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Abstract: Under the assumptions that g is not a root of unity and that the
differentials du; of the matrix entries span the left module of first order forms, we
classify bicovariant differential calculi on quantum groups 4,,-;, B,, C,and D,. We
prove that apart one dimensional differential calculi and from finitely many values
of g, there are precisely 2n such calculi on the quantum group A4, , = SL,(n) for
n = 3. All these calculi have the dimension n?. For the quantum groups B,, C, and
D, we show that except for finitely many g there exist precisely two N >-dimensional
bicovariant calculi for N = 3, where N = 2n + 1 for B,and N = 2nfor C,, D,. The
structure of these calculi is explicitly described and the corresponding ad-invariant
right ideals of ker ¢ are determined. In the limit ¢ —» 1 two of the 2n calculi for
A,- and one of the two calculi for B,, C, and D, contain the ordinary classical
differential calculus on the corresponding Lie group as a quotient.

0. Introduction

Non-commutative differential calculus is a basic tool for further applications of
quantum groups and for studying non-commutative geometry on quantum spaces.
A general framework for bicovariant differential calculi on quantum groups (Hopf
algebras) is developed by S.L. Woronowicz [ Wo2]. Following general ideas of A.
Connes [C], differential forms are the basic objects of this theory. Examples of
covariant differential calculi are constructed and studied (for instance) in [ Wol,
Wo2, WZ, R2, CSWW, J, SWZ, Su and BM]. In general there are many non-
isomorphic bicovariant differential calculi on a given quantum group, and no
functorial method is known to construct a “natural” differential calculus as in
classical differential geometry on Lie groups. The aim of this paper is to classify all
bicovariant calculi under “reasonable” assumptions and to select one or a few
distinguished calculi in this way. Despite the rather extensive literature about
differential calculi on quantum groups, the classification problem has been treated
only in the special case N = 2, cf. [St, MH].

The aim of this paper is to classify (under certain assumptions) all bicovariant
differential calculi on the quantum groups corresponding to the four series of
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classical simple Lie groups A4,-;, B,, C, and D, as defined in [FRT]. Let
u=(u;)j—1,. . .~ denote the corresponding fundamental matrix. The crucial
assumptions for our classification are that the deformation parameter g is not
a root of unity and that the differentials duj, i,j=1,..., N, generate the
left module of first order forms. Further we assume throughout that N > 3. We
briefly discuss the main results of this paper. The first main result states that except
for finitely many values of ¢ (see Remark 2 in Sect. 2) there exist precisely 2N
bicovariant calculi of dimension greater than one on SL,(N). They are paramet-
rized by one of the signs +, — (which correspond to the numbers g and ¢~ ') and
by an N-th root g, of g2. The corresponding calculi are denoted by (I'( +, k),d).
Note that the quantum group SL,(2) has, in contrast to the preceding, only
two such bicovariant calculi. The second main result is that apart from finitely
many ¢ (see Remark 2 in Sect. 6) there are precisely two N2-dimensional
bicovariant calculi on O,(N) and Sp,(N). They are denoted by (I'.,d). It turns
out that all calculi occurring in our classification are inner (i.e. da = na — an for
some right- and left-invariant form #) and that all of them can be constructed by
a method of B. Jurco [J]. Bicovariant differential calculi on SU,(N) and on
0,(N) have been already introduced and studied in [CSWW]. The calculi therein
correspond to our (I'( +, k), d) for SU,(N) (the N** root of ¢* is implicit in the
choice of the R-matrix in [CSWW]) and to our (I'x,d) for O,(N). Further,
each calculus in our list admits a limit as ¢ — 1 (in an appropriate sense), which is
bicovariant differential calculus on the corresponding classical Lie group. For the
two calculi (I'( +, k), d) and (I'( —, k), d) on SL,(N) with g, belonging to the first
branch of N'™ root, and for the calculus (I'y,d) on O,(N) and Sp,(N), these
limits contain the usual standard differential calculi on the Lie groups as a quo-
tient, cf. Sects. 5 and 9. That is, if we require the latter behaviour of the classical
limits ¢ — 1, we have two distinguished bicovariant differential calculi on SL,(N)
and one distinguished bicovariant calculus on O,(N) and Sp,(N). This outcome of
our classification seems to be very promising for further applications of these
calculi and for their use in the study of non-commutative geometry on quantum
groups.

Our main results on classification of bicovariant differential calculi (Theorems
2.2 and 6.2) are obtained by means of a classification of the associated ad-invariant
right ideals of ker ¢ (Theorems 2.1 and 6.1). For this the explicit decompositions of
parts of the adjoint representations into irreducible components are needed. Here
the assumption that ¢ is not a root of unity is essential and is used in order to have
similar results as the classical case. The proofs of Theorems 2.1 and 6.1 require
a number of rather long computations. In order to limit the size of the paper,
not all computations are carried out. Sometimes a sample is given or only the
result of a computation is stated. But in these cases all necessary facts are
mentioned.

This paper is organized as follows. In Sect. 2 we collect some basic definitions
and preliminary facts needed later. The classification of bicovariant differential
calculi and their ad-invariant right ideals is carried out in Part I (Sects. 2—5) for the
quantum group SL,(N) and in Part II (Sects. 6-9) for the quantum groups O,(N)
and Sp,(N). In both cases the main results are two theorems stated in Sect. 2, resp.
6. Their proofs are given in Sects. 4 and 8. These proofs essentially depend on some
properties of certain interwiners which are built from the matrix R and their
spectral projections. The necessary technical tools are provided in Sects. 3 and 7.
The limits of our calculi for g — 1 are investigated in Sects. 5 and 9.



