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Abstract: We prove in this work that under suitable assumptions, the solution of the
spatially homogeneous non-cut-off Kac equation (or of the spatially homogeneous
non cut-off 2D Boltzmann equation with Maxwellian molecules in the radial case)
becomes very regular with respect to the velocity variable as soon as the time is
strictly positive.

1. Introduction

In the upper atmosphere, a gas is described by the nonnegative density f(t,x,v) of
particles which at time t and point x, move with velocity v. Such a density satisfies
the Boltzmann equation (cf. [Ce], [Ch, Co], [Tr, Mu]):

% + v Vχ/ = β ( / ) , (1.1)

where Q is a quadratic collision kernel acting only on the variable v and taking in
account any collisions preserving momentum and kinetic energy:

β(/κ«o= / /

-f(v)f(v,)}B(\Ό-vt\,θ)sinθdφdθdvt , (1.2)

with

v'=V-ψ + ^ σ , (1.3)

* = V-ψ-^σ. (1.4)

v — v *
^ T , (1.5)

\v-vJ
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and B is a nonnegative cross section. When the collisions in the gas come out of
an inverse power law interaction in -p (with s ^ 2), the cross section writes

B(x,θ)=x^b(θ), (1.6)

where b e L^c(]0,π]) and

\sinθb(θ)~K(s)θ~^ (1.7)

for some K(s) > 0 when θ —> 0.
Most of the mathematical work about the Boltzmann equation is made under the

assumption of angular cut-off of Grad (cf. [Gr]), which means that b in Eq. (1.6)
is supposed to satisfy sinθb(θ) eLι([09π]). Note that for inverse power laws in
-7 with s ^ 2, this assumption never holds (because of the singularity appearing in
Eq. (1.7)).

For example, the existence of a global renormalized solution to the full Boltz-
mann equation (1.1) is known under this assumption (cf. [DP, L]), but it is also
the case with most of the works concerning the spatially homogeneous Boltzmann
equation (cf. [A 1], [A 3], [Ee], [De 1]):

%(t,v) = Q(f)(t9υ), (1.8)

with the noticeable exception of [A 2], where existence is proved for the non-cut-off
equation (1.2) —(1.8) when s > 3.

We shall now concentrate on this spatially homogeneous equation (1.8). When
the cut-off assumption is made, it is possible to write

(1.9)

where

β + ( / ) 0 0 = / / 7 f(Ό')f(υ',)B(\υ-υ*\9θ)sinθdφdθdϋ* , (1.10)
v*eR3θ=oφ=o

and

Lf=A*f, (1.11)

with

A(x) = 2πj B(\x\,θ)ήnθdθ . (1.12)

Then, the solution f(t,v) of Eq. (1.8) can be written under the form

-JLf(τ,v)dτ t -fLf(τ,v)dτ
At,υ) = f(0,υ)e o +fQ+(f)(s,v)e s ds . (1.13)

o

But the operator Q+ is known to be regularizing with respect to the variable v
(at least when / £ Z 2 ( R y ) , and when B satisfies some properties) (cf. [L 1]).
Therefore, if f(0,v) is not regular (for example if it belongs to £2(IRy) but not to
Hι(Rl)), the solution f(t,v) of Eq. (1.8) will at best keep the regularity of f(0,v)
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when t > 0. In particular, no regularizing effect is expected for the solution of the
cut-off homogeneous Boltzmann equation (1.8).

On the other hand, one can hope some regularizing properties for the solution
of the non-cut-off homogeneous Boltzmann equation (1.8), (1.2) (when (1.6), (1.7)
holds).

One of the reasons of assuming such a conjecture is that an asymptotics of
the Boltzmann equation when the cross section is concentrating on the grazing
collisions (these collisions are those that are neglected when the cut-off assumption
is made) leads to the Fokker-Planck-Landau equation (cf. [De 2], [Dg, Lu]), which
is known to induce regularizing effects (or at least compactness properties, even in
the spatially inhomogeneous case (cf.[L 2])).

This article is devoted to the proof of such a conjecture in the simpler case of
spatially homogeneous Kac equation. We recall that the original Kac model is used
to describe a one-dimensional spatially homogeneous gas in which the collisions
preserve the mass and the energy, but not the momentum (cf. [K], [MK]).

Note also that the theorems of Sects. 2, 3 and 4 hold for the spatially homo-
geneous non cut-off 2D radially symmetric solutions of the Boltzmann equation with
Maxwellian molecules, as is shown in Appendix C.

In the Kac model, the nonnegative density f(t,v) satisfies

^(t,v)=K(f)(t,v), (1.14)

where
71 dβ

K(f)(t9υ)= J J {f(υ")f(υ':)-f(v)f(v*)}—dv*, (1.15)

and

v" = ι;cos0-ι;*sin0, (1.16)

υ" = *;sin# + ι;*cos0. (1.17)

The analysis leading to Eq. (1.13) still holds in this case. Therefore, one can at
best hope that the regularity of f(0,v) is conserved for the solution f(t,υ) of
Eq. (1.14) when t > 0. This affirmation is indeed easily proved when f(0,υ) G
Lι((l + \v\2)dυ) (cf. Theorem A.I of Appendix A), but also in the more difficult
case when f(0,v) lies in some Holder spaces (cf. [G]) (note also the results in the
same spirit for the Boltzmann equation of [We]).

