^^^ pKn. Pass to a subse-
quence, again denoted by n, such that p71" converges to the lim sup. Using (5.10),
pick Qn so that Qn(φ) + sKn(Qn) ^ -pπ» + 1/w. Then sKn{Qn) S C for some con-
stant C, and by (5.2) Sπ

Λ

n((Qn)Λ) ^ |/l|C for all A. Applying the Claim to A = Vm

for all m and a diagonal argument give a subsequence β^. that converges to a
measure Q. Equation (5.2) shows that s π (g) is jointly lower semicontinuous in the
variable (π, Q). Thus we get

Pn ^ -Q(φ)~sπ(Q) ^ - lim Qn (φ) - lim infsπ"/(ρ )
j—>oo y j—*oo J

= lim s u p t - a / φ ) -s π " '(β«,)] ^ lim sup[pπ"' - l/«,] = lim

This completes the proof of part (ii) and of the theorem. D

Proof of Proposition 5.12. For each m e N, define ηm G ( ^ w ) * by ηm(g) =
-ξ(ψζm), where the potential ^ m e B is defined as on p. 7 of [Is]. If ψ is the
function associated to this potential as in (2.2), then φ = Rm(g) and consequently
Pπ(Ψgm) = p(π,-Rm(g)) = p(π,-g). By (5.13) and (5.27),

By the proof of Lemma 5.25(a) and the arguments in [Is, pp. 34-35] there is
a Q G Jίeiίϊ) satisfying the conclusion of the proposition. Q has X-marginal π
because p(π,-g) = -π(g) for g G Cb(X). D

6. Infinite Volume Gibbs States

We look at various definitions of infinite volume Gibbs states for the skew and
sample models. The first approach is to focus on a fixed quenched variable x: We
let the class ^ x consist of those γ G Ji\(Ω) that satisfy G\y = y for all A CC TLd,
or equivalently, for which G^'x is a version of the conditional probability y{ |σ,ic}.
From the observation
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) y o θ-i(dσ) = / GgΛ(f o θ{) γ(dσ)

it follows that ^ x o 0_j = <gθix. With the continuity built into our model it is not
hard to prove

6.1. Lemma.
(i) For all x GX,^ X is a nonempty, compact, convex subset of Jί\(Ω).

(ii) The set IJXGM ^ x is compact for compact M c X .
(iii) The graph {(x,y): y G ̂ x } w c/oserf m X x

However, the individual classes ^ x will not be very useful for us, as our whole
approach is based on utilizing asymptotic properties that involve ergodic averaging
over X. The next step is to consider families {yx} of Gibbs measures, with mea-
surable dependence on x. We shall write ρ' for a measurable map χ π ρ x from X
into M\(Q\ and let Jί* denote the space of all such maps, or measurable families
of measures.

Shifts and Gibbs kernels act on such families in the obvious way, pointwise:
For i £ Έd and A CC TLd, affine transformations θ\ and GA on Jί* are defined by
(0 i ρ ) x - ρθix o ft and (GΛρ' ) x = G*ρ\ Let

MQ := {ρ": θ{ρ = ρ for all i G Zd}

be the class of invariant families,

<T := {ρ": GΛρ = ρ'for all A CC Έd}

the class of Gibbs families, and ^'Θ \—c§' Π Jί*Θ the class of invariant Gibbs fam-
ilies. Note that ρ' G Ji'Θ if and only if ρθix — ρx o έLj for all i and x, and ρ* G ^ '
if and only if ρx G ̂ x for all x.

It turns out that the requirement "for all x" is in general too stringent, hence we
need definitions that overlook sets of measure zero: Given π G ̂ # Θ ( X ) , let Jίn'' be
the class of π-a.s. defined families, and corresponding to the classes defined above
we have the classes M7^^n'\ and ^ j " , where the relevant condition (ρθίx =
ρx o θ_i,ρx G ̂ x , or both) is required to hold only π-a.s.

Averaging over x leads us from measurable families to measures on Ω and Ω.
These will be our most important classes of Gibbs measures:

6.2. Definition. Given π G Jie(X), let ^ π be the class of probability measures P
on Ω that satisfy GAP — P for all A CC ΊLd and whose X-marginal is π. <gπ

Θ :=
&71 Π Ji^iίl) is the subclass of invariant measures. Let ^ be the class of Ω-
marginals of elements of

The remainder of this section is for existence results. For the classes determined
by a fixed π this is easy. For Q G Jt\(ίl\ let qx be a version of the conditional
distribution of Q on Ω, given x. This defines an element q': X H ^ X of Jf*1*.

6.3. Lemma. Let π G
(i) &Q and ^π

Θ are nonempty, compact, convex subsets of Jίπ

Θ{Ω) and JMQ(Ω),
respectively.

(ϋ) The map Q ι—> q' is an affine bijective map of Jίn

Θ(ίϊ) onto Jί11^. It maps

^ 0 bijectίvely onto ^ ' ' , so in particular <Sπ£ is not empty. Moreover, μ G ̂ @ //

and only if there exists a ρ' G ̂ ' such that μ = / ρxπ(dx).
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Proof, (i) Define a sequence of probability measures on Ω by

J IT/ Zs ^*n \J ~ "V
\Vn ieVn

The boundedness of the interaction implies that this sequence is tight, and it is
straightforward to check that any limit point is in &Q. Relative compactness of ^ ^
follows from uniform absolute continuity with respect to λ on all ^Λ,Λ c c ί ,
closedness follows from the continuity of the condition GAP = P, and convexity
is immediate. The continuity and affinity of the projection from Ω onto Ω extend
these results to ^ The proof of part (ii) is obvious. D

To prove that &' and &*Θ are nonempty appears to be less straightforward. At
present we have an argument only for the former.

6.4. Lemma. The class &' is nonempty.

Proof. Let C = {(x,y) : y G ̂ x } , a closed subset of X x J Ί ( Ω ) by Lemma 6.1 (iii).
Let g be the projection g(x,y) — x from C onto X. Suppose there is a Borel subset
B of C such that g(B) = X and g is one-to-one on B. By Kuratowski's theorem [Pa,
Corollary 1.3.3] the inverse map x ^ (x,yx) from X onto B is measurable, where yx

is the unique element of the x-section of B. This gives a measurable map χ ι - > f
from X into Jίλ{Ω) such that yx G ̂ x for all x.