Classification of Bicovariant Differential Calculi on Quantum Groups 637

The main result of this paper for B,, C,, D, (Theorem 6.2) is announced in [SS],
see also Remark 1 in Sect. 6 for a correction.

1. Preliminaries

In this paper ./ denotes one of the Hopf algebras for the quantum groups of
type A, B, C or D as defined in [FRT], Subsects. 1.3 and 1.4. Throughout
we assume that NV = 3 and with the exception of Sects. 5 and 9 that the (non-zero)
deformation parameter ¢ is not a root of unity. (A closer look at the proofs shows
that it suffices to assume that ¢" & 1 for all ne N, n < ¢(N), where ¢(N) is some
constant depending only on N. Of course, some considerations are also valid
without restrictions on ¢.)

Unless it is explicitly stated otherwise, we use the Einstein convention to sum
over repeated indices. However, sometimes we write the sum if ambiguities are
possible. In any case, the meaning will be clear from the context.

We denote by 4 the comultiplication, ¢ the counit, x the antipode and 1 the unit
element of .«7. By definition [FRT], the algebra .o/ is generated by 1 and the N?
entries u;,i,j = 1,..., N, of the fundamental matrix u = (u;). For k e N, let .7, be
the linear span of products w!'. .. uf. We set X:=x —¢(x)1 for xe.o/ and

= {X:x e} for a subset Z of <. The linear span of a set {a;: i € I} is denoted
by <a;: i€l and the flip operator of the tensor product by P, i.e. Py, = 0,0, If
A is a linear mapping or a matrix, A* denotes the transpose of A and lower indices
of A always refer to the components of a tensor product where A4 acts. Let 6 denote
the Heaviside symbol, i.e. 8(m) =1 if m >0 and O(m) =0if m £ 0.

By a representation of o/ we mean a representation of the coalgebra .7, i.e.
a right comodule for the coalgebra .o7. Often we identify representations and the
corresponding matrices by fixing some basis of the underlying vector space.
Throughout, u denotes the fundamental representation of .«/. As usual, v is the
contragredient representation of v and Mor(v, w) is the space of intertwiners of
representations v and w. We write Mor(v) for Mor(v,v). Since we assume that ¢ is
not a root of unity, the representation theory of the quantum group .of is
completely similar to the classical case ([L, R2]; cf. also [PW], chapter 8).
All finite dimensional representations of .« are g-deformations of representations
of the corresponding classical matrix group, so they can be labelled by Young
tableaus similar to the classical case (see, for instance, [BR or H]). We freely use
these facts in the proofs of Theorems 2.1 and 6.1. Concerning the classical repres-
entation theory, we follow the standard notation, cf. [H]. The trivial one dimen-
sional representation is denoted by [0]. The following simple lemma is needed in
the sequel.

Lemma 1.1. If % is a right ideal of ker ¢ such that kere = # + .7, and if #,,:=
Ay + oA + o), then we have R = R+ A

Proof. Let o/ *:= oty + - - - + o, ke N. Obviously, #,,-.«/ < %. We prove the
converse by induction on k. Suppose that Zn.o/* = %,,-o/. Letae R/ .
We write a as a = b’u, + b,y with b} bo e .o/* Since f = R + 4 by the assump-
tion kere = # + <7,, we have b/ = al + ¢/ and bo = do + Co with a/, ape % and
cl,coe szil By induction hypothesis, a:= d/ u, +ag is In Ry,-o7. Since
a—ay =cluj+coe Rt ? =Ry, 1, we conclude that ae #y,-o/. W
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Bicovariant Bimodules

Definition 1.1. A bicovariant bimodule over </ is a triple (I', 4., Ag) of a bimodule
I" over o and of linear mappings 4;: ' » &/ ® I' and 4dz: I' - I' ® o/ such that:

1. (I, 4;) is a left comodule over 7, ie. (id® 4;)4, =(4 ®id)4, and
(e®id)4, =id.

2. (I', Ag) is a right comodule over o7, i.e. (Ag ®id)4dg = (id ® 4)4x and
(d® e)dg = id.

3. dp(awb) = A(a) A (@) A(b) and Ag(amb) = A(a) Ag(w) A(b) for a, b € o/ and
wel.

4. (d® 4g)4;, = (4, ®id) dg.

Let (I', 4;, 4g) be a bicovariant bimodule over .«/. An element w eI is called
left-invariant if Ap(w) =1 & w and right-invariant if Ag(w) = o ® 1. The vector
space of left-invariant elements is denoted by I,,. The canonical projection
Piy: I' = Iy, is defined by Py, (@) = Y, k(a;)w; if Ap(w) =), a; ® w;.