We will therefore concentrate in this work on the equation

^ β υ ) 9 (1.18)

where

Kβ(f)(t,v)= f J {f(v")f(vf:)-f(v)f(v*)}β(\θ\)dθdv*, (1.19)
u*€lR0= —π

with
/?(x)~χ-α (1.20)

W h e n x - + 0 + and αe] l ,3] .
This kernel is obtained by analogy with the non cut-off kernel (1.2), (1.6), (1.7)

of Boltzmann equation.
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However, the analysis in the case when α = 3 (corresponding to the Coulombian
interaction in the case of the Boltzmann equation (cf. [Dg, Lu])) is very different
from the analysis when α G]l,3[. Therefore, we will only consider in the sequel the
latter case.

We begin in Sect. 2 by proving that the existence of a solution holds for
Eq. (1.18) —(1.20). We prove then in Sect. 3 our main theorem. Namely, if f(0,v) e
Lι(WLυ,(l + \v\i)dv) for all y > 0, the solution f(t,υ) of Eq. (1.18)-(1.20) lies in
C°°(WLυ) for all t > 0. Finally, in Sect. 4, we consider the case when only a fi-
nite number of moments are known to be initially bounded for /. The reader will
also find for the sake of completeness some classical results used throughout this
work in Appendix A and B at the end of the paper, Appendix C being devoted to
the extension of the results to the 2Ό radially symmetric Boltzmann equation with
Maxwellian molecules.

2. Existence for the Non cut-off Kac Equation

We prove in this section the following theorem:

Theorem 2.1. Let fo^Obe an initial datum such that

J fo(v) (1 + \v\2 + |log/o(ιO|) dυ<+oo9 (2.1)

and let β ^ 0 be a cross section satisfying the following property:

3βo,βi > 0,α €]1,3[, Vx e]0,π], βo\x\~* ^ β(x) ^ β\\x\~" ( 2 2 )

Then, there exists a nonnegative solution f(t9v) e L°°([0, +oo[/;L1(lR ί;,(l +
\υ\2)dυ)) to Eq. (1.18), (1.19), (2.2) with initial datum f0 in the following sense:

For all functions φ e W2oo(Wiv), we have

j t J f(t,v)φ(v)dv = J J K+(υ,v*)f(t9υ)f(t9Ό*)dυ*dυ9 (2.3)

where

K*(v,v*)= J {φ(v")-φ(v)}β(\θ\)dθ. (2.4)

The conservation of mass

f f(t9υ)dυ= J fo(υ)dυ (2.5)

holds for these solutions, but the energy may decrease.
Moreover, if for some p € N, there exists C2.1 > 0 such that

f fo(v) (1 + \v\2p) dv S C2.1 , (2.6)

one can find C2.2 > 0 such that for all t ^ 0,

f f(t,v)(l + \v\2ηdv^C22. (2.7)
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Finally, if assumption (2.6) holds for some p ^ 2, the conservation of energy

J f(t,v)\v\2dv= J Mv)\υ\2dv (2.8)

holds.

Remark. The analogue of this theorem is proved in [A 2] for the Boltzmann equa-
tion (with s > 3). The proof given is very similar to that of [A 2].

The sense to give to the right term of Definition (2.4) will become clear in the
sequel. Note however that because of the singularity of β, this term is not defined
if φ is not regular (W2>°°).

Proof of Theorem 2.1. We introduce for all n G N* the truncated sequence

βn=β/\n. (2.9)

Note that because of assumption (2.2), there exists for all y > α - 1 a strictly
positive C23(y) such that for all n G N*,

/ (\\ - cosθ\<'2 + \sinθγ) βn(\Θ\)dθ ^ C23(γ). (2.10)
0=-π

It is also clear that

/ (\l-cosθ\*2 + \sinθ\η\β(\θ\)-βn(\θ\)\dθ — 0. (2.11)
θ=-π n^+oo

Then, we consider the (unique) nonnegative solution fn(t,v) of the classical
Kac equation

-^(t,v) = Kβn(fn)(t,v) (2.12)

with initial datum fo (for the existence and uniqueness of such a solution, cf.
Theorem A.I of Appendix A). This solution is known to satisfy the conservation
of mass and energy, and the entropy inequality (cf. Theorem A.I and A.2 of
Appendix A):

/ fn(t,v)dv= J fo(v)dv, (2.13)

/ fn(t9v)\υ\2dv = J fo(v)\v\2dv , (2.14)

/ Mt,υ)logMt,v)dv ^ J Mv)\ogfo(v)dv . (2.15)

It is now classical (cf. [De 3] for example) that Eq. (2.13) - (2.15) ensure the
existence of a constant C2A such that

/ fn(t,υ) (1 + \υ\2 + |log/Λ(f,ι0|) dv S C2A . (2.16)

Because of the Dunford-Pettis theorem (cf. [B]) and of estimate (2.16), one can
extract from (/ n ) n G ] N a subsequence still denoted by {fn)nen and converging to a
function / in / .^([O^oo^ Z^IR,)) weak *.

