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Abstract: U(1) gauge theory with the Villain action on a cubic lattice approximation
of three- and four-dimensional torus is considered. As the lattice spacing approaches
zero, provided the coupling constant correspondingly approaches zero, the naturally
chosen correlation functions converge to the correlation functions of the R-gauge
electrodynamics on three- and four-dimensional torus. When the torus radius tends
to infinity these correlation functions converge to the correlation functions of the
R-gauge Euclidean electrodynamics.

1. Introduction

The compact lattice gauge field theory models introduced by K. Wilson [1] preserve
the differential geometric structures of the continuum theory. This paper is concerned
with the case where the gauge group is U(1) = R/2nZ. Let h(0) be a real twice
continuously differentiable even periodic function with period 2n. Any such function
will be called an energy function. The main examples of interest are the Wilson [1]
energy function () = 1 — cos 0 and the Villain [2] energy function

exp [—Phg(O)] = c5 > exp [B(0 — 2un)/2], (1.1)

n=—00

where f > 0 and cg is a constant chosen so that the right-hand side is one for
f=0.

Let e;, i = 1,...,d be the standard unit vectors in R?, and p be a non-negative
integer less than d. The p-cells based at m € Z% are the formal symbols: (m;
€,..-»€i,), where the unit vectors differ from each other.

Let G be one of three abelian groups: Z, R and U(1) = R/2nZ. A p-cochain
with the coefficients in G is a G-valued function on p-cells f(m;e;,...,e,) =
f,l._.,«p(m) which is antisymmetric under the permutations of the indices ij,...,i,.
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Let A={m € 7 N S m £ Nyyi= 1,...,d} be a cube in Z¢ for some integers
Ny and N,. The free boundary conditions are equivalent to setting that f; ;,(m)
vanishes except for {m € z¢ Ny Emp £ Nyjiskiy,. i N Smy, SNy - Lk=
1,..., p}. Dirichlet boundary conditions correspond to setting that f, iy...i,(M) van-
ishes except for {m € z¢ N1+ 1 Em £ NyjiFiy,..,ipp Ny S mj, < Nyk =
1,..., p}. The conditions

Tty + Nyoymg) = foy i, (m) (12)

where N =N, — Ny + 1, forevery j = 1,...,d and m € z¢ correspond to the choice
of periodic boundary conditions. For the periodic boundary conditions we define the
boundary operator

d
@f ity @) = 3 0 (=1 f i, (m— e,y (13)

8=0,110=l

and the coboundary operator

+1
@ Dty @ = X S (<D f, = (mtee,).  (14)
e=0,1k=1 rt

For Dirichlet or free boundary conditions we need to modify the definitions (1.3)
and (1.4), respectively, in an obvious way.
For the p-cochains with coefficients in Z and R the inner product is defined by

(fs9)= X X firip(m)g; i, (m). (1.5)

i <..<ipm€A

For a smooth differential p-form f(x) =3, _ <i, [i ip(X)dXV A - Adx'P on
R? we introduce two lattice approximations: (f a)ij..i,(M) = fi ;, (am) and

S y(m)y =" [ fi i, (am+ Epske,k> drs. (1.6)
k=1

[0.a]% P

The energy function 4 and 1-cochain 6 on A provide two 2-cochains on A with
real coefficients. These 2-cochains are defined for any indices i; < i; by the follow-
ing relations (7(9"0));,1,(m) = A((0%0);,;,(m)), (1'(0*0));1,(m) = h'((0*0),,,, (m)).
By 1 we denote the 2-cochain (1);;,(m) = 1 for any indices i; < i,.

The finite volume Gibbs state in a cube A C Z“, at inverse temperature § and
with energy function 4 is given by

(Flap= Z‘l[ 11 fndOi(m) F(0)exp [—B(r(370), 1)]. (1.7)

meAi=l1,.,d —=n

Here 0 is a 1-cochain on A with coefficients in U(1) and 6 satisfies the periodic
boundary conditions. For Dirichlet or free boundary conditions some 6;(m) are equal
to zero and the corresponding integrations in (1.7) are omitted. The measure d6;(m)
is Lebesgue measure on [—7, ]. Z is the normalization constant and F' is a function
of the bond variables 6;(m).



U (1) Gauge Theory on a Torus 229

Let ()p be any translation invariant infinite volume limit Gibbs state. L. Gross
[3] proved that for Wilson and Villain energy functions s and for every smooth
differential real 1-form j on R? the following equality holds:

lim (exp [i(H (800, ety = oxp [-*(djd)/2].  (18)

where ¢ is a strictly positive real number and d is a differential operator on the
differential 1-forms on R3. The inner product of the differential 2-forms on RY is
similar to the inner product (1.5).

Let Y be a smooth real differential 3-form on R and r be any number in [1, 00).
L.Gross [3] proved also that for the Villain energy function

1m ([ (1fyg2y1(8°0), 00 0)] ) g2y 1 = 0. (19)

In the four dimensional case B.Driver [4] proved that for the Wilson energy
function and “for all but at most countable numbers of g > 0”

lim (exp [i(4'(0°0),0"j*)])y-2 = exp [~ag*(dj.dj)/2], (1.10)

where (), is any translation and 90°-rotation invariant infinite volume Gibbs state,

Jj is any real smooth differential 1-form on R*, j* is its lattice approximation (1.6)
and the number o = 0 is independent of the particular choice () g2+

This paper is concerned with the case of the Villain energy function and the
periodic boundary conditions. We study the correlation functions: (exp [i(j,0)]) 1,
where j is a 1-cochain on A with the integer coefficients. The inner product (j,6)
is not defined for a 1-cochain 8 on A with coefficients in U(1) = R/27nZ, but exp
[i(j,0)] is well defined. It is easy to show that (exp [i(j,0)])4p = 0 if j+0¢ for
some 2-cochain ¢ on A with the integer coefficients (see, for example, [5]). In
view of the periodic boundary conditions we can identify the opposite vertices of
the cube [Nj,N, + 11*? and obtain a lattice approximation T¢ of the torus T of
radius R.

Let f3,..,(x) be the coefficients of a real smooth differential p-form on the torus

T?. We define the integer valued p-cochain on T¢,

(6D, (m) = [N® £, i, (27RN " 'm)], (1.11)

where N =N, — N; + 1, b is a strictly positive integer and [r] is the integer part
of the real number r. In order to define the continuum limit we need to know how
the constant f in the Villain energy function (1.1) depends on the lattice spacing
parameter @ = 2nRN ~'. B.K. Driver requires that being multiplied by $(a) the scalar
product (1.5) of two lattice approximations (1.6) of the smooth differential 2-forms
(electromagnetic field strength is the differential 2-form) tends as @ — 0 to the usual
scalar product of these smooth differential 2-forms multiplied by the constant g—2.
This requirement implies that f(a) = g~2a“~*. For the dimensions d = 3,4 we get
B(a) = (ag?)~' and p(a) = g2, respectively. Due to Theorem 4.1 from [4] for
the dimensions d > 4 this scaling implies that the continuum limit on the current
sector of U(1) gauge lattice models is degenerate. We choose the non-standard
scaling, when f(a) = g;2a97%, where b is a strictly positive integer introduced
above. We require that being multiplied by (B(N))~! the scalar product (1.5) of two
lattice approximations (1.11) of the smooth differential p-forms tends as N — oo
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to the usual scalar product of these smooth differential p-forms multiplied by the
constant g2. Let the function f(x) on the torus T? be equal to one. By the definition
(1.11) the 0-cochain fy 5(m) = N°. The definition (1.5) implies that (.5, fn,5) =
N4*26_ Choose B(N) such that B(N) " (fn.6, fn.5) = g°(27R)?, where (27R)? is the
volume of the torus T¢ and g > 0, i.e. B(N) = g~ 2(2nR)"N9*?>_ It seems that
this geometrical definition of the continuum limit may be useful also for the U(1)
gauge models including the interaction with the fermions. In the next sections it will
be proved that for any real smooth differential 2-form ¢ on the torus T4, d = 3,4,

Jim (exp (106, O)])rg vy = X0 [—02(d*$,G(@*$))/2),  (112)
where d* is the adjoint operator of the differential operator d, the operator G is the
Green operator for the Laplace—Beltrami operator on the differential 1-forms on the
torus T? and the inner product of the differential 1-forms on the torus is similar to
the inner product (1.5).

