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Abstract: We consider the trilinear form of the Kaup-Broer system which gives rise
to solutions in Wronskian form. The Kaup-Broer system is connected with AKNS
system through a gauge transformation. The AKNS hierarchy can be understood as
a generalized 1—constraint of the KP hierarchy. Imposing that constraint on Sato’s
equation we obtain the basic trilinear form and moreover a hierarchy of trilinear
equations governing the AKNS flows. Similarly, hierarchies of multilinear forms
are derived in the case of generalized k-constraints.

1. Introduction

1.1. The Trilinear Form of the Kaup-Broer System.

The Kaup-Broer system [4,5]
hy = (hy + 21" h)x, (1.1)
X = (=2 + 27 4 2h), (1.2)

plays an important role in the theory of nonlinear water waves. It has been dis-
cussed in [6] where its Lax form and tri-Hamiltonian structure was established. The
following ansatz for obtaining solutions has been made in [7],

h = (1080, (13)
1
hy* = E((log'c)x,2 — (logt)xex) - (1.4)

This ansatz was motivated by the fact that Eq. (1.1) is nothing but the simplest
equation of the KP hierarchy so it is already satisfied by (1.3), (1.4). In deriving
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an equation for the quantity Ay* using (1.1), (1.2), we are lead to the trilinear form
pspo (D) pypi (D) Py py(T)
pips () pipr(t) pip(0)|=0, (15)
pipe(t) pipi(v) pipy(7)
where we have employed the linear differential operators
P =P, pr=p-d), B=@uyp3dy. ) (16)

with the Schur polynomials p;(¢),t = (t1,%,%,...), defined through
4 0 . 00 .
N =S pA, ELA) =S tA, 4 =x. (1.7)
i=0 i=1

Then it has been shown [7-9] that the trilinear equation possesses solutions in
Wronskian form

f S o fav-in
fx fxx fo
T= . . . . > (1'8)
Sav—ix fwe o fon—ax
where
S, = fa. (1.9)

Solutions of the trilinear equation (1.5) with interesting physical properties have
been studied in [10].

1.2. Generalized k-Constraints
The AKNS system

45 = e + 2471, (1.10)
Py = —rg — 2q17, (1.11)

transforms to the Kaup-Broer system through

h=gqr, (1.12)
= (1.13)
.

(Note that in terms of pseudodifferential operators this transformation corresponds
to a gauge transformation between the KP and modified KP hierarchy [19].) The
AKNS hierarchy appears as a subsystem of the KP hierarchy under generalized
1-constraint [11-20].
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Let us briefly discuss generalized k-constraints. The KP hierarchy is given in
Lax form by
0y, L =[L,L"]. (1.14)

All KP flows, i.e. the vector fields d,, defined by (1.14) commute
[04,,0,,1=0. (1.15)

There is another vector field commuting with J,, which is sometimes called a
ghost symmetry. Consider a vector field J,, acting on L through

oL =Ly 0~ "Y1, (1.16)

where V is the wave-function and y* the adjoint wave-function. Then we can show
[20]
[atn,ata] =0 (1.17)
Now, comparing (1.14) and (1.16) we introduce the so-called generalized k-
constraint [11-20],
(L*)- =g 'r. (1.18)

Indeed, it is well-known that this constraint which generalizes k-reduction
(L"H_ =0 (1.19)

is compatible with the KP hierarchy. The generalized k-constraint leads to 1+ 1—
dimensional integrable hierarchies

(L, =[I511], (1.20)
g1, = (L")+9q, (121)
iy = —(L™")4r, (1.22)

such as the AKNS (k=1), Yajima-Oikawa (k=2) or coupled Boussinesq-type (k=3)
hierarchies [11-20]. (L* is the adjoint of L).