It remains to prove the existence of the Borel cross section B. If X is compact,
then so is C by Lemma 6.1(ii) and (iii), and we can apply Theorem 1.4.2 from
[Pa]. The general case follows by taking X = C and Y = X in the next lemma and
by using Lemma 6.1 to verify its hypothesis. D

6.5. Lemma. Suppose that X and Y are Polish spaces and that g : X —• Y is
continuous and onto, with g~ι(M) compact for each compact M c Y. Then there
is a Borel subset B of X such that g(B) = Y and g is one-to-one on B.

Proof The proof is a simple modification of that given in [Pa, pp. 23-24]. Let X

be a compactification of X under a totally bounded metric, and let h: A —»X be

a continuous function from a closed set A C [0, 1] onto X given by [Pa, Theorem

1.4.1]. Set A := h~\x) C A, h := h\A, and

An := {t eA : g(h(s)) φg(h(t)) for all s G A such that s g t - \/n} .

We claim that A\An is closed in A. Suppose tm —» t as m —> oo, £ G Λ, and

tm £ A\An for all m. For each m pick sm ^ tm — \jn in A so that g(h(sm)) —
g(h(tm)). By passing to a subsequence we may assume that sm —> s G ̂ 4 as m —> oo.
By continuity, λ(sm) —> /2(s) G X. The set

M := {fif(A(ίM)) : /w € N} U {0(λ(O)>

is compact in Y. So all the h{sm) lie in the compact subset g~ι(M) of X, hence so
does h(s). In particular, h(s) G X, and hence s e A. By continuity g(h(s)) = g(h(t))
and s -^ t - l/n, so t e A\An. This proves that A\An is closed in A.

It follows that there is an open set U in A such that An = C/ Π A /*(£/) is a Borel

set since U is an F σ and closed subsets of A are compact. Hence h(An) = h(U)Γ)X
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is also Borel, for X is a G$ in X. Now B := f]nh(An) defines a Borel subset
of Z.

Fix ĵ o £ ^ The compactness of g'Hj'o) implies that

to := inf {* G Λ : #(/z(0) = M

lies in A and g(h(to)) = yo. That g is one-to-one on 5 follows as on p. 24 of
[Pa]. D

To prove ^'Θ nonempty, we would like to extend this lemma to the case where
Έd acts on X and Y continuously and g commutes with the action, and show the
existence of an invariant Borel cross section. However, an attempt to use the above
argument runs into trouble: Composing g with the canonical projection p : Y —>
Y/Έd does give a continuous map p o g : X -» Y/Zd onto the orbit space, but the

orbit space can have a bad topology: For example, if Y = {0, \}Έ , we have dense
orbits and the quotient topology of the orbit space is not even Hausdorff.

7. Large Deviations

In this section we study the large deviations of empirical fields under Gibbs mea-
sures. The rate functions are entropies relative to random measures as in Sect. 3,
but now we take the Gibbs kernels as the random measures. We start with the skew
model. For A CC Zd and v e J?\(ΩΛ) ,

K » : = £ ( v | G ° / , π ) , (7.1)

and for Q e JfΘ(Ω)

kπ(Q) := lim r^KiQn) (7.2)
n-^00 \Vn\

whenever the limit exists. (Recall that Qn is the marginal distribution of ( σ ^ x )
under Q.) Set kπ(Q) = 00 for noninvariant Q.

7.3. Lemma. Let π e JtΘ&) The limit (7.2) exists for all Q e JiΘ{Q) and is
given by

kπ(β) = sπ(β) + u(ρ) + p π . (7.4)

Suppose P e ^ π , and let Px be a version of the conditional probability of P, given
x. The entropy h(Q\P\π) defined as in (3.7) exists for Q e Jt@(il\ and the
entropy h(Q\P) defined as in (3.9) exists for Q G Jί^iQ). These entropies are
connected by

| ( 7 5 )

loo otherwise.

If π is ergodic, jMπ

Θ{Ω) can be replaced by MQ(Ω) in (7.5).

7.6. Remark. By (7.4), kπ inherits properties of sπ from (3.e): The sublevel sets
{kπ ^ c} are weakly compact, kπ is affine on Mn

Θ(Q\ and on all of Jίeiίl) in
case π is ergodic.
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Proof. Let β G Mθ(ίl). For any / 6 «n,

& ( / ) - / l o g G°'x(e/)π(J*)

= βΠ(/ - J#) - / log λx

n(ef-Hn)π(dx) + UΠ(βΛ) + Pi •

Since //° G ̂ r t too, we get by (3.3)

KiQn) = K(Qn) + Un(βΛ) + ^ . (7.7)

From this follow both the existence of the limit in (7.2) and (7.4), and then by
(3.10) k π (β) = oo whenever β x φ π .

Now suppose P e &π. By (5.14) it follows from (7.1) that

On the other hand, if β G Λϊ^(Ω), b ^ ( 3 4 )

Dividing by \Vn\, letting n —> oo and then r —» oo gives (7.5) and the statements
above it. If π is ergodic the case βx Φ π is trivial, for then Q\ <C π fails and
consequently //(βM |Pn) = oo for all n. D

Next is the large deviation principle for the skew model. An earlier version
appeared in Theorem IV.2 of [Com2]. Weak closures and interiors are denoted by
A and A°, respectively.

7.8. Theorem. Suppose x is generic for π. Then for any Borel subset A of M\(Ά\

- inf kπ S lim inf τ^rτlog inf G£'x{Rn € A}

A° n-^oo \rn\ &

^ lim sup TTΓjlog supG*'x{R« G A}

^ - i n f k π . (7.9)
A

If P £ ^ π , the conditional distributions Px{Rn G } satisfy a large deviation prin-
ciple with rate \aπ,for π-a.e. x.
Proof. Equation (7.9) is a consequence of (3.e) and a version of Varadhan's theorem
given as Exercise 2.1.24 in [DS]. The only technical twist is that, because G£>x <C λx

only on ^ n , one needs to work with the 3* n -measurable stationary modification of
Rn defined by

1 («)
U~ \Vn\ h/n

where σ(tt) is the usual periodized configuration: σ\n) = σ\ for i G Vn and σ^w) . =

σ[n) for i,j 6 Zd. Now (7.9) follows from these three steps:

(1) By the argument of Proposition 3.1 in [Orl], the large deviation principle
of (3.e) works for Rn too.