The structure of bicovariant bimodules is completely characterized by The-
orems 2.3 and 2.4 in [Wo2]. We recall the corresponding result:

Let (I', 4., 4g) be a bicovariant bimodule over ./ and let (w;);c; be a basis of the
vector space I;,,. Then there exist matrices v = (v}); jey and f = (f;');, je; of elements
vj € o and of functionals f;' € &/’ such that for a,be .o/ and i,je I:

(i) w;a =_(f,i*a)a), and dg(w;) = w, ® v;. ' '

(i) v =(v{) is a representation of the coalgebra .7, ie. 4(vj)=0v,®v; and
8(Ul') = 5,1 . .
(iii)J f=(f}) is a representation of the algebra .«Z, ie. f;(ab) =f(a)f¥(b) and
f;l(n) = 5ij- . .
(iv) viaxf}") = (fi * a)v;. (L1)

The set (w;)ier is a free left module basis of I As usual, we have set
axf=(f®1id)4(a) and fxa:= (id ® f) A(a). .

Conversely, if (w;);; is a basis of a certain vector space I, and if v = (v}); joy and
f=(f{)i jer are matrices with v; € o/ and f; € &/’ satisfying (ii), (iii) and (iv), then
there exists a unique bicovariant bimodule I" such that I, = [},, and (i) holds. In
the situation just described we simply write (v, f') for the corresponding bicovariant
bimodule I'.

Lemma 1.2. Let I'y = (v,f) and I, = (w, g) be bicovariant bimodules and define
fxg:=(f® g)4. Then the pair (v ® w, f* g) is also bicovariant bimodule which will be
denoted by I'' ® T,

Proof. Clearly, it suffices to check that v ® w and f* g satisfy again the compatibil-
ity condition (1.1), ie. (V@ w)j"(ax(f*g)") = v (W' (@*f")*g") = v (gm*
(@*£") W) = 07 (g * @) % £") Wi = i % (G % @) 0 Wi, = (% m* Q) (0 @ W)y W

Lemma 1.3. Let vie .o/ and fj e o', i,j €1, be such that the matrices v = (v}) and
f=(f}) satisfy (ii) and (iii), respectively. Set Ty = f; (un). Then the compatibility
condition (1.1) is fulfilled if and only if T = (T;;) e Mor(v ® u, u ® v).
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Proof. Using (iii) it is easily seen that (1.1) is satisfied for a-b provided that it is
valid for a and for b. Since f;' (1) = 0;;, (1.1) is true for a = 1. Thus it is sufficient to
check (1.1) for the elements u.. From

vf (ul = f}") = Toavlu™ and (f;i * ul)vs = uhol TH",

we conclude that (1.1) is equivalent to T € Mor(v ® u, u ® v).

Bicovariant Differential Calculi

Definition 1.2. A first order differential calculus (or briefly, a differential calculus)
over &/ is a pair (I', d) of a bimodule I" over ./ and a linear mapping d: of — I’
such that d(ab) =da-b + a-dbfora,be o/ and I' = {a-db: a,be oL ).

Definition 1.3. A first order differential calculus (I', d) over </ is called bicovariant if
there exist mappings 4;: I' > .o/ ® I' and dg: I' > I' ® o such that:

1. (I', 4y, Ag) is a bicovariant bimodule.
2. Ap(da) = (id ® d)A4(a) and Ag(da) = (d ® id)4(a) for a e o.

Note that the mappings 4, and A (if they exist) are uniquely determined by I" and
d. By Propositions 1.2-1.4 in [ Wo2], the preceding definition of bicovariance is
equivalent to the one given in [Wo2].

A bicovariant differential calculus (I', d) is called inner if there exists an element
w € I which is left- and right- invariant such that da = wa — aw for all a € o/. We
shall say that two differential calculi (I'y, dy) and (I, d,) over o/ are isomorphic if
there is a bimodule isomorphism ¥ of I'y onto I, such that ¥od, = d,.

Adjoint Representation

For ae ./, we set ad(a):= Zi b; ® k(a;)c;, where the elements a;, b;, ¢c; € &/ are
defined by (id ® 4)4(a) = Zi a;®b;®c;. The map ad: &/ > o/ ® 7 is a repres-
entation of the coalgebra .o/ called the adjoint representation of </. In particular, we
have

ad@w' . . uM)=up .l @ ). N7 I THEN T (1.2)
foriy,...,i€{l,..., N}and ke N. Let I, denote the linear mapping of (C"V)®
into 7, defined by Ik(e,, amy . m) = u,’,',“ ... Upe, where {e, . }isthestandard

basis of (CV)®. By (1.2), IkeMor(( )@k ad[’&f

Lemma 1.4. (i) If ¥ is an ad-invariant linear subspace of s/, then ¥ is also
ad-invariant and the map a — a belongs to Mor(ad[ ¥, ad[ 7).

(i) For keN, ad[ % ~ ad[ < if and only if k¢n-N for A,_, resp. k¢ 2N for
B,, C,,D,.

Proof. (1) follows easily from the Hopf algebra_axioms for the counit and the
antipode. Obviously, the map a — @ of .« onto . is injective if and only if 1 ¢ .o7.
The latter is equivalent to k¢ n- N for the quantum group A4, _; and to k¢ 2-NN for
the quantum groups B,, C,, D,.. This yields (i1)). W

In particular, ker ¢ is ad-invariant. According to Theorems 1.5 and 1.8 in [Wo2],
there is a one-to-one correspondence between bicovariant differential calculi (I, d)
over .« and ad-invariant right ideals # of ker ¢ given by # = {a € kere: Py, (da) =
0}, see formula (5.14)in [ Wo2]. Further, since I3, and (ker ¢/2)’ form a dual pair of
vector spaces ([ Wo2], p. 161), dim I3,, = codim #. We call the latter the dimension
of the bicovariant differential calculus (I, d).
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Lemma 1.5. Let # be the ad-invariant right ideal of kere associated with the
bicovariant calculus (I', d) over /. The following statements are equivalent:

W) I'=<a- duj aedzj—l N>,
(11) Env - <va(du}) l ] - 1 N>
(iii) kere = Z# + .7, .

