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Abstract: In this paper, we study the spectrum of the Dirichlet Laplacian in a
bounded (or, more generally, of finite volume) open set Ω e Rn (n ^ 1) with fractal
boundary dΩ of interior Minkowski dimension δ G (n — 1, w]. By means of the tech-
nique of tessellation of domains, we give the exact second term of the asymptotic
expansion of the "counting function" N(λ) (i.e. the number of positive eigenvalues
less than λ) as λ —> -foo, which is of the form λδl2 times a negative, bounded and
left-continuous function of λ. This explains the reason why the modified Weyl-
Berry conjecture does not hold generally for n ^ 2. In addition, we also obtain
explicit upper and lower bounds on the second term of N(λ).

1. Introduction

Let Ω be an arbitrary non-empty bounded (or, more generally, of finite volume)
open set in R" (n g: 1) with boundary dΩ. We consider the following variational
eigenvalue problem

—Δu = λu in Ω , .p .
u = 0 on dΩ , { }

where A denotes the Dirichlet Laplacian in Ω and the problem (P) is to be inter-
preted in the following sense: we say that the scalar λ is an eigenvalue of (P) if
there exists uή=0 in HQ(Ω) satisfying — Λu — λu in the distributional sense.

It is well-known that the spectrum of (P) is discrete and consists of an infinite
sequence of positive eigenvalues with finite multiplicity, which may be ordered as

0 < λι ^ λ2 S ••• ύ h ^ ••• (1.1)

with λk —> +oo, as k —> -foo.
We introduce the counting function N(λ), which is the number of eigenvalues

of (P) less than λ, i.e.

N(λ) = N(λ,-Δ,Ω) = # {k\λk < λ} . (1.2)
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In this paper, we are interested in the asymptotic behaviour of the counting
function N(λ) as λ —• +00. It is well known that the following asymptotic estimate
holds:

N(λ) ~ (2π)-nωn\Ω\nλ
n/2, as λ -> +00 , (1.3)

where ωn is the volume of the unit ball in R", | |Λ denotes the ^-dimensional
f(λ)

Lebesgue measure; and f(λ) ~ g(λ) as λ —• +00 means lim^_»+oo = 1.

The asymptotic estimate (1.3) was first proved in 1911 by H. Weyl [1, 2] for
smooth boundaries and then extended more recently to irregular boundaries; see for
example [3-6]. At present, we know (1.3) holds for very irregular boundaries, i.e.
for fractal boundaries (cf. [7-11]).

Here we are more interested in the asymptotic behaviour of the second term of
the counting function N(λ). In [2], Weyl conjectured that

N{λ) = (2πynωn\Ω\nλ
n/2 + O{X^), as λ -> +00 , (1.4)

that is to say the correction is of the order λ 2 .
In 1966, M. Kac [12] made a deep study of WeyΓs conjecture (1.4) and pro-

posed a number of approaches for obtaining further terms in (1.4). From then on,
many interesting works, including Seeley [13, 14], Ivrii [15, 16], Melrose [17, 18],
Hόrmander [19], Vassiliev [20] and others, appeared. By using microlocal analysis
and wave operator methods, their results showed, under a variety of geometrical
and regularity conditions, that

N(λ) = (2πynωn\Ω\nλ
n/2 - C'^dΩ^-iλ*^ + o(λ^), (1.5)

as λ —> +00, where C'n = 4(4π)ίL2~Γ ( 1 H — I , is a universal constant.

However their methods cannot be applied to the case of "rough" boundaries.
In 1979, M.V. Berry [21, 22], motivated in part by the study of scattering of

light by random surfaces, extended WeyΓs conjecture (1.5) to the case of frac-
tal boundaries (i.e. Ω is a drum with fractal boundary). He made the following
conjecture; if dΩ has Hausdorff dimension H G (n — l,n), then

N(λ) = (2πΓnωn\Ω\nλ
n/2 - Cn,HH(dΩ)λH/2 + o(λH/2), (1.6)

as λ —> +00, where H(dΩ) denotes the //-dimensional Hausdorff measure of dΩ,
and CnfH is a positive constant depending only on n and //. By analogy with the
"smooth" case, Berry [21] even suggested an explicit value of CΛ j#, i.e.

Cn,H= U(4π)%r(l + "λ] . (1.7)

Brossard and Carmona [23] (1986) constructed a number of counter-examples
to (1.6) which proved that Berry's conjecture could not be true. They suggested that
the Hausdorff dimension H should be replaced by the interior Bouligand-Minkowski
dimension δ (or the interior Minkowski dimension for simplicity) of the boundary
by obtaining one-and two-sided estimates (expressed in terms of δ) for the asymp-
totic second term (as t —> 0 + ) of the partition function Z(t), the trace of the heat
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semigroup etΔ. Indeed, in [7-11], a partial resolution of the modified conjecture
(1.6) has been proved by showing that

N(λ) = (2π)~nωn\Ω\nλ
n/2 + O(λδ/2), as λ -> +oo . (1.8)

This means that the interior Minkowski dimension is more appropriate than the
Hausdorff dimension as a measure of the "roughness" of the boundary dΩ.

In this paper, we will study the modified Berry conjecture (1.6), which has
also been called the "modified Weyl-Berry conjecture." The plan of the paper is as
follows: In Sect. 2 we introduce the modified Weyl-Berry conjecture and its weaker
form and state our main results. From these results, one can easily understand the
reason why the modified Weyl-Berry conjecture does not hold generally for n ^ 2.
At the same time, our results also imply that the weaker form of the conjecture
might be true. The proofs of the main results are given in Sects. 3, 4 and 5. Finally
several examples, including the examples recently reported in the literature, are
discussed in Sects. 7 and 8.

2. Concepts and Main Results

Let us first give the concepts of the interior (Bouligand-) Minkowski dimension and
measure of dΩ. Given ε > 0, define

Ωι

ε = {x e Ω I d(x,dΩ) < ε} , (2.1)

where d(x, dΩ) denotes the Euclidean distance of x to the boundary dΩ. The set Ωι

ε

is called the interior c-neighborhood of dΩ. For / ^ 0, let

μ*(l9dΩ)= Urn sup ε~{n-l)\&ε\n , (2.2)
ε—•O-l-

μ*(l,dΩ) = Urn inf ι-(n-*\tit\n . (2.3)
ε-*0+

The interior Minkowski dimension of dΩ is defined as:

δ = ίnf{leR+ |μ*( 0}

= sup {/ e R+ \μ*(l, dΩ) = +00} . { ' )

Observe δ G [n - \,n] and μ*(δ,dΩ) e [0,-f 00]. On the other hand, if H is the
Hausdorff dimension of dΩ, then we know H g δ. Further, if δ is the interior
Minkowski dimension of dΩ and

0 < μ*(δ,dΩ) = μ\δ,dΩ) < +00 ,

we say that the boundary dΩ is interior (5-Minkowski measurable, and denote by

μ(δ,dΩ)= lim ε-{n-δ)\Ωi\n , (2.5)
ε-+0+

the interior <5-Minkowski measure of dΩ.
Now, the modified Weyl-Berry conjecture (see [23, 10, 24-26, 29]) can be

stated in the form:

N(λ) = (2π)-nωn\Ω\nλ
n/2 - Cn,δμ(δ,dΩ)λδ^2 + o(λδ/2) , (2.6)
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as λ —> +00, where δ G (n — l,n) and Cn^ is a positive constant depending only
on δ and n.