(2) By [DS, 2.1.24], (5.10), and (7.4), the distributions



262 T. Seppalainen

Ω

on Jί\(Ω) satisfy a large deviation principle with rate kπ. zn is the normalization
factor that makes μn into a probability measure.

(3) Now (7.9) follows for Rw with uniform estimates of the type (5.15), and
then for RΛ again as in [Orl, Proposition 3.1].

For P G &π,Px{-} = fGσ

n>
x{ }Px(dσ) for π-a.a. x, so

r{•} ύ Px{'} ύ supGΠ

σ'x{ } , (7.10)
σ σ

which shows that the last statement of the theorem follows from (7.9). D

Analogous results hold for the sample model. Set

k\μ):= lim ^-H{μn\G°n',π) (7.11)

for μ G J4Q(Ω), and kπ(μ) = oo for noninvariant μ G Ji\{Ω).

7.12. Lemma. Let π G JίθQί)- Then the limit in (7.11) exists for μ G JίΘ(Ω)
and satisfies

kπ(μ) = sπ(μ) + uπ(μ) + pπ (7.13)

and
k\μ) = inf kπ(Q) . (7.14)

QΩ=H

kπ is finite on the set {sπ < oo}, convex, and ajfine in case π is ergodic. For any

π). (7.15)

7.16. Theorem. Suppose x is generic for π. Then (7.9) continues to hold upon
replacing kπ, G°>x, Rn, and Ji\(Ω) with kπ,G°>x,Rn, and M\{β\ respectively.
Moreover, the distributions y{Rn G •} on Jί\{Ω) satisfy a large deviation principle
with rate kπ, for any y G ^ x .

7.17. Remark. kπ(μ) is not a specific entropy relative to a Gibbs state in ^ x . For
example, if P e ^π

Θ and yx is a conditional distribution of P on Ω, given x, then
π-a.s. yx G ̂ x and

lim --H(μn\γx

n) = h(μ®π\P),

which in general is not equal to kπ(μ). See Lemma 8.11 below.

Proofs of Lemma 7.12 and Theorem 7.16. For μ G MQ{Ω) set

^ + U"M + P% if *"(A0 < oo,: = inf k(β) = (
Qa=μ ^ oo otherwise.

The second equality above comes from (5.5) and (7.4). We shall show that the
limit in (7.11) exists, l{μ) — kπ(μ), and (7.15) holds. Let k and k be the upper
and lower limit, respectively, of the right-hand side of (7.11).
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By (3.5) applied to the Gibbs kernels, H(μn\G%'9π) <; K£(gπ) whenever Q G
JMQ(Q) has QQ = μ, so that A: ^ /(μ). Conversely, there is a # G ̂ i ( Ω w ) such
that qΩn = μΛ and

where we used (4.8) and (7.7). Dividing by \Vn\ and letting n —> oo along a suitable
subsequence gives k ^ /(μ). This shows that the limit in (7.11) exists and equals
/(μ). Equation (7.15) comes from observing that

The remaining properties of kπ follow from (7.13) and the corresponding properties
of sπ stated in (3.d).

By the contraction principle [DS, Lemma 2.14], the uniform large deviation
principle as in (7.9) holds for the distributions G%x{Rn G •} with rate /. For any
7 G ̂ x , the large deviation principle follows from inequalities similar to (7.10). D

8. Variational Principles

In this section we establish results that correspond to the Dobrushin-Lanford-Ruelle
variational principles of shift-invariant interactions. We start with the skew model.
A special case of the implication (i) =>• (ii) below appeared in Theorem IV.3 of
[Com2].

8.1. Theorem. Let π G Jί@(X) and P G Jίe{Q). The following are equivalent:

(i) P e &π

Θ.

(ii) kπ(P) = 0.

(iii) u(/>) + sπ(P) = -pπ - inf {u(0 +
Qξ {ίi)

Proof (ii) <==> (iii) follows from (5.10) and (7.4). (i) = > (ii) follows from (7.5).
To prove (ii) = > (i), suppose (ii). Px = π by (7.5), so it remains to prove that
GΛP = P for all A CC Zd. It suffices to consider the sets A—V{, so to get a
contradiction, assume that G / P φ P for some Λ

Before getting into the derivation of the contradiction, note the following techni-

cal point: Suppose A C A c Γ CC Zd, and set Q := G°^x(dσ)π(dx), a probability

measure on Ώ. Let PΛ^ ,QΛ , and (GjP)^ be conditional distributions of P,Q,
and GjP on ^ ^ i , given 3F'Λ\Δ. Then

I JH(P^A\(GΔP)fΔ)dP - JH(P^Δ\Q^Δ)dP\ £ 4bΔ,Λ , (8.2)

where
bΔ,Λ : = ^ HΦ^II .

ΛΠZIΦ0



264 T. Seppalainen

This follows from

valid for all £F A -measurable bounded functions / .
Returning to the proof, there is a k > £ and an η > 0 such that

H{Pk\{G,P)k) ^ η . (8.3)

By the monotonicity of relative entropy, we may pick k large enough so that b/j <
η/S. Let m be arbitrary, and pick n — nm so that Vn is the disjoint union of the
cubes ii + V^...,imd 4- Vk for some set {ii,...,\md} CC Έd. For j — \,...,md set
Δj := i7 + F/ and

Λy := (ii + Fik) U..-U(iy + F t ) .

