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Abstract: We show that the Ashtekar-Isham extension j//^ of the configuration
space of Yang-Mills theories stfj^ is (topologically and measure-theoretically) the
projective limit of a family of finite dimensional spaces associated with arbitrary
finite lattices.

These results are then used to prove that j//3? is contained in a zero measure

subset of stflΉ with respect to the diffeomorphism invariant Ashtekar-Lewandowski

measure on stf^. Much as in scalar field theory, this implies that states in the
quantum theory associated with this measure can be realized as functions on the

"extended" configuration space

1. Introduction

The usual canonical approach to quantization of a (finite dimensional) system de-
fines states as functions on a configuration space and defines an inner product of
two such functions ψ and φ through

where μ is some measure on the configuration space £. Naively applying this proce-
dure to Yang-Mills theories produces a "connection representation" with states that
are functions of the Yang-Mills connection. In particular, these states are functions
on the quotient space j//^, where stf is the space of (C1- Connections and ^ is
the group of (C2-)gauge transformations. The same is true for gravity formulated in
terms of Ashtekar variables before one imposes the diffeomorphism and hamiltonian
constraints [1,2].

A more sophisticated analysis of examples, such as scalar field theory [3-5],
shows that the domain space of the wave functions may not be exactly the classical
configuration space. Instead, some extension of Ά is required.
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In order to define an inner product for a connection representation, one ex-
pects to give J2//^, or some suitable extension, the structure of a measurable space
(by choosing the measurable sets) and to define appropriate measures. Ashtekar
and Isham described an algebraic program to construct such measures in [2].

They proposed, for a compact gauge group G, a compact extension <$&/& of
s$ l^ϊ on which regular Borel measures are well defined and are in one-to-one
correspondence with positive continuous linear functional on a certain C* -algebra
of connection observables known as the holonomy algebra 3CA. In [6], Ashtekar

and Lewandowski constructed such a Borel measure μ^i on stf/Ή that is both dif-
feomorphism invariant and strictly positive on continuous cylindrical functions. To
do so they, and independently Baez in [7], introduced the concepts of "cylindrical

sets" and "cylindrical functions" on j//^. Baez then generalized the Ashtekar-
Lewandowski measure by finding an infinite dimensional space of diffeomor-
phism invariant measures. In [6] it was also shown that the Ashtekar-Isham

space s$ l^ is in one-to-one correspondence with the set of homomorphisms
from the group of piecewise analytic hoops (i.e. based loops modulo an equiva-
lence relation defined by the holonomies) J^GXQ to the gauge group K, modulo
conjugation.

In what follows, we reinterpret some of the results of [2, 6] in terms of the
theory of project! ve limits. In particular, we consider projective limits of infinite
families of finite dimensional topological and measurable spaces associated with
arbitrary finite lattices. This theory provides an appropriate framework for studying

different properties of j//^, both from the topological and measure theoretical points
of view. Our main result is the use of this formalism to prove that the space

is contained in a zero measure subset of s$l<§ (with respect to the Ashtekar-
Lewandowski measure).

The present work is organized as follows. In Sect. 2 we recall (mainly from [8])
some aspects of the theory of projective limits of infinite families of measurable
spaces. Section 3 is devoted to reinterpreting some results of [2, 6] in the language

of projective limits. In particular we show that stf /^ is a projective limit of a family

of finite-dimensional spaces and that the GeΓfand topology on the spectrum j<
coincides with the Tychonov topology on the projective limit. While the Ashtekar-

Isham space j//^ is defined only for compact gauge groups G, the projective limit
is defined for the noncompact case as well. On the measure theoretical side we

show that the measurable space (j//^, J (^)) (where ^(Ή) denotes the minimal
σ-algebra containing the cylindrical sets #) is isomorphic to the projective limit. In
Sect. 4 we prove the main result of the paper stated above. Section 5 is devoted to
the study of the additive, but not σ-additive, measure μAL induced by μ^z, on the
(finite) algebra # of cylindrical sets of

; Cc

where ^ denotes the algebra of cylindrical sets on j//^. We show that μAL can-
not be extended to a σ-additive measure on j//^ and that the space of square
integrable (cylindrical) functions on j//^ is not complete. We also prove that the
Cauchy completion of this space is L2 (j//^, μ^,^(^)), justifying the use of the

"generalized connections" in
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2. Projective Limit Measurable Spaces

In the present section we recall, mainly from [8], the relevant aspects of a class
of measures on infinite dimensional spaces which are obtained as rigorously de-
fined limits of measures on finite dimensional spaces. This class contains the direct
product measures (on R°° for example) and the projective limit measures. First,
however, we introduce some more terminology and notation that will prove useful.

The pair (X,&) (or (X,^)), where X is a set and &(&) is a σ-algebra (al-
gebra) of subsets of X, will be called a σ-measurable (measurable) space. In the
mathematical literature, definitions of a measurable space have been given both that
require J* to be a σ-algebra and that require only that J* be closed under finite
operations. As we will be interested in a comparison of these two cases it will be
convenient to use the above terminology to distinguish between them.

We will be interested in σ — additive probability measures on ̂ , which are, by
definition non-negative, normalized and σ-additive functions on the σ-algebra $.
That is, such a measure μ satisfies:

μ(B) ^ 0 , B 6 J>, (2.10)

μ(X) - 1 , (2.1ft)

oo

Aί(U1ϊ15I) = ΣM5/), 5/e^, 5,0^ = 0, ijtj. (2.ϊc)
ι=\

Additive measures on an algebra 3F satisfy (2.1) with ^ replaced by 2F and with
only finite unions and sums in (2.1c). For a given measure μ on J% an important
question is whether or not it can be extended to a σ-additive measure on 3tL(βF\
the minimal σ-algebra that contains 3F. A necessary and sufficient condition for
extendibility is given by the Hopf theorem [8]:

Theorem 2.1 (Hopf Theorem). A measure μ on 3F can be extended to a σ-additive
measure on ^(J^) if and only if for every decreasing sequence {F/} such that
Fi e &, FI D - D Fn D with Π^i Ft = 0, we have

Hm A£(Ff) = 0 . (2.2)
-KX)

Essentially, the condition (2.2) allows an extension μ to be consistently defined
on elements of <%(^) as limits of μ-measures of sets in 3F. The triplet {{X,$),μ}
({(X,^\μ}\ where ^(^} is a σ-algebra (algebra) and μ is σ-additive (additive)
is called a σ-measure (measure) space.