Proof. By definition, we have w;;:= Pi,,(du; ) = K(uk)duj (1) = (i) 1s trivial, since

Py (aduj) = e(a)w;;. (i) — (i) follows at once from Theorem 2.1.1 in [Wo2].
(ii) — (iii): If a € ker ¢ and Py, (da) = o;;0;; with o;; € €, then a — o € AR. (iii) — (ii):
Let w = Py, (a;db;) € I},,. Then a=¢(a;)b;ekere and w = Py, (da). By (iii),
a =r + o;ii; for some r € Z and o;; € C. Hence w = a;;00;;. M

Part I: Classification of Bicovariant Differential Calculi on SL,(V)

2. Definitions and Main Results

In this section we state our main results, and collect some notations and facts which
will be used throughout the following four sections. Let .o/ denote the Hopf algebra
of the quantum group SL,(N) as defined in [FRT], Definition 3. We set
Q:=q—q 'and Q. :=q + ¢ . The corresponding matrix R for SL,(N)is given
by

ﬁ;:ln = 5im(sjn(l + (q - 1)5m) + Qéijénme(n - l) (21)
fori,j,n,m=1,..., N. The matrix R can be written as R = qP, — q~ ' P_, where
P.=Q;'(R+q 'Iand P_. = Q7' (— R+ qI) (2.2)

are projections. We have (cf. [FRT], Theorem 4)

q ¥ x(u)ul" = q "0, and q*'u,Kk ") = q*" O . (23)
The Ad-Invariant Right Ideals Z( + , k)

We shall use the abbreviations
N
si= ) g s, =14+s+q N s =s—q 2 —q ",

=l+st.=5—q N, =6—q 2 +1,5 =6—q N4 422
and

s )i= (P ima Mwiu’s Lj=1,...,N

We denote by U and V, the g-traces of the matrices (u;) and ((v 4 );), respectively,
l.e. we set

U=Yq %u and V,=Yq v.)i.

If 7 is an N *-dimensional vector space with some distinguished basis, we define
a projection Py: # — Z by the matrix (Py)jn:=5"'q~*'6;,0;,. Further, we define

linear mappings S, : </, — </, by
Q+ 144°

S s (ujun)i= (P tyua)jy — = <P+(v+)Pi);‘::,+5 (P mVs . (24)

i
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(Here, as usual, lower indices refer to the corresponding places of the tensor
product; for instance, (P, (v, ), P, )im stands for (P, )i (v . )}(P, ). It is easily
seen that S, and S_ are well- deﬁned In the proof of Lemma 4 1 we show that
S, and S_ are pr0]ect10ns ie. SJr = S, . Note that the numbers 5,5, ,5_,t, and
t_ are non-zero, since we assume that ¢ is not a root of unity.)

We denote the N Complex roots of g% by qy,. . ., qy. Let 2% be the set of all
ge @, g # 0, for which (s, )Y = g*2s". For each ge 2% there is a unique r e
{1,..., N} such that ¢, 's’, =s. We denote this index r by r( +, g). For nota-

tlonal 31mp1101ty wesetr(+,q)=0if g¢27*.
Letke{l,...,N}. We define

zi,k::5+Q:*qq,:1, =03 g,
f o b= g P+ g)g P —tes .t (s—q 4 1)g 7 —t s
H+,k:= —1 ) ‘u+,k:= =1 s >
40+ (qi "s% —9) 40+ (g 5% — )
ifk+r(+,q),and
4~k—5+Q+ q 4k7 ﬂ:'k2=5_Qiquk,
st =g g e — s

qQ + (qes™ — 9) ’
(s AN L gmaNe 2y
Hoe= 4Q . (qes- — ) ’
itk +r(—,q).

Suppose that te { 4+, —}, ke{l,..., N} and k # r(z, q). Let %(z, k) be the
linear subspace of .o/ @ .o/, generated by the following groups of elements:

s, (u,um)l],n m=1,...,N.

2) ( u+)1 t,cu — 048~ 1(V+—/1rkU) iLj=1,...,N.

B) V, —unU.
(From Lemmas 4.1 and 4.2 below it follows that these elements span indeed six
ad-invariant linear subspaces of kere.)

The right ideals %(z, k):= %(z, k)- o/ of the algebra kere are crucial for our

classification of bicovariant differential calculi on the quantum group SL,(N).
They are characterized by the following

Theorem 2.1. For each right ideal Z of the algebra ker ¢ the following statements are
equivalent:

(i) 2 is ad-invariant, kere = # + o/, and codim 2 = 2.
(i) # = R(z,k) for some te{ +, —}, ke{l,....N}, k+r(t,q)

Furthermore, we have ker ¢ = (r, k) @ o7, and the right ideals R(t, k) are mutually
different.