Use first [DS, (4.4.8)] and the fact that PAJ\ΔJ = (GΔJP)ΛJ\ΔJ, then the monotonicity

of relative entropy, and finally (8.3) shifted by i7 to get

f Λ Λ ^ = H(PΛJ\(GAJP)ΛJ)

^ H(Pij+rt\(GΔjP)ij+Vt)

Set Γ =Vn and use (8.2), the choice of k, [DS, (4.4.8)], and the monotonicity of
entropy again to get

nil s ff
= H(PAj\QAj)-H(PAM\QAj\Aj)

with the very last term missing for j — I. Add over j — 1,... ,md and use (3.a) to
get

ηmd/2 S H(Pn\Qn) ^ K(Pn) .

Divide by \Vn\ and let m / oo to get η(2k + \)~d/2 ^ kπ(P), contradicting (ii).

D

Next we project this result to the sample model.

8.4. Theorem. Let π G Jί@(X} and μ € M@(Q\ The following are equivalent'.
(i) μe%.

(ii) k«(μ) = 0 .

(iii) uπ(μ) + sπ(μ) = -pπ = inf {t/π(v) + sπ(v)}
v£Jί{Ω)

Proof, (i) <=^ (ii) follows from the definition of ^ , (7.14), and (i) <=> (ii) in
Theorem 8.1. (ii) Φ=> (iii) follows from (5.10) and (7.13). D

The sample large deviation principle 7.16 and variational principle 8.4 reveal
the relevance of the class $π

Θ for quenched randomness: If y e $x for a variable
x generic for π, the weak limits of Rn under y are contained in ^π

Θ, in the sense
that for any open neighborhood of the convex, compact set ^π

Θ,y{Rn G Vc} —•> 0
exponentially fast as n —* oo. In particular, if ^π

Θ = {μ}, then Rn —> μ y-a.s.
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To connect our results with those of [Z], let us look at variational principles
in terms of invariant families as defined in Sect. 6. For the remainder of this sec-
tion, π is a fixed ergodic element of J{Q(X), and Q e Jίn

Θ(ίl) and q' £ Jtπ^ are
associated as in Lemma 6.3(ii).

8.5. Lemma. For any ρ' £ ^%β\ the entropy

A(ρ*μ ) : = lim ^-H(ρx\λx) (8.6)
n-+co \Vn\

relative to the a priori family λ' exists as a π-a.s. limit, independent of x. If the
limit is finite, we have convergence in Lι(π) too. Moreover,

h(q-\λ ) = h(Q\λ) = sπ(Q). (8.7)

Proof Equation (8.6) follows from subadditive ergodic theory, see [Z, Proposition
4.2] or [Sel, Theorem 3.10]. Note in particular that a nonnegative superadditive
process, integrable or not, converges a.s. [Kr, Theorem 5.4]. To get (8.7), integrate
(8.6) against π and use [DS, (4.4.8)] and (3.10). D

8.8. Remark. The quantity h(ρ'\λ') is the negative of the entropy defined in (4.11)
of [Z].

Next specific energy for invariant families (see Proposition 4.5 in [Z]):

8.9. Lemma. For ρ' e Jί11^,

κ(ρ ) := lim τ^Qx(H^) (8.10)
«->oo \Vn\

exists as a π-a.s. and Lι(π) limit, and satisfies u(ρ') = Jρx(φx)π(dx). In particular,

Proof. Use (5.15) to write

n\ ieVfl
\yn

then apply the multiparameter ergodic theorem and the argument following
(5.17). D

The last ingredient of the variational principle is entropy relative to a Gibbs
family:

8.11. Lemma. For ρ' e Mπ^ and f e ^ \ the entropy

h(ρ \y ):= lim ~H{ρx

n\yx

n)
n-oo \Vn\

exists as a π-a.s. limit, independent of x, and is given by
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Proof. Since yx = J Gσ

n'*γx(dσ) and G£ x = G°n'
x e°^ "\ we have

= H{ρl\λ*) + ρ\H^) + log2?' + O(cr,n) ,

with cr>π again defined by (5.16). Divide by \Vn\ and let n —•>• oo, note that π-a.e.
x is generic for π, and then let r —> oo. D

And now the variational principle. The equivalence (i) <=> (iii) below was
deduced in Theorem 4.8 of [Z] for a class of unbounded interactions with a different
definition of an equilibrium family.

8.12. Theorem. Let π G JίΘ{X) be ergodίc, ρ' G Jt%\ and y' G <§*£. The fol-
lowing are equivalent:

(i) Q £9%

(ii) Λ(ρ |y ) = O.

(iii) u(ρ') + h(ρ' | Γ ) = -pπ = inf {u(v') + A(v" \Γ)}.

Proof Theorem 8.1 and the correspondence ^ § * <-> ̂ #^(ί2) of Lemma 6.3(ii). Π

9. Equivalence of Ensembles for Observables

Our next goal is the Lanford theory [La] of large deviations and equivalence of
ensembles for observables. Let π G ̂ #e(X) be fixed throughout the section.

9.1. Definition. A collection g = {gΛ : A CC Έd} of continuous functions from Ω
into R* is an observable if for some bounded continuous function g from Ω into
R*,

\\9Λ-Σ9°θi\\=o(\Λ\) as \Λ\->oo. (9.2)

In particular, g = {g^ = (gι

Λ,... ,gk

Λ) : A CC Έd} is an observable if there are

interactions ΨJ G IB such that

ACΛ

for j — 1,... ,A:. For we can take g — (φ1,... ,ψk), where ψJ is associated to ΨJ

as in (2.2), and then (9.2) follows from (5.15).
To introduce an inverse temperature β we replace the interaction Φ by βΦ. β

may be any real number. The dependence on β is indicated by a superscript: The
skew Gibbs kernels G^'σ'x are defined by

with the obvious Z^'σ'x, the infinite volume pressure is

pβ'π= lim ^ !

\V
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and &Q denotes the class of skew Gibbs measures for the interaction βΦ as defined
in 6.2.

Let g be any observable and g the function associated to it by (9.2). We begin by
recording the large deviations of the observable under the a priori measure λx, the
microcanonical measures Λe^x, and the canonical measures Gf'σ'x. Microcanonical
measures are defined by conditioning the a priori measure on a thin energy shell:
For e real, δ > 0, and a Borel subset A of Ω,

KM) •= *•*{* |l* - I^Γ'/tfl ^ δ} , (9.3)

whenever
λ*{\e-\Vn\-ιHS\ Sδ} > 0 ; (9.4)

otherwise set Λe^x := Ax. Note that by (5.15) we could just as well have defined the
microcanonical probabilities by conditioning on the events {|Rw(φ) — e\ ^ <5} as in
[DSZ], without affecting the limiting behavior as first n —> oo and then δ —> 0.