Moreover, for all q G Lλ([Q,+oo[) and all φ G Lj£([O, +oo[,χ]Rt;) such that

^ 1 = 0 , (2.17)
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we have

+00 +00

/ q(t) f fn(t9v)ψ(t9υ)dvdt —+ f q(t) f f(t9υ)ψ(t9v)dυdt . (2.18)

Denoting for all φ G W2>°°(WLV)9

KΪ(v,v*)= j {φ(v")-φ(v)}βn(\θ\)dθ, (2.19)
0=-π

it is clear that (using the change of variables (v,v*,θ) —»• (t/',t;", —0)),

§- J fn(t,v)φ(v)dv= J f K+(υ,v.)fn(t,υ)Mt,υ.)dυtdυ . (2.20)

We shall now prove that when 0 e W2iOC(Wiv), it is possible to pass to the limit
in Eq. (2.20) and to obtain Eq. (2.3). We begin by the

Lemma 1. There exists a constant C2.5 > 0 (depending on α) and a sequence
Ci.s(n) converging to 0 such that the following estimates hold:

I. for all φe W2oo(Wίv),

$(υ9υ*)\ S C2.5 ( l + H ^ + M * * 5 ) | |0| |^2,oo ( R r ) , (2.21)

2. for all φe W2>°°(RV),

\K*(v,υ*)-K+(υ9υ*)\ £ C15(n) ( l + H ^ + \υ*\*?) UWw^^ . (2.22)

Proof of Lemma 1. Note that

φ(v") — φ(υ) =φ(vcosθ — ϋ*sinθ) — φ(v)

= (y(cos θ - 1) - i;*sin θ) φf(v) + (ι?(cos θ - 1) - i^sin θ)2

1

x / ( I -w)φ / ;(ι; + w(z;(cos0- 1) - ϋ*sinθ))rfM . (2.23)
u=0

Therefore, for all δG]0,l[,

|0(ι?") - 0(ι;) + ^ s i n ^ z ; ) ! S \Φ(v") - φ(v) + i^si

x |t;(cos θ - 1 )φ'(υ) + (ϋ(cos 0 - 1) - ϋ*sin θ)2

1

x / ( I - w)0/7(ι; + φ ( c o s 0 - l ) - ι ? * s i
u=0

^ 8(1 + |o. | 1-< 5)( ^

^ C2.6 II 0 | U « , { R c ) (Icosθ - 1|* + | s i n θ | M ) ( l + \v\ι+δ + \υ*\ι+i) (2.24)
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for some strictly positive constant C2.6. But θ —• sinθ is odd and therefore

/ {φ(v")-φ(v)}βn(\θ\)dθ
θ=-π

v")-φ(v) + v*smθφ'(v)}βn(\θ\)dθ
θ=-π

θ=-π

\l+δ , u, \+δΛx (I + \υ\i+δ + \v.\i+i).

We now use Eq. (2.10) with δ = ^f, and obtain

(2.25)

\\φ\\W2,ooilRv) , (2.26)

which clearly implies estimate (2.21). In order to get estimate (2.22), we use exactly
the same proof, except that Eq. (2.10) is replaced by Eq. (2.11).

Lemma 2. There exists a constant C2γ > 0 {depending on α) such that when
φ e W2>°°(WLV) satisfies

\K+(v.v.)\ Z 2C2.3 (j-^j C2.6

\φ'(υ)\
= sup '/ • <

1 + \V\

(2.27)

+ M 2 + l»*l2) (2.28)

the following estimate:

\K+(U,V,)\ g c2.7 ( | |0"III-(RC)

Proof of Lemma 2. According to Eq. (2.23),

\φ(v")-φ(υ) + v*sinθφ'(v)\ = |t;(cosθ- \)φ\υ)

1

/ ( I - ύ)φ"(υ + u(v(cosθ - 1) - v*sin θ))du
u=0

- l|H|07(i;)| +4(|cosθ -

^ C2.8(|cosθ - 1| + |sinθ|2)(l + |ι;|

L O O ( R D )

(2.29)

for some constant C2.s > 0.
Using now the oddity of θ —>• sinθ as in Lemma 1, and estimate (2.10) for

y = 2, we get estimate (2.28).
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We now come back to the proof of Theorem 2.1.
Suppose that φ e W2'°°(ΊBLV), q e Lι([0,+oo[), and veWL. Then, because of

Lemma 1,

+ OO

Kf(υ,v*)fn(t,υ*)dυ*q(t)Λ- J J Kφ(v,υ*)f(t,υ*)dv*q(t)dt
ί=o ί = o D*

+ OO

S f J \K*(Ό9v*)-K*(υ,Ό*)\fn(t,υ*)dv*q(t)dt
ί=0 v*eWL

t=o v*

K+(v,υ.){Mt,v.)-f(t,vt.)}dυtq(t)dt

2,oo(Rυ) J

K+(.v,υ.){f,,(t,Όr)-f(t,υ*)}dv.q(t)dt
ί=o »*

fn(t,v*)dυ*

(2.30)

But the first term of Eq. (2.30) tends to 0 because of estimate (2.16). Moreover,
because of Lemma 1, we have for all v E IR,

lim = 0 . (2.31)

Therefore, estimate (2.18) ensures that the second term of Eq. (2.30) tends to
0. Finally, we obtain for all φ e W2tOC(WLυ) and υ G IR, the convergence in
£°°([0,+oo[,) weak * of

L*(t,υ)= f K+(υ9v*)fn(t9υ*)dv*

towards
Lφ(t,v)= J Kφ(υ,Ό*)f(t,v*)dυ*.