1.3. Multilinear Forms

After obtaining the trilinear form (1.5) in [7], it was conjectured that the more
general form

phpi(®) phipp(t) plips(o)
phrn(W) phpa(t) Phpa(D)|=0 (1.23)

Phpa(t) phpo(n)  phps(0)

may be related with higher Kaup-Broer flows. This conjecture is the subject of the
present paper.

In Sect. 2 and 3 we shall gather a few notations from Sato’s theory [1-3] and
derive some useful formulas for dealing with constraints. In Sect. 4 the effect of
k-constraints on Sato’s equations will be described by a basic formula. In Sect. 5
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we shall show that the 2 x 2 determinant equations

pi(w) pi(w)]| _
p,lf(wi) p,lf(wj') =90, (1.24)
where .
wj = ;pj‘(f), (1.25)

describe the 1-constrained KP flows in terms of the KP t-function. In Sect. 6 we
state that (under some formal assumptions) the set of Egs. (1.23) appears as a
consequence from the set of Egs. (1.24).

If we consider the 2 x 2-determinants (1.24) with the lowest indices i = 1,5 = 2
we obtain a hierarchy of flows where the n™ flow involves the time variables
tr,t,...,t,. In the final two sections we are concerned with the question how this
pattern can be generalized to k-constraints. Similar to the 1-constraint we shall
obtain multilinear forms for the k-constrained KP flows in terms of the KP -
function. Those multilinear forms take the shape of determinant equations, however
the 2 x 2 pattern of the 1l-constraint turns out to be exceptional. It seems that the
multilinear forms for k-constraints with the lowest possible indices can be arranged
as (k + 1) x (k + [)-determinants in the following diagram:

constraints flows flows flows flows
k=1 2x2 2x2 2x2 2x2
k=2 Ix3 5x5 7x7
k=3 4x4 6x6
k=4 5x5

The first row as well as the first two diagonals of this diagram are established
in Sect. 7 and 8.

2. The Linear Problems in Sato’s Theory
With the pseudodifferential operator
L=0, +ud; 4+ us07% +---, (2.1)

we built up linear problems

Ly =M, Y, =LY, (22)
which possess a formal solution (wave-functions)

W(t, 1) = Wet) = efth) | (2.3)
The pseudodifferential operator

W=1+wd '+ w0+, (2.4)
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is related to L through L = WoW ! and W is a formal series
W=1+wd ' +apd 2+, (2.5)

From the expression of the function w; in terms of the t-function through (1.25)
we obtain that of the wave function

_ = A) ey
T R (2.6)

where we have used Taylor expansion for a function f
St = o) = @) = X2y (FO) @7

with e(1) = (1/4,1/222,1/343,...), see [1-3].
In [3] M. Sato and Y.Sato gave an equivalent formulation of the linear problems
(2.2),
P =uvap, vp=-p,_y(w1), n22. (2.8)

This formulation will be of great importance for us and since, as far as we know,
an explicit proof of it was not given in [3] or elsewhere we shall give a (formal)
proof now.

For n = 1 we expand the differential part of L" in powers of L [1-3],

) .
(L"), =L" + 21 "L, (2.9)
Jj=
in particular, the expansion of 0, becomes

_ o _(Dy—y
=L+ oL, (2.10)
j=1

Applying both sides of (2.9) to ¥ and using the linear problem (2.2) gives an
expansion

o0 .
Utp= A"+ 0WA |y (2.11)
j=1
Differentiation of the expression (2.6) leads to

_ [ gn ‘Ctn(t) ‘Ctn(t — g(j))
Y, = </~ () + ot — (1)) ) v, (2.12)

which gives upon Taylor expansion

T

Wi, = (z" +3 (l) z—f) v (2.13)
j=1
If we compare the expansions (2.11) and (2.13) of Y,/ we obtain

" = (p; (logr)),, - (2.14)
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As a simple consequence of (2.14) we derive
@) = ("), (2.15)

and using w; = —1,/,

o)) = —p; (@) = vp41 - (2.16)