Next the rate functions: Define the function Ig : IR^ —> [0, oo] by

/,(i;) := inf s π ( β ) . (9.5)

For υ e W.k,β G 1R, and e G IR such that /^(e) < oo, define (imitating [La]'s nota-
tion)

ηmc(υ\e):=Iig,φ)(υ,e)-Iφ(e) (9.6)

and
ι/c(ϋ|]S) := inf {β Q(φ) + sπ(β)} + p^'π . (9.7)

Q(g)=v

For other values of e set y/wc(ι;|β) = oo. Equation (9.6) makes sense because

I(g,φ)(υ>e) = ^<p(e) ^y (^-^) Recall also the shorthand gn = gγn.

9.8. Theorem. Suppose x is generic for π. We have the following large deviation
principles for the observable:

(i) The distributions λx{\Vn\~ιgn G •} on ΊR.k satisfy a large deviation principle
with rate Ig.
(ii) Suppose e is such that Iφ(e) < oo. Then for any fixed δ > 0, (9.4) holds for

large enough n. For Borel sets A G

— inf ηmc(v\e) ^ lim inf lim inf -—-logΛe'^ < -—- £A
veA° δ-+0 n->oo \Vn\

 n'° [\Vn\
1 ( n Λ

S lim sup lim sup |ΓΓjlog Λe*δ I - f r G A \
δ—> 0 n—>oo \'n\ ^ \* n\ )

^ -inlηmc(v\e) . (9.9)
v£A

(ϋi) The distributions G^'σ' x{\Vn\~ιgn G •} on IR^ satisfy a large deviation principle
with rate ηc(-\β), uniformly in σ as in (7.9).

Proof of the theorem and other claims follow at the end of the section. It is
clear from the variational principle 8.1 and (9.7) that

{v : rf(o\β) = 0} = {P(g): P e <$^} .
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Hence by part (iii) above, the possible limit points of gn/\Vn\ under G^σ'x are the
expectations of g under Gibbs measures. More precisely, if V is an open neigh-
borhood of the convex, compact set {P(g) : P e ^ π } in IR*, then Gβ/'x{\Vn\~ιgn

e Vc} —> 0 exponentially fast as n —• oo.
Let us take a closer look at the important special case g = Φ, our fixed inter-

action. Then the rate function Iφ is in duality with pressure:

f/„(<?)} (9.10)

and

-f-p^π}. (9.11)

A very precise description of the correspondence between the dual variables β
(inverse temperature) and e (energy) can be given. Our model can be in one of
two situations: In the degenerate case ^S^ = {λ} for all β £ IR (recall that λ :=
f λxπ(dx)), and consequently p^π = —βλ(φ) for all β and Iφ(e) — 0 for e — λ(φ)
and oo otherwise.

Henceforth assume we are not in the degenerate case. Then the classes &Q
of Gibbs measures are disjoint for all distinct β, and in particular λ is the Gibbs
measure only for β — 0. To each β corresponds a unique nonempty closed interval
[eo(β),e\(β)] of compatible energy values that can be characterized in the following
ways:

[eo(β),eι(β)] = {e : -^'π = βe + Iφ(e)}

= {P(φ) : P e &βάπ}

= {e : rf(e\β) = 0} . (9.12)

In the last formula, the rate function ηc(e\β) is the one associated to g = Φ. Fur-
thermore, the intervals [eo(β),e\(β)] are disjoint for distinct β. (But eo(β) = e\(β)
for all but countably many β.)

Turning to (9.11), Iφ is obviously convex and the set {Iφ < 00} is a nondegen-
erate bounded interval that may or may not contain either of its endpoints. If e is
an endpoint of {Iφ < oc}, then either Iφ(e) = 00, or Iφ(e) < 00 and Iφ has infinite
slope (negative for left, positive for right endpoint) at e. To each interior point e
of {Iφ < 00} corresponds a unique β = β(e) such that eo(β) S e ^ e\(β) The
infimum in (9.11) is attained at this β, and — β is the slope of the unique tangent
to / at e. The infimum in (9.5) for υ = e and g = φ is attained at Q if and only
if Q G &Q . The association e ^ β{e) is decreasing because Iφ is convex, with
β = 0 corresponding to e = λ(φ). Iφ is differentiable on the interior {Iφ < oo}°,
and

{Iφ <oo}°- \J[eo(β)Mβ)]

C [/(Ax-ess inf φ)π(dx), /(Ax-ess sup φ)π(dx)] . (9.13)

Also for a general observable g, the β «-* e duality clarifies the relationship of
the canonical and microcanonical limit points (i.e. zeroes of the rate functions): For
all β9
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{υ : ηc(v\β) = 0} = \J {v : ηmc(v\e) = 0} . (9.14)

eo(β)^e^eι(β)

This is the "equivalence of canonical and microcanonical ensembles." In particular,
if e = eo(β) = e\(β) is the unique minimizer in (9.10), then

{v : ηmc(v\e) = 0} = {v : rf(v\β) = 0} ,

and \Vn\~ιgn converges towards this set exponentially fast under both microcanon-
ical and canonical probabilities.

Before concluding this section with the proofs, let us note that all of the above
took place in the context of the skew model. Recall that the quantity uπ(μ) (see
Proposition 5.4) was defined as a candidate for specific energy in the sample model,
its virtue being that it gave the basic variational principle. But it is not clear whether
this function would be involved in a meaningful conditioning of the sample model
on an energy surface.