We now observe that for all φ £ W2oo(tiίv) and v £ IR, the sequence

(2.32)

(2.33)

(2.34)

is bounded in £°°(RB). More precisely,

δvl
sm2θφ"(v")βn(\θ\)dθ

(2.35)

Moreover,

dv*
(v, u* / smθφ'(v")βn(\θ\)dθ

= — π

/ -sinθ{φ'(v")-φ'(v)}βn(\θ\)dθ
i=—π



Regularizing Properties of Non-cut-off Kac Equation 425

Θ=-π

* /I
u=0

u(v(cosθ- I)-υ*sinθ))\ duβn(\θ\)dθ

because of estimate (1.10).
Therefore, using Lemma 2, for all φ G W2>°°(ΈLΌ) and v e R,

- J K+(υ,v.)Mt,v.)do,

(2.36)

C(»> )/V,v,)Mt,w) fn(t,v,)dυ.dw

δ2κί
dυl

v, • )

C, )

ύ C2

4C2.7{C2.3(2)

It is also clear that

c ) +2C 2 . 3 (2)C 2 . 5 (1 (2-37)

C2.5

(2.38)

Therefore, for all φ G )^f2'oo(IR l;) and ϋ G 1R, the sequence l f ( ,v) is bounded

in fΓ1 } O O([0, +oo[ί) . Using now the weak convergence (2.33) and Rellich theorem

(cf. [B]), it is clear that for all φ e W2>°°(ΊBLΌ)9 and a.e. (t,υ) e [0,+oo[txΊBLV9 the

sequence i t tends to Lφ. Therefore, for all q e Lι([Q9+oo[) and all T > 0 such

that Supp q C [0, Γ],

+ OO

J { J J K+(v,v.)fa(t,v)fn(t,υ.)dυdv.
t=0

- / / ΛΓ*(», p, ) /(/, v) f{t, v, ) dvdv, \ q(t) dt

J
+o°
/=0

fL*(t,v)fn(t9v)dv- J L*(t9υ)f(t9υ)dv\q(t)dt

J

^ sup { / to^-
+ OO

/=o
/ L\t, υ) ifnit, v) - fit, v)) dv \ qit) dt (2.39)
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But according to estimate (2.38),

lim sup sup J—j—Tz— = 0 .
|» . |-»+oo / 6 [o > + 0 o[ B e ]N* \v*\

(2.40)

Therefore, estimate (2.18) ensures that the second term of (2.39) tends to 0.
We finally use Egorov's theorem, estimate (2.38), the equiintegrability of the

sequence /„ (obtained by estimate (2.16) and the convergence a.e. of Zjf to i Λ in
order to obtain the convergence of the first term of (2.39) to 0.

As announced before, we can now pass to the limit in Eq. (2.20) and obtain
the first part of Theorem 2.1.

In order to prove the second part of Theorem 2.1, we observe that if assumption
(2.6) holds, then Theorem A.2 (cf. Appendix A) ensures the existence of Q 3 > 0
such that

f fn(t,v)(l + \υ\2p) dυ^CA3 (2.41)
i GR V 7

(note that CA.3 does not depend on n).
But estimates (2.18), (2.20) and (2.21) imply for a.e.

Jveκfn(t,v)χ(v)dv to Jvmf(t,v)χ(v)dv when χ G *
Therefore, for all R > 0,/ > 0,

\v\£R

^ 0 the convergence of

(2.42)

Then, estimate (2.7) holds because of Fatou's lemma.
Finally, we prove the conservation of mass (2.5). We observe that for some

function χR G C2(RV) such that Supp (χR) C [-R - 1,R + 1],

f(t,υ)dv- J fo(v)dv
1

J χR(v){fn(t,v)-f(t,v)}dυ (2.43)

for any R > 0. But according to the properties used in the proof of estimate (2.42),
estimate (2.43) ensures that the conservation of mass (2.5) holds.

In the same way, we can see that under assumption (2.6) with p ^ 2, the
conservation of energy (2.8) holds.

3. Regularization Properties When All Polynomial Moments are
Initially Bounded

This section is devoted to the proof of the following theorem:

Theorem 3.1. Let fo^Obe an initial datum such that for all p G N , there exists
Cy\(p) > 0 satisfying

J fo(v) (1 + M* + \logfo(v)\) dυ ^ C3Λ(p), (3.1)

and let β ^ 0 be a cross section satisfying estimate (2.2).
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Then, if f(t,υ) is a nonnegatίve solution of Eq. (1.18), (1.19), (2.2) in the
sense of Eq. (2.3) with initial datum / 0 , we have for all t > 0 and all q e N:

fit, v) e L°°([t, +oo[,; C«(Rv)), (3.2)

or in abridged form,

f{t, υ) e L°°(]0, +oo[ ί ; C°°(W.V)). (3.3)

Proof of Theorem 3.1. According to Theorem 2.1, we know that for all p G N ,
there exists C^ip) > 0 satisfying

\/t e [0,+oo[, / /(f,ϋ) (1 + lϋl^) rfi; S C32(p). (3.4)
i GR

Therefore, the Fourier transform

f(t,ξ)= J e-'eξf(t,v)dv (3.5)

of / is such that for all p e N,

dξP
(t,ξ) ^ C32(P) (3.6)

But i; -• e " ^ lies in ^ ^ ( I R ^ ) , and therefore it is possible to use Eq. (2.3).
Then, a simple calculation leads to the following equation for the Fourier trans-

form of / :

%«>O= I {f(t,ξ cos θ)f(t,ξ ήn θ)-f(t,O)f(t,ξ)} β(\θ\)dθ . (3.7)