From (2.10) it follows
(B.L"), = (L™ +]§ aﬁl)Ln—j)_*_
= (L"), + §a§‘)(L"-f)+. (2.17)
=
On the other hand, (2.9) gives
@cL")s = (3((L")s — 2 oMLY,

= 0(L")y — 'V (2.18)

If we use (2.17), (2.18) and (2.16) we are led to

3Ly = (L") + X v @)y + a1 (2.19)
Jj=1

Applying (2.19) to y gives

o0
Vst = Vi + 2 Ui, + 01Y
j=1

(o o]
=Vt + 2 0¥, oy (2.20)
j:

In what follows we shall need a property of the polynomials p,(¢) which is a
consequence of the well-known relation p;(t);, = pi—m, namely

npa(t) = > Itpa—i(2). (221)
=1
Equation (2.21) gives
n
(n+1)py,, =— _Z%a,n+l_j ;. (222)
j:

Now we shall proceed by mathematical induction. First, we have to check (2.8) for
n = 2. This can be done by using (2.20) for » = 1. Assume that

p; () = vy (2.23)
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holds for j =3,...,n. Then we obtain for j =n+ 1 by using (2.22), (2.23) and
(2.20),

(n+ D () = — zo B, P (W)
Jj=

= (—atn-H + atnaxnb - gatrwl—j(vjl//)
j=

n

n
= l/jﬂn - l'btn+1 - szjlptrm-l—j - szjstnﬁ»l—jw
j=

j=

= (Vg1 + 0\ — Z%uj,tn+l_j)w. (2.24)
j:
Through (2.14-2.16) and (2.22), Eq. (2.24) becomes

(n+ 1)pyy(¥) = vur¥h + (pi (logo)), — szp;_laogr))x,m_, W
Z

n—1
= g1 + (=0, — El Pj_)(Ing)x‘p
j=

= Ups1¥ + (np, (logz)) ¥
=+ Dopn ¥, (2.25)

which completes the proof.

3. Consequences of the Linear Problems

In this section we shall derive two consequences from the linear equations (2.8)
which will be very helpful in what follows.

Lemma 1. For n =z 2 and j = 1, it holds:

n—1
—P;r(wj) + P;—l(wj,x) + P:,r—l(wﬂrl) = lz(:) p:—l—l(wl)p?—(wj)' (3.1

Proof. From (2.22) one obtains through mathematical induction
et =
Py (¢9) = { —aefeN, j=1 . (32)
0, j22
Now we insert the wave function ¥ = Wef® into (2.8) and use (3.2) yielding
pr (W) = Ap,_ (W) = = p,_ (@))(W). (3.3)
Comparing coefficients of powers of 17/ in (3.3) gives

Py (@) = pp_(@j11) = = p,_(01)w;. (3.4)
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Multiplying (3.4) by 47" and summing up afterwards shows that

[e9) _ _ o0 _ _ oo _ _

2 Pr (@) = 3 p (@) = = ) p (00w 27" (35)

n=2 n=2 n=2
Upon Taylor expansion (2.7), Eq. (3.5) can be written as

(500 — 142710, (@) = 27 (63 — 1) (@ym1)
R (eﬂ-@?") - 1) (). (3.6)
The formula (2.7) for Taylor expansion yields

S (f(1)9(0)) = €I (£(1))e ! g(0)). 3.7)

(An analogous rule holds if we replace —&(4) by &(4) and eS(=00) by e80.)),
Application of the Taylor operator e“(>?) to (3.6) and using (3.7) yields

(1= 12713, ) (@) = 271 (1= €609 (ay1)
= =17 (1= 500 (@)D (). (3.38)

Working out the Taylor series in (3.8), leads to
[es) o) 0o 1
=2 Pi(@)AT" + 30 pi(@,)A 7D + 30 pi ()
n=1 n=0 n=1

=-1"1- Z_:l pi(wp)A™" Z_%P;r(wj)r"

=-1"%- § (Iio P;+1—1(CU1)P?L(Q’/)> A", (3.9)

n=0

which gives (3.1).