Lapidus-Pomerance [24, 25], under the so-called asymptotics condition, proved
that the modified Weyl-Berry conjecture (2.6) is true for the case n = 1.
Nevertheless several examples (see [26-29]) have suggested that the conjecture
(2.6) might be false for n ^ 2. Therefore it is natural to consider in a more general
context the second term of N(λ), namely under the condition of

0 < μ*(δ,dΩ) ^ μ*(δ,dΩ) < +00 . (2.7)

Conjecture (2.6) is then modified as

CnJμ*(δ,dΩ)λδ/2+o(λδ/2) S (2πynωn\Ω\nλ
s/2 - N(λ,-A,Ω)

as λ —> +00, where μ*(δ,dΩ) (μ* (δ, dΩ)) is called the interior (S-Minkowski upper
(lower) content of dΩ and Cn^ and C'n δ are two positive constants depending only
on δ and n.

Notice that inequality (2.7) implies that dΩ has interior Minkowski dimension δ.
We call the conjecture (2.8) the "weaker form" of the modified Weyl-Berry con-
jecture (2.6), (cf. [10, 24, 25, 26]).

In order to prove the conjecture (2.8), we first follow the usual method of
constructing a sequence of finer and finer tessellations of Rπ (i.e. the Whitney
covering) by cubes {Qk

ξ} ξ£zn. That is, for each k, {Qk

ξ} ξezn is a tessellation of Rn

into a countable family of congruent and non-overlapping open cubes with sides of
length bk, such that

R"= UQf

By finer and finer tessellations we mean that bk+\ < bk and bk tends to zero as k
tends to infinity. Note that the construction of the tessellations always starts at the
origin. This method enables one to determine the influence of Ω and especially the
influence of the irregular fractal nature of its boundary dΩ.

For a sequence of given tessellations of Rw, the tessellation of Ω is defined by
induction on k as follows:

Ao = {ξ G Z n I Q\ C Ω} ,Ω'O = U Q% and Ω"o =

Ax = {ξ G Z n I Q\ C Ω"o} ,Ω', = Ω'o U ( U β{ ] . and Ω", = Ω\Ω^

= {ξeZ"\Qk

ξ(Z ΩVi},&k = Ω*-i U ( U 0M . and Ω\ = Ω\Ω\

We denote by Ω'^ the "limit" of Ω'k as k —> +00, and correspondingly

N(λ, — zl Ω'^) and N(λ,—A,Qkξ) the counting functions for Ω'^ and g | respectively.
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If φ(λ) = (2π)-nωn\Ω\nλ
nl2 (or φoo(λ) = (2π)~n ωn\Ω'^{nX"'1) is the first term (i.e.

Weyl term) of N(λ) (or Λ ^ - z l , ^ ) ) , we call

= φ(λ)-N(λ,-A,Ω), (2.9)

</ΌOU) Ξ Φ o o α ) - N(λ, -A, Ω ^ ) , (2.10)

the remainder terms of iV(A) and N^—Λ.Ω'^). Furthermore if δ e (n — \,ή\
and μ*(δ,dΩ) is finite, then we know (cf. [10]) that \j/(λ) (or ̂ {λ)) G O(λδ/2).
Observe that |Ω|n = \Ω'k\n + \Ω"k\n, and |Ω\| W -> 0 if <S G (n - \,n) and & -> -foo;
this implies that, for ί G ( n - l,w)5 we have |Ω|n = lΩ'^^ and φ(λ) = φoo(^)

Our first main result is concerned with the upper bound on the second term
of the counting function N(λ). Here we shall consider the case when the interior
Minkowski dimension δ £ (n — \,n] and μ*(δ,dΩ) < -foo. We have the following
result:

Theorem 2.1. Let Ω be an arbitrary non-empty bounded {or, more generally, of
finite volume) open set in Rn(n ^ 1) with boundary dΩ. Suppose that the interior
Minkowski dimension of dΩ, δ e (n — l9ή] and μ*(δ,dΩ) < +00. Then for any
a0 G (0,1) we have

φ(λ)-N(λ,-A,Ω) ^ Cn,δ(ao)μ*(δ,dΩ)λδ/2 + o(λδ/2) ,

as λ —> +00, where

ωnn
12^ (2.11)

is a positive constant depending only on δ, n and «o

In the proof of Theorem 2.1, we shall let b^ = a$ in the tessellation of Ω
(see Sect. 3 below) and call ao the size_of the tessellation. Observe that φ(λ) —
N(λ,—A,Ω) is independent of ao, and Cn^$(ao) —> +00 if δ G (n — \,n) and a$

tends to 0 or 1. Sometimes it is convenient to choose «o — \ (i e. the mid-point of
(0,1)) (cf. [7-10, 27, 28]). However one can easily see that the optimal constant
can be obtained by taking the minimum of the right-hand side of (2.11) over ao G

(0,1), i.e. Cnδ = Cntδ(a%) = inf'aoem)C»,*(*<>), where α* - (n - δ)^=^ is the
d —

unique root of the equation -—Cn s(ao) = 0 in (0,1). This implies that by choosing
da0

«Q = (n — (5)ί>-(/?-)) as the size of the tessellation of Ω, we should be able to obtain
the optimal upper bound estimate for the second term of N(λ). Actually we have
the following obvious corollary:

Corollary 2.1. Under the conditions of Theorem 2.1, if δ G (n — \,n), we have

φ(λ)-N(λ,-A,Ω) S C'nJμ*(δ,dΩ)λδ/2+o(λδ/2),

as λ —> -foo, where

n'^(n-δ)tz^(l+δ-n)-1+(2π)-"ωnn'^r (2.12)

w a positive constant depending only on δ and n.
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Secondly, we give a necessary condition for the weaker form (2.8) of the modi-
fied Weyl-Berry conjecture to be valid. Actually we need the following asymptotic
hypothesis:
(Cl) For any fixed αo G (0,1), the size of a given tessellation of Ω, there exists a

positive constant c, depending only on δ and n, such that b%(#Ak) ^ c, as
k —» +oo, (where bk — ak

0).
We have

Theorem 2.2. Lei « ^ 1, < 5 G ( « - 1,«). // the conjecture (2.8) (i.e. the weaker
form of the modified Weyl-Berry conjecture (2.6)) holds, then the asymptotic
condition (Cl) is certainly satisfied.

The next question to ask is; how to estimate the lower bound on second term
of N(λ)Ί As is well-known, this problem is rather complicated. In order to make
the problem more tractable, we introduce a further asymptotic condition as follows:

(C2) There exists a suitable tessellation of Ω, such that

φ(λ) - φooiλ) = o(λδ/2\ as λ -» +oo .