The Bicovariant Differential Calculi (I'( +, k), d)

Suppose that ke{l,...,N}. We introduce linear mappings T(+,k)e
LIC"®C"® C") by

T(+,k)=qi " X(+ .,k R, Ry X(+,k)yy ifk=+r(+,q) and
T(—,k)=qX(—, k)3 RLRE X(— k), ifk+r(—,q),
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where R, R™, K, X( +,k)e L(C¥ ® CV) are defined by
Rip = R (R7)im:=(R™1)),, and K:=sP, ,
X(+,k)=1+(1—q)gQ 'K and X(—,k)=1+(qs'—1)g*"'Q K.
(Note that X(+,k) is invertible and X(+.k) '=I+(1—g)
(g 's’s — ) 'K, since k = r( £, g).)
Let p be an N‘h root of ¢ and let L— = (p ) be the N x N matrix of linear

functlonals , L ' on .« as defined in [FRT] Sect. 2 by taking the matrix p~ ! PR as
R. By deﬁmtlon (cf. [FRT], (2.1)), we have

SLus)=p 'R and ,lj(un) =p(R™ 1) (2.5)
fori,j,n,m=1,..., N. From this it follows that
k(51 Wh) = p(R™ )i and k(1) (un) =p 'R}, . (2.6)

Formula (2.4) in [FRT] implies that the matrices L, and L, define representatlons
of the algebra .o/ on C". Let L, be the contragredlent representatlon of L . As
pointed out by B. Jurco [J], there are four important bicovariant bimodules of the
Hopf algebra .o/:

prl = (u7 L;—’C% pFZ = (u7 L;,C), prf = (ut" L; )’ prg = (uc’ L;—) .

(In order to prove that these are indeed bicovariant bimodules, it only remains to
check the compatibility condition (1.1). For this we apply Lemma 1.3. For o1 and

o> the corresponding mapping T from Lemma 1.3is p~* R, resp. pR™ ! by (2 5), so
T '€ Mor(u ® u). In case of ,I'; and ,I'; we conclude from (2.6) that T is p ~1R, resp.
pR~, hence T belongs to Mor(u ® u, u ® u) by Lemma 3.3))

Suppose now that p and p’ are N'" roots of ¢ such that ¢, = pp’. By Lemma 1.2,
I'(+,k)=,I3Q®,andI'( —,k):= ,I'i ®, I'| are bicovariant bimodules of .2Z.
Their structures are given as follows. The subspace I'( +, k);,, of left-invariant
elements has a basis {#;;:i,j =1,..., N} such that the right and left module
operations of I'( +, k) satisfy the equations

nija = (5 k(1) % @, a€ o . 2.7)

In both cases the set {#;;: i,j = 1,. .., m} is a free basis for the corresponding left
and right modules and the right action is given by 4g(1;;) = fum @ (u€){'uj'. From
this and (2.3) it follows that the left-invariant element #:=) g~ *#; is also
right-invariant. For a € ., we define

da=na—an . (2.8)

Our main results on classification of bicovariant differential calculi on SL,(N) are
summarized in the following

Theorem 2.2. Let (I', d) be a first order differential calculus on SL,(N). The following
two assertions are equivalent:

(1) (I', d) is bicovariant, dim I, 2 2 and I = <a-du}: aed,i,j=1,...,N>.

(i) (I',d) is isomorphic to (I'(z,k),d) for some ke{l,..,N}, te{+,—},
k #r(t, q).
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Moreover, (I (1, k), d) is the canonical calculus associated with the ad-invariant right
ideal A(t, k) of kere. Two calculi (I'(t, k), d) and (I' (', k"), d) are isomorphic only if
(v, k) = (z, k').
The structure of (F (t, k), d) can be also described as follows: The forms w;;:=
Py (du; )= k(ub)duj, i,j=1,...,N, are a basis of the vector space I'(t, k)i, of
left-invariant forms. In terms of this basis the bimodule structure of I' (t, k) and the
differentiation d of (I'(z, k), d) are given by

wija = (zf;rlrit* a)wnm and da = (;Xnm * a)wnma ae JZ/ s (29)
where § £ and }, yum are linear functionals on o/ such that
WXom(@5) = Oinmy  and ffum(0) = i foms) = T (@, )" . (2.10)

Moreover, we have Ag(®;;) = Wy @ ()i uj" and da = 9. \(wa — aw), a € o/, where
w=Y .9 Yoz, 9 =(qr 's% — ) P and 9_ = (g5~ — ).

The proof of Theorems 2.1 and 2.2 will be given in Sect. 4. Here we continue
with some remarks which are related to these results.

1. From the above formulas we compute that (U — a0 s, (I —Py)xe ,%( +.,k)
for xe .o/, and (U — g, s+)UeQ(+ k), k+r(+,q). The fact that in both
expressions the same coefficient g, 's’, appears is crucial from a technical point of
view, because it implies (by tracing back the proofs in Sect. 4) that the bicovariant
differential calculi associated with #( 1, k) are inner.

2. We briefly discuss the “critical values” of g in 2+ U 27. Obviously, g e 2% ifand
onlyif ¢ ' e 2. Apart from roots of unity, for N = 3and N =4 theset 2t LU 27!
consists of 16, resp. 32 numbers, none of them is real. For these values of g, there are
5, resp. 7 bicovariant calculi in Theorem 2.2, (ii).

Suppose that ge 2°forte { +, — } and k = r(z, ). Then (I'(z, k), d) is still an
N2-dimensional bicovariant drﬁerentral calculus over .7, but I'(t, k) = (a-du;: a €
&/ Lj=1,...,N) To verrfy the latter, it suffices to note that the one form

=g 2 (u,)du, is zero in I'(z, k) as computed easrly, hence I" + {a-du;). How-

ever,F(r k)y=<a- du,,b cd(upuy. a,bes,i,j=1,... , N>ifn+m.