Lemma 2. For n = 2 and j = 1, it holds

n—1
Ojitgy = = Py (@) + @jgy ) + 014,05+ 3 01, P (0)). (3.10)
=1

i=

Proof. From the property (2.21) of the Schur polynomials we have similar to (2.22)

n
npy = 121 0y Py (3.11)
yielding
n—1
Wjs1gy = 1Py (Wj41) — 121 0y Py_(@j41). (3.12)

Furthermore, we shall use Lemma 1, Eq. (3.1), for indices A = 2,3,...,n+ 1,

h—2
pi(@41) = 12% Pioi—(@1)p) (@) + pif(@;) = pf_ 1 (0)1). (3.13)
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Plugging in (3.13) into (3.12) gives

n—1
Wjyiy =N (Z}) (@) pf(w) + pi(0)) — pI(w,,x))
n—1 n—I—1 + ¥ " "
5o (s ponn (wj)+pn-,+l<wj>—p,,_,<wj,x>)
= np;::}-l(wj) np, (w]X)+n Z pn z(wl)p (wj)

—1
(atlpn 1— z(wl)) 1+(wj)

3
|
=
|
\

3 o~
[
_ =
3
|-
T 1l
=

pn ]— l(wl)atlpz (a)j)

3~
Il
—_ -
Il
=

|

n—1
5;1}7:_1“(0)]') + IZ:I 6t,P:_.1(wj,x)- 3.14)

—
Il
_

If we change the order of summations and use (3.11), Eq. (3.14) reads

wj‘HJn = np;:—+1(w]) npl Pn (wj)+n Z pn 1(wl)pz (wj)

n—2 —
- EO ( z atlpn I— 1((01)) P (wj) - Z Z pn_m(wl)atlpm 1((,()})

m=1 [=1

— (n+ D pyy (@) + 8, pi(@)) + 8,,,,(0)) + (npy — 0,) P (@)
= = Prar(@)) + 0y, (@) + 0y (01);

n—i—1

+ Z (npn 1(w1)_ Z allpn I— z(wl) lp;:——l(wl)> pz-'—(wj)

+ pi (o) py_ (@)
=P (@) + 01, (@) + 8, (01);

n—2 n—i—1
+ ; <(n - i)p:—i(wl) - I—ZI 8,,p;,*_,_i(a)1 )) (wj)+ Dy (wl)Pn 1((1)/)

n—1
= —pi(@) + @py, + 01,0, + Y 01y, D (0)). (3.15)
1=1

4. Sato’s Equation and Constraints

It is more convenient to impose the constraint (1.18) on Sato’s equations
W, = —(L")-W 4.1)

than on the Lax-equation (1.14),
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Proposition 1. Under the constraint (1.18) we have for j = 0,
Wjt1 T Wjyx + qro; = %wj,,k .
Proof. From (4.1) and (1.18) it follows
W, = —q0~ ' .

Now we introduce an intermediate operator

N=0"W=m0""4+md?+md 3+, m=r.

The definition of N gives
gNoO + gNy = qrWv .
From Sato’s equation (4.1) we obtain
Wy =—qN.

k

From Eq. (4.5) and (4.6) one obtains for j = 0,

qnjy1 +gn;x = qroy;,

“4.2)

(43)

4.4)

(4.5)

(4.6)

(4.7)
(4.8)

4.9)

wj,,k = —qn;.
Finally, elimination of the intermediate operator N gives the claim. From Eq. (4.8)
we get
qnjx = (qn;)x — qxn;
q
= (qnj)x — —qn;
q
= _wj,th + %wjyfx >
and

qnj+1 = —Wjt1y, -
Introducing (4.9) and (4.10) into (4.7) gives (4.2).