When ¢ = dj the right-hand side of the equality (1.12) is a torus analogue of
the right-hand sides of the equalities (1.8) and (1.10) for o = 1. Due to (d*)* =0
the substitution ¢ = d* into the right-hand side of the equality (1.12) yields 1 and
we obtain a torus generalization of the equalities (1.9). It is important to note that
the right-hand side of the equality (1.12) coincides with the correlation function of
R-gauge electrodynamics on the torus [7]. As the torus radius R tends to infinity the
limit of (1.12) gives the correlation function of R-gauge Euclidean electrodynamics
[7]. We studied the continuum limit (1.12) of the correlation functions of the free
U(1) gauge model. We believe that the limit (1.12) may be applied for the study
of the correlation functions of the U(1) gauge model which includes the interaction
with the fermions.

The remaining sections are devoted to the proofs of the equality (1.12) for
d =3,4.

2. Three Dimensional Torus

The p-cochains with the coefficients in the abelian group G = Z, R,U(1) = R/27Z
satisfying the periodic boundary conditions (1.2) form the abelian group CP(T%, G),
where N = N, — N; + 1. In order to simplify the situation we assume that N; =
0,N; = N — 1. Now the definition (1.7) for the correlation function may be rewritten
in the form

(exp [iG, 00D qa g =Zyg [ exp [i(),0) = B(hp(0"0), )]0, (2.1)
Nevrd,uay)

where a 1-cochain j € C'(T%,Z) and exp [i(},0)] is a character of the compact
group Cl(ij,, U(1)). The Villain energy function Ag(0) is given by (1.1). Here d6
is the normalized Haar measure on the compact group C 1(T?(,, U(1)) and ZTK/ is
the normalization constant.

By [5, Lemma 1] the correlation function (2.1) isn’t zero only for the boundaries
j = 0¢, where ¢ € C*(T%,Z), and

(exp 106, 0)ng y = Z5y [ exp L) = Blhy). DWW, (22)

NB2(1d,u(1))
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where the group of coboundaries Bz(Td ,U(1)) is the image of the homomorphism
% CHT%,U(1)) — CX(T%,U(1)) and dy is the normalized Haar measure on the
compact group B*(T%, U(1)).

It is easy to compute the Fourier transform of the function (1.1),

I/Zn?exp [in0 — php(8)]d0 = cﬁ(2nﬂ)_mexp [—2B)"1n?]. 2.3)
0

By using the Fourier transform on the group B%(T%, U(1)), due to the formula (2.3)
and [5, Proposition 1] we obtain

(exp [i(09, 0)l)rg y = Zyy c(2mB) ™"

g g
x doexp | —12B(¢p+ Ymzi, ¢+ Y mizi) |, (24)
meZg i=1 i=1
where z,...,z, form a basis of the group of 2-cycles Zz(Tﬁi\,,Z) which is the ker-
nel of the homomorphism @ : CX(T%,Z) — C'(T%,Z). The symmetric g X g matrix
Q;; = (z;,z;) is positively definite and invertible. Let us introduce the dual basis
zZ, = Z;LIQ,;]ZJ. For every i = 1,...,g the 2-cochain z, € Zz(Td,R) has the fol-
lowing properties: (Z;,z;) = 6,; and (Z,,Z;) = Q;l Let Z5(T%,Z) be a free group
with the basis Zj,...,z,. The group Zg(Ti,,Z) may be defined also as the maximal
subgroup of ZZ(T}‘f,,R) so that for any elements z € Zz(Tf,,Z) and z € Z»(T4,2)

the inner product (z,Z) is an integer.
Applying the Poisson summation formula

> f(n) =3 [dxf(x)exp [2minx] , (2.5)
we can rewrite the relation (2.4) as
{exp [i(0¢, 0)]>Tld\/’ﬂ = ZT_]dVlcf,[det Q]—1/2WT%,ﬁ(6¢)@((¢,Z)]2niﬁQ—1) , (2.6)

where

W 5(06) = exp [—1/21% [(¢, $) - V_ilw,zi)(«p,zi)ﬂ @)

is the correlation function calculated for R-gauge electrodynamics on the lattice T;’v
in the paper [6] and the Riemann 6-function

O(ylw)= > exp [m > mywgm; + 2mZmJy,} (2.8)
meZyg Jk=1

depends on the vector y € CY and on the symmetric g X g matrix @ with the posi-
tively definite imaginary part. In our case w = 2mifQ~'.
Taking the trivial 2-cochain ¢ = 0 we obtain

Zyy = cjldet Q7 120(0127ipQ7") . (2.9)
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The substitution of the equality (2.9) into the right-hand side of the relation (2.6)
gives
O((¢,2)2mipQ™")
O0)27ifQ"1)
This formula was obtained in the paper [6] for the Wilson energy function but only
in the weak-coupling region when the inverse temperature approaches infinity.
The definition of the group 72(T}‘f,,Z) and the definition (2.8) imply that

(exp [i(a¢»0)]>1‘§,,/3 = Tg’/,ﬁ(ad)) (2.10)

(¢, D)2mipQ = 3 exp [-2n°B(Z,Z) + 27i(h,2)] . (2.11)

z€2)(T4.Z)

To obtain the equality (2.10) we used the Fourier transform on the group U(1).
Our space T¢ is a product of groups U(1) and a lattice approximation TY =74,
where a group Zy = Z/NZ. In order to study the groups Z2(T7\/,Z) and 72(T§,,Z)
we use the Fourier transform on the group Zi,. The Fourier transform of a p-cochain
f € CP(T4,R) is defined by

maiy (D= %Aexp [ZTEIN lkz:lkmk] fiy.ip(m), (2.12)
where 1 € A and a cube 4 = {m € Zi:0<m <N-1l,i= l,...,d}. We denote
the group of functions (2.12) by Cp(Td ,R)™.

The following relation

N—1
N™'Sexp 20N ~em] = S0 (2.13)
k=0
holds for any integer —N + 1 < m < N — 1. The relations (1.5) and (2.13) imply
L9 =N" ¥ Yfi,We.,, 0. (2.14)
i1 <. <lp]€/1

The right-hand side of the equality (2.14) we denote by (f™,g9").
Applying the Fourier transform (2.12) we can rewrite the equalities (1.3) and
(1.4) as

N d '
Of iyr, (D) = 'Z (exp [2miN~'1,] — DS 5y

10:1 e ( (2.15)

@ ity ) = Z( D (exp [-2mN~ 1] = DSy o (). (216)
Therefore a lattice Laplace—Beltrami operator is given by

((6*8 + 30*) [~ iy, (1) = Z(exp RN ] = 1215, () - (2.17)

A p-cochain f is said to be harmonic if the expression (2.17) equals zero.