3. If p and p’ are N'® roots of ¢q and if r = 1, 2, then the bicovariant bimodules

1, ®, 1y and ,I';y ®, I, and hence the corresponding inner bicovariant differen-
tral calcuh over &/ are isomorphic. If {{,,,} is the standard basis of (, I} ® , I’} )iav.
then the map (R™);7"n — ni; for r =1, resp. RU {mn = 1;; for r = 2 extends to
an 1somorphlsm of ,I,®,Iy on , Iy ®, I, In proving the latter, one uses
that R, R~ eMor(u Q@uu®u) by Lemma 33 and that Rie
Mor(L,“* L, , Ly % L,), resp. (R™) € Mor(L,“* L, , L, * L;°).

4. In this remark we show that up to isomorphism there are precisely N — 1 one
dimensional bicovariant differential calculi on SL,(N). Suppose that { is an N
root of unity and { # 1. Let f, be the multrphcatrve linear functional on &/ defined
by fy(u}) = (5,;. Clearly, I = (1, ;) is a bicovariant bimodule. That is, I} has a frec
left module basis consisting of a single left- and right-invariant element w, and
wod = (fy* a)wo, a € o. Defining da:= ({ — 1)™'(woa — aw,) for ae o, (I}, d) is
obviously a one dimensional bicovariant differential calculus on SL,(N). Converse-
ly, each one dimensional bicovariant differential calculus (I, d) on SL,(N) is
isomorphic to some calculus (I3, d).
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We prove the latter assertion. Let # be the ad-invariant right ideal of kere
associated with (I',d). Let w € I},,, ® + 0, and let f and y be the corresponding
linear functionals on &/ such that wa = (f*a)w and da = (y *a)w for a € o/. First
note that (I — Py)sZ; "% + {0}, since otherwise codim # = dimI},, = N* — 1.
Since # and (I — P,)«/, are ad-invariant and ad[ (I — P,).oZ; is irreducible (see
Lemma 4.1, (i), below), we conclude that (I — Py).«/; = %. Hence U ¢ %, since
otherwise 7, = (U> + (I — Py)o/; = % and so # = kere. Since y annihilates %,
c=¢(0) + 0 (otherwise y = 0 and so d = 0) and y(u}) =4, s"x(ﬁ) = J,j¢8 1,80
that du, = (x*ujow = es 'ujw and g ¥k(uj)duj =cs 'o. But the form

~ 27k (u!)du; is right-invariant by the bicovariance of the calculus (I', d). Hence w is
right-invariant ‘and the compatibility condition (1.1) ylelds flup)uj =
L(uj*f) = (f*uj)l = u, f (u]), sof (u;) = {5;; for some { € C. From wu;j = {u;w and
detqu =1 it follows that CN =1. If {=1, then wa=aw for ae.o/ and

d(u,1 . N) =cs 'Nuj .. u,Nw by the Leibniz rule, so that di
= d(det u) =cs 'No + 0 Wthh is a contradiction. Thus (4 1. Setting
wo:=cs ‘o, we have wou} — uiwo = cs~({ — 1)ujw = ({ — 1)duj. Therefore, by

the Leibniz rule, da = ({ — 1)~ 1(woa — awg) for all a e o, i.e. (I', d) is isomorphic
to (I, d).

3. Morphisms of Tensor Products

In this section v and w denote representations of the quantum group <7 = SL,(N),
and (vy,), resp. (wy) are the corresponding matrices.

Lemma 3 1. (1) Suppose T e Mor(u ®v,u@w) and Se Mor(v Qu,w®u). We
define (try T)., = q > T and (tr3 S)., = qZ'S,,,l Then we have tr; T € Mor(v, w) and
tr; S € Mor(v, w).

(il) For TeMor(u*@u@v,u@u°®@v), define (try, T)'™ =q *'T{5". Then
try, T € Mor(u® ® v).

Proof. (i): From T e Mor(u ® vu®w), Tiuivl=uf ws 'Tin, so that
T g Y(ul)ujor, =4q “2ie(uf)uf wi T . Hence, by (2 3), (trf T)Lvt = wi(tri TS,
which means that trj T € Mor(v, w). .

(ii: Since TeMorW'®u®v,u@u ®v), we have Tpowx(u)ulv! =
w k(i) ok T for i,j, k,r,s,te{l,..., N}. Multiplying this equation by q‘z’,
summing overr =s by using (2 3) and ﬁnally multiplying from the left by x(uf), w
get (try, T)m k(ul)o! = k(uj' )v,,(trlzT)p, ,s0tri, TeMor(u*®v). M

Lemma 3.2. (i) triR=¢q 'I, tr}](R"") =¢q 2N~
(i) tr2R = ¢V * I, tr2(R™ ') = qI.