Proof of Theorem 9.8. By (9.2) and the argument of [Orl, Proposition 3.1], it suf-
fices to prove the theorem for the distributions of ΈLn(g) instead of gn/\Vn\. Then the
large deviation principles of (i) and (iii) follow from (3.e) and (7.9), respectively,
by the contraction technique of large deviation theory [DS, Lemma 2.1.4]. Now
consider (ii). Equation (9.4) for large n follows from the assumption Iφ(e) < oo
and part (i) applied to Φ. For such n,

-L\ogΛ<n*{gal\Vn\eA}
V n

-L
I "n\

\ € A x [e-δ,e + δ]}

e[e- δ,e + δ]} . (9.15)

Let ε > 0. By (i) and /φ's lower semicontinuίty there exist δε and ns,ε such that,
for δ < δε and n > n$if>, the last term in (9.15) is within ε of —Iφ(e). Apply part
(i) to the observable (g,Φ) to let n —> oo in (9.15). Then let δ —> 0 and use the
fact that

lim inf Iig,φ)(v,x) = mfl(g,φ)(υ,e) ,
<?-*o V£A veA

\x-e\^d

a consequence of the lower semicontinuity and compact sublevel sets of I(g,φ). •

Proof of (9.10) and (9.11). By (5.10) and (9.5) for g = Φ,

-p^= inf inf

This is (9.10). (9.11) follows by convex duality. D

9.16. Lemma. If λ e ^ for some βφO, then <3^ = {λ} for all real β.

Proof By assumption,

J g(x)λ*(f)π(dx) = f g(x)Gβ/>x(f)λ(dσ,dx)
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for all g G Cb(X) and / G <#Λ, so we deduce that

λ-a.s., for all A CC ΊLd. It follows easily that λ G <£β£ for all β.

Suppose P G <gβ£ for some βΦO, and P φ λ so that sπ(P) > 0. ( ^ π = {A} is
immediate.) Then by the variational principle

Pick β' so that (0 - β')/β < 0. Multiply above by β'/β to get

β'P(φ) + sπ(P) = β'λ(φ) + sπ(P) (β - β')/β < β'λ(ψ) .

This contradicts the variational principle because λ G ̂ Q . D

9.17. Lemma. Either the classes ^ π are disjoint for distinct real β, or ^ π = {λ}
for all real β (the degenerate case).

Proof In view of Lemma 9.16, it suffices to show that Q G <Sβ£ Π ̂ ' π for
forces Q = λ. As in the proof of Lemma 9.16, we deduce that

H Λ ( σ Λ , σ Λ c , x ) = - ( / ? ' - fi/%

for Λ^-a.a. σ^, β-a.a. (σyic,x). From this Q = λ follows readily. D

9.18. Remark. The degenerate case can take place even if φ is not a.s. constant, with
or without quenched disorder. Suppose 9* — {0,1}, and define a function / on ϊf1

by /( l ,0) = l,/(0,1) = - l , / ( 0 , 0 ) = /(1,1) = 0. Then for any σ e Ω and any «,
Σ i / ( σ ί ' σ ϊ + 0 ^ {—1»0,1}. For any measure μ, the only possible rate function for
the laws μ{^ Σ" f o θj G •} is the trivial one: 7(0) = 0 and I(t) = oo for nonzero t.
In particular, we have the degenerate case for the Gibbs measures of the interaction

= ί
l

/(σ z , σι+\) if A = {/, / + 1} for some

0 otherwise.

We return to the proofs of the section: That p^'π = —βλ(φ) in the degenerate
case is immediate from the variational principle of Theorem 8.1. Equation (9.11)
implies then that Iφ(e) = 0 for e = λ(φ) and oo otherwise.

Proof of (9.12). P \—> P(φ) maps the compact convex set <3Q into IR, contin-
uously and affinely. Its image is some compact interval. Define eo(β) and e\(β)
so that [eo(βXe{(β)] = {P(φ) : P G ̂ π } . By Theorem 8.1, lφ(P(φ)) = sπ(P) for
every Gibbs measure P, hence —pβ<κ = βe + lφ(e) for all e G [βo(j?X^i(jβ)] Con-
versely, if —p^π — βe + lφ(e), find β (using (9.5) and the lower semicontinuity
and compact sublevel sets of sπ) such that lφ(e) — sπ(Q) and Q(φ) = e. Then

-pβ>π = βQ(φ) + s π (β), and Theorem 8.1 implies that Q G ̂ π . We have proved
the first two equalities of (9.12). The last one is obvious from the definition
(9.7). D
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To show that the sets [eo(β),e\(β)] are disjoint for distinct β, suppose we

have β^β\ Pe ^ π , and P' e <S^ s u c h t h a t P O ) = p ' < » BY t h e variational
principle,

βP(φ) + s\P) ^ βP'iφ)+ **&),

hence sπ(P) ^ sπ(P'\ and by symmetry sπ(P) = sπ(P/). But then Theorem 8.1
again implies P' e ^ π , and by Lemma 9.17 we must be in the degenerate case,
which by assumption we are not.

The set {Iφ < oo} is an interval by the convexity of Iφ, but not a singleton
because we have excluded the degenerate case. For all β,

— f λx-Qsss\xp(βφ)π(dx) ^ pβ>π ^ -J λ

hence by (9.11)

{Iφ < 00} C [J(Ax-essinf φ)π(dx), f(λx-esss\xpφ)π(dx)] .

Suppose e is an interior point of {Iφ < 00}. By convexity Iφ has a tangent at e,
with slope — β for some β. Then (9.11) forces —Iφ(e) = βe + p^'π, so in particular
£ £ [^o(/O,ei(/O]. If the infimum in (9.11) were achieved at distinct β and /?', then
e would be an energy value compatible with both β and βf, contradicting what was
proved earlier. That the infimum in (9.5) for g = φ is attained precisely on the set
{Q £ &^'π : β(φ) = e) is another consequence of the variational principle.

Suppose e is an endpoint of {Iφ < 00} with Iφ(e) < 00. If Iφ had finite slope
at e, then it would have infinitely many tangents at e (because / Ξ O O O Π one side
of e), again associating e to multiple β, in contradiction to previous conclusions.
The uniqueness of the tangent also implies that Iφ is differentiable on {Iφ < 00}°.
Equation (9.13) is evident by now.