Lemma 2.1. Any harmonic p-cochain f € CP(T%,R) is constant.
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Proof. Taking the inner product (2.14) of the functions /7 ,»p(l) and (2.17) we get
that p-cochain f; ;,(m) is harmonic iff for any £ = 1,....d,

(exp RuN '] = Dy ) =0. (2.18)

Hence f,T"_,p(l) isn’t zero only for [, = 0,k = 1,...,d. By using the inverse Fourier
transform we have that the p-cochain f;, . ,-p(m) is constant.
Let P be an orthogonal projector on the subspace Zz(Td ,R) of the linear space

CXT%,R). Lemma 2.1 and the equalities (2.15)—(2.17) imply that
N d
(Pf)lllz(l) = filiz(o)knlélk,o

R .
+ <(3 (Z|exp [2riN~'1,] — 1|2) 0 fN> @d. (219
k=1 i
Due to equalities (2.15) and (2.16) we may consider the second term in the right-

hand side of (2.19) to be equal zero at I = 0. We denote the right-hand side of the
relation (2.19) by (P f™ )i, (D).

Proposition 2.2. The Fourier transform (2.12) of every 2-cycle z € Z,(Tx, Z) has
the form: for any permutation iy, i, iz of the numbers 1,2,3

2 (M) = (1) + (exp 27N 1,1 — DB, ) — 675D + e (D], (2.20)

where a 2-cochain a; ;,(m) is independent of the variables mj ,m;,, a 2-cochain
bj ;,(m) depends on the variables mj ,m;, only and it is equal to zero if one
of these variables equals N — 1, a 3-cochain c; ;,;,(m) equals zero if one of the
variables my,my,m3 is equal to N — 1. The above cochains determine the 2-cycle
given by (2.20) uniquely.

Proof. By using the formula for the sum of geometric progression we get

27, = 277, D], =0 + (exp 2N ™' 1] — 1), (1) (221)

where
, N—1 N—1my—! 1
~ AT — 12
™ Ny (D = >3 exp {ZmN { o Lymy + l,3m,»3Hzll,2(m).
mj, mi, =0 My :lml’3 =0 k=12

(2.22)

Since a function z[7; (1) is antisymmetric under the permutation of the indices iy, 7

the substitution /;, = 0 into two equations (gzN),l(l) =0 and (Jz™ )i,(1) = 0 pro-

vides two equations (exp[2miN ~'/; ] — I)Z,le(l)ll,fo =0, k=1,2. Hence a func-

tion z,lle(l)|113=0 is not equal to zero only at /, =0,/, =0 and by the relation
(2.13) we have

ZiTiz(l)|l,3 =0 = N251,1,051,2,0ai|i2 > (2.23)

where a constant g;,;, is antisymmetric under a permutation of the indices iy, ;.
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The equation (02~ )i;(1) = 0 and the equalities (2.21), (2.23) imply that

kl_zlﬁ(exp RN~ ] = D E) 00 + @)D= 0. (2.24)
Let us introduce the function

1213(1) 5[ 0 Z €Xp [— 2niN ~ I(N - 1)1 1z~ 1]12 13(l)|lil=/;l
l —0

N-1

—0;,,001,0 > exp [=2miN =N — 1)/} + 1] )](zN)§|i2;13(l')]1’f3:1,3
17 =0
nn

(2.25)

By definition the function (2.25) satisfies Eq. (2.24) and therefore it satisfies
the equation b7; (1) + b, (1) = N261il ,0[51,2,01’3(1,-3) + 51,3,0f2(l,-2 )]. The definitions
(2.22) and (2.25) imply that the Fourier expansion of the left-hand side of this
equation does not contain the components with m,, =N —1 or m;; =N — 1. It is
easy to show now that b7; (1) + b7, (I) = 0. Hence the function b7 (1) is antisym-
metric under a permutation of indices i,i3. By the definitions (2.22), (2.25) and
the relation (2.13) all components in the Fourier expansion of the function b7, (I)
are integers. Then the function b7, (1) is the Fourier transform (2.12) of some 2-
cochain b;y;,(m) € CXTy,Z). Due to equality (2.25) a cochain b,,,,(m) depends on
the variables m,,,m;; only and it is equal to zero if one of these variables equals
N —1.

We define the function ¢, ;.(1) by the following equality:

11313

Ca )1{1i2;13 M= CiTizis M+ b;;3 M- '1'3 i (D)

N-—1

(2.26)

A function ¢f; . (1) is obviously antisymmetric under a permutation of indices iy, 1.
By definitions (2.22), (2.25) and (2.26) its Fourier expansion does not contain
the components with m; = N — 1, where k is one of the numbers 1,2,3 and the
remaining components are integers. It is easy now to verify that a function cf; ;. (1)
satisfies Eq. (2.24) and therefore it is antisymmetric under a permutation of indices
i»,i3. Hence it is antisymmetric under a permutation of all indices ij,i,i3. Then
a function cf; ;. (1) is the Fourier transform (2.12) of some 3-cochain ¢;;,i;;(m) €
C3(T3 ,Z) which equals zero if one of the variables m;,my,m; is equal to N — 1.

Now the equalities (2.21), (2.23) and (2.26) imply the equality (2.20), where
a function a (l) is the Fourier transform (2.12) of some 2-cochain a;;,(m) €
CZ(T;’\,,Z) 1ndependent of the variables m,,,m;,. By definitions the cochains in the
expansion (2.20) determine the 2-cycle defined by (2.20) uniquely.
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Let S, be a symmetric group, i.e. a group of all permutations of the numbers
1,...,n. For any permutation ¢ € S3 and for any point m € T?v we introduce three
2-cochains from C2(T,3V,Z) by defining their Fourier transforms

(@[o(1),0(2); mo3)Diyi, (D) = (3i1,61)0i5,02) — iy,0(2)0ir,0(1))
xexp 21NN = 1)(Loq1) + Lo@)) + Moy lo3))] »

. N (2.27)
(b[a(2),0(3); mo(2), ma3)])i;, (D
= (01,,6(1)0i,02) = 0i},0(2)913,0(1)) LIL(CX}D (27N~ Moy Lo ]
—exp [2miN "N — 1)16(,()])] (exp [—27iN "', — 1)~}
xexp [2niN "' (N = Do)l (2.28)
(élo(1),0(2),6(3);m]);;, (D)
= (611,0(1)51'2,0(2) - 5i1,a(2)512,a(1)) [k II—IZ 3(eXP [27TiN——1ma(k)la(k)]
—exp [2miN YN — 1)10(k)])} (exp [-2miN " 'I,3] - D). (2:29)