The possibility of extending a measure μ on & to a σ-additive measure μ
on 38(βF} is in particular relevant to physical applications in quantum mechanics.
Recall that quantum mechanical systems are often defined by first giving a linear
pre-Hilbert space and then completing this space with respect to an inner prod-
uct. In general, if μ is cylindrical but not σ-additive, the space Jtf of μ-square
ίntegrable cylindrical functions on X (denoted through <£L2(X, ^,μ)) is only a
pre-Hilbert space. Such spaces will be discussed in Sect. 5. However, if μ is ex-
tendible to a σ-additive measure μ on (X^(βF^) then the Cauchy completion of 2tf
leads to the spaced = L2 (X,SS(^\μ) (see Sect. 5). On the other hand if μ is not
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extendible then the Cauchy completion of y>L2(X,^,μ) leads in general to a space
with state- vectors which cannot be expressed as functions on the initial space X.
This is the case in scalar field theory if one considers X = ^(ΊR3) (the Schwarz
space of rapidly decreasing smooth C°° functions on 1R3 ) and μ is a cylindrical
measure defined with the help of a positive definite function on ^(IR3 ), continuous
in the nuclear space topology (see [3, 5, 8]). As we shall see in Sect. 5 this is also
the case in Yang-Mills theory if we take Jf = <gL2(jtf/$,^ = ^,μAL), where μAL

is the Ashtekar-Lewandowski measure on j//1^. In the scalar field case the Cauchy
completion of ^^(^(IR3),^,^) gives the space of square integrable functions on

(the space of tempered distributions), while in the Yang-Mills case the
completion of ^L2(^/^^,μAL) gives the space L2(s//y,&(%\μAL) of square in-
tegrable functions on the Ashtekar-Isham space <$//& of generalized "distributional"
connections modulo gauge transformations.

Let {(X,@t),μ} be a σ-measure space. The subset Y CX is said to be μ-thick
in X if for every B G 3t such that B Π 7 = 0, μ(B) = 0. If Y is μ-thick in X then
μ induces a σ-additive measure μγ on the σ-measurable space

(Y, ΛY) , (2.3α)

where &γ = {B Π 7, B G < }̂, through

μγ(B Π 7) = μ(B\ MB G Si . (2.36)

The measure μγ is called the trace of the measure μ on 7 [8]. If 7 is not μ-thick
on X then (2.3b) is not well defined.

Note that if 7 is μ-thick in X then

so that if we are concerned only with such spaces we can restrict ourselves to 7
and μy. This is particularly convenient when the set 7 has advantages (for instance
from the "differentiable" point of view) over X . When a set 7 is μ-thick in X we
say that the support of the measure μ is contained in 7. An illustrative example
is the one given by the Wiener measure on IR^ used in the (euclidean) path
integral formulation of quantum mechanics. In this case the support of the measure
is contained in the space 7 = C°([0, 1]) of continuous functions on the interval [3].

The inclusion map from Y to X above is referred to as measurable. In general,
a map between σ-measurable (measurable) spaces

φ: X,->X2 (2.4)

is called measurable if for every measurable set B2 € ^2 the set φ~l(B2) is mea-
surable, i.e. φ~λ(B2) £ 3S\. φ in (2.4) is called an isomorphism of σ-measurable
(measurable) spaces if it is bijective and if both φ and φ~λ are measurable.

Let us now briefly review (see [8]) the construction of infinite products of
σ-measurable spaces and of (projective) limits of infinite projective families of σ-
measurable spaces. Let

λ))}λeΛ (2.5)
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be an indexed family of σ-measurable spaces. The product σ-measurable space
is, by definition, given by

with SS^ being the minimal σ-algebra for which all the projections

n^ -Pλ° ' (2.7)
(Xλ)λeλ *-+Xλo

are measurable. That is, 39^ is the σ-algebra generated by the inverse images of
measurable sets in X^ under the projections /?;.. If all the X^A\ λ G A are different
copies of the same set 7 with the same σ-algebras 3$^ = £8, then the points of
X(A) = γΛ^χe YΛ are (arbitrary) maps from A to 7:

, , _ Q Λ(z.oj
x = (xλ)λeλ', Xλ € γ

Examples are the set of all sequences of real numbers

K°°= ΠR(y)> (R(y) = R) (2-9)
7GN

and the set of all real valued functions on the interval [0,1],

R[0'1] = Π R* > (R, = R) . (2.10)

Suppose we have a σ-additive measure μ on X^ in (2.6). Let ££ be the family
of all finite subsets of A and for L G JS? let (X(L\&(L}) be the partial products of
σ-measurable spaces with

X(L} = Y[X(λ} (2.11)
λei

(2.12)

and the corresponding ^L\ Then all the projections

PL:

are measurable. Consider the family [μili^y °f σ-additive measures on X^ de-
fined by the pushforwards of the measure μ,

(2.13)

for B £ £$L, which, in the notation of measure theory is written as

μι = (pL)*μ -

This family satisfies a self consistency condition:

LcLf => μL = (pw)*μL> , (2.14)
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where pLL/ denote the measurable projections from X^L ^ to X^L\ In [8] (see the
corollary to Theorem 10.1) are found conditions for which the converse is also true:

Proposition 2.2. For a family of σ compact or complete and separable, metric
spaces every family of Borel measures that is consistent in the sense of (2.14) can
be extended to a σ-additive measure on the product σ-measurable space.