Proof. From R € Mor(u ® u) and Lemma 3.1, tr] R € Mor(u) Since Mor(u) =

by Schur s lemma, there exists o € € such that (tri R)f = ady. By definition (2 1),
(trl R)l =q *R{i=q ' Hence oa=gq ' Similarly, (tr;R); =pdy and
(tr;R)N = ¢*Ryy = q*V* 1, so that f=¢>V*1. W

Lemma 3.3. (i) Define ¥,(T):= T,: and ¥,(T)}:= q* > T}]i. The mappings
Y. :Mor0®u,u @ w) > Mor(u*®v,w®u) and ¥,: Moru®v,w® u)—
Mor(v ® u, u® ® w) are isomorphisms of the corresponding intertwining spaces.
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(iiy For T € Mor(u ® u), define (T )jm:= T, (T )jm:= q>" 3T and (T jp:= Ty,
The mappings T—>T, T—T, T—T are isomorphisms of Mor(u® u) onto
Mor(u ® u, u ® u¢), Mor(u® u‘, u° ® u), resp. Mor(u®® u). Mor(u @ u®) is
spanned by the two projections P, and P_.

(i) The mapping T — T-R is an isomorphism of Mor(u® u‘, u‘ ® u) onto
Mor(u¢ ® u). Mor(u® ® u) is spanned by I and K.

Proof. (i) The proof is given by straightforward computations. In case of ¥, we
use (2.3).

(ii): The assertions follow at once from (i), since T=w(T), T=¥,(T)
and T = Y.(¥Y(T)). In the latter case the first ¥, refers to v =w = u and the
second one to v=w=u’ From Mor(u® u) = (,RYy =(P,,P_) we get
Mor(u® ® uf) = <P+,PQ>

(iii): Recall that {e;;} is the standard basis of €V ® C". Since Re;; = ¢;;, i + j, and
Reji=q ‘e; + 0 Z/ - ¢ by (2.1), R is invertible, so that T — T+ R is an isomor-
phism and hence dimMor(u*®u)=2. By (2.3), KeMoru‘®u), so
Mor(u*®@u)y=<I,K). W

Incase T = R~ ! we write R~ for T and R~ for T.
(

Lemma 34. (i) RR~ zR“R—I

(i) (P, P, it =q> (P Yjm(P =072 (B Oy + 55 4% Sum0ys).

(ii1) trlZ(R12R23) Qg 'I + K and tri(Ri2R23 ) = Q¢ M "I+ K.

(iv) tr, T(+,k)=(qg'sy —s) I+ K if k*+r(+,q and tri,T(—,k)=
(qksi—s)I+Kifk=#:r(—,q).

V) 1 (T(+,k)Ry) = (g (g +q 2 —q DI+ &K and tr{(T(—,k)Ry,) =
(@lg™ ' +q 2" ) —q I + K for some &, € C.

Proof. (1): By Lemma 3.3, (ii), R~ e Mor(u® u’, u ‘®u)and soR™ ReMor(u ® u).
Hence R™R —ocI +,BK with o, B €. If i # j, then Re;; = ¢j; and R e;; = ¢;; by

(2.1), smce =R — QI. Therefore, o=1 From ReNN = geyy and
R enyn=9q" eNN again by (2.1), f = 0 Thus R"R =1 ~ R
()Smce Q.P,=R+¢q 'I=R '+ql and Q,P. = —R+ql=R '+

~ by (2.2), (ii) follows at once from (i) and Lemma 3.2, (i).
(iii) is obtained from Lemma 3.2, (i).
(iv): Let feC be such that 1+ fs+0. Then X:=1+ K is invertible in
LC"®C") and X' =1+ 9K, where y:= — B(1 + fs)~'. In particular, if
k =+ r( + ,q), then X(+,k) is invertible and X(x,k)"'=1+
(1 —a g s’y —s) 'K,

We carry out the proof for T( +, k). Set B:= qQ " '(1 — gq) and X := X( +, k).
Using that RR™ = I by (i), and Lemma 3.2, (i), it follows that

(triaT(+, k)M =g "X )" RARY X g~
=g (XD RIR MY + 00,,0,0(1 + Bs)g™ 216,
= g '(1+ p)X DT (RR ) + QR g™ >65)
=g {1+ B)((X ™ Di"g o + Qg XA
=qc 'L+ Bs)(Qq T + (I +ys +7yQq K.

Inserting the values of  and y, we get tr, T( +, k) =(gq¢ *s% —s)] + K.
(v) can be derived by similar computations. W
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The mappings T(+,k) belong to the six dimensional vector space
Mor(u ®u®u u®u ®u) The sets {R12R23,K23R12,112R23,K23112,
R121 112} and {R12R23 5 K23R12, 112R23, K23112, RIZ’ 112} both form a basis of
this space, see Fig. 1 below. The mappings T ( &, k), k & r( £, ¢), can be written as
follows:

T(+,k)= ar "(Ry,Ry5 + (;0+,kK23R12 + 'P+,kK23i1z

+ (1 —q)ii,), (3.1)
T(—,k) = q(RLR3: + 0 (K3 R, + ¥ (Kayslys
+ (=g NI, 2), 3.2)
where @ = 101 =g g —s)”! and

Vo= — g —qi ! ) g sy —s) L

We close this section by giving the graphical representations of some important
intertwiners, operations and formulas occurring in Part I of this paper. Using these
graphical interpretations most of the above formulas and some of the proofs will be
more transparent. In order to distinguish the places for the representations u and u¢
we use arrows in the graphs. A vertex stands for u, resp. u if the corresponding edge
1s downward directed, resp. upward directed. Vertices of undirected edges denote
general representations.