The inner product (2.14) of the 2-cochains given by their Fourier transforms (2.20)
and (2.27) is equal to as(1)e2)(Ms(3)). It is antisymmetric under a permutation of
the indices o(1),0(2). The function (2.27) has the same property. Hence the in-
dependent functions (2.27) are related to three permutations ¢ € S5 satisfying the
condition o(1) < a(2). The inner product (2.14) of the 2-cochains given by their
Fourier transforms (2.20) and (2.28) is equal to bg2)s3)(m). Since it is antisym-
metric under a permutation of the indices ¢(2),(3) the independent projections on
the subspace Z,(T3,R) of the 2-cochains given by the Fourier transforms (2.28)
correspond to three permutations ¢ € S3 satisfying the condition (2) < d(3). The
inner product (2.14) of the 2-cochains given by their Fourier transforms (2.20) and
(2.29) is equal to cu(1)e(2)0(3)(m). Since it is antisymmetric under a permutation
of all indices ¢(1),0(2),0(3) the only projection on the subspace Zz(Ti,,R) of
the 2-cochain given by the Fourier transform (2.29) corresponding to the identity
permutation ¢ € S3 is independent. Thus we have proved the following

Proposition 2.3. Every element 7 € Z,(Ty,Z) has the following form:
Zyp(m) = (P2);5,(m) (2.30)

N—-1

Zyp(m) = > > Aohyo2) (ko) N@[a(1), 0(2); ko3)])iy i, (M)
0€83;0(1)<0(2) ks3)=0

N—2 _
+ > > by (ko) ko3))
O'ES3;O'(2)<(T(3) kU(Z)’kO'(?)):O

X (b[6(2), 0(3); ko2, ko(3)]iyi (M)

N=2
+ >0 Cia(k)([1,2,3;k]);;(m), (2.31)
ko kg k3 =0
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where P is the projector (2.19), the 2-cochains (a[o(1),(2); ks(3)])i;i, (M), (b[a(2),
0(3); ko(2), ko(3)])iy 1, (M) and (€[1,2,3;K)); ;,(m) are defined by their Fourier trans-
forms (2.27), (2.28) and (2.29). The integer valued functions as(1)s2)(ks(3))s
56(2)0(3)(](5(2),]{0(3)) and 5123(1() in the equalilies (2.30), (2.31) are independent and
they determine the element (2.30) uniquely.

As explained above for the continuum limit T3 — T> of the correlation func-
tion (2.10) we need to choose the special sequence (1.11) of the 2-cochains ¢y €
C*(Ty,Z) and the inverse temperature f§ = BoN>+22, where B, = g*’(2nR)* > 0
and b is a strictly positive integer.

Proposition 2.4. Let a 0-function ©((¢p,7)|2nifQ~") be given by the equality
(2.11). Then for any sequence ¢y € C*(Tx, Z) and for any numbers fo > 0,y > 3,

Jim O((pn,Z)|2mifN' Q) = 1. (2.32)

Proof. 1t follows from the equalities (2.16), (2.27)—(2.29) and (2.31) that: for
0 é my,mp, ms3 g N—2’

(0"2)123(m) = Cp3(m) , (2.33)

for 0 < my,mj,m3y < N—-2,m;j=N—1,j=1,2,3,

o . N=2
(0*2)123(m) = (—1)’+1b173(m1,mj,m3) - /Z Clzz(m)|mj=m;. , (2.34)

=0
J

for 0 <m; <N —2,m,mj,m3=N —1,j=1,2,3,

(0%2)123(m) = (—1)j+1(5173(mj + 1) —ap(m;))
N—2 _
- > sgno bja(S)(mj’m:;(s))
0€S83;j=0(2)<0(3) m;(z):o

N—2 _
- > sgna /E bo(2)j(m:7(2)smj)

0€83;0(2)<0(3)=j mo(2)=0

N-2
+ X )|y, . (2.35)
my =0k +j /

where sgno is a parity of permutation.
Due to equalities (2.27)—(2.29) for 1 < ij,i; < 3 we get

N—-1
(2);,(0) = lgd,liz(k). (2.36)

By definition the terms in the right-hand side of the relation (2.19) are orthogo-
nal to each other. Now the equalities (2.15), (2.16), (2.36) and the obvious estimate
for any integers /;,k = 1,2,3,

(23;11 —exp [Zm'N—llk]lz)-l > 1/6 (2.37)
k=1
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imply the following estimate

|O($,D)2mip2 ")~ 1] £ Y exp [_znzﬁN—s

PZ€Z)(T3,2)

x > (NZ_:I (1 )a(2)(m)> ’

0€Sy;0(1)<0(2) “m=0

—PB3 Y (@HmmP| 1. (@38)
my,my,m3=0
Since
m—1
As(1)o(2)(M) = ds(1)s(2)(0) + kZ (do(yo)(k + 1) = Go(1)o2)(k)) » (2.39)
=0

it is possible to consider d(1)s(2)(0) and the right-hand sides of the equalities
(2.33)—(2.35) as the summation variables in the sum (2.38). It follows from the
equality (2.39) that

N-1 N=2
As(yo(2)(M) = No1)o2)(0) + 25 (N —m — 1)(ds(1)e2)(m + 1) = @s(1)s(2)(m)) -
0 m=0

(2.40)

m=|

Extending the summation over the integer variables dq(1)s(2)(0) in the sum (2.38)
into the summation over dy(1)s2)(0) € N™'Z in view of (2.40) we get the extended
sum (2.38), where the independent summation variables are the right-hand sides of
the equalities (2.33)—(2.36). Now if we leave in the second exponent (2.38) the
components (2.33)—(2.35) only we obtain the obvious estimate for this extended
sum and therefore for the left-hand side of the inequality (2.38),

0((¢. D2rifQ) — 1| < (OORmPN )Y (O0linf/3)) "1 —1,  (241)

where N3 — 1 is the total number of the component (2.33)—(2.35), i.e. the total
number of the generators of the group of 2-boundaries on Tj,.

Since for any strictly positive integer n the following estimate n> > n holds,
the definition (2.8) of the one dimensional f-function implies that for any ¢ > 0,

1 < O0it) <14+26™—-1)"". (2.42)

By using this estimate we have
0 < (OOinfoN?/3)V' 1 — 1

Nl N 1)V k) o 20 N k
<3 - 2 (exp [2BoN7/3] — 1)F . (243)
k=1

The estimates (2.41)—(2.43) imply the relation (2.32).

In order to compute the continuum limit of the correlation function (2.10) it is
necessary to calculate the continuum limit of the correlation function (2.7). Let us
consider again the d-dimensional torus, d > 2. Due to [8, Sect. 22, Proposition 1]
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for any 2-cochain ¢ € C*(Tya,Z),
(6.6) — é(qs,z,-)w,zz-) — (6,04), (2.44)

where Q is the orthogonal projector on the subspace of the 2-coboundaries Bz(TjiV,
R). Lemma 2.1, the relations (2.14)—(2.17) and the relation exp [27miN ~'(N —
D)m] = exp [—2niN ~!Im] for any integers /,m imply that

d (N=1)/2 d -1
(6,08 = 3N~ 5 (2|exp RriN-11] - 1,2)
e

Hodqg=—(N=1)/2;8 4415 £0 k=1
d
X |3 (exp [2miN~'1;] — l)d);ﬂ(l)l2 . (2.45)
=1

Here we assume N to be odd. Let a 2-cochain ¢n; € C2(T}“\’,, Z) be constructed from
the coefficients ¢,,,,(6) of a smooth differential 2-form on the torus T? by means
of the definition (1.11) for some strictly positive integer . From the definitions
(1.11) and (2.12) we get