5. The 1-Constraint

Let us define a sequence a,,n = 1 through:
ay = l,ay = qy/q and for n = 3,

q n—2
ap = ap_1x + jan—l - E p;:——]—](wl )al .
I=1

As an example we note

(4.10)

(5.1)
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Proposition 2. In the case of I-constraint, L_ = qd~'r, we have for any j = 1
and n = 1,
P (0)) = @y (52)

Proof. We shall proceed by mathematical induction. It is clear that
pi’—(wj) = a1Wjx .

Now suppose
i) =aw;,, 1=2,...,n—1. 53)

Using (3.1) and (5.3) we obtain

n—2
_p;:—(wj) + (an—le,x)x + 10, 41,x = p;,‘__l(wl)wj + Z pj,__1_1(wl)ale,x .
=1

(54)
Note that Eq. (4.3) gives wi, = —gr, in particular, w;, = —gr in the case of
1-constraint. Using the last equation together with (5.3), we can write

P;,L_1(601) =ap-1W1x = —Ap-197 . (5.5)
Taking (5.5) into account as well as (4.2) for £ = 1, Eq. (5.4) becomes
n—2
> oo (o )al) Wj x + @G 1(@jy1,x + Oy + groy)
I

pi(w;) = (an—l,x -
4

. qx n—2 +
=|ap-1,x t+ ;an-—l - Z Pn_l_l(a)l)al Wj x
I=1

= anpWj x ,

ie. (5.2).
Let us write Eq. (5.2) as

pi(@))an + pf(w;)(=1)=0 (5.6)

and consider (5.6) for two different indices i and j as a linear equation with a
nontrivial solution, then we obtain the following:

Corollary. For n = 2 we have

pi(w) pi(w)| _
p,]f(wz) p,lf(wj‘) =0, 7

for arbitrary i,j = 1.

From Taylor expansion (2.7) we obtain the rule
pa(f()g(1)) = él’f(f(t))ﬁ—;(g(t))- (5.8)

(An analogous rule holds if we replace &(4) by —&(4) and p by p,.) With the
rule (5.8) and (1.25) we calculate

i (on) = p (%m(ﬂ) = liop;f_z (%) Pl (7). (5.9)
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This then shows that the 2 x 2-determinants (5.7) represent multilinear forms in .
They describe the set of t-functions of the AKNS hierarchy. Considering the 2 x 2-
determinants (5.7) with the lowest indices i = 1, = 2 we obtain for each index »
a flow involving the time variables t,,t,...,,.

6. Trilinear Forms for the 1-Constraint

The following proposition shows that the multilinear forms (5.7) can be changed
to trilinear forms.

Proposition 3. The set of Eq. (5.7), where n = 2 and i,j = 1, implies the following
set of equations:

phipa(t) pipp(t)  phips(c)
PpPa(t) phpo(t) phpa(e)| =0, (6.1)
Phpa(v) pPhipo(t)  phpa(o)

where i, =2 0 and j, = 0,u = 1,2,3, are arbitrary indices.

Proof. Using the rule (5.8) we prepare

1 L 1
Pn (—T) =3 Pai (—) pi(x)=0. (6.2)
T 1=0 T
The vanishing of the determinant (5.7) means that there are functions by;; = by;;(t)
with
p;(w,->> b (pf(w») o3
(iten) = (Sen)) - ©3)
We extend this through
0 0
< p;(wl)> - bmj ( Pf(wz))
i () pi(w)
and obtain
pi(z7) PrGT)
pr (3pi (7)) | =bws | pf (G0 (7)) |- (6.4)
Py (zp; (7)) i (3p; (7))

Now, making use of (5.8) and (6.2) gives

n pf (1) | pf (1)
i (3) (1 e | =tw ot (2) (2 (2 () ) 69
= Pl (py (7)) = Pl (py (7))
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which can be written as
1 | Py (1)
(p,T (;) — bujpy (;)) p (P (7))
2y (77 (7))

e
ORI Got:

n 1 p?—(’[)
+> P (;) pi(p(v) | =0. (6.6)
= pf (py (7))