Proof of (9.14). Suppose ηc(v\β) = 0. Let Q be a minimizer in (9.7) and e := Q(φ).
Then

0 = βe 4- inf s π (β) + p A π ,

so an application of (9.5) to the observable (g, Φ) gives

— p = /)£ + i(g>(p){v, e) . (9.19)

Equations (9.10), (9.19), and /φ(έ?) ^ I^φ){υ,e) combine to give -pβ>π = βe +
Iφ(e) and I(g,φ)(v9e) = /<p(e), so that e G [eo(β),e\(β)] and ηmc(v\e) = 0.

Conversely, assume e G [^0(^X^1 (i?)] and ηmc(v\e) = 0. These imply (9.19).
Using (9.5), pick a β such that Q(g,φ) = (v,e) and I^φ)(υ,e) = sπ(Q). Substi-
tute these into (9.19) and then into (9.7) to get ηc(v\β) = 0. D

10. Equivalence of Ensembles for Measures

In Sect. 9 we deduced equivalence of the microcanonical and canonical ensembles
by looking at the possible limit points of an observable in the infinite volume limit.
In this final section of the paper we do the same for measures. We shall show
that, in an appropriate sense, the limit points of the microcanonical probability
measures are Gibbs measures at the temperature associated with the energy of the
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microcanonical ensemble. Our approach to this question via large deviation theory
is motivated by Sect. 3 of [DSZ], where this program was carried out for invariant
interactions.

For the duration of the section, fix π G Jiβ(K) and a real number e such that
Iφ(e) < oo. To avoid worrying about whether e is an interior point or a boundary
point of {Iφ < oo}, adopt the following convention: If e is the left endpoint of
{Iφ < 00} and Iφ{e) < 00, then set β(e) = 00 and

&T = {Q e JίΘ(Ω) : Q(φ) = e, s\Q) = Iφ(e)} .

Similarly for a right endpoint. Then all real numbers e such that Iφ(e) < 00 have a
uniquely defined inverse temperature — 00 ^ β{e) rg 00 and there is a well-defined
nonempty class of Gibbs measures at inverse temperature β(e). Set

We know from Sect. 9 that J»Γ is the nonempty compact convex set of measures
Q for which Q(φ) = e and sπ(£>) = Iφ(e).

Since the microcanonical measures are doubly indexed by δ > 0 and n E N, we
must be precise about passing to limits. Let us say that a class {μn,δ} of measures
is relatively compact as first n —•» 00 and then <5 —> 0 if

(i) {μn,δ}^L\ is relatively compact for each fixed δ,

and

(ii) whenever δj —> 0 and v$ is a limit point of {μ^δj}^ f° r e a c n ]•> the sequence

{v(5;}/ î is relatively compact.

Say v is a limit point of {μn,δ] ( a s first n •—>• 00 and then <5 —» 0) if some such
sequence {v^}J^i converges to v.

We shall first consider averaged microcanonical measures

Define a function k^ from M\(ίϊ) into [0,00] by

n ( l Q{ψ) — e>
00 otherwise.

10.1. Theorem. Suppose x is generic for π.

(i) As first n —• 00 α«rf ίA «̂ 5 —> 0, ///β distributions Λ^{RΛ G •} satisfy a large

deviation principle with rate function ke, α̂ 1 /« (9.9).
(ii) 7%e probability measures Γe^x

δ are relatively compact as first n —> 00 α«J ίΛe/?
5-^0. If Γ is a limit point, then there is a probability measure α on C/f such
that

Γ=fQx(dQ)

and a is a limit point of the laws Λe*δ{ΈLn G •}. In particular, Γ is an element of

Our techniques do not permit us to tackle individual microcanonical measures

Λe*δ. We can replicate Theorem 10.1 for the π-a.s. defined map Ae^'δ : x »-> Ae*δ,
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where Λ6^ is the Ω-marginal of Ae*δ. But to do so requires some technical assump-

tions and changes: Assume now that X = Ez for some Polish space E, 7Ld acts on

X by translations, and λx — λ*° depends only on the Xo-coordinate. Furthermore,

assume π is an i.i.d. measure on X. Define the stationary empirical field R^ by

where σ(rt) and x(w) are the periodized configurations defined as in the proof of
Theorem 7.9. Redefine the microcanonical probability measure by

The advantage of this definition is that the conditioning event now depends only
on (σi,Xi : i G Vn).

Consider Λe^δ as an element of the space Jί%"' of π-a.s. defined measurable
maps from X into Jί\(Ω), introduced in Sect. 6. Give this space a Polish topology
by identifying a map ρ" with the measure ρx(dσ)π(dx) on Ω. In other words,
ρ'n —->• ρ* in Mπ'' as n —•» oo if

lϊm^J ρ*n(Γ)π(dx) = J ρ*(f*)π(dx)

for all bounded continuous functions / on Ω, where fx(σ) := /(<τ,x). Set

X:={i &%• : J f(φ*Mdx) = e}
= {ρ e .Jίπ' : / Q*(φ*)π(dx) = e and A(ρ \λ') = Iφ{e)} .

h(ρ' \λ') is the entropy defined in (8.6). Recall the bijection Q ι—> q' from y#^(ί2)
onto Jίπ^ of Lemma 6.3(ii). It restricts to a homeomorphism from Cff onto JΓ.
With these assumptions we can state our final theorem:

10.2. Theorem. The maps Ae^*δ are relatively compact as first n —> oo and then

δ —> 0. If ρ* is a limit point, then there is a probability measure α on Ctif such
that

ρ = Jq'a(dQ)

and a is a limit point of the laws J Λe^{Rn G }π(ί/x). In particular, ρ is an

element of cf£.

We now turn to the proofs. For δ ^ 0 and Q G Ji\(Ω), set

m(δ) := inf
\Q()\£δ

••= {Q e Jίχ(Ω) : sπ(Q) = m{δ\ \Q{φ) - e\ £ δ} ,

and

\f(n\ •— / s π ( β ) — m(δ) if Q i s invariant and \Q(φ) — e\ ^ δ,
I oo otherwise.

In this new notation, m(0) = Iφ(e),$Γo — Ή\ and ke

0 — ke.
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10.3. Lemma.
(i) m(δ) is a continuous, convex, decreasing function from [0,oo) onto [0,Iφ {e)\

(ii) The sets Ctifδ are nonempty, convex, and compact, and if G is any open
neighborhood of Jtifδ, then J#V C G for δf close enough to δ. Moreover, the
union J"Γo,oo : = U ^ > o ^ ^ ZiS compact.