Such a measure is in fact defined by (2.13), i.e. for BL G ^L, μ(p^l(Bι)) is
defined to be just μι(Bι\ Recall that a topological space (X,τ) is said to be σ -
compact if X can be represented as a countable union of compact sets.

Notice ([8]) that a measure μ satisfying (2.13) and given on the algebra

always exists. The only question is whether μ can be extended to a σ-additive
measure μ on &^\ which is the minimal σ-algebra that contains (2.15),

For instance, in the example of X^ — IRj0'^ the question is to know when a self-
consistent family of measures {μtι,...,tn}tι,...,tn£[Q,\] on the finite dimensional spaces

(2.17)
i=\

defines a σ-additive measure on the infinite dimensional space

. (2.18)

Quite remarkably, in this example and in many others relevant to quantum field
theory the answer is affirmative, as indicated by Proposition 2.2.

An infinite product σ-measure space can also be realized as a "projective limit"
(which we will define next). However, the product space X^ is a projective limit
not of the family of spaces X^ labelled by λ £ A but rather of the family of
spaces XL = X^ labelled by L e ̂  , the set of all finite subsets of A. In general,
a projective limit space can be defined for any "projective family" of σ-measurable
spaces; that is, for any family

{(XL^L\PW}L,L>^ > (2.19)

of the following form. The set <£ is taken to be directed, i.e. partially ordered and
such that for any two elements L\,Lι £ «^> there is some L such that L\ ^ L and
LI ^ L. We will also assume that <£ does not have a maximum. Here pLL/ are
measurable projections, i.e. surjective mappings

PW : XL* ->XL L < L' (2.20α)

satisfying

PLL'°PL'L" = PLL" f°r L < L' < L" . (2.206)

Now, let (X^\ <^(J^) denote the direct product of the family {(XL,
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Then the projective limit of the family (2.19) is by definition the σ -measurable
space (Xg^g\ where

Xx C X(^ Xy = {(XL)L^ £ Xm: L < Lf => XL = Pw(xL,)} (2.21*)

and

B e &W} . (2.216)

That is, Xcf is the subset of X^^ that is consistent with the projections pw. Note
that a direct product space can also be thought of as a projective limit of the spaces
formed by taking arbitrary finite products of the factors. A family of measures
(AL)LGJ^ is said to be self-consistent if it satisfies (2.14) with L C L' replaced by
L < L' . A measure μ on ^^ always defines a self consistent family of measures
(μι)Lej^ through (2.13) and a consistent family (μz,)z,ej^ defines a finitely additive
measure on X& through (2.13) as well. A measure on X% defined by such a family
is called cylindrical. An important result is (see [8] Corollary to Theorem 10.1):

Proposition 2.3. Under the same conditions as in Proposition 2.2, a self-consistent
family of Borel measures on a projective family (2.79) defines a cylindrical mea-
sure that can be extended to a σ-additive measure in the projective limit σ-
measurable space (2.27) if for every increasing sequence

Jί = {Lt}™{ C & : Lλ < L2 < - < Ln <

with projective limit (Xjt^j^ the projection

is surjective.

3. Ashtekar-Isham Space stfl<& as a Projective Limit

Let s^l^ denote the space ^ of smooth C1 G-connections modulo the group ^ of
gauge transformations on a three dimensional analytic manifold Σ where, as in [6],
the gauge group G is assumed to be U(N) or SU(N). Following [6], we consider
the G-hoop group J^GJQ = ^ΣXQ/ ~, where ^ΣXQ is the space of piecewise analytic
loops based at XQ (see [6]) and the equivalence relation ~ is

, α ~ β if and only if H(κ,A) = H(β,A\ MA G d . (3.1)

Here, H(u,A) denotes the holonomy corresponding to the connection A and the
loop α. The Ashtekar-Isham space stf/y is a "compactification" of £#/<& obtained
as follows (see [2]). Let Γα,α E &ΣXQ denote the Wilson loop function on j//1^
defined by

TΛ(A) = T[Λ]([A]) = TrH(^A) . (3.2)

where [α] denotes the equivalence class of α in ^fGXQ, [A] denotes the equivalence
class of A in j/ /^ and the trace is taken in the fundamental representation of the
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gauge group. In the following, for simplicity, α, β will denote hoops. The holonomy

algebra fflA is the commutative C* -algebra generated by the Wilson loop functions.
The Ashtekar-Isham space j^/^ is the compact Hausdorff space that is the spectrum
[2] of ItfA in which sf/y is densely embedded [2,6,8].

Ashtekar and Lewandowski [6] obtained a useful algebraic characterization of
the space j//^. They proved that there is a one-to-one correspondence between

and the space of all homomorphisms from the hoop group <tf?GXQ to the
gauge group G, modulo conjugation. We will therefore identify these two sets and
write

A = [A0] €

[/20] = {h G Hom(3JfGXQ,G) : (/z(α))αe^Gx — (9hQ(oc)g~l)^j^Gx > (3-3)

for some g G G} ,

where 0 above does not depend on the hoop α. Notice that no continuity condition
has been imposed on the homomorphisms h in (3.3). This will allow us to interpret

(both topologically and measure theoretically) as a project!ve limit of finite
dimensional spaces.