To obtain an explicit lower bound for the second term of N(λ), we still let
bk = a$ (although it is not necessary in condition (C2)) in the tessellation of Ω.
Our next main result is the following:

Theorem 2.3. Let n ^ 1, the interior Minkowski dimension of dΩ, δ G (n — 1,«],
μ*(δ,dΩ) < +oo and there exists a suitable tessellation of Ω (i.e. especially here,
there exists a suitable size a0 in (0,1)), such that the conditions (C2) and (Cl)
are satisfied. Then

φ(λ) - N(λ,-Δ,Ω) ^ Cn>δλ
δl2 + o(λδ/2\ as λ -> +oo ,

where

C u > £ [ 1 + ( < , « - ! _ i ) - i ] / O r a 6 ( 0 , 1 ) ,
π

Ci } i > — /« ί/ze cα.ye « = 1i} i > — /« ί/ze cα.ye « = 1 (2 13)

- I ) " 1

for δ e ( n ~ l,/i),/ι ^ 2, and Cn,n = cc« Q j [l - ^ + ε " ] * .

Here c > 0 is the constant appearing in (Cl) and εn ^ 0, cn > 0 are two con-
stants depending only on n (more precisely εn G [0,« — 1]).

If there exist two positive constants c\ and C2, such that ci/(/l) ^
as 1-^ +oc, we denote / ( I ) ~ ^(/l) as λ —> +oo. From the results of

Theorem 2.1 and Theorem 2.3 directly, we have the following corollary:

Corollary 2.2. Under the conditions of Theorem 2.3, we have

φ(λ) - N(λ, -A, Ω) « λδ/2, as λ -* +oo , (2.14)

e constants c\ and c2, appearing in "^", depend only upon n and δ.
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It is obvious that, under (Cl) and (C2), the weaker form (2.8) of the
^-dimensional modified Weyl-Berry conjecture (2.6) has been proved directly from
Corollary 2.2. Indeed, we only need the weaker conditions (i.e. δ € (n — \9n],
μ*(δ,dΩ) < +oo) in Corollary 2.2. At the same time we have also given explicit
values for C'n δ (see (2.12)) and Cn^ (see (2.13)). On the other hand, we know
that the condition (Cl) is necessary (cf. Theorem 2.2 above).

It is easy to see that the asymptotic hypothesis (C2) here is strictly weaker than
the asymptotics hypothesis (HI) which appeared in [29]. On the other hand, (C2)
is always satisfied in the case of n = 1 and φ(λ) ~ ι/Όo(/l) as λ —•> +oo for n ^ 2.
This is because a 1-dimensional open cube is just an open interval, so one can
always choose the tessellation of Ω to be Ω itself (also see Sect. 6 below). However
here, we are unable to give an easy way to check (C2) in the case n ^ 2; this is
a possible weakness of the paper. In Sects. 7 and 8, we give several interesting
examples of n ^ 2, in which (C2) is satisfied (in fact (C2) is always satisfied in
nearly all the examples we know in the literature). Recently Fleckinger-Vassiliev
[27, 28] constructed an interesting example in R2 (cf. Example 8.3 below) and
gave the exact second term asymptotics of N(λ) for their example, in which they
actually disproved the modified Weyl-Berry conjecture in case n — 2. It is more
interesting here, under the condition (C2), that by using the tessellation method
and the main idea of [27, 28] we are able to deduce the exact second term in the
asymptotic expansion of N{X) for rather general cases, which suggest a satisfactory
explanation of why the modified Weyl-Berry conjecture (2.6) does not hold for
n 7> 2. Actually our next result (i.e. Theorem 2.4) is an extension of [27, 28].

Let us first extend the definitions of bk and #Ak to negative integer k as follows:

bk = bZι

k, #Ak = cb~\ (c > 0 a constant) for k ^ - 1 . (2.15)

Next we define

f"k(λ) = [(2πynωn(bkλ
1/2γ -N(λ,-Δ,φ] . (2.16)

Furthermore we assume that the rate of convergence of bk —> 0 is fast enough so
that

2 > * f " ( " " 1 ) < + ° ° > δ e ( n - l,/ι] . (2 .17)

Then we have the following main result:

Theorem 2.4. Under the assumptions of Theorem 2.1; if the conditions (C2) and
(2.17) are satisified, then

φ(λ)-N(λ,-A,Ω) = Fn(λ)λδ/2+o(λδ/2\ as λ -+ +oo , (2.18)

where

F n { λ ) = £ ( # A k ) f n

k ( λ ) λ - s / 2 , λ > 0 (2.19)
k= — oo

is a well-defined, positive, bounded and left-continuous function of λ; furthermore
its set of points of discontinuity is dense in R+.

In the particular case of a tessellation of exponential size bk — d^ for some
αo G (0,1) the result of Theorem 2.4 gives

δ/ o(λδ/2), as λ -> +oo , (2.20)
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. logλ — llogπ
where y = —— , and

2log(l/a0)

— ί 1 \ δ +°° Λ
Fn(y) =[-) Σ (#Ak)aQ

yfn

ktfa-2y) (2.21)

is a well-defined, positive, bounded and left-continuous functioin of y and the set
of points of discontinuity for Fn(y) is dense in R.

It is obvious that if the positive limit of Fn(λ) (or Fn(y)) does not exist as
λ —• +oo, then Theorem 2.4 tells us that the modified Weyl-Berry conjecture (2.6)
is false. In the particular case, where f%(λ) — hn(π~ιbkλ1^2), with

Kin) = [2-nωnr
n

k - N(n2b~2rl -A,β*)], rk = ^λι/2 , (2.22)

formula (2.21) becomes

Fn{y) = - ) Σ (#Λk)aδ

o

yhn(ak

o-
y) . (2.23)

Further, if there exists a constant c > 0, such that

δk (2.24)

then we can choose the same constant c in the definition of #Ak for A: ^ —1 (see
(2.15)). We can then easily deduce that

Fn{y) - (-) Σ ca-δ{k-y)hn{ak~y), as y -> +oo (2.25)

Since A: — jμ = (A: + l) — (jμ+1), Fn{y) is equivalent to a 1-periodic function. This
means that the limit of Fn(y), as y —> +oo, does not exist, which suggests that
the modified Weyl-Berry conjecture might be false. In Sect. 8, we study several
examples under the condition #Ak— ca^δk, which actually explains the reason why
the modified Weyl-Berry conjecture (2.6) is not true in the case n ^ 2.

Remark. 2.1. It is worth pointing out that there is not any restriction on μ*(<5, dΩ) in
our results here. We shall see in Sect. 6 that condition (Cl) implies μ*(δ,dΩ) > 0.

Remark. 2.2. Lapidus-Pomerance [25, 26] proved the conjectures (2.6) and (2.8)
in the case n=l, δ G (0,1). Here our results give proofs for n ^ 2. As is well
known, there are essential differences in this matter between the cases of n = 1 and
n ^ 2. Furthermore our results include the particular case of δ — n, which is a new
one even for n = 1.