Jim NP (), () = 5, (1)
2nR 2nR d
=@2rR)™ [dO;--- [ dOsexp [iR™'S] LkOildii,(0) . (2.46)
0 0 k=1
Hence the limit (2.46) is a square summable function of the variable I € Z°. Now

the relations (2.45) and (2.46) imply that
lim ¢*(27R)' N~ ($np Qpns)
N—o0

d oo
=g*2nR)™*Y > R+ -
b=ly ld=—oo;l%+-~.+[§*0
SR (CROMOT (2.47)

where d* is the adjoint operator of the differential operator d

d
(d*P)u(0) = —2%%(0) . (248)

Now it follows from the relations (2.7), (2.44) and (2.47) that

lim Wyd g—2anr)-dne+2 (0PN, )

N—oo
d 00
= exp [—(92/2)(27IR)“"Z z Rz(lf 4o
E=Ligly=—o0s 4 +12 %0
AR CRONUE (2.49)

It is interesting to note that the right-hand side of this relation is a correlation
function of the R-gauge electrodynamics on a torus [7]. The equalities (2.10), (2.32)
and (2.49) imply the equality (1.12) for d = 3.
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If the differential 2-form ¢ has a compact support independent of the radius R
of a torus then by using the equalities (2.46) and (2.49) it is easy to prove that

lim llm WT;dv,g_2(27fR)_de+2b(a¢N’b)

R—oo N—oo

= exp [(¢°/2)2m) ™ [a? p(p} + -+ p2) (@ )y (P)IT, (2.50)
R4

where the operator d* is defined by the same equality (2.48) and a function f7’(p)
is an usual Fourier transform of a function f,(x) on the Euclidean space R.
The right-hand side of the equality (2.50) is a correlation function of the R-gauge
Euclidean electrodynamics [7].

3. Four Dimensional Torus

In order to prove the relation (1.12) for d =4 we have to obtain the four dimen-
sional versions of Propositions 2.2, 2.3, and 2.4.

Proposition 3.1. The Fourier transform (2.12) of every 2-cycle z € Zy(Ty, Z) has
the form: for any permutation A € Sy

Z) D) = @iy + > sgnt
0,1€8y;0(k)=kk=12;1(k)=kk=34

X [(exp 27N~ 03] — 1)((b(;"”(4)))2(2),10(3)(1)
+ 172N o) + 1/2(kq4<exp 27N~ L] — 1))

X (b {2031 i0@pM + 1/ 20[7r<1)h(z);{/la(s>,za<4)}](l))} ; G.D

where a 2-cochain a;y;y(m) is independent of the variables m;),m;z); a 2-

cochain bfl’;“(;;?m(m) depends only on the variables mj ), m;3), m;y4)y and it is zero

except for 0 £ mypy,myay < N —2,myay =0, a 3-cochain (¢*®);1):2)13)(m)
is zero except for 0 = myy,mi2),m;3) = N —2,myay=0;, a 1-cochain
bri2).{43), a4yy1(M) is symmetric under a permutation of the extra indices 7(3), \(4)
and it satisfies the symmetry equation

blio(2);{30(3)joayy(m) =0, (3.2)
o€Sy;0(1)=1,sgno=1

a I-cochain by (13)i4)y(m) depends only on the variables m;z), my3),m;a)
and it is equal to zero if one of these variables equals N — 1; a 2-cochain
CLNA{i(3)iay) (M) is symmetric under a permutation of the extra indices
A(3), M(4) and it satisfies the symmetry equation

C[;.(I)).a(z);{za(z),zom)}](m) =0 (3.3)
g€S8y;0(1)=1,sgno=1

a 2-cochain cp;(1y,2),{:3)4)(M) equals zero if one of the variables my,...,m4
equals N — 1. The above cochains determine the 2-cycle given by (3.1) uniquely.
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Proof. Let A € S4 be a permutation of the numbers 1,2,3,4. Applying the formula
for a sum of a geometrical progression we get a expansion for a Fourier transform

(2.12) of a 2-cycle from Z,(Ty,Z),

2 M = =250 Dl da=0
+ 231y22)Daay=0 + 23(1y22) D490

+ k£3[4(exp 21N~ L] = D E )iy ® s (34)

" N—1 N—1 my3)y=1 myay—1
Caverpeuay® =" 2 >

miymi2)=0 mi3ymuay=1 ky3)=0 ki4)=0

Xexp [ZniN_l(ml(l)l;u(l) + mg(z)lg(z)

+hy iy + kaayliay)zaayie)(m) (3.5)

It 1s obvious that the function (3.5) is symmetric under a permutation of the extra
indices A(3),A(4). By an argument analogous to the one given in Proposition 2.2
the function zfa)2(2)(l)|12(3),1;~(4):0 has the form (2.23). The function z3(;,5)(D];5,=0
may be considered as a Fourier transform (2.12) of a 2-cochain which is not
zero only for m;;3y = 0. In view of the equality (2.15) it is evident that the func-
tions Zﬁ,z(l)ll,-m:o,il,iz =1,...,43),...,4, of the variables /,,...,/;s3),...,/4 form
a function from the group Zz(T?\,,Z)”. Now by Proposition 2.2 for the function
Z}I1),1(2)(‘)|1;~(3)=0 the expansion (2.20) holds. Since a function ZzN(l)z(z)(l) satisfies
the equation (5zN),1(1)(l) =0, it follows from the relation (3.4), the explicit form
(2.23) of the function Zﬂl)z(z)(l)ll;(g),l;( =0 and the expansions of the type (2.20)
for the fgnctions ZzN(l),:(z)(l)ll,:(g)=07 Zﬂ])ﬂ(z)(l)ll —o that the function (3.5) satisfies
the equation

(4)

[ (exp [ZniN_lli(k)] -1 > (=~ )11/(1)10(2);{10(3),20(4)}(l) =0,
k=234 0ESy;0(1)=1,sgno=1
(3.6)

where the identity permutation and two cyclic permutations of the numbers 2,3,4
leaving invariant the number 1 are represented as the set {o € S4:0(1) =1,
sgno = 1},

Let us introduce the function

N—-1
Biaytuan® =N"" ¥ o [=2mN TN = D)l
W=

~AN -1
<@ iy Olyay=r | = e 0N

N=1
x > exp [F2mNTHN — D)(Z,

’ 7
Laylia=0

‘Hil(z))](ZN )2,(1)1(2);{1(3),/1(4)} (l)ll,{(k)=lﬁ:(k);k=l,2 . (3.7)
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By using the inverse transformation for the Fourier transformation (2.12) we obtain
from the function (3.7) the 1-cochain by;2).(;3),(4y);(m) which is symmetric under
a permutation of the extra indices A(3),A(4). Due to (3.5), (3.7) it depends on the
variables mi ), my3y, my4y only and it is equal to zero if one of these variables
equals N — 1. By definition the functions of the (3.7) satisfy Eq. (3.6). Now the
arguments similar to those given in Proposition 2.2 lead to the statement that the
inverse Fourier transform of the functions of the type (3.7) satisfy Eq. (3.2).