(iii) Fix δ > 0 and suppose x is generic for π. Then the distributions Ae*δ{ΈLn

G } satisfy a large deviation principle with rate k|, as n —> oo.
(iv) Suppose x is generic for π. The distributions Λe*δ{QLn £ •} a r e relatively
compact as first n —» oc and then δ —> 0, αfld #// ί/z£ //mzϊ points are supported
on jf".

Proof (i) m(<5) is obviously convex and decreasing, and m(<5) = 0 for large (3. To
prove continuity from the right: Let δn \ δ. Pick Qn's such that |β«(φ) — e\ ^ δn

and sπ(β r t) = m(δn), using the compact sublevel sets and lower semicontinuity of
sπ. The Qn$ lie inside the compact set {sπ ^ rn(0)}, hence we may pass to a
convergent subsequence and assume Qn —> β. Then |2(φ) — β| ^ <5, and by lower
semicontinuity

m(δ) S sπ(£>) ^ liminfsπ(ρn) = liminf/w(δΠ) .
n—>oo n—>oo

This suffices for continuity from the right, for m(δ) ^ \ims\xpm(δn) by the mono-

tonicity.
Now suppose δn / δ. Pick Q and Q\ that realize the infima in the definitions

of m(δ) and m(δ\), respectively. Let tn /* 1 be such that δn — tnδ + (1 — ίn)(5i. By
the convexity of sπ,

ύ limsup{/,sπ(β) + (1 - tn)sπ(Qx)} = m(δ) .
n—>oo

By monotonicity again we have continuity from the left.
(ii) The first clause is true by the properties of sπ from (3.e). Suppose δn —>

δ and Qn G Ctifδn\G for some open neighborhood G of Jί^^. As above, we may
assume Qn —> Q. Then g G Gc. But ^π(β«) = m(5w) for all n, so by sπ's lower
semicontinuity and part (i), sπ(Q) ^ m((5). And \Q(φ) — e\ ^ <5 by the continuity of
the integral Q(φ), hence we must have sπ(Q) = m(δ) and Q G ̂ 5 , a contradiction
with ρ G Gc.

Jί̂ o,oo is a subset of the compact set {sπ ^ ^(0)}, so we need only prove
closedness. Suppose Qn G $Γδn and Qn —> Q. If the ^n remain bounded, pass to a
convergent subsequence δn/ —> (5, and then 2 ^ ̂  δ by the previous paragraph. If
δnf / ex) for some subsequence n', then Qnι — λ for large enough n' and β = λ G

^ 0 , 0 0 •

For (iii), let 0 < η < δ and write for large n,

^ <δ-η}--±Γ\0gλx{\Rn(φ)-e\ ^ δ + η}
ΓΛ

^ τl-logλ' i{RnGΛ|Rn(φ)-e| ^
l
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For the legitimacy of this deduce from (3.e) that

^ | R n ( ( p ) - e\ < δ - η} ^ -m(δ - η/2) > - o o .
\Vn\

Let n —» oo and then η \ 0, and use the large deviation principle of (3.e), the
lower semicontinuity and compact sublevel sets of sπ, and the continuity of m(δ).
The upper bound follows without difficulty, but the lower bound emerges in the
form

lim inf -—-log Λe^x{Rn £ A} ^ —lim inf sπ(Q) + m(δ) .

\Q(φ)-e\<d-η

Thus we need to show that

lim inf s π (β) ^ inf s π (β) .
η\0 QeA° Q£A°

\Q(φ)-e\<δ-η \Q(φ)-e\£δ

Let Q' G A° be such that \Q\φ) - e\ ^ δ and sπ(Q') < oo. (If no such Q' exists,
we can stop here.) Pick P such that \P(φ) - e\ S δ/2 and sπ(P) < oo. Such a P
exists because m(δ/2) ^ m(0) < oo by assumption. Pick 0 < t < 1 close enough
to 1 so that Qt := tQf + (1 - 0 ^ lies in A°. \Qt(φ) - e\ ^ δ(l + 0/2 < <S - ?? for
all small enough 77, hence

lim inf s π (β) ^ s π ( β ) = /sπ(ρ ;) + (1 - 0s π (P) •

|β(φ)-e|«5-»ί

Let ί y 1 and then vary Qf for the conclusion.
(iv) By the upper bound of the large deviation principle of part (iii), Λ^{RΛ

G G} —>• 1 as « —> oo for any neighborhood G of J^^, which implies part (i) of the
definition of relative compactness and that the limit points of /l^{Rn G •}, for a
fixed δ > 0, are supported by Jf^ (see the remark on p. 49 of [Pa]). All the limit
points for all δ > 0 are supported by the compact set J^o,oo? hence also part (ii)
of the definition is satisfied. The last statement of (iv) follows from part (ii) since
the sets Ctf'$ converge to 3C as δ \ 0. D

Proof of Theorem 10.1. Part (i) follows from Lemma 10.3 by letting δ \ 0 in part
(iii). Part (ii) follows from Lemma 10.3(iv) because Γe*δ = Λ^(RW( )) is the image
of /t^'*{Rn G •} under the continuous map that sends a distribution on probability
measures to its expectation. D

Proof of Theorem 10.2. Suppose / is a bounded measurable function on Ω that
depends only on (σ\,x\ : i E Vn). Then

/<;*(/*)π(Λ0 = fΛ^f(fMdx) = J Λe f (K(f))π(dx)

= J Λ%(R>n(f))π(.dx) . (10.4)

Theorem 10.2 now follows as Theorem 10.1 did because the distributions Λ^{R* G

•} and Λe^x

δ{Rn G •} satisfy the same large deviation principle. In particular, the

distributions Λ^{R^ G •} concentrate on J ^ π-a.s. as first n —» oo and then δ \ 0,
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hence so do the distributions J Λe^{Rs

n G }π(dx). And by (10.4), this determines

the asymptotic behavior of Λe^'δ in the topology of Mπ'\ D
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