Considering Eq.(6.6) for arbitrary » = 2 shows that we can express any vector
=2

P (@)
i (p; (7))
pi (p; (7))
through the vectors
po (1) ()
py (pr (7)) | | P (2 (7))
py (p; (7)) pi (P, (z))
So any three of the vectors
pi(v)
pi (P (7))

Iy
pi (p; (7))

are linearly dependent. Taking the arbitrariness of the indices i, j into account, this

means that . . .
PP (7) lepiz(f) lep,3(f)
Phpo (1) phpo(t) Phps(0)|=0. 6.7)
Pipy () phpp(t) phps(c)

And from (6.7) again by using linear algebra we obtain the proposition.

The proof of Proposition 3 shows that the basic 2 X 2 matrix

+ +
pl(wl) pl(wZ) :O 68
P pin| =" (6:8)
implies the well-known ftrilinear form (1.5) of the Kaup-Broer system. (Here basic
means that the flow corresponding to (6.8) involves the lowest possible number of
time variables, namely %.)

7. The k-Constraint, Basic Flow

Let us first consider the case of 1-constraint, £ = 1, and fix the index n = 2. Lemma
1, Equation (3.1), then may be used for eliminating ®, 1 in Proposition 1, Equation
(4.2). This gives us the 2 x 2-determinants (5.7), (where n = 2), and finally, we
end up with the basic determinants (6.8). In the case of k-constraints, we shall now
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try to find determinants which similar to (5.7) (with n = 2) give rise to basic flows,
where basic now means that the flow involves the time variables #,,..., f41.

Proposition 4. Under the condition of k-constraint (1.18), k = 2, for j = 1 the
following holds:
=y 9 | k)
Z Di (wj)wl,tk_i - wj,tk; + Tk+1(wj) = 0, (71)
1=1

where
Tlﬁﬂ — —p,:rl + 0y, + 0x0y, - (7.2)

Proof. Use Proposition 1, Eq. (4.2), and Lemma 2, Eq. (3.10) with n =k, ie.,

k=1
Wyt =~ P (@) + @i + 0140, + 231 o1_, pi(@;). (7.3)
Inserting (7.3) into (4.2) and taking w;, = —gr into account gives the claim.
Note that in the case k =1, for n =2, Eq. (5.2) becomes
~'y + pi@) =0, (74)
and that
pf = —pf + 0, +0:0, = T (), (7.5)

which is consistent with (7.2).
As an example we now consider £ = 2, where (7.1) reads

P (@))o1. — w,,,x% +1P0; =0, (7.6)
and the linear operator (7.2) becomes
T = —pt + 0, + 0:0,, - (7.7)

From Proposition 3 we obtain the following

Corollary. Under the condition of k-constraint (1.18), k = 2, for an arbitrary set
of indices j,, ja,...,jk+1 the following holds:

i) pi(wy) o (o)
pi(w)  pi(wp) o pi(@y)
N : . : . . =0. (7.8)
pi(wj1) pi_ (@) - pk—l(wjk+1 )
Wjy g Wiy 1y T Wjy 1ty
L) TE@y) - T (@)
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Proof. Consider the Eq. (7.1),
LS *)
2% Di (a)jp)a)],,k_‘ — (Ojﬂ q Tk_HCij = 0, (79)
1=

with p=1,...,k+1as (k+ 1) x (k+ 1) linear system with the nontrivial solution

vector
WOy
DLy

As an example we again consider the case k =2, where the determinant (7.8)
becomes
pT(wj1 ) pi'—(wjz) pT(wB)
Wjy 1y Wi 1y Wjs 1y =0. (7.10)
) T@,) T(0,)

In accordance with (7.5) the determinant (7.8) becomes for the 1-constraint £k = 1:

. o
p(ll )(w]? : p(ll)(wj?) =0. (710
T, (), ) T, (wJZ)

Choosing the indices jy, jo,...,jx+1 as basic ones, i.e. 1,2,...,k + 1, we obtain flows
for k-constraints involving time variables #,23,..., 1.