Let us define the function Ch); {/(3)/(4)}](1) by the following equality:

E ey = cpayeruewmn®

+ b5 raon® = by, Geyawn®
N—1

OB 2 exp [N TN = DTy + L))
1/(1)’1/(2) =0
X @) Dl =i, a=12 - (3.8)

The definitions (3.5), (3.7), (3.8) and the relation (2.13) imply that the function
Cﬁu)/1(2);{,:(3),1(4)}](1) is the Fourier transform (2.12) of the cochain cp;1)x2),{3),:4)}1

(m) € CZ(T4 ,Z)) which equals zero if one of the variables m,...,m4 is equal to
N — 1. It follows from the definitions (3.7), (3.8) and Egs. (3.2), (3.6) that the func-
tions Oy {/(3)/(4)}](1) are symmetric under permutations of the extra indices

4(3),A(4) and satisfy Eq. (3.6). Now since the 2-cochains cpy1)2);{:3),i4)3(m)
equal zero if one of the variables m;,...,my4 is equal to N — 1, applying the argu-
ments of Proposition 2.2 we get that these 2-cochains satisfy Eq. (3.3).

The expansions (2.20), (3.4), (3.8) and the equality of the type (2.23) imply the
expansion (3.1). Due to the construction the cochains contained in the expansion
(3.1) define the 2-cycle given by (3.1) uniquely.

For any permutation ¢ € S4 and any point m € Tj‘v we introduce five 2-cochains
from CZ(T;‘V,Z) by defining their Fourier transforms

(@la(1),0(2); m]D)7,, (1) = (01,,6(1)01,,62) = Oiy.0(2)01.0(1))
xexp [2miN ' (N — D)(loqr)y + loe))
+moayloa) + moyloa))] » (3.9)
(b[0(2),5(3); ((4)); m]);", (1)
= (84,,6(1)0iy,02) = 011,6(2)%%0(1)) LIL(CXP 27N~ Moy Logi ]
—exp [2iN (N — 1)za(k)])] (exp [—27iN 3] — 1)~}
XNOjp 00xp 21N~ (N = 1)o1)] 5 (3.10)
(bl[a(2); {o(3), a(4)}]; m])", (1)

= (81.0(1)01.0(2) = 011,02)0p.0(1))EXP [27IN (N — 1)l 51)]
x(exp [27iN " my2)ls2)] — exp 2N "' N — 1)ly2)])
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X H ((exp [2niN—1mg(k)la(k)] — exp [27'Cl'N—1(N - l)lo(k)])
234

x(exp [~2niN_llU(k)] - 1)_1) + Z (exp [ZniN_lmat(4)lﬂ(4)]
€ Sas(k)=kk=12

—exp [27iN "' (N — Dlgayl)exp [—27iN ™ gqay] — 1)"N51m3),0} , (3.11)

(€la(1),0(2),6(3); (a(4)); m]);:, (D) = (8i1,6(1)01.02) = O11,0(2)01,6(1) NG 14,0

x| T (exp[ZniN‘lmg(k)la(k)] —exp [2niN~Y(N — l)la(k)])J
k=123

x( exp [—2miN s3] - D7, (3.12)

(ello(1),0(2); {a(3), ()} mD)77;, ()

= (9iy,01)0ip,02) — 5zl,a<2)5xz,a(1))< [T (exp 27N~ morylow)]
k=12
— exp [2miN~'(N — l)la(k)])> [ [T ((exp 27N~ mggiylo)]
k=34

— exp 2N~ (N — Dl)])(exp [—2miN " o] — D7H)

+ Z (CXp [ZniN_‘mm(4)lm(4)] — exp [27TiN_1(N — l)lm;(4)])
t€84;t(k)=kk=12

x(exp [—27iN " 1pya)] — 1)—1N5,m(3),0] ) (3.13)

The inner product (2.14) of the 2-cochains given by the Fourier transforms (3.1)
and (3.9) is equal to ag(1)s2)(m). The function (3.9) is antisymmetric under a per-
mutation of the indices a(1),d(2) and it is symmetric under a permutation of the
indices o(3), 0(4). Hence the independent functions (3.9) are related to six permuta-
tions ¢ € Sy satisfying the conditions o(1) < ¢(2), d(4) < ¢(3). The inner product
(2.14) of the 2-cochains given by the Fourier transforms (3.1) and (3.10) is equal to

bf;g;(),)m(m). Since it is antisymmetric under a permutation of the indices (2),d(3)

the independent projections on Zy(T3,R) of the 2-cochains given by the Fourier
transforms (3.10) correspond to twelve permutations ¢ € Sy satisfying the condition
0(2) < a(3). The inner product (2.14) of the 2-cochains given by the Fourier trans-
forms (3.1) and (3.12) is equal to cf,‘;(l‘;;)(z)am(m). Since it is antisymmetric under a

permutation of the indices a(1), (2), o(3) the independent projections on Zz(Tj‘v,R)
of the 2-cochains given by the Fourier transforms (3.12) are related to four per-
mutations ¢ € Sy satisfying the condition ¢(1) < ¢(2) < ¢(3). The inner product
(2.14) of the 2-cochains given by the Fourier transforms (3.1) and (3.11) is equal
0 Dis(2);{a(3)0(4)}1(M). These functions are symmetric under a permutation of the
indices ¢(3),0(4) and satisfy the symmetry equation (3.2). This equation allows
to represent bi(2).{s(3)0(4)31(M), Where a(2) > 0(3),0(4), as a sum of the func-
tions b4(2);{s(3),0(4)}1(m), where o € §4 and a(3) > a(2) or 6(4) > (2). By using
the symmetry under the indices ¢(3),0(4) we can add the condition ¢(3) > o(4).
Thus the independent functions bys(2),{4(3)0(4)}1(m) are related to eight permutations
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o € Sy satisfying the condition 6(2),0(4) < o(3). Therefore the independent pro-
jections on Zz(T}‘V,R) of the 2-cochains given by the Fourier transforms (3.11)
correspond to eight permutations o € Sy satisfying the condition ¢(2),0(4) < a(3).
The inner product (2.14) of the 2-cochains given by the Fourier transforms (3.1)
and (3.13) is equal tO Cig(1)5(2);{o(3)0(4)}1(M). These functions are antisymmetric
under a permutation of the indices ¢(1),0(2) and they are symmetric under a per-
mutation of the indices a(3),0(4). They satisfy the symmetry equation (3.3). Ap-
plying the arguments given above it is possible to assume that for the independent
functions ¢{s(1)5(2),{s(3).0(4)}1(M) the condition 0(2),(4) < o(3) holds. The antisym-
metry under a permutation of the indices ¢(1),5(2) enables us to add the condi-
tion a(1) < ¢(2). Summing up we have g(1) < d(2) < d(3),5(4) < a(3). These
conditions are equivalent to the conditions (1) < d(2) < (3),0(4)=%4. Thus the
independent projections on ZZ(T?\,,R) of the 2-cochains given by the Fourier trans-
forms (3.13) correspond with three permutations ¢ € Sy satisfying the conditions
(1) < a(2) < 0(3),0(4)+4. Hence we have proved the following:

Proposition 3.2. Every element z € Z,(T4,R) has the following form:

Ziyp(m) = (P2);,;,(m) , (3.14)
A N_l el ~
Zii,(m) = > Y dsye)(k)(@[o(1),0(2);K]);,, (m)
0E€S4;0(1)<0(2);0(4) <a(3) ks(3), kg(a)=0
N=Z o) ~
+ > Yo ey K)(B[a(2),5(3); (6(4)); k1)iy i, (m)
O'GS4;O’(2)<O'(3) ko‘(Z)’kJ(S):O
N—2 _
+ > > bis2y{o3)04)11(K)