Note that this equation is used in [G], and that it also appeared in [De 1], though
for the Laplace transform of / . We rewrite it under the form

%(t>0=\ J {f(t,ζ sin θ)+f(t,-ξ sin θ)-2f(t,0)} β(\θ\)dθf(t,ξ)
Vt Zθ=-π

+ / {f(t,ξ cos θ)-f(t,ξ)}f(t,ξ sin θ)β(\θ\)dθ. (3.8)
θ=-π

We now use the notations

a(t,ξ) = ~ ] {f(t,ξ sin θ)+f(t,-ξ sin θ) - 2f(t, 0)}j8(| θ\)dθ , (3.9)
Zθ=-π

and

KtΛ)= ί {f(t,ξ cos θ)-f(t,ξ)}f(t,ξ sin θ)β(\θ\)dθ. (3.10)
θ=-π

Therefore,

) + b(t,ξ), (3.11)
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and

But

-fa(τ,ξ)dτ t -fa(τ,ξ)dτ

f(t,ξ)=f(09ξ)e o +fb(s9ξ)e s ds.
o

fit, ξ sin θ) +/(ί, -ξ sin θ) - 2/(ί,0) ^ 0 ,

because / ^ 0. Therefore, ait,ξ) is real and

L. Desvillettes

(3.12)

(3.13)

{2f(.t,0)-f(t,ξ smθ)-M-ξsinθ)}βi\θ\)dθ. (3.14)
z 0=-§

Then, we make the change of variables

u = \ξ\ sin θ .

We get

1 ^' /
a(U ξ) ^ x / {2/(ί, 0) -/(ί , w) -/(ί , -u)}βί arcsin

2«=-|ci V

But for any x G [0, π],

and therefore

(3.15)

du

(3.16)

(3.17)

A lίl
ait, ξ)^~ J {2fit, 0) -/(/,«) -/( ί , -«)}

1

Γ {2At,0)-f(t,u)-f(t,-u)}\uΓdu. (3.18)

And since

2f(t,0)-f(t,u)-f(t,-u) = -\u\2 f (\-\r\)-L(t,ru)dr
r = - l ^

= — M
2 / (1 - \r\)@e jB.(t,rύ) dr, (3.19)

we get

\ξ\

r=-\

But

ί,0)= / /(/,»)|»|2ί/t;,
i GJR

rfrrfw. (3.20)

(3.21)
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and estimate (2.8) ensures that

~ ^ ^ ' ° ) = / fo(v)\v\2dυ , (3.22)

Moreover, if we denote

E= J fo(v)\v\2dv , (3.23)

we get (thanks to estimate (3.6)), that for any η such that

\η\ ^ ^ - ^ , (3.24)

the estimate

( d2f \ E

dζ2 ' J ~ 2

holds. But estimates (3.20) and (3.24) ensure that

a(t,ξ) > —E\ξ\a~ι f3'2 \u\2~adu
~ 16 . * E '

Therefore, there exists C3.3 > 0, C3.4 > 0, such that when \ξ\ ^ C^3,t ^ 0,

ααO^Cj^Γ1. (3.27)

We will now use Eq. (3.12) and estimate (3.27) to prove Theorem 3.1 by induction.

Lemma 3. We make the assumptions of Theorem 3.1. We suppose moreover that
there exists δ ^ 0 such that for all t\ > 0,εi > 0, we can find Cs.s(ε\9t\) > 0
satisfying

Vξ e R, sup \f(s, O| ύ C'Λl]ί^ (3.28)

Then, for all t\ > 0, ε\ > 0, we can find C^^{ε\,t\) > 0 satisfying

Vξ e R, sup |/(ί,01 ύ C3d"l'S\} • (3.29)
^ Ί l + \ξ\δ+—~ε[

Proof of Lemma 3. We fix t\ > 0,εi > 0. According to Eq. (3.12), for any t 2; t\,

-fa(τ,ξ)dτ

f(t,ξ)=f(O,ξ)e o

Ί ' '
T -Ja(τ,ξ)dτ t - f a(τ,ξ)dτ

+ Jb(s,ξ)e ' ds + Jb(s,ξ)e ds. (3.30)
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Therefore, e s t imate ( 3 . 2 7 ) ensures that for a n y t ^ h,\ζ\ ̂  C3.3,

)e-c^-l+ sup '±\b(s,ξ)\e-
c3AW-1

+ sup

But for all s € [0, +00[,

ds. (3.31)

\b(s,ξ)\ = J {f(s,ξ cos θ)-f{s,ξ)]f{s,ξ sin

/ ξ( cos θ-l) j ^-(s,ξ + uξ(cos θ-\))duf(s,ξ sin θ)β(\θ\)dθ
θ=-π κ=0 Oζ

^ C 2 . 3 (2)C3.2(0)C 3 . 2 ( l ) |ξ | . (3.32)

Therefore, estimate (3.31) implies that for any / ^ h,\ξ\ ̂  C3.3,

According to assumption (3.28), we have for all ε > 0,

C3.5OM1)
VξelR, sup | / ( J , O I g — — ^

(3.33)

(3.34)

Therefore, using Corollary B.3 of Appendix B and assumption (3.1), there exists
for all ε > 0 a strictly positive constant C3 7(ε,t\) such that