Let JSf denote the set of all subgroups of 2f GXQ generated by a finite number
of hoops β\,...,βn that are strongly independent in the sense of [6], i.e. such that
loop representatives of the hoop equivalence classes /?/ can be chosen in such a
way that each contains an open segment which is traced exactly once and which
intersects any of the other representative loops at most at a finite number of points.
Then

S* £&&
(3.4)

S* - {group generated by βι,...,βn} C JVGXQ ,

and we write 5* = S*[βι,...,βn]. Now let Hs* =Hom(S\G)/Ad be the set of
equivalence classes of homomorphisms from S* to G under conjugation. If
£* = S*[β\,..., βn] then, as shown in [6], a homomorphism from S* to G is known
if and only if we know it on the hoops /?!,. . .,/?„ so that we have the one-to-one
correspondence

Hs* -> G"/Ad , <3.5α)

W^[h(βl)9...9h(βn)]. (3.56)

Consider now the following protective family of finite dimensional spaces

where ρs*s*> , S* C S* , denotes the mapping

p**ι: H*, -> HS* , (3.7α)
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and hs*t s* denotes the restriction of hs^ to the subgroup S* of S* . From [6]
we see that these projections are surjective. According to (2.21) the protective limit
H& of the family (3.6) is given by

C H^ = [] Hs* ,
**€* (3.8)

5* C S*' => [Λ5*] = / > < , * / ( [ Λ * ' ] ) } -

We will now show that this is just the Ashtekar-Isham space

Proposition 3.1. There is a bijective map φ

defined by

)s*€*; A 5 * = * | s * - (3.96)

Proof. Consider the space Hom(^fGXQ,G) of all homomorphisms from J^G^ to G
and the projective family {Hom(S*,G)9 ps*s*

f}s* $*'££" w^ere Ps*s*
f '•

ps*s*'(hs*f ) = hs*ι \s*9 S* C S* are surjective maps from Hom(S* ,G) to

Hom(S*,G). Let AΓ(^f) be the infinite product space and K^ be the projective limit
space of this family

S* C S* => As* = £s.s,/(λs.')} . (3.10)

We will need the following lemmas.

Lemma 3.2. TTze mα/?

0: Hom(JPGXo,G)-+K<t> ,
(3.11)

= (h \s*)s*e&

is bijective and Ad-equίvarίant, i.e. Adg o φ = φ o Adg for every g G G.

Proof of Lemma 3.2. The injectivity of φ is trivial. Let us prove that φ is
surjective. Fix an arbitrary element (/ZS*)S*EJ^ ^ ̂  Let us construct the homo-
morphism h° which is the pre-image of this element. Let α be an arbitrary hoop
and S* G & such that α G 5* (5* always exists for a piecewise analytic hoop
α [2]). Then choose Λ°(α) = ^*(α). To see that Λ°(α) does not depend on the

choice of the finitely generated group S* 3 α, let α G 5;

1 and ̂  ^e a subgroup

which contains both 5* and 5*. Then, according to the definition of K&, we have
Λt(α) - /z°?*(α) and /Λ*(α) = A° (α) which implies that /Λ*(α) - A°9*(α). We can

ύ\ ύ2 S\ °2 $1 ύl

easily show that A° constructed in this way is an homomorphism and that the map
φ is equivariant. Q.E.D.
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Lemma 3.2 implies that the map φ induces a bijective map φ\,

φ{: Hom(J^GXn9G)/Ad -> K#/Ad ,
(3.12)

Lemma 3.3. The map

Φ2([(hs*)s*£^e]) (3.13)

is bijective.

Proof of Lemma 3.3. We will first show that $2 is surjective. To do so, recall that
any element of H& is a family ([hs*])s* of consistent equivalence classes in the
sense of (3.7b). Now, choose a representative A^* from each [A^*] and construct
the subgroup C^* of G that commutes with A^* that is, let

Q°* - {g G G: Vα G S*, gh°s*(*)g-1 = A°*(α)} . (3.14)

Note that C|* is closed in G. Any closed subgroup of a Lie group is a Lie group and
any closed subset of a compact space is compact, so that C^* is again a compact Lie
group. Thus, C<ί* has some dimension ds* ^ 0 and, by compactness, some finite
number ms* ^ 1 of connected components. There is then some least value dQ of
ds* (do = mms*£&ds*) and some m$ that is the least value of ms* for which the
dimension of C?* is dr\ (i.e. mn = min^^^ /wc*) Choose some SZ with d?* — doo ύ u υ Q

and ms* = m^.
o

Now, for every S* D SQ , choose another representative A^* of [A^*] such that

hl

s. \s;= h°s, , (3.15)

and construct the corresponding CJ*:

Cl

s* ={geG: Vα G 5* ghl

s^)g~l = A^*(α)} . (3.16)

Note that Cj* C C^* and that C]* differs from C®* only by conjugation. Thus,

Cj* has dimension ds* ^ ^5* and m,s* connected components. But, since C^* is

contained in C^*, ds* ^ ds* so that C^* and C|ϊ* are of the same dimension. It

follows that they agree in some neighborhood of the identity and thus on the entire
component connected to the identity. Since CS?* D Cj* is a disjoint union of ms*

copies of this component, ms* ^ m$*. But, since C^* has dimension do, we have

ms* ^ ms* and in fact ms* — ms*. We thus conclude that Cj* = C^*.

This means that A^* is unique, since any g that commutes with A^*(α) = A^*(α)

for all α G S$ lies in Cjϊ* = Cj* and commutes with A^*(α) for all α G S*.
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Thus, no other representative of [hs*] satisfies (3.15). It now follows that for any
S*' D S* D SO*,

hl

s*,\s* = hl

s* , (3.17)

since h}

s*/\s* is the unique representative of [hl

s*] that satisfies

(hl

s., \s.)\ss =λi,,|ίo. =h°s. . (3.18)

Finally, for any S* that does not contain SQ, let S*' be any subgroup of Jf GXQ

generated by a finite number of independent hoops that contains S* and S$ (we see
from [6] that such a group exists) and let

4* =4*, I,* . (3.19)

Then the representatives (/4*)s*e^ G ([hs*])s*e& form a consistent family of ho-
momorphisms in K^ and the equivalence class of this family under the adjoint
action is a member of K^/Ad that maps to ([hs*])s*£& under the map φ2. We
conclude that φ2 is surjective.