8. The k-Constraint, Higher Flows

We now aim at obtaining the next higher flows for k-constraints, £ = 2, i.e., flows
in forms of determinants like (7.8) which involve time variables #;,13,. .., fr+2, tk+3
after choosing basic indices.

Proposition 5. Under the condition of k-constraint (1.18), k = 2, for j = 1 the
Sollowing holds:

1 k—1

k 1—1
(wlyxr,,_, + P;+1_,~(w1 )) pi(w) + Z:l WDly_; lzjl pf_,(a)l)pf(wj)
1= =

1=1

k—2 k—1
+ > +
+ Z wl,tk_,p[+1(wj) + ‘ wl,lk+1_.ipi (wj)
i=1 i=

2
14,05 x + 01, xpi (0))— (%) wjg, + z] j x, + Tk H(w;)) =0, (8.1)
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where .
Tyh = =2pF 5 + 8y, + 020, - (8.2)

Proof. We shall use the shorthand notation

a=-2 b=w, (83)
q
and the convention

if j <.
For n =k + 2, Lemma 1. Eq. (3.1), reads

k
_p;+2(wj) + plj+1(a’j,x) + p/j+1(wj+1) - plj+1-—i(w1)Pi+(mj) =0. (84)
1=0
Next, use Proposition 4, Eq. (7.2), to remove p,:rl(a)”]), obtaining

k—1
—Pia(@0) + P (0,0) + awjiig, + 3 bipi(@;41)
i=1

k
+wj+l,xtk + wj+1,tk+1 - Z p/:.]_i(wl)pj—(wj) =0. (85)
i=0

Through application of Lemma 1, Eq. (3.1), Lemma 2, Eq. (3.10), and Proposition
1, Eq. (4.2), Eq. (8.5) becomes

_plj+2(wj) + plj+1(wj,x) +a(—awjy, — 0, 4x + O14,0;)
k=1 =1 k=1 k=1
+ 21 b (IZ% P,-Jr_z(wl)l?f(wj)) + ;} bipf, ((w)) — Z% bi pf (w),x)
1= =l 1= 1=
+ - +
= Pi2(@j) + @y, + 2(:) o1, tk1-i pi (@)
1=
d +
+H(—awjy, — 0jux + 01, 50;) — Y pi (@) pi (w;) =0. (8.6)
i=0
By using the convention made above (8.6) gives
—2p,j+2(60j) + PTP/:-H(CU/‘) - azwj,lk — aWjyx
k=1 i—1 k—1
+ Z: b, (121 P,‘tl(wl)l’;r(wj)> + Zl bip)i (@)
i= = i=
=l k=1 .
- Zl bipi pi (w)) + wjy,, Z{ 01y, Pi (©))
= =

k
—Wjy — AWj g x + 01, ) x — WDjyxx — Z P}L_l_,-(wl )p;’—(wj) =0. (87)
i=1
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By using Proposition 4, Eq. (7.1), again Eq. (8.7) becomes
N k=1 N =l
_2pk+2(wj) + axjy + E bixp; (wj) +awjyx + Z bip1 Di (wj)
=1 =1
3 k=1 -1 N
+atx(wj,xx) + wj,tka —a wj,tk - awjth + Z bi Z Pi_1(w1)PT(wj)
1=1 =1
k—1 + k—1 - k N
+ Zl bipii(w;) — Z:l b, py p; (@) + Oy, (@) + 21 Oy, (@) pi (w))
= 1= 1=

k
—axjg — A0jx + OLEO)x — Ojger = 3 Py (@) pi (@) =0, (8.8)
1=1

which can be arranged to

k—1
(—2P;-+2 + atk+z + axafk.H )wj + Zl(bz,x - P;:r+1~,(601))]7?-(wj)
=
k—1
+2
1=]

1y, pi () + o pf (o)) — a*wjy, — aw;,, =0, (8.9)

i1 k=2 k—1
bi IZ pi (o) pf () + 3 bl () + 3 oy, P (@)
=1 i=l1 i=1

ie. (8.1).