Remark. 2.3. It is worth stressing that we do not make any assumption of self-
similarity (or, more generally, self-alikeness) in the sense of Mandelbrot [30]
about dΩ.

Remark. 2.4. The results of this paper also suggest an almost satisfactory answer to
the main drawback of Proposition 3.3 in Brossard-Carmona [23, pp. 115], where
they were unable to prove that the constant Cn^ is finite.
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Remark. 2.5. Our condition (C2) is essentially similar to the asymptotic condition
(4.10) in Lapidus [34], so our results actually have given a partial resolution of
conjecture 3 in [34].

3. Proofs of Theorem 2.1 and Theorem 2.2

Let Qb be an ̂ -dimensional cube with side length b; we know that the positive
eigenvalues of the Dirichlet Laplacian problem for Qb are given by

π2b~2(q2 + q\ + • + q\\ with ί ; € N , l g y ^ » . (3.1)

Then

N(λ,-A,Qb) = # \(quq2,...,qn)eNn\Σq2 < ί-λ λ\ . (3.2)
{ J=ι W j

This is the number of positive lattice-points in an ̂ -dimensional ball with radius

r = -λ1'2. We define
π

pn(r) = N(π2b~2r2, —A,Qb) = # < (quq2^-^qn) G NM |Y"q2 < r2 \ . (3.3)

I >=' J
It is well known (cf. Gauss [31]) that there exists a positive constant dn, which

does not depend on r, such that

0 < 2~nωnr
n - pn(r) < dnr

n~\ for n ^ 1, r > 0 . (3.4)

Let

then
0 < cn(r) < rfn, for /i ̂  1, r > 0 . (3.6)

More precisely, we know from [29, Lemma 3.1] that

0 < cn(r)rn~ι < π ^ O +π)-^rrn~\ for r ^ - . (3.7)
π

Furthermore, we have

Lemma 3.1. cn(r) is a piecewise smooth, positive and bounded function in R+. If
there exist n strictly positive integers q\,q2, ,qn, satisfying Ϋ,n

j=ι q2 = r2, then
r is a point of discontinuity of cn(r).

Proof From (3.6), cn(r) is positive and bounded. It is obvious that

ί θ when r ^ φt ,

1 when φi < r ^ y/n H- 3 .

Hence r = Λ/« is a point of discontinuity of ^«(r). Similarly whenever there exist
n strictly positive integers qj(l :g j ^ n) such that J ] " = 1 ̂ ] = r2, r is a point of
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discontinuity of pn(r). Thus pn(r) is a piecewise constant function, which implies
that cn(r) is a piecewise smooth function in R+ and Lemma 3.1 is proved.

Proof of Theorem 2.1. Observing Ω'L C Ω for any 1 ^ 0 , then by the monotonicity
of the counting function, we have

N ( λ , - A , Ω ) ^ N ( λ , -Λ,Ωf

L), V Z ^ O .

This means that for any L ^ 0,

φ(λ) - N(λ, -A, Ω) S φ(λ) - N(λ, -A, Ω'L) = (2π)~nωn\Ω'L\nλ
n'2

- N(λ, -A, Ωr

L) + (2π)-Λωπ[|Ω|Λ - \Ω'L\n]λn/2 .

Using the Dirichlet-Neumann bracketing method, or, more generally, by the
results of [10, Lemma 4.2] and [32, XIII. 15, Prop. 3], we know that

(2πrnωn\ίϊL\nλ
n/2 -N(λ,-Δ,CΪL) = Σ(#Ak)[2~nωnr

n

k - pn(rk)] ,

where ?> = —λ 1 ^ 2 and pn(rjc) is defined by (3.3).
π

By using the estimate (3.7), we have

Σ(#Ak)[2~nωnr
n

k - pn(n)] ^ π ^ ( l + πfr E ( # ^ K " 1 .

On the other hand, we know that

ε-{n-δ)\Ω% ^ μ*(δ,dΩ) + o(l), as ε -> 0 4- .

Taking εk = y/nbk, bk = a\ (α0 € (0,1)), then Ω"k C Ω[k and

where ok —> 0 as k —> +00. Hence we have

#Ak ^ — Z?̂  [jU*(c),3ί2) + oyt] . (3 $)
0̂ J

Consequently

—δ

A:=0
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As in [29], we always take L ~ — —-. This is equivalent to λ1^2

λ ~ %2L- It is obvious that λ —> -foo is equivalent to L —> +00. Hence

Σ
£=0

""1

λ δ / 2 -
k=0

Taking L — k = / and observing that δ > n — 1, then

L L 1

ΣK ] = ΣK ] ^ -—T-
k=o 1=0 1 — a0

On the other hand, we have

L

k=0

n-X L

k=0

591

1 or

(3.9)

where δ > n — 1 and L

/=0

. Furthermore we can prove that

as A -> +00 .

Actually we have

Lemma 3.2. Le/ x0 ^ (0,1),

L

/=o
0 as +00 . (3.10)

Proof. Since OA; —» 0 as A —> +00, then for any ε > 0, there exists M > 0 such that
|OL_/| < c for L - I ^ M. Thus

Σ χ'o
l=L-M+\

L

1=0

L-M

Σ41=0

Since x^~M+ι -> 0 as Z -> +00; (3.10) is proved.
From (3.8), (3.9) and Lemma 3.2, we have

(2π)-"ωn\Ω'L\nλ^2 -
1

π

δ,dΩ)λδ/2

n — δ

l - ad

0-
n+χ

) as λ —> H-oo .

(3.11)
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Next, we have 0 < | β | π - \Ω'L\n = \Ω"L\n ^ \Ω{L\n, εL = y/nbL9 thus

\n - \Ω'L\n) S εΓδ[μ* (δ9dΩ) + oL] . (3.12)

Because λ111 ~ fr[ι, we obtain

(2π)-"ωn[\Ω\H - \Ω'L\n]λn/2 g (2%ynωnri^bn

L~bλnl\μ* (δ,dΩ) + oL]

~ {2πynωnrΓ^ μ* (δ,dΩ)λδ/2 + o(λδ/2)9 as λ -> +oo . (3.13)

Thus combining the estimates (3.11) and (3.13), we get

φ(λ) - N(λ) ^ Cn,δ(a0)μ* (δ,dΩ)λδ/2 + o{λδl2\ as λ -+ +oc , (3.14)

where the computable positive constant Crt?^(α0) is given by (2.11), which depends
only on n, δ and αo This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. If there exists a size of the tessellation of Ω,ao 6 (0,1) for
which condition (Cl) is not satisfied, we know that there exists a "subsequence"
bδ

k(#Ank) —» 0, as k —> +oo (where bnk — a^). Because {Ω'nk\ is also a tessellation
of Ω, we can assume that

#Ank = ok b-f , (3.15)

w h e r e Ok —•> 0 as & —> -f-oo.