Now, injectivity of φ2 follows in a straightforward fashion. Consider any
other equivalence class of families [(hf

s*)s*e^] ^K^/Ad that maps to the fam-
ily ([hs*])s*e& chosen above under φ2. As with the family constructed above, hl

s*

must be a representative of [h's*]. Let (A|*)s*E^ be any family in [(h's*)s*z<e\

such that /z^* = hg*. We have just seen that (h^)s*e^ ^s me unique self-consistent

family of homomorphisms that includes hl

s* and satisfies [/4*] — [hs*] Therefore,
/&!* = hl

s* and the families [(hl*)s*ey] and [(/z^*)^*^^] coincide, showing that φ2

is also injective. Q.E.D.

We complete the proof of the proposition by noticing that the bijective map φ
is given by

φ = φ20φ{ . (3.20)

Q.E.D.

Endowed with the natural topology, the spaces HS* are compact topological
spaces (see (3.6)). The Tychonov topology ττ on the product space H^ is the
minimal topology for which all the projections

Hs*
(3.21)

are continuous. It coincides with the topology of pointwise convergence in
i.e the net [h]^ — ([hs*]^)s*£^ i§ T^-convergent

[A](ϊ) ^ [A] ,
if and only if

[/Wv) -+ [As*], V 5 * G J S f , (3.22)

where the last convergence is with respect to the topology on HS* = Gn/Ad. In
this topology, the space H^ is compact (see [8, Tychonov theorem]). Let us also
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refer to the topology induced on the projective limit H& C H^ from H^ as the
Tychonov topology τ j . Then from the continuity of the projections ps*s*f, H^, is

closed in H(^\ and therefore

τ) (3.23)

is also a compact topological space. Since H^ is compact in the Tychonov topology
and stfl*§ is compact in the GeΓfand topology TGJ, it is natural to expect that the
bijective map φ in (3.9) is actually a homeomorphism. Indeed we have

Proposition 3.4. The bijective map in (3.9) is a homeomorphism

τO , (3.24)

where τGd and XT denote the GeΓfand and Tychonov topologies respectively.

Proof. First let us obtain a more convenient characterization of the topology on the
spaces HS* As mentioned above, HS* endowed with the standard topology induced
from Gn is a compact Hausdorff space. Consider on HS* the continuous functions

T?([hs*]) = 7>(V(«)) , « e 5* . (3.25)

They separate the points in HS* for the same reason that the Γα, α E 3^GXQ, separate

the points in £#/<& [2, 6]. Therefore, according to the Stone-Weierstrass theorem [9]
the algebra fflA$* obtained by taking finite linear combinations (with complex co-
efficients) and products of Ijf* is dense in the C*-algebra C(Hs*) of all continuous
functions on HS*, i.e.

J&AS* = C(HS*) . (3.26)

Using the first GeΓfand-Naimark theorem [2, 9, 10] we then conclude that the spec-

trum of JJfAs*, endowed with the GeΓfand topology (see below) is homeomorphic
to HS* . An equivalent description of the initial topology in HS* is therefore given
by the GeΓfand topology, which is, by definition, the weakest for which all the
functions T£* , α E S* are continuous.

Returning to (3.24) we see that, in accordance with (3.21), the Tychonov
topology on H& is the weakest for which all the functions T% * o π^* : H& -» C
α E S*,5* E 3? are continuous. On the other hand the GeΓfand topology on
is the weakest for which all the functions Γα, α E ^fGXQ are continuous. Since for
all α e tf GXQ,

Tχ0φ-{ = 7f oπs*, V5* : α G 5* , (3.27)

we conclude that φ in (3.9) is a homeomorphism. Q.E.D.

We now proceed to derive a measure theoretic analog of Proposition 3.4. Let
&s* denote the Borel σ-algebra on HS* so that, since the projections ps*s*r are
measurable,

is a projective family of σ-measurable spaces (see (2.19)). Let

(3.29)
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denote the projective limit σ-measurable space. In j//^ we take the measurable sets
to be generated by the class # of "cylindrical sets" used in [6, 7], i.e. the inverse
images C# of Borel sets B in Gn/Ad with respect to π^* o φ9

CBe%^ (3.30a)

CB = (πs*oφΓ\B) = {W £**/&'. [h(β\\...,h(βn)] G B c Gn/Ad } , (3.306)

where, as in (3.5), we have identified HS* with Gn/Ad with the help of the inde-
pendent hoops

Note that the complement of a cylindrical set is cylindrical, as are finite unions
and intersections of cylindrical sets so that ^ is in fact a (finite) algebra. Denoting
the minimal σ-algebra algebra containing the cylindrical sets by Jf(^), the space

(3.31)

becomes a σ-measurable space. From the definition of 38 & and ^(<β\ we see that

Proposition 3.5. The map (3.9)

~ •(H<e,»<e°) (3.32)

is an isomorphism of σ-measurable spaces.

Corollary 3.6.
(i) ^(^) and &c? are contained in the Borel algebras corresponding to the

GeΓfand and Tychonov topologies respectively. This follows from the fact
that the cylindrical sets in ^^ with open "base" B in έ$s* form a base in
the topology τj.

(ii) We call a function f on stf/y cylindrical if there exists S*£j£ such that f
is a pull back of a function/ on Hs*

f = (πs*Qφ)*f, (3.33α)

i.e.

/([*]) =/([* Is*]) , (3.336)

where f is a measurable function on Hs*. The Wilson loop functions
T*([h])= jjTrh(oc) (for G = SU(N) or G = U(N)) are continuous cylindrical
functions ([6]).
(iii) The projective limit H^ provides a generalization of the AshtekarΊsham

space s$ 1^ to the case where \he gauge group G is not compact.
(iv) There is a one-to-one correspondence between cylindrical measures μ on Ή

(i.e. additive on <6 but σ-additive on the σ-subalgebras (π^* oφ)~l(&s*))
and families of measures {(μs*)s*e&} (μs* we Borel measures on the finite
dimensional spaces HS* ) satisfying the self-consistency condition

S*CS*' =» μs*=(ps*5*')*μs*' - (334)



596 D. Marolf, J.M. Mourao

The correspondence is given by

μs* = (πs*oφ)*μ . (3.35)

Recall [11] that a Borel measure μ is called regular if for every Borel set E

μ(E) = inf{μ(V) : E C V9 V open} ,

μ(E) = sup{μ(K) : E D K,K compact} .