0E84;0(2),0(4)<0(3) ka(z),k,,(3),kg(4)=0

x (b[[6(2); {0(3), 5(4)}1; K])y,, (m)

N—2
~a(4))
+ > > Cothyo2)o3)(K)
0€5430(1)<0(2)<0(3) ko(1)sko(a)ko(3)=0
x (€lo(1),0(2),0(3); (5(4)); K]y, (m)
N-2
+ > > Cloey s k)
0€84;0(1)<a(2)<0(3),0(4)£4ky, -+, ky=0

x (€llo(1),(2);{a(3),3(4)}]; K])y,i, (m) (3.15)

where P is the projector (2.19), the 2-cochains (a[a(1),0(2);Kk]),,,(m), (bla(2),
5(3); (6(4)); K]}y, (m), (B[[0(2); {(3), 5(4)}; K])iy 1, (m), (€[0(1), 6(2), 6(3); (5(4));
k]),,,(m) and (¢[[o(1),0(2); {a(3),0(4)}1;Kk]);,;,(m) are defined by the equalities
(3.9), (3.10), (3.11), (3.12) and (3.13) respectively. The integer valued functions

- ~(o(4) i =(c(4))
Go(1102) (Ko (3)> ko(4))> bo2)o(3)(Ko2) Ko(3))s Do@)i{o3)0@)}1(Ra(2)s Ka(3) ko)) Eol1 ya21o(3)
(ko(1)s ko(2)s ko(3)) and Cio(1)02):{o(3).0(4)}1(K) are independent and they determine the
element (3.14) uniquely.

In order to obtain the four dimensional version of Proposition 2.4 it is necessary

to know the explicit expressions similar to (2.33)—<(2.36) of the independent func-
tions contained in (3.15) through the 2-cochain (3.15). The definitions (3.9)—(3.13)
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and (3.15) imply that for i} < i,

N-1
(ZA);T[Z(O) = Z dlliz(kly ki4) > (316)

13 ,k,4 =0

where i3 < iy and iy,...,i4 iS a permutation of the numbers 1,...,4.
It follows from the definitions (2.16) and (3.9)—(3.13) that

(0*a[o(1),a(2); kD), (D) = > 2 881001, 11.6(1)0i,03.0(2)8iy307(3)
1€84;,°(p)=p,p=1,2 pES3
x exp [2miN (N — D)(Loary + Lo2))
+ kouaylowa))]
x (exp [27iN ™ (kpuzy — Dlgez]
— exp [27iN " ko3)loxh)]) 5 (3.17)

(0"510(2),63); (0(4)): K], () (3.18)

= ZS sgnpéip(l),a(l)5,~p(2),6(2)5,-/,(3),0(3)N51”(4),Oexp [2niN‘1(N - 1)10(1)]
PES3

X[ H (CXp [ZﬂiN—lko(p)la(p)] — €Xp [27tiN_l(N — 1)16(1,)]):' 5
p=23

(0 Bl[0(2); {0(3), o ()} KD (D) (3.19)

= > 32 88000; 1) 6(1)012,,6(2)Fi30.01(3)
€841 p)=p,p=1,2 pES o e o

xexp [2niN "IN — Do)

X [ IT (exp [27tiN‘1k,,r(p)l,ﬁ(p)] —exp [2niN~Y(N — l)lm(p)])J
p=23

N-1
x > exp RuNTk g low)] s
koeay=kou(a) 1

(6°2a(1),6(2), 6(3); (a(4)); K1), (1)

= g Sgnpéip(l),o'(l)5lp(2),0'(2)5ip(3),0'(3)
pES3

X[ [T (exp 27N~k pylo(py] — exp [2miN~'(N — 1)lo(p)])]
p=123

xN&; (3.20)

540 >
(0 éllo(1),0(2); {a(3), a(H)}; kD), i, (D
:reS4;r(p)Z;p,p=1,2 pg.:?s Sgnpélp( v )5%(2)’6(2)5,’](3)’“(3)
X [ [T (exp 271N koo pylou( )] — €xp [2miNT'(N — 1)101(,,)])]

p=123

N1
X > exp RaiN Tk g lowa] - (321)
k(/”(4)= 01(4)+1
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We notice that the functions (3.17)—(3.21) have the same properties with respect to
a(l),...,0(4),k as the cochains contained in the expansion (3.1) have. In particular,
the functions (3.19) and (3.21) satisfy Eqs. (3.2) and (3.3), respectively.

Let us consider four permutations g, € S4 satisfying the conditions o,(1) <
04(2) < 04(3),04(4) =q,q=1,2,3,4. In the relations (3.17)-(3.21) we substi-
tute the indices i, = o,(p), p = 1,2,3. Now it is easy to show that the inverse
Fourier transforms of the functions (3.17)—(3.19) and (3.21) are equal to zero
for 0 < mg, (1), Moy(2), Moy3) = N — 2,mg 4y = 0 and the inverse Fourier transform
of the function (3.20) isn’t zero if the sets of numbers {g,(1),0,(2),0,(3)} and
{a(1),0(2),0(3)} coincide. If (1) < a(2) < a(3) this condition implies ¢, =
0. Therefore we have proved that for 0 < Mgy (1), May(2), May(3) = N =2,mg 4y =
0,g =1,2,3,4

N —(aq(4))
(0" 2)og(1)og(2)043)(M) = €5 (1), (2)0,3)(M) - (3.22)

The right-hand sides of the relations (3.22) provide all four independent functions

Eff((ll;?(z)a@)(m) contained in the expansion (3.15).

Let us substitute in the relations (3.17)—(3.21) the indices i, = o,(p), p,qg =
1,2,3. The inverse Fourier transforms of the functions (3.17)—(3.19) are equal
to zero for 0 < Mg, (1), May(2)> Moy (3) SN-21Z Mg, (4) <N-1,9=1,23, and
by the above arguments the inverse Fourier transform of the function (3.20) is
equal 0 g, T1p=123 Ok, my( > if 0 € Sa,0(1) < 0(2) < a(3). The inverse Fourier
transform of the function (3.21) isn’t zero if the set of numbers {o,(1),0,4(2),
04(3)} coincides with one of the sets {a(1),0(2),6(3)} or {6(1),0(2),0(4)}. The
set of the permutations ¢ € S; satisfying the conditions o(1) < a(2) < a(3),0(4)
#+4 consists of three permutations ¢4, = 1,2,3. Since d,(3) = 4 the sets of num-
bers {a4,(1),04,(2),04,(3)} and o,,(1),04,(2),04,(4)} do not coincide. The set
of numbers {a,, (1),0,,(2),04,(3)} and {o,,(1),04,(2),04,(3)} coincide only for
04 = 0gy. Now it is clear that for 0 = mg, 1), mg,2)Ms,3) = N — 2,1 = mg4) =
N —-1,9=1,2,3,

R _ Aog(4)
(0%2)ay(1)0g(2)94(3) (M) = Cq (115, (2)0,(3)M)
Moy (4)~1

+ X 5[0,,(1)aq(z);{04(3),aq(4)}1(m)lmoq(4)=m;q(4) - (323)
m' =0
og4)

The linear combinations with integer coefficients of the right-hand sides of the
relations (3.22), (3.23) enable us to obtain all the three independent functions
Clo(1)0(2):{o(3).0(4)}1(M) contained in the expansion (3.15).