, sup \hs,ξ)\ ύ

We now compute (for all \ξ\ ^ C3.3,ε > 0),

(3.35)

sup \b(s,ξ)\ = sup

^ sup /

J {f(s,ξ cos θ)-f(s,ξ)}f(s,ξ sin

COS 0 -
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+ sup / \f(s, ξ cos θ) -f(s, ξ)\ \f(s, ξ sin θ)\β(\θ\)dθ

+ sup / \f(s,ξ cos θ) -f(s,ξ)\ \f(s,ξ sin θ)\β(\θ\)dθ . (3.36)

We now use estimates (3.34), (3.35) and resume the computation (for all \ξ\
C3.3,ε > 0),

sup \b(s,ξ)\ S 2 C 2 3 ( α - 1 ^

C3.7(ε,ίi)
Sfi+ε

(3.37)

for some strictly positive constant C3.8(ε,ίi).
We now use estimate (3.37) to precise estimate (3.33). We get for all t 2:

tu\ξ\ ^ C 3 . 3 , ε > 0 ,

\f(t,ξ)\ ύ C3.2 |

+ cφ!l)lξrψδ+2ε_ (338)

Taking ε = ^ , we get some strictly positive constant C^<){ε\,t\) such that when
t ^ ^i»|ί| i s large enough,

1/0,01 ^ C3.9(εuh)\ξ\~^~δ+εi • (3.39)

Finally, using estimate (3.6) for p = 0, we obtain estimate (3.29).
We now come back to the proof of Theorem 3.1. We already know (because

of estimate (3.6) when p = 0) that assumption (3.28) holds when (5 = 0. Lemma 3
clearly implies by induction that for any t > 0, q ^ 0, there exists a strictly positive
constant C^Λo{t,q) such that

VξeR, sup|/(ί,OI ^ ^ X Ί T ^ (3 4°)
x + IC|

Using now the Sobolev inequalities (or more simply the fact that //°°(R) =
C°°(IR)), we get Theorem 3.1.
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4. Regularization Properties when Some Polynomial Moments are
Initially Bounded

We extend in this section the results of Sect. 3 when assumption (3.1) does not
hold any more.

Theorem 4 .1 . Let fo^Obe an initial datum such that

3r e N,r ^ 2,C4.i > 0, / fo(υ) (l + \v\2r + | log/oOOl) dυ S C4Λ , (4.1)

and let β ^ 0 satisfy (2.2). Then, if f(t, v) is a nonnegatίυe solution of Eq.
(1.18), (1.19), (2.2) in the sense of Eq. (2.3) with initial datum /o, we have
for all! > 0 and all ε > 0:

f(t,υ) e L00([7,+oc[/;^-2^(IR,)) . (4.2)

Corollary 4.2. In particular, under the assumptions of Theorem 4.1, we have for
all! > 0 and all e > 0:

f(t,v) E L 0 0 ( p , + o o [ / ; C 2 r - 2 1 - e ( R i ; ) ) . (4.3)

Proof of Theorem 4.1. Corollary 4.2 is a straightforward consequence of Theorem
4.1 and of classical Sobolev inequalities (cf. [B]).

We now prove Theorem 4.1. We use the same strategy as in Theorem 3.1.
Estimates (3.4) and (3.6) still hold, but only for p ^ 2r. Moreover, Eq. (3.9),
(3.10), (3.12) also hold, and lead to estimate (3.27) as in Theorem 3.1.

However, Lemma 3 is changed in the following way:

Lemma 4. We make the assumptions of Theorem 4.1. We suppose moreover that
there exists δ ^ 0 such that for all t\ > 0,εi > 0, we can find C 4 2 (εi,ίi) satis-
fying

VξeiR, suPl/(,,Ol^ f + t y i l (4-4)

Then, for all t\ > 0,ε\ > 0, we can find C4.3(εi,ίi) satisfying

Proof of Lemma 4. We fix h > 0,εi > 0. It is clear that estimate (3.33) still
holds. However, using Theorem B.2 of Appendix B, we only get for all ε > 0 a
strictly positive constant Guίε, t\) such that

Mξ e R, sup
CΛA(ε,tx)
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Then, we note that estimate (3.36) still holds, but estimate (3.37) becomes (for all
\ξ\ ^ Ci3,ε > 0),

sup \b(s,ξ)\ ί 2C23(a-l+2sm^+£C32(0)

χ / C42(e,'j) \ l~(^+ε) ( C4A(s,'j) \ ̂ + ε

X ] )

+ 2 β ι

for some strictly positive constant C^s(ε,t\).
Then, estimate (3.28) becomes for all \ξ\ ^ C3.3,ε > 0,

\f(t,ξ)\ ί 1 |

(4.7)

Taking ε — ε\ (2 + ~) , we get some strictly positive constant C4.6(ε,ίi) such that
when t ^ h,\ξ\ is large enough,

\f(t,ξ)\ ύ C4.6(ε,tι)\ξ\-^-{l-^*]δ+ε> • (4.9)

Then, Lemma 4 is obtained exactly as Lemma 3.
We now come back to the proof of Theorem 4.1. We already know that assump-

tion (4.4) of Lemma 4 holds when δ = 0. Moreover, using Lemma 4 by induction,
we can see that for all t\ > 0,εi > Q,n G N, there exists a strictly positive constant
C4j(ε\,t\9n) such that

^ | ^ , (4.10)

where (δn)ne^ is the sequence defined by

<5o = O, (4.11)

- ^ (4.12)

But this sequence is strictly increasing and converges to 2r. Therefore for all ε >
OJ> 0, there exists C^{εJ) such that

\/ξ e R, sup \f(s, ξ)\ ^ "°v

 2;_y

f . (4.13)

Finally, estimate (4.13) ensures that

/ G L°°([t9+oo[t;H2r~i~e(RO)), (4.14)

and Theorem 4.1 is proved.
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Appendix A: Standard Properties of the Classical Kac Equation

We prove in this appendix some classical facts about the spatially homogeneous
Kac equation, and present some others that can easily be deduced from the theory
of the Boltzmann equation (cf. [A 1]).