Also from [11, Theorem 2.18] it follows that on the spaces HS* every Borel measure
is regular. The following result (similar to [6, Theorem 4.4] and [7, Proposition 2])
holds.

Proposition 3.7. There is a one-to-one correspondence between regular Borel

measures μ on si !<& and self-consistent families of measures {(μs*)s*e&}

Proof. From (i) and (iv) we see that a regular Borel measure μ on £//& de-
fines, by restriction, a σ-additive measure on ^(^) and therefore a consistent fam-
ily of measures {(μs*)s*e£>}> Conversely let {(μs*)s*e&} be a consistent fam-
ily of Borel measures on {H$*} and μo be the cylindrical measure on # defined
by this family. The family {(μs*)s*e&} (OΓ equivalently the measure μo) defines
a positive functional on the continuous cylindrical functions / = (π^* o φ)*f on

. (336)

This functional is bounded with respect to the sup-norm

Γ,0(/)|^| |/| |oo , (3.37)

where || / \\oo= suρ/2e^^ | /([A]) |. Since the space of continuous cylindrical

functions is dense in the C*-algebra €(<$//$) of all continuous functions on
(see [6]) the functional ΓμQ can be extended in a unique way to a continuous pos-

itive (norm 1) functional on C(j//3ί) (see [9]). But in accordance with the Riesz
representation theorem (see [11]) there is then a unique regular Borel measure μ
on stf/y such that

Γ,0(/) = / dμf (3.38)

for every / G C(«s//0), where we denoted the extension of ΓμQ to C(jtf/&) with
the same letter. Regular Borel measures are completely determined if the integral
of continuous functions is known (see [11], p.41), which implies that μ and μo
coincide on #. Therefore μ is the unique (see [12]) extension of μo to j^(^) and
(as we have showed) the unique regular extension to a Borel measure. Q.E.D.

4. ,fi//^ is Contained in a Zero Measure Subset of

The present section contains the main result of this paper. For simplicity we will
use (3.32) to identify the σ-measurable spaces (stf/Ή ,&($)) and (H^,^^), so that



Support of the Ashtekar-Lewandowski Measure 597

we will consider j//3? to be the projective limit of the project! ve family of finite
dimensional spaces (3.6).

In [6] Ashtekar and Lewandowski introduced the following measure μ^i on
). Let μH be the normalized Haar measure on G and μ% and μj* the

corresponding measures on Gn/Ad and HS* (μ$* is obtained from μ% using (3.5)).
Then the (uncountable) family (μj*)s*£g> satisfies the self-consistency conditions
(2.20). The Ashtekar-Lewandowski measure μ^i is the corresponding (unique) mea-

sure on (^//^,^(¥)) satisfying

μf*

The measure μAi is σ-additive, /)///( Σ)-invariant, and strictly positive as a functional
on the space continuous cylindrical functions on j//^ (see [6]).

The space j//^ is canonically embedded in s4 ί^ [2] and is topologically dense

there [6, 10]. It is interesting to find out whether j//^ is also μAL -thick in
that is, whether jtf/Ή supports the measure μ^i We will in fact prove that this is
far from being the case:

Theorem 4.1. There exists a measurable set

Z e &(<#) (4.2α)

such that

μAi(Z) = 0 (4.26)

and
diy C Z . (4.2c)

Proof. We need the following lemma

Lemma 4.2. For every q <G (0, 1] there exists Q^ C j//^ such that

q (4.3)

and

C Q(q} . (4.4)

Proof of Lemma. The complement Q^ of Q^ will be constructed essentially
(i.e. modulo dividing by Ad) by taking an infinite product of sets consisting of
copies of G with holes cut out around the identity such that the "diameter" of the
holes decreases to zero. These copies of G are chosen to correspond to a certain
"convergent" sequence of hoops. In order to do this explicitly, choose ΓQ such that
the exponential map is one-to-one in the subset ^/ 0(0) of Lie(G), where

and

exp:Wro(0) -+ βro(e) C G , (4.5)
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that is, (9ro(e) is the image of ^ro(0) under the exponential map, where e is the
identity of the group. Here ΓQ > 0 and || || denotes the norm induced by a bi-
invariant inner product in Lίe(G) (the Killing form if G is semisimple).

Let us define a function on (9rQ(e) that measures the "distance" to the
identity e,

de : l^e) -> R+ U {0} ,
(4.6)

d e ( g ) = \ \ l n ( g ) \ \ ,

and denote by the same letter de the following extension to the whole group G:

de:G -> R+ U {0} , (4.7α)

0*e>*W (476)a e or,(e) . (4 7ό)

The yίd-invariance of || || on Lie(G) implies that de( ) is Λί/-invariant on G.
Consider now the basic sets

Aε C G ,
(4.8)

Δε = {g e G : de(g) ^ ε} 0 ^ ε ̂  r0 .