On the other hand, we know that

+oo b χ 1/2

Σ ( # ^ ) [ 2 " Λ ω Λ r ; . - pn(rnk)], rnk = - ^ ,
π

= φoo(λ) for < 5 € ( n - l , n ) and 2 - w ω n r Λ -
pn(r) > 0 for any r > 0 (see (3.4)). Then

φ(λ)-N(λ,-Δ,Ω) ύ Έ{#Ank)[2-nωnr
n - Pn{rnk)]

k=0

+oo

S Σ(#^/)[2""ω Λ r? - />„(>•/)] , (3.16)
/=o

where we may take #Aι = oιbjδ and bj = aι

0 for any / £ Z + and o/ —>• 0 as / —>
H-oo. Now write

+oo L

Σ(#^/)[2- Λ ω n r f - Λ ( Γ / ) ] - Σ ( ^ / ) [ 2 - M ω r t r ? _ ^ ( r / ) ]

/=o /=o

+ Σ (#A,)[2-nωnr
n

! - pn(r,)],
l=L+l
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where L ~ — •—- Thus we have
2/n(l/α0)

E(#^/)[2-«ωrtr? - pn(n)] ύ( )
7=0 \ πJ 1=0

+ I
πJ 1=0

By means of Lemma 3.2, we know that

E ( # ^ / ) [ 2 " ^ r ? - Λ (r/)] - o(A^/2), as 2 - , +oo . (3.17)
/=o

Secondly pn(ji) = 0 for I ^ L, thus we obtain

Σ (#^ί/)[2- Λ ω n r?-^(r / )]- Σ Oι(2πynωnlή-δλ^-λ^2

l=L+\ l=L+l

+oo

^ 2 ^ y 1

which implies that

Σ (#^/)[2-wωwrf - pn(n)] = o{λδl2\ as A -> -foo . (3.18)

Combining (3.16), (3.17) and (3.18), we obtain

φ( l )-7V(A,-J ,β) g o(A5/2), as / l - ^ + o o , (3.19)

which means the conjecture (2.8) does not hold and Theorem 2.2 is proved.

4. Proof of Theorem 2.3

Without loss of generality, we can assume that condition (Cl) is of the form

bδ

k(#Ak)^c for all £ ^ 0 . (4.1)

Otherwise we can use another small constant instead of c.

Proof of Theorem 2.3. Let us first consider the case of n — 1. Now

φ(λ) - N(λy -A, Ω) = φoo(λ) - N{λ, -A, Ω^) + (ψ^λ) - ψ(λ))

From condition (Cl) and noting that p\(rk) = 0 when k ^ L, we have

' Pι(n)] ^ Σc b;d[rk - Pι(rk)] + Σ c
k=0 4=0 k=L+l
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where L ~ ^Ί ,Λ ,—-. Consequently
2//i(l/fl)

}λ-hδi2 ~ Σ[n - PM)M)L-k λδ'2.

From the estimate (3.4), we have

0 < Σίn - Pι(n)]aδ

0

{L-k) ^ Σ4ι < +oo , as L -+ +oo ,
A:=0 /=0

which implies that there exists a constant c ; > 0 (where c' > rL ~ - ) , such that
π

J > ^-^[r^ - Pι(rk)] ^ cc' λδ/2 , as λ - +oo .
k=0

On the other hand, if δ e (0,1), then

k=L+\ πk=L+\ π

From this we obtain

φ(λ)-N(λ)^ \ccf + ^(aδ

Q-1 - iyι]λδ/2 + o(λδ/2% as λ -* +oo . (4.2)

Next, if w ^ 2, from (3.5) and (3.6) it is obvious that the positive bounded
function cn(r) is at most polynomial decreasing as r —» +oo (cf. [31, 33]). Thus
we can choose two suitable constants εn ^ 0 (more precisely εn G [0,n— 1]) and
cw > 0, depending only on n, satisfying

inf(cn(ry») ^ cn > 0. (4.3)

This implies that

cn(r)rn-χ = 2-wωwr" - /?Π(r) ^ cnr
n~χ-&\ for n ^ 2, r ^ - . (4.4)

π

From (C2) we know that

φ(A)-7V(l,-zl)Ω) = φ o o α ) - Λ f α - Λ Ω /

0 0 ) + 0 ^ / 2 ) . (4.5)

Using the same method as in Sect. 3, we have

AMoo) = Σ(#Ak)[2-nωnr
n

k - pn(rk)]
A;=0

+00
+ Σ (#Ak)(2-"ωn)rn

k , (4.6)
k=L+\
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where rk — , L ~ —- and pn(n) = 0 for k ^ L. Using (4.4), we
π 2ln(\/ao)

obtain

Vπ/ it=0

On the other hand, if (5 £ (« — l,n), then

+ f (#^ t)(2-"ωBK ^ (2πΓ"ωBc
(4.7)

Hence Theorem 2.3 is proved.

5. Proof of Theorem 2.4

From (C2), we have

φ(A) — N(λ) = φoo(^) — N(λ, —Δ^Ω1^) + φoo(λ) — ι/̂ (A)

= φoo(^) — ̂ ( ^ ? - ^ ? ^ i o ) + o(λδ/1), as /I —> +cx) .

By using the Dirichlet-Neumann bracketing method, we know that

+oo - 1

φO0(λ)-N(λ,-Δ,Ω'00)= Σ (#Ak)f"k(λ)- Σ (#Ak)f"k(λ). (5.1)

Here

0 < Σ (#Ak)fn

k(λ) < dn Σ cbtJ-^) λ1^ . (5.2)
k=-oo k^-oo \ π

By taking k — —j, we have

From the condition (2.17), it follows that

- 1
' = nΠδ/2

(53)

(#Ak)fn

k(λ) = O(λ~) = 0(λd/2), as λ -> +00 , (5.4)

which proves (2.18).
Secondly, from (2.16), (2.19), (3.4) and the fact that

φ(λ) - N(λ) e O(λδ/2\ δe(n-l,ή\,
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it follows that Fn(λ) is well defined, positive and bounded. Next, from Lemma 3.1,
we know that the function f%(λ) (and so Fn(λ)) is left-continuous with discontinuity
in λ e R+ , satisfying

- ^ Y = Σ ί ? k€Z, 9 , € N , lύjύn, (5.5)

or equivalently

Taking
y = inλeR, q\ = q2 = = qn = q , (5.7)

fl(ey) is discontinuous at those _yGR, where

y = -2lnbk + 2 l n π + lnn + 2lnq, k e Z , g G N . (5.8)

For any given λo G R+, define xo — Inλo. Observe that

ϊnb-k —> H-oc ask-^+oo,

and so we can choose k e N, large enough, so that

—2lnb-k + 2/«π + Inn < xo .