Let us substitute in the relations (3.17)~(3.21) the indices i, = o,(p), p =
1,2,3,g = 1,2,3,4. The inverse Fourier transforms of the functions (3.17), (3.19)
and (3.21) are equal to zero for mg, (1) =N — 1,0 = mg,2), Mgy3) = N — 2,mg )
= 0. Let us consider the inverse Fourier transform of the function (3.18). It is
not zero if two sets of numbers {o,(1),04(2),04(3)} and {a(1),0(2),0(3)} co-
incide. Due to conditions me,1y =N —1,0 =< Mg, (2), May(3) = N —2 this implies
o(1) = o,4(1). The additional condition ¢(2) < a(3) gives ¢ = o,. Applying simi-
lar arguments and the arguments given for the proof of the relation (3.22) now we
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can prove that for mg,(;y = N — 1,0 < Mo, 2)s Moy (), Mog3) = N — 2,mg,a) = 0,/ =
1,2,3,9 = 1,2,3,4,

o oy @)
(0%2)0,(1)0g(2)5,3) (M) = (=1Y baq(l)a/q\u)aqm(m)

NI o4y 304
— ’z Ocaq(l)aq(2)o'q(3)(m)|m5q(l)=m;q(i) . ( . )

m"q(l)=

The linear combinations with integer coefficients of the right-hand sides of the

relations (3.22) and (3.24) allow us to compute all the twelve independent functions

~o(4 L .
b(;z(z)z,)@)(m) contained in the expansion (3.15).

Let us substitute in the relations (3.17)—~(3.21) the indices i, = o4(p), p,q =
1,2,3. The inverse Fourier transform of the function (3.17) is equal to zero
for Mg,y =N — 1,0 Smg 2y, mg,3) = N — 2. Let us consider the inverse Fourier
transform of the function (3.19). It is not zero if the set of numbers {o,(1),0,4(2),
04(3)} coincides with one of the sets {a(1),0(2),6(3)} or {a(1),0(2),0(4)}.
The additional conditions mg,1) =N — 1,0 < mg,2),Mg,3) = N —2 imply that
04(1) = a(1). If we suppose that ¢(2),0(4) < a(3), the sets {a,4(1),04(2),0,(3)}
and {o(1),0(2),0(4)} do not coincide because of d,(3) =4+0(2),0(4) < a(3).
There remains one possibility that the sets of numbers {o,(1),0,(2),0,(3)} and
{6(1),0(2),0(3)} coincide. Due to the condition ¢(2) < ¢(3) this implies o =
o,. These and analogous arguments yield for Mg,y =N —1,0 < m,,q(l),m/a;?,),
Mme,3) SN —21 Emgay =N -1,j=12,9g=123,

mgq(4)-—1
A i+1 7
(0" Dog(1)ag@rog3) @) = (1Y 35 oyt fog3as@®N g, =,
m =0
0g(4)

o(4 -

+ Lj(gf;(:(z)?v)(s)’5?:‘2(13)(2)6(3), Claho@:{o@)a@}1) > (3:25)
where 7, is the unique non-trivial permutation of the numbers 1,2 and L, is a linear
combination with integer coefficients of its variables.

The case mg,3) =N — 1,0 < mg,1),mg,0) S N —2 needs a special considera-
tion. Let us choose two permutations o, € S4,g = 1,2. They have the following
property : 64(2) =3,0,(3) =4. If 0(1) =04,3) =4 and ¢(2),0(4) < o(3) the
sets of numbers {o(1),0(2),6(4)} and {g,(1),04(2),0,(3)} cannot coincide be-
cause of 04(2) =340(2),06(4) < 0(3). The remaining arguments are similar to the
above used ones and for mg,3) =N — 1,0 < mg 1), Mg, )= N — 2,1 < mg 4y S
N —-1,g=1,2 we get

Mg (4)—1
(a*f)aq(l)aqa)aqo)(m) = ) >

Moq)™

Bloy13: Loy Nyt o

0

7(0(4)  _(a(4)) -
+ L3(ba'(2)(r(3)’c0?1)0(2)0(3)’0[0(1)0(2);{‘7(3)#(4)}]) - (3.26)

The linear combinations with integer coefficients of the relations (3.22)—(3.26) give
all the eight independent functions bs(1){s(2)0(4)}(M) contained in the expansion
(3.15).

Let us substitute in the relations (3.17)—(3.21) the indices i, = o4(p), p =
1,2,3,9 = 1,2,3,4. The inverse Fourier transform of the function (3.17) for mg, 1) =
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Mo,y = Mey3) =N — 1,0 < mg,y SN =255 =1,2,3;0 S mgy SN - ;9 =1,

2,3,4; isn’t zero if two sets of numbers {c,(1),04(j),,(3)}, {6(1),0(2)} coin-
cide and if the set of numbers {g,(1),0,4(2),0,(3)} coincides with one of the sets
{a(1),0(2),0(3)} or {6(1),0(2),0(4)}. Let us suppose that o(1) < 0(2), o(4) <
0(3). Then the above mentioned conditions imply that for o,(j) > 04,(4) we get
a,(j) = a(3), aq(4) =0(4) and for o4(j) < 04(4) we > get 04(j) =0(4),0,(4) =
a(3). Now it is simple to prove that for mg, 1) = s,y = mg,3) =N — 1,0 <
Mo,y S N —=2;0 S mgya) SN -1;/=1, 2, 3,q =1,2, 3 4; the followmg relation
holds:

sz (Vs A
(0" D)ay)g@)03) (M) = (=1Y7A, (s ) (May) + 1, m0y(4))

— daq(l)@aq(S)(maq(j)’ma‘l(4))) + Lj(b,C) s (3.27)

where L;(b,c) is a linear combination with integer coefficients of the independent

. ol - -

functions bg(gz)r)m)(k)’b[o(Z);{o(z),om}](k)’52?(1‘;3;)(2)60)(1‘) and  Clo(1)o2):{o(3)04)}1(K).
The linear combinations with integer coefficients of the right-hand sides of the
relations (3.22)—(3.27) give all the twelve functions ds(1)s2)(0(3) + 1, Mo(4)) —
Ao(1)52)(Ma(3)s Ma(4)), Ao(1)0(2)(Ma3), Ma(a) + 1)—as(1)s2)(Ma(3), Mo(a)), Where permu-
tations ¢ € S3,0(1) < a(2), o(4) < o(3).

Applying the relations (3.16) and (3.22)—(3.27) it is possible to modify the
proof of Proposition 2.4 for the four dimensional case.

Proposition 3.3. Let a O-function ©((¢,Z)|2nifY~") be given by the equality
(2.11). Then for any sequence ¢y € C*(Ty,Z) and for any numbers By > 0,
y > 4,

Jim O(pn,Z)2mifoN'Q ™) = 1. (3:28)

The relations (2.10), (2.49) and (3.28) imply the relation (1.12) for d = 4. For
d =2 this relation is also fulfilled but now the right-hand side of (1.12) has the
continuum form of (2.7) for g = 1. When the torus radius tends to infinity this
correlation function of type (2.7) converges to the trivial correlation function of the
R-gauge Euclidean two dimensional electrodynamics [7].
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