Taking (8.1) again as a linear equation with non-trivial solutions and using £ + 3
different indices we obtain (k + 3) x (k + 3)-determinants for k-constrained flows.
Those flows involve the time variables 1, 1,..., 4.3 if we choose the basic set of
indices.

As an example we consider the case k = 2 where (8.1) becomes

(1,5 + 2014, + pF (1)) pi(w)) + w12 P53 () + %ij,zzx + Tf)(wj) =0,

(8.10)
while (8.2) becomes

T® = —2pF + 0y, + 050, . (8.11)

As a result from (8.10) we obtain the following 5 x 5-determinant flow for 2-
constraint

i)  pi(w,) pi(e,) pie,) pf(w;)

P;(wjl ) p;_(wjz) p;(wh) p;—(CUM) P;(sz)
Wjyty Wjy 1y Wity Wiyt Wy, | =0. (8.12)
Wjy yx Wiy 1yx Wij3 1y Wiy tpx Wjis,ryx

TP(@,) Ti(wp) TP(0y) Ti(wy) T(0s)
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9. Concluding Remarks

This paper was motivated by the discovery of the trilinear form (1.5) for the Kaup-
Broer system. One of our main goals was to derive (1.5) from the point of view of
k-constraints (1.18). The idea for this approach to trilinear forms goes back to the
fact that the Kaup—Broer system can be transformed to the nonlinear Schrddinger
system (basic system of the AKNS hierarchy) which appears as a reduction of the
KP hierarchy under the 1-constraint.

It turned out that rather than studying the impact of k-constraints directly on the
Lax-equations (1.14) of the KP hierarchy it is more convenient to work with Sato’s
equations (4.1) which can be solved on the space of t-functions through (1.25).

Considering Sato’s equations under the 1-constraint, we are led first to Eq.
(4.3) and in succession to the 2x2-determinants (1.24). Our claim now was that
the trilinear forms (1.23), the simplest of which is (1.5), follow from (1.24) using
(1.25). In Sect. 6 we have used several formal assumptions for that derivation,
namely: that p;(1/t) is meaningful and that we can write

1 n 1
Pr (@) = py (- pj () = l;)p,f_z (;) pi(py (7).

(In the particular case j = 0 this gives (6.2).)

The question remains open whether or not solutions of (1.23) are lost by these
assumptions. (For example, take t = 0 as a solution to (1.23).) However, under the
above assumptions we can also obtain (1.24) from (1.23). In order to show this,
let us set j; =0,/ =1,j3 =17 and i = 0,i, = i,i3 = j in (1.23) giving

T pi(@) pi(®)
p () pi(p7 () pf(pi ()| =0. 9.1)
p; () pi(p; () pf(p;(r)
Writing
0 ; N [ Pr®
(ﬁ(%)) =3 P (;) pipi(™ ], (9.2)
pi(w)/ =0 p p; (%)
we obtain in particular
(@(w)) =Py (;) pipr (@) | +pf (;) @] 93)
py (@) Py p; (1) ps Py (7)

Now let us assume that 7 is such that the first two column vectors (9.1) are linearly
independent. Each vector on the right-hand side of (9.2) is then linearly dependent
from the first two column vectors in (9.1) and so is the vector on the left-hand side
of (9.3). Thus we conclude that the following three vectors

T 0 0
pi (v) Py (w)) P (@)

are linearly dependent yielding (1.24), (if t # 0).
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