By choosing q^, the largest positive integer, for which

yk = —2lnb-k + 2//zπ -\- Inn -\- 2lnqk S χo •>

then
0 ^ x o - ^ < 2ln(qk + \)-2Inqk = 2ln(l+qϊι). (5.9)

Observe that ^ — > + o o asA:-^+oo implies

j ^ -^ *o as A: —> +oo , (5.10)

or equivalently
λk = eyk -> ^xo = Ao, as * -> + oo . (5.11)

Hence the set of points of discontinuity for Fn(λ) is dense in R+. Theorem 2.4 is
thus proved.

6. Remarks on the Condition (Cl)

Let « = 1, Ω be an (non-empty) open subset of R with finite content |Ω|i and
fractal boundary dΩ of interior Minkowski dimension δ e (0,1). We write Ω as
the union of its connected components:

Ω=\JIj, (6.1)
j=o

where the open intervals Ij are pairwise disjoint and of length lj.
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Without loss of generality, we assume that

/o ^ l\ ^ h ^ ' ' έ h ^ > 0 , and Urn /,• = 0 ,
y—>

where the "lengths" /7 are repeated according to their "multiplicity, denoted by
#Aj" Hence we can rewrite Ω as

+oo

Ω = U (#4t)/* , (6-2)
£=0

where {ϊk}keZ+ is a "subsequence" of {/y}/GZ+, with "lengths" {7jt}*€z+
(C{lj}jez+) and

/o > /i > > h > > 0 , Urn 7* = 0 .

Here we still assume there exists a constant a0 e (0,1) (the size of the tessellation)
such that ίk = a\.

Since /# are one-dimensional open cubes with multiplicity #Ak, condition (C2),
as claimed in Sect. 2, is certainly satisfied. Consider condition (Cl); we have the
following result:

Proposition 6.1. When n— 1, δ e (0,1), the following conditions are equivalent:

(i) #Ak ~ Ik , as k —» + oo .
(ii) Condition (Cl) holds and μ*(δ,dΩ) < + oo .

(iii) Ij w y~ 5, as j -+ +oo .
(iv) 0 < μ*((5,3Ω) ^ μ*(δ,dΩ) < + oo .
(v) φ(λ) - #01) « ^ / 2 , α^ 2 -^ + oo .

Proof. From [25, Theorem 3. 13], we know that the conditions (iii), (iv) and (v) are
equivalent. On the other hand, by Theorems 2.1, 2.2, 2.3 and the estimate (3.8),
we can easily see that (v) implies (i) and (ii), and (ii) implies (i) and (v). It
only remains to prove that (i) implies the other conditions. Here we prove that (i)
implies (iii).

Since

( a ~ δ ) k + ι - 1 = ( α 0 " 5 - 1 ) ( 1 + a~δ + a^23 + ••• + a ^ k δ ) ,

we obtain
1 + a~δ + a~2δ + • + a~kδ « a~kδ, as k -> + oo . (6.3)

Without loss of generality, on taking j = j(k) = (#A0) + (#Aχ) + h (#Ak)
—> + oo, as k —> 4- oo, we know that lj = 4, and / / + 1 = 4+i

If (i) holds, then

7 « 1 + β0"^ + α0"
20 + + a~kδ « a"**, as t -> + oo , (6.4)

and so
/yyi « ίfcfl̂ * - 1, ij+iU + 1)3 « αo/it^* = «o , (6.5)

and so condition (iii) is satisfied.
From Proposition 6.1, we have the following obvious corollary.

Corollary 6.1. Let n = 1, δ G (0,1) and μ*(δ,dΩ) < + oo. Then condition (Cl)
is equivalent to μ*(<5, dΩ) > 0.
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Secondly, consider n ^ 1. First we introduce the following condition:

(C3) \Ω\n - \Ω'L\n « bn

L~δ, as L -> + oc ,

where bL = a\ and aQ is the size of the tessellation of Ω. Then we have

Proposition 6.2. Let n ^ 1, δ e [n — l,n]. If (C\) holds, then there exists a pos-
itive constant c\, depending only on δ and n, such that

\Ω\n - \Ωf

L\n ^ cφn-\ as L -> + oo . (6.6)

Furthermore the inequality (6.6) implies that μ*(δ,dΩ) > 0.

Proof. Since b~{n~δ\\Ω\n - |Ω'JΛ] = b~{n~δ)\Ω"L\n, we know that

{ δ ) ( δ ) δ δ

ι ) . (6.7)

If (Cl) holds, then b~{n~δ)\Ω"L\n ^ b\~δc as I -^ + oo, as required.
On the other hand, we know that \Ω\n — \Ωf

L\n ^ |Ω^| n , εz, = V^^L? which
means that

n 2 - υL \hi L\n ^ εL \uεjL\ .

By the condition (6.6), we have

εΐin-δ)\ΩiL\n ^ cxrC^r- as Z -* + oo , (6.8)

which implies that μ*(δ,δΩ) > 0, as claimed.
Next, we have

Proposition 6.3. Let n ^ 1, <5 e [n — l,n]. If μ*(δ,dΩ) < + oo, then there exists
a positive constant C2, depending only on δ and n, such that

\Ω\n - \Ω'L\n g c2bΓδ, as L - + oo . (6.9)

/ Since lΩ'^^ g |Ω^|Λ, εL = y^^L, then

On the other hand, we know that

ε-("'δ)\Ω'εL\n £, μ*(δ,dΩ) + o(\), as L - . + oo ,

which means that μ*(δ,dΩ) < + oo implies the estimate (6.9) holds, as required.
From Proposition 62 and Proposition 6.3, we have an obvious corollary as

follows:

Corollary 6.2. Let n ^ 1, δ G [n - 1, Λ], Z / ( C 1 ) holds and μ*(δ,dΩ) < + oo,
ί/ie condition (C3)

7. An Example

In order to obtain an explicit upper (or lower) bound on the second term of N(λ),
we often let bk = <?o ̂ 0 Γ s o m e s i z e αo £ (0,1) in the tessellation of Ω. On the other
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Q, o, Q.

Fig. 7.1.

hand, as shown above, in order to obtain a positive lower bound on the second term
of N(λ), we have introduced the condition (C2), which makes the problem more
tractable. Sometimes we can choose a special tessellation of Ω, so that the condition
(C2) can be easily satisfied. However we can not ensure, in the meantime, that the
tessellation size is exponential (i.e. bk = αξ).

In the following, we study an example, which was mentioned in [26] and for
which condition (C2) can be easily satisfied and the tessellation size is polynomial
decreasing. However the weaker form (2.8) of the Weyl-Berry conjecture (2.6)
remains valid.