Theorem A.I. Let fo^Obe an initial datum such that

J Mυ)(l + \v\2)dv < + o c . (A.I)
ϋGlR

Then, there exists a unique nonnegatίve solution f(t,v) of Eq. (1.18), (1.19) in
Z°°([0,+oo[/,Z

1(Rι;,(l + \v\2)dv)) with initial datum f0 as soon as the cross sec-
tion β in (1.19) belongs to Z,°°([0,π]).

This solution satisfies the conservation of mass and energy for all t ^ 0:

/ f(t,v)dυ= S fo(υ)dυ, (A.2)

f f(t,v)\υ\2dv= J fo(v)\v\2dv . (A3)
!>eR »€R

Proof of Theorem A.I. We introduce the sequence (/«(ί,ιO)ne]N> defined by

Mt,υ) = fo(v), (A.4)

fn+ι(t,v)=f0(v)+ J J J {fn(s,v")fn(s,v'i)
s=0 y*

-fn+ι(s9v)fn+ι(s,υ*)}β(\θ\)dθdv*ds, (A.5)

and present a proof of existence in the Cauchy-Lipschitz style.
Note that it is easy to obtain (by induction) the conservation of mass and energy

for U

J fn(t9v)dυ= S fo(υ)dυ9 (A.6)

/ Mt9υ)\v\2dυ = J fo(v)\v\2dv . (A.7)

Therefore, it is possible to write explicitly fn+\ as a function of fn, and the se-
quence (A.4), (A.5) is well defined. It is also clear that fn ^ 0.

Then, we define for all « G N * ,

un(t)= J \fn(t,υ)- fn-χ(t9υ)\(\ + \v\2)dv. (A.8)

We get

t

= : J J J J n^ ' * J\J n\ J / J n IV J )\

/ (l + \v\2 cos2 θ + \v*\2 sin2 θ) β(\θ\)dθ \dvdv*ds

s=0 t
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x \ I (l + \v\2 cos2 θ2 + \v*\2 sin2 θ) β(\θ\)dθϊdvdv*ds

+ / / S fn+i(s,v*)\fn+i(s9υ)-fn(s9υ)\
i=0»elR»t6lR

x (1 + k|2)< / β(\θ\)dθ\dvdvtds
[θ=-n J

t

+ / / / fn(s,v)\fn+ι(s,V*) - fn(s,V*)\

x (1 + |ι;|2) / {β(\θ\)dθ}dvdv*ds
θ=-π

S CAΛ J {un(s) + un+ϊ(s)}ds , (A.9)

for some strictly positive constant CAΛ- Moreover, we can prove in the same way
that for all t ^ 0,

uι(t) S CA2t, (A.10)

where CAI > 0.

But estimate (A.9) ensures that (when t e [0,T],n ^ 1),

κ Λ + 1 (0 ^ (CAΛ + C2

AΛTec^τ) J un(s)ds . (A.ll)

Therefore, for all T > 0,s G [0,Γ],w ^ 1,

This estimate ensures that the sequence (/«)«GN satisfies the Cauchy property in
L^([0,+oo[t9L

ι(WLΌ,(l + \v\2)dv)i Its limit / clearly satisfies Eq. (1.18), (1.19).
Moreover, / ^ 0 and the conservation of mass and energy / 6 L°°([0, +oc[ ί,Z1(R ι ;,

(i + H2y»))
The uniqueness of such a solution is then directly obtained by a Cauchy-

Lipschitz type argument.
We now consider the polynomial moments of the solution of the spatially ho-

mogeneous Kac equation.

Theorem A.2. Let fo^Obe an initial datum such that

J fo(υ) (1 + \v\2 + I Iog/o(ι0|) dυ<+oo. (A.13)
i GlR

Then, for all t ^ s ^ 0, ίfe unique nonnegative solution f(t,v) of Eq. (1.18),
(1.19) with initial datum /o (when the cross section β in (1.19) belongs to
Z°°([0,π])) satisfies

J f(t9 v) log f(t9 v)dv^ I f(s9 v) log f(s9 v) dv

^ / f0(v)\ogfo(v)dv < +oo . (A.14)
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Moreover, if

3r e N, / Mυ) (l + \v\2r) dυ < +00 , (A.15)
uGlR

C4.3 > 0 (independent of β) such that for all t ^ 0:

f f(t,v)(l + \v\2r)dυ

Proof of Theorem A.2. For estimate (A. 14), we refer to [A 1], where it is proved
for the Boltzmann equation (for example for Maxwellian molecules with an angular
cut-off).