The function given by

s: [0,r0)-^R+,
(4.9)

ε

is continuous, monotonically decreasing and 5(0 ) = 1. Now let /!„ ' ί=1 be the subset
of Gn given by

. (4.10)
ι=l

Clearly we have

(4-11)

Notice that the set An is an ^d-invariant subset of G". It is the inverse image of
the set

Δ^l}"=l C Gn/Ad , (4.120)

under the quotient map π: Gn —> Gn/Ad. By the definition of the measure μ% on
Gn/Ad we thus have

μ^(A^=l) = fls(βi) . (4.13)
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Now, for each q G (0,1] choose a sequence

{ A~ > (4.14*)

such that ε } φ 0 but

lim ε\q) = 0 (4.146)
/—»oo

c(q)
11111

/—»oo

and

l-q= lim f[s(ε^) . (4.14c)

Let {βi}^ι be an arbitrary sequence of independent hoops. Then the sets

where we used (3.5) to identify Hs* and Gn/Ad, form a decreasing sequence

'
such that

(4.15c)

Now, introducing ^^({jS^}) whose complement in j//^ is

-ίί-^h"
n~14' , (4-16)

we conclude from (4.13) and the σ-additivity of μ^

(-(?)-!"

/^(Λ^αiW) - lim μAL(Λ\ ' *'=* )=l-q
n — »oo

and

] (4.17)

Let us now turn to the second part of the lemma namely the choice of Q^ satisfying

(4.3) and (4.4). Take for βt the hoops corresponding to coordinate squares (all
parallel to a fixed coordinate plane) with a corner at XQ and fix a metric. Choose

βt to have areas such that

Area(fo = sVdi , (4.18)

where {έf }^\ is the same as in (4.14) and {<5/}°?j is any sequence with <5/ — > 0.
Let

=*<*>({&.}).



600 D. Marolf, J.M. Mourao

Then, for every A G stf we have(from the smoothness of A)

H(βl9A) = 1 + F(A)εδi + 0 [ ( ) 2 < 5 ? ] , (4.19)

where F(A) denotes the component of the curvature at XQ in the plane of the squares

j. Then for every [A] £ j//^ there exists a constant c([^4]) > 0 such that

de(H(β,,[A])) < c^Aδt , (4.20)

and, since δn — > 0, for n large enough we have

de(H(βn,[A])) < εM .

Thus, for every [A] e d/<$, [A] e β(ί?).

We have therefore proved that with our choice (4.18) of βt we have

j//^ C β ί? . (4.4)

QΈX>.
Let us now prove the theorem. From (4.4) we conclude that for every q > 0,

C Q(q} C stffy (4.2 la)

and

A4i(£(?)) = <7 (4.210)

Considering now the decreasing sequence Q(l/n\ We have

C Z = Π^Lj β 1 w , (4.22)

while the σ-additivity of μAi implies that

μAL(Z) = lim μAL(QWn)) = 0 . (4.23)
Λ^oo

Q.E.D.

5. Completion of the Space of Square Integrable Functions on

Although j//^ is not a projective limit of the family (3.6) a procedure similar to
that of (2.14), (2.19)-(2.21) can be used to define a measure μAL on £//<& as was
noted in [6]. This is done by returning to the notion of a cylindrical set (3.17) but
now in j//^. That is, we introduce (surjective) projections

t...t

= [H(βl9A),...,H(βn,A)]9

where again we are identifying Gn/Ad with HS*, and take as measurable sets
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for some B £ &$* Let <& be the collection of such cylindrical sets in j//^. Note that
^ is closed under union, intersection and complementation (i.e. forms an algebra)
so that the pair

) (5.3)

is a measurable space. The measure μAL is then defined by

μAL(ns.l(B)) = μξ.(B). (5.4)

The additivity of μf* for every S* implies additivity of μAL. However, the
σ-additivity of the μ^* does not imply σ-additivity of μAL. Indeed, we have the
following

Proposition 5.1. The measure (5.4) on stf /^ cannot be extended to a σ -additive
measure on

Proof. This theorem follows easily from Lemma 4.2. Indeed consider the same
~ίε(9V

sets ΔlΊ l=l C Gn/Ad as in (4.12)-(4.14) and define analogously to (4.15) the
decreasing sequence

C stf/y , (5.5α)

JP '3 04Γ / = '3 , (5.5c)

where the sequence {j?;}^ is defined as in (4.18). Then for the same reason as

in (4.20) there is not a single [A] belonging to the intersection of all Δn ' '"*, i.e.
now we have

n^/C ' '= '=0 (5.6)

even though
/ ./eteh" \

= l - q . (5.7)

Therefore, choosing q: 0 < q < 1 we conclude from the Hopf theorem 2.1 that
μAL is not extendible to a σ-additive measure on ^(^). Q.E.D.

Let us recall aspects of integration theory for the so called (non-σ) measurable
spaces with limit structure (see [13] def. 1.5). The measurable space (X^χ) is
said to be a space with limit structure if

Fx = Uze î , (5.8)

where for all L G J&f, &L is a σ-algebra and for every L\,Lι £ =^f, there exists a
L3 such that &LI U ̂ 2 ^ ̂ I3 If me family {^L}L^^ does not have a maximal
element then & ' x is not a σ-algebra. Obviously every protective limit defined as
in (2.19)-(2.21) is a measurable space with limit structure. The converse is also
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true as we can see by taking as protective family of σ-measurable spaces (see [8]
p. 20)

(5.9)

Though this makes the class of protective limit spaces equivalent to that of
measurable spaces with limit structure the latter is more "natural" for integration
theory.

In a measurable space with limit structure (X^χ) the sets F G ̂ x are called
cylindrical sets and the map / to a σ-measurable space (Y,$) is called cylindrical
if there is a L G <g such that

is measurable. A measure μ on 3Fχ is called a quasi-σ-measure (quasi-measure
in [13]) if its restriction μι — μ ^L to every $ι C ̂  ' x is σ-additive. The triple
{(X9^x),μx}9 where (X,^χ) is a measurable space with limit structure and μx
is a quasi-measure is called a quasi-measure space. Let LQ G & be such that the
(complex- valued) cylindrical function

where 3$ denotes the σ-algebra of the complex plane, is measurable. Then a function
/ on the quasi-measure space {(X,^χ),μ} is said to be μ-integrable if it is μLQ

integrable in the usual sense

ffdμ(x)= ffdμ^x). (5.10)
X XL,

Definition 5.2. The set of square-ίntegrable cylindrical functions on the quasi-
measure space {(X,^x\μ} will be denoted through (£L2(X,^Γχ,μ).