Example 7.1. Let Ω = U^JΓ Qj ^ e m e disjoint union of open cubes Q} in Rn

(n Ξ> 1) with sides of length bj satisfying (see Fig. 7.1 above)

bj =Kj~^, δ e(n- l,n), j ^ 1, K > 0 a constant. (7.1)

From the figure above, we can see that although Ω C Rn(n ^ 2) is un-

bounded, it has finite volume \Ω\n = Kn Σ ^ J~~δ < + oo. As shown in [26], dΩ is

(5-Minkowski measurable and μ(δ, dΩ) can be computed by means of δ and K.
By Corollary 2.1, we have

as λ

φ(λ)-N(λ,-Δ,Ω) S

00, where

(7.2)

-n)~[ +{2π)-nωnn-

In order to estimate the lower bound on the second term of N(λ), we let the
tessellation of Ω be Ω itself, i.e. Ω'^ = Ω (actually the construction of the tessella-
tion here is different to the tessellation as described in Sect. 2). Here condition (C2)

is certainly satisfied, with bk = Kk~$ (for k ^ 1), and is polynomial decreasing.
By using the same method as in Sects. 3 and 4, we have

φ(λ)-N(λ,-Δ,Ω)= rk =

If n — 1 and taking L ~ π~δKδλ2, then rk g 1 implies k ^ L. We write

L—\ +00

φ(λ) -N(λ,-A,Ω) =Σ,[rk- Pι(rk)] + Σ > , - Pι(rk)] .
k=\ k=L
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Since pxifk) = 0 for k ^ Z, we have

k=L

Jζ+ σo

π k=L

l — S / Tί \ — \—δ

Observe that λ~2~ ~ ( — ) L~δ~, and so

( 3 — 1 k
Let —-— = δ\, Bjc = — fork ^ L, then we know that

0 L

r όχ-

Bk-ι

Since <5i — 1 < 0, we have

j , θk
L

δ-\

1 +

Hence we obtain

k- 1 **-!

L-\ 1 1 —

(7.3)

+ o( 1), as L —> + oc .

This implies that

πj 1 - d
λδ/2+o(λδ/2l (7.4)

-5 f K
Further, let n ^ 2 and Z ~ « ~ ( —

and Pni^k) — 0. We have

2 . Then r^ ^ v ^ implies that k ^ L

L-l +oo

φ(λ) - N(λy-A,Ω) = Σ P " X r\ - pn(rk)] + Σ
A : = l k=L

(7.5)

Now k ^ L implies r^ ^ —, and so by (4.3) and (4.4), we know that there exist
π

two constants εn £ [0,« — 1] and cw > 0, depending only on «, such that

εn L-\ n—\—i:n n—\—εn—δ S
(7.6)

k=\

Note that

k=\
(7-7)
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L e t δ-(n-l) + εn = ^ fl* = - for 0 ^ ifc ^ I - 1, then
o L

Bk i

/ xδ*-χdx = θδ

k

2~1-, where θk G (ft_i, Bk) . (7.8)
Bk-\ L

Since <5i — 1 ^ 0, we obtain

which means that

+ o(l), as L -^ + oo .

Combining (7.6) and (7.7), we obtain

+ o(λδ/2% as A - ^ + 0 0 . (7.9)

Next, we consider

+ σ o + σ o n n \ xίΫlΎ1 +°° (\

Σ2-nωnr
n

k=(2πΓ"ωnK"Σk-nL2~\ϊφ\ ω«Σ 7
k=L k=L L Z J k=L \ L

^ _ _ . Write ft = 1 + -

for / ^ 0, <53 = §, then

5/ i

J χ - ^ 3 ^ = θι

 3 - - , ft G (ft_i,ft),/ ^ 1 . (7.10)

This implies that

BJh S L J x~δ^dx ^ BJ% / ^ 1 . (7.11)
Bi-ι

Hence we have

+CX)

Combining (7.9) and (7.12), we obtain

Ψ(λ)-N(λ) * cn

i « — δ

(n - 1) + εn

+o{λ'l2), as λ -> + o o .(7.13)
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Thus, for Example 7.1, we have proved that conjecture (2.8) is true from the
estimates (7.2), (7.4) and (7.13).

Remark. 7.1 We cannot apply the result of Theorem 2.4 to Example 7.1 directly.
This is because although condition (C2), under the assumption of the tessellation
of Ω to be Ω itself, is satisfied, condition (2.17) does not hold.

8. Further Examples

Example 8.1. {Cantor set). Let Ω be the complement in [0, 1] of the triadic Cantor
set Γ. Then dΩ = Γ and we have (cf. [24, 25])

If
holds

we
and

choose the size

bk =

of

3~*

the tessellation

:*Ak = 2k-\

of Ω is

bl(#A

a0 =

*) =

| , th

1

1
2 '

Len condition

(8.1)

(C2)

(8.2)

From Corollary 2.1 and Theorem 2.3, we have

Blλm_N(λ)
π

+ -1 μ*(δ,dΩ)λδ/2 + o(λδ/2\ as A -> + oo . (8.3)

Thus conjecture (2.8) holds. On the other hand, we see from Theorem 2.4 that

7 2 togπ
W , ( 7 ) λ* + 0(1), i - > + o o , (8.4)

π V 2 / o # 3 /
where

— 1 / 1 \ δ + σ o

^i(y) = o ( - Σ 3**-»λi(3>-*), δ = /o^2//og3 , (8.5)

is a well-defined, positive, bounded, 1-periodic and left-continuous function;
its point set of discontinuity being dense in R. This implies that the function

λ~l p ^ 1 / 2 -N(λ)} is oscillating, i.e. the limit of λ^2 ί ^ 1 / 2 - N(λ)]9 as

λ —> + oo, does not exist. Thus the modified Weyl-Berry conjecture (2.6) is not
true for £2, which in particular (cf. [24, 25]) means that the boundary dΩ is not
(5-Minkowski measurable. Actually we have

0 < μ*(δ,dΩ) < μ*(δ,dΩ) < + oo .

Example 8.2. Let n = 1, Ω = [Jk™(#Ak)Ik be the union of disjoint open intervals
Ik with finite length and fractal boundary dΩ, where

3k~\ 17*1!= 5~*. (8.6)
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Then

δ = Iog3/log5, 0 < μ*(δ,dΩ) < μ*(δ,dΩ) < + oc .

If choosing an = | , then conditions (Cl) and (C2) are satisfied, and akQδ(#Ak) =
15-^3* = I τ h u s f r o m Corollary 2.1 and Theorem 2.3 we have

[ 1 + ( 5 l
3 π

^ ((\-δγ-h-χ + -)μ*(δ,dΩ)λδl2 + o(λδl2\ a s i - ^ + o o . (8.7)

V π/

Consequently conjecture (2.8) is true. Secondly, by Theorem 2.4, we know that

H l A ' / 2 - N(λ) = F , ( l 0 g \ - 2[°9π\ W + O(l), a s A - > + o o , (8.8)

where

Fι(y) =\(-) Σ 5^-^^(5^) (8.9)

is a well-defined, positive, bounded, 1-periodic, left-continuous function whose set
of points of discontinuity is dense in R. Hence the modified Weyl-Berry conjecture
(2.6) is not true for Ω.

Next, we shall consider the case of n ^ 2. We give three examples with discon-
nected domains. Observe, in these examples, that only in the case of calculating the
exact or the lower bound of the second term of the counting function, we choose
a special tessellation for Ω, i.e. let Ω'^ be Ω itself, so that condition (C2) can be
easily satisfied. In this case, the construction of the tessellation is actually different
from that of the tessellation as mentioned in Sect. 2. However we know that the
counting function N(λ) is actually independent of the tessellation, so there is no
change essentially for the problem itself if we choose a special tessellation for Ω.