We now prove estimate (A. 16) in the case where r — 2. We can write

%-ff(t,υ)\v\4dυ=f J } (\vcosθ-υ*Sinθ\4-\v\4)

x f(t,v)f(t,v*)β(\θ\)dθdυ*dv

= j {cos* + sin4θ - l}β(\θ\)dθ f f(t,v)\v\4dv J f(t,υ)dv
ϋ=-π

π

+ 6 / cos2θsin2^(|θ|)JΘ f f(t,v)\v\2dv)
θ=-π yeiR /

- I j cos2θsin2^(|θ|)JθU -2 / f(t,v) \v\4dv J f(t,v)dv

[ J [

+ όί f f(t,v)\v\2dv) I . (A.17)

Therefore, a simple application of the maximum principle yields

/ Mv)\v\*dv * sup ( J

\

Finally, when r > 2, the same kind of computation can be done. Note that a
rigorous proof is given in the case of the Boltzmann equation with Maxwellian
molecules in [Tr].

Appendix B: Interpolation Between Derivatives

We give here for the sake of completeness the proof of some classical results used
in Sect. 2, 3 and 4.

Theorem B.I. Let f lie in C 2 (R) and satisfy
1. There exists CBΛ > 0, α > 0, such that

Vx€R, |/(χ)| ^ - i * ± - . (B.I)
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2. There exists CB2 > 0? such that

Vx e R, \f"(x)\ ^ CB2 .

Then,

Vx € R, |/ '(x)| ^

Proof of Theorem B. 1. Suppose that

Then, because of estimate (B.2), for all t e [0,1],

S 8 n ( * o ) J ^ ,Λ

 B] „. ~ f'(xo)

But estimate (B.5) ensures that

Therefore,

7" / ' I xo + sgn (xo)*

2CBΛ

2CBΛ

\xo\<)

But

/ xo + sgn (XO)A
2CBΛ

CB.2(l + |xo|α) +
2Q S.I
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(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

Thus, we get a contradiction and conclude that Theorem B.I holds.

Theorem B.2. Let p e N, p ^ 2, and f lie in C(WL). If f satisfies the following
properties:

1. There exists Cgj > 0, α > 0, such that

Vx G R, |/(x)| g

2. 7%ere exώίί Ce.4 > 0, such that

Cβ.3

1 +
(B.9)

(B.10)
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Then, for all ε > 0, there exists CB.s(ε) > 0, such that

to e R, \f'(x)\ < <^£ί . (B.ll)
l | | α ( 1 ^ ) + ε

Proof of Theorem B.2. We use Theorem B.I and give a proof by induction. We
know that if there exists CB.6 > 0 and a finite sequence (uq)qe[o,p] such that for all
q e [0, pi

then there exists CB.η > 0 such that for all q e [0, p],

VxGR, \f^(x)\iT^, (B.13)

where

»o = α, Vί G [ l , p - 1 ] , » , = - ( i ι , _ i + « i + i ) , 0p = 0 . (B.14)

Therefore, we define by induction the sequence

ro(O) = α, Vi€[l , jp],r ί (0) = 0, (B.15)

and

ro(n + 1) = a, Vi e [1, p - l],r,(n + 1) = -(r,_,(n) + r / + 1(n)), r p(n + 1) = 0 .

(B.16)
It is clear that for all n € IN, there exists CB.S(Π) > 0, such that for all q € [0, p],

But for all i e [0,/?], the sequence (rt(n))ne^ tends towards ri9 where

1

2

Therefore,

r, = (l - - ) a, (B.19)

which yields Theorem B.2.
Finally, using Theorem B.2 by induction, we get the

Corollary B.3. Let f lie in C°°(R) and satisfy:
1. There exists Cβ.9 > 0, α > 0, such that

to e R, |/(x)| ϊS γ ^ - . (B.20)

2. For all q eN there exists Ce.xoiq) > 0,
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Then, for all e > 0, there exists C#.n(ε) > 0, such that

Vx G R, |/'(x)| g - Γ ^ Π ^ (B.22)
' I I

Appendix C: The Case of the Radially Symmetric 2D Boltzmann Equation
with Maxwellian Molecules

We consider now the radially symmetric solutions of the 2D spatially homogeneous
Boltzmann equation with Maxwellian molecules (Note that one can prove the ex-
istence of such solutions exactly as in Sect. 2, provided of course that the initial
datum is radially symmetric). The corresponding Boltzmann kernel can be written

β(/)00= / / {f(v')f(v'J-f(v)Av*)}b(\θ\)smθdθdv*, (C.I)

with

' V ψ ( ^ ) (C.2)

(C.3)

We suppose moreover that b satisfies

sinθb(\θ\)~K\θ\-γ (C.4)

for some K > 0 when θ —> 0 (this is the non-cut-off case) and that b is regular
outside 0.

Using the fact that / is radially symmetric, one can recast the kernel Q under
the form:

+Rθ-n ( 0 + ~ +Rθ ( y ) ) - /(»)/(».) I K\θ\)sinθdθdυ*

= I I If (Ri(v) cos (f)+Λfi_s(t; )sin (ζ

cos ( 0 - β sin G
-/(»)/(»*) >i(|θ|)sinθrfθί/», . (C.5)
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Thus, we can see that the equation is very similar to the Kac equation. The main

difference is simply that now v is in 1R2 instead of R. It is then possible to prove

all the theorems of the previous sections with exactly the same proof.

Note however that for the 3D radially symmetric solutions of the spatially ho-

mogeneous Boltzmann equation with Maxwellian molecules, the analogy with the

Kac equation is not so clear. This case shall be discussed in a future work.

Acknowledgement. I would like to thank Professor Golse for his valuable remark during the
preparation of this work.
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