It is easy to see that ^L2(X9^χ9μ) is a pre-Hilbert space with inner product
given by

= ff(x)g(x)dμLo(x) , (5.11)
X X

where L0 is such that both /: (AΓ,*ι0) -> (C,Jf) and g:(X,&Lo) -* (<C,&) are
measurable.

Proposition 5.3. Suppose that we are given two quasi-measure spaces
{(X9&x),μx} and {(Ύ,^Ύ\μΎ}, where

&x = UL^@L(X} and &Ύ = (JLe^L(Y) ,

and that Y C X. Let χ : 2FX — » 2Fγ be an isomorphism of set algebras given by
χ(B) — B Π 7 for B G ̂ x and such that the restriction to every ^ι(X) is an iso-
morphism of σ -algebras &$ι(X) : 3Sι(X) — >• ^ι(Y). Assume also that μy o χ — μx.
Then if μx is extendible to a σ-additive measure μx on ^(^x), the completion

Proof. Note that the map χ: 2F x — » J^y induces a one-to-one correspondence be-
tween the sets &γ of characteristic functions of sets in J^y and 3£χ of characteristic
functions of sets in 3PX. Further, since χ is an isomorphism of finite set algebras,
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this correspondence extends to an isomorphism over the linear spans of &γ and
!£χ. Finally, since χ preserves the measure of sets, this correspondence preserves
the inner product in these linear spaces. We need the following lemma.

Lemma 5.4.
(i) The completion of ^Ύ (3Cχ) is equal to the completion of ΉL2 (Y,^

(ii) The space %x is dense in L2 (

Proof of Lemma.
(i) Obviously 3£γ is a subset of ΉL2 (7, J^μy). It is sufficient to show that any

/ G ΉL2 (Y9^γ9μγ) can be represented as

/ = lim φn , (5.12)

where φn £ 3Cγ and the sequence converges in the norm of ^L2 (7, &
But for / G ^L2 (Y9^γ9μγ) there exists a L0 € JSf such that / belongs to the
(complete) space L2(Y, 3$LQ(Y)9μγ \%L (7)). Since 3fγ \@L (y)C 3KΎ is dense in

L2(Y,3SLQ(Y\μγ # L ( Y ) ) (see [12]) / can be represented in the form (5.10).

(ii) For a quasi-measure space {(X^χ\μχ} satisfying the conditions of Proposi-
tion 5.2 we have

XχC<βL2(X,PX9μx)ζlL2(X,a(Fχ\μx} , (5.13)

where clearly all the inclusions are isometric. It will be sufficient to prove that for
every set B G 38(ϊFχ) its characteristic function χB is in the I2 -closure of 3Cχ. But
this result follows easily from Theorem 3.3 in [8]. Q.E.D.

Proof of Proposition. We have an isometric isomorphism (i.e. one which pre-
serves the inner product) between the spaces &γ and 3£χ9 which are dense in

&Y = ΉL2 (Y9^γ9μγ) and L2 (X9Ά(^χ)9fίχ) respectively. The isomorphism there-
fore extends to a natural isometric isomorphism

η : VL2(Y9Pγ9μγ) -> L2 (X^(^x\μx] . (5.14)

QJED.

In the case of jtf/<& since the projections πs* are surjective we have

π-*1(fi,) = π^1(52) (5.15)

if and only if there is some S* C S* Π S2* and some B C HS* such that

Bλ = π"4(5) , B2 = π~Js*(B} . (5.16)

Since the same is true for the algebra <β of cylindrical sets in £#/<&, there is a
one-to-one correspondence between ^ and ̂  given by

(5.17)
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where φ and π$* have been defined in (3.9) and (3.11) respectively. Note that the
map χ is an isomorphism of set algebras, and that it preserves measures in the sense
that

(5.18α)

and that

fiAL°X = VAL % , (5.186)

so that the conditions of Proposition 5.3 are satisfied for this case. In this way,

the completion of %L2 (s^l^^,μAL) is L2 (rf/&9 &($\ μAi) and we arrive at the

space
Let us also show that ΉL2 (j^/^,/2^,^) (hereafter referred to as simply

is not complete. To see this, consider the sets

~ ε
An = A\l /z=1 cGn/Ad

and

introduced above, for some q < 1, as well as the corresponding characteristic func-
tions χn.

Since

μAL(ΔH) - 1 - q > 0, (5.20)

given any ε > 0 there is some N G N such that V# ^ m > N ,

II fc, - ;&» ||2= / (In - ImΫ dμAL = μAL(Δm) - μAL(Δn) < ε (5.21)
j*/&

and the sequence {χn}^\ is Cauchy. Suppose that it converges to some

which implies that / is itself a cylindrical function, / —foπs* for some function

/ on some Hs*.

Consider now the finitely generated subgroups S* = S*[βl9..., βn] used to define

Δ^1 '=1 and χn. For large enough N, no βm foτm^N lies in SQ. Thus, if S*^,
m ^ N, is the subgroup generated by hoops in S^ and hoops in SQ , χm(h) = 0 for

any homomorphism Λ, [A] G //5*/ such that de(h(βN)) ^ ε^ Let 7?w be the set of
all such [h] G Hs*ι. Then

\\Irn ~ /| |2 = / ^5*JZm - /|2oπ~^,

^fdμs*'H\f\2°πs*\ (5.22)

= ̂ )/^*ι/Ί2,
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so that \\χm - f\\2 is bounded away from zero unless / is the zero function. How-
ever, if / is the zero function then

I | χ » - / l l 2 = l | χ m l l 2 ^ « , (5-23)
so that the Cauchy sequence {χn}^L\ does not converge in ^I2 (j//^) and

is incomplete.
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