Example 8.3. (Fleckinger-Vassiliev's example). Let n — 2 and consider the union
Ω of disjoint open squares, where the central square Qn has side 1. The side of
each consecutive square is s times smaller with 1 4- y/ϊ < s < 3. At the kth step
we have #Ajζ — 4 x 3k~ι squares Qk with sides bk — s~h (See [27, 28, Figure 1]).

We know (cf. [27, 28]) that δ = Iog3/logs, and 0 < μ*(δ,dΩ) < μ*(δ,dΩ) <
+ oo. If we choose the tessellation of Ω to be Ω itself, then an = ]• and bδ

k(#Ak) = |
and so conditions (Cl) and (C2) hold. By the results of this paper, we have

C2,δλ
δ2+o(λδ/2) S ^\Ω\2λ

S Cf

2iδμ*(δ,dΩ)λδl2 + o(λδ/2), as λ -> + oo , (8.10)

and

ψ ( l 0 g λ ' 2 l 0 g π ) ^ Λsλ^+oo, (8.11)
2 logs
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where the constants

c2J = \c2(-\ 2 [\ - sι-δ-^γι + ̂ -{s2-δ - \y\ 62 e [0, l], C2 > o ,

3 \πj 3π

and

Σ

is a well-defined, positive, bounded, 1 -periodic and left-continuous function; its point
set of discontinuity being dense in R.

The above result implies that the modified Weyl-Berry conjecture (2.6) is not
true for Ω (which is similar to the main result of [27, 28]), however here, the
weaker form (2.8) of the conjecture (2.6) is true.

Our next example illustrates a similar phenomenon.

Example 8.4. (Brossard-Carmona's example). Let Ω c R2 be a countable disjoint
union of all the small open squares belonging to the successive "generations" defined
below.

Let {Pj, j ^ 1} be a nondecreasing sequence of positive integers. The 0th gen-
eration contains one square of side 1; the 1st generation contains four large squares,
each of which has side 1/3 and is divided into (Pi )2 congruent smaller squares,
etc. Similarly, the j t h generation contains 4 x 5J~ι large squares, each of which has
side 3~J and is divided into (Pj)2 congruent smaller squares; and so on. (See [23,
Fig. 1].)

As is shown in [23], irrespective of the sequence {Pj, j ^ 1}, H = Iog5/log3

and H(dΩ) e (0, —]. Now, given a real number a ^ 1 fixed, we let P} — [aJ] for
any j e N. Then we know (see [23])

δ = Iog(5a2)/log(3al 0 < μ*(<S,3Ω) < μ*(δ,dΩ) < + oo . (8.12)

Observe that δ G [//,2), and δ — H if and only if a = 1. Without loss of gen-
erality, we can assume that a G N, and let the tessellation of Ω be Ω itself. Then
flo = 3 ,̂ aQδ(#Ak) = I and conditions (Cl) and (C2) are satisfied. From Corollary
2.1 and Theorem 2.3, we have

C2 δλ
δ/2 + o(λδ/2) ^ ^\Ω\2λ-N(λ,-Δ,Ω)

4π

^ C'ίδμ*(δ,dΩ)λδ/2 +o(λδ/2), as λ -> + 0 0 , (8.13)

where

(-) \l - (3a)1-^]-1 + ̂ [(3a)2-δ - I]"1C2,S =
 A

τc2 (-) \l - (3a)1-^]-1 + ̂ [(3a)2-δ - I ] " 1 , ε2 € [0,1], c2 > 0,
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This means that conjecture (2.8) holds. On the other hand, Theorem 2.4 gives

ψλ - ΛΓffl = F2 ("f ~ f f ) ^ + O(VI),as A -. + oo , (8.14)
4π V 2log(3a) J

where

k=_oo

is a well-defined, positive, bounded, 1-periodic and left-continuous function; its set
of points of discontinuity being dense in R. Therefore the modified Weyl-Berry
conjecture (2.6) does not hold for Ω here. This explains the reason why the authors
in [23] could not find the same upper and lower bounds for the second asymptotic
term of the "partition function" Z(t) = /0

+°° exp(-λt)dN(λ), as t -> 0 + .
Finally we construct an n-dimensional example.

Example 8.5. Let Ω = \Jl^(#Ak)Qk be the union of countably disjoint open cubes
in RΛ (n ^ 2) with finite volume and fractal boundary δΩ. More precisely, the
central cube QQ has side length 1. The side of each of the 2n consecutive cubes
Q\ is sn times smaller. These cubes are "glued" to the middles of the sides of
Qo. Similarly, at the kth step, we have #Ak — 2n x {In — I ) * " 1 cubes Qk of side
bk = s~k, where sn = (2αΠ«)« > 1 and an a suitable constant depending only on n,
satisfying

This ensures that Ω is the union of disjoint open cubes. Then we can deduce

s log{2n-\) log(2n - \) f

δ = - ^ = n-p- f G (τι - 1,Λ) ,
logsn log(2ann)

0 < μ*(δ,3Ω) < μ*(δ,dΩ) < + oo .

If we choose the tessellation of Ω to be Ω itself, then «o — — £ (0,1),

and conditions (Cl) and (C2) are satisfied. Thus Corollary 2.1
LΆ — 1

and Theorem 2.3 tell us that

Cn,δλ
δ/2+o(λδ/2) g ( 2 π ) - " ω w | Ω | ^ " / 2 -

^ C^ 5 μ*(δ,30μ 5 / 2 + o(λ5 / 2), as A -> + oo ,

where

(2y" [ ( ί O 2 ^ l] > eB € [0,n - l ] ,c > 0
/ Ϊ - 1

c -•- Γ



606 Chen Hua, B.D. Sleeman

Thus the weaker form (2.8) of the conjecture (2.6) holds. Next, from Theorem 2.4

we have

= Fn

as λ —• + oo, where

is a well-defined, positive, bounded, 1-periodic and left-continuous function; its set

of points of discontinuity being dense in R. This means that the modified Weyl-

Berry conjecture (2.6) is not true for Ω.

From the preceding Examples 8.3, 8.4 and 8.5, we know that N(λ) does not

admit an asymptotic second term proportional to λ^1. Although we have not shown

that the boundaries (appearing in these examples) are <5-Minkowski measurable,

it is apparent that the modified Weyl-Berry conjecture (2.6) does not hold for

n ^ 2. This is because although we have, in our examples, a strict inequality 0 <

μ*(δ,dΩ) < μ*(δ,dΩ) < + oo, an equality μ*(δ,dΩ) = μ*(δ, dΩ) can always be

easily obtained by extracting a specially chosen infinite sequence of isolated points

from Ω. This will not change the spectrum for n ^ 2, but will change μ*(<5, dΩ)

and μ*(δ,dΩ) (also see [28]).
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