sz ’sz,h%,ihx ~R=X,
R'1=X ,é—=x,[(=%,R'=Xyé—=X,

.. ~ , - -
RizRas = ///,KzsRIz: >‘\% s Koz = /T\U

Fig. 1. The graphical representations of some intertwiners for .o/ = SL,(N)

tr}(T) = T ' trp(T) = T

' NS

Fig. 2. The graphical representations of some operations with intertwiners for o/ = SL,(N)
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1 L
Lemma 3.2, (i): @/ =g-! l , S = g -1
N S
Lemma 3.5, (i): <> - -
/ AN

Lemma 4.6, (ii):
AR RS 1

Fig. 3. The graphical representations of some identities of intertwiners for &/ = SL,(N)

4. Proofs of Theorems 2.1 and 2.2

<10
+

Proof of Theorem 2.1, (i) — (ii)

The proof will be divided into several steps as lemmas. We assume that N = 4. At
the end of this section we discuss the necessary modifications for the case N = 3.
First we determine the explicit decompositions of ad[ <7 and ad[ .7, into irredu-
cible subrepresentations.

Lemma 4.1. (i) ad[ o/, 2 u*®@u=[0]®[2, 1V 2].

T he subspace of <, for the trivial representation [0] is generated by U and P, is the
projection of oy onto (UY. The subspace for the Young pattern [2,1N"2] is
(I — Po)sty = {uj — _lUlJ"l N>.

(i) There are m]ectlve mappings A . € Mor(adf oy, ad[ of,) such that A , (u}) =
(wy), Lj=1,...,N.

(i) ad[ o4 ~ 2[0]@ 22, 192 @ [4,2Y 2] @ [2, 2, 1¥~4],

The corresponding subspaces of </, are {V, ) and {V_) for the trivial representation
[0] and {(I — Po)(v+);» and {(I — Po)(v-);> for the representation [2, 1N ~*7. The
projections corresponding to the Young patterns [4,2V 2] and [2,2, 1V %] are the
mappings S, and S _, respectively, defined by (2.4).

Proof. (i): Since the contragredient representation u¢ corresponds to the Young
tableau [1¥ ] consisting of N — 1 boxes in one column, we have u* ® u =~ [0] ®
[2,1¥72], cf. eg. [BR], ch. 8, or [H], ch. 10. Clearly, the intertwiner P, €
Mor(u¢ ® u) is the projection on the subspace for the trivial representation [0].
Since the N * elements u; are a basis of <, I; € Mor(u® ® u, ad[ #/) is an isomor-
phism and the assertlon for ad[ <7 follows.

(i1): Using that PJr € Mor(u® ® u¢) by Lemma 3.3 and (2.3), we obtain

ad(vy)j = (P, kg~ *ad(uu]")
=g (P )" ug uy? @ () ()t g u?
=q " H(P ol ul ul @ () (e uy u?
=(P, )r,rzu,lun@(u“), (c(up)ui' = *)uj®
= (P )/ ul ul? ® (u)" (O, ¢~ 2 )ui}?
=0 )n® ® W
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Hence, by (1.2), 4, : u} - (v )J defines intertwiners 4, and 4_ of ad| ./; and
ad[ «7,. Since obviously dim{ (v, )j> > 1, A, and A_ are injective.

(iti): By the rules for decomposing tensor product representations [BR], we
have

Weu)®uew=N"""Nel" De(2]1e[1’]). (4.1)

The projections corresponding to the Young patterns [2V~'] and [1V~?] in the
first tensor factor are P,, resp. P_, cf. Lemma 3.3. The two projections for
the representations [2] and [1?] in the second tensor factor are P, and P_, respec-
tively. Using that P, € Mor(u ®u) and P, P_ =0, we get

12((P+ ® P )eukl) - IZ((P-JL)LJ ( )klenmrs)
= (P (P )uul = uyun (P )" (P_ )i = 0

for i,j,k,I=1,...,N, ie. 1m(P+ ®P_) < kerl,. A similar reasoning yields
im(P_ ®P,) < kerlz From d1m1mPJr =dimim P, =3N(N £ 1), we obtain
dim 1m(P+ ® P_ + P.® P.)=2iN?*( —1). Since _also codimkerl, =
dim./, =3(N* — N?), it follows that P,®P, +P_®P_ =P, P, ®
P.®P_ and im(P, ®P-@ P.® P.)=kerl,, ie. L[ # is an isomorphism of
W :=im(P, ® P, ® P_ ® P_) onto .«,. Combined with (4.1), the latter yields

ad[ 2, 22V 1@ 2]@[1" 1 ®[1%] (4.2)

>([42" @2 1" 1@ )@ (2.2, 1" * @ [2, 1Y 2@ [0]).
(4.3)

Let E, and E_ denote the two projections corresponding to [2Y 1] ® [2] and
[1"?]1®[1?] in (42). By the precedlng, we have E, =
L(P, ®P, (L[ #) 'and E, (uju,) = (P, ),,,,,u u;'. We explicitly compute the
projections corresponding to the decomposition (4.3). For this let o, . and
y . be complex numbers. The equations

F, (u,u,)—ou(P vy +B (P, ) and
Gi(“}”ll()=7i(P¢);1V+

define unambiguously linear mappings of ./, into itself. Using that P +
Mor(u® ® u‘), P, € Mor(u ® u) and (1.2), one easily verifies that F, and G , arein
Mor(ad[ .o/,). Applying Lemma 3.2, (i), we compute that G and G _ are projec-
tions if (and only if) y, =qQ,(st,)”! and that G, F, =F, G, =0 if
7. =qQ+(sty) tand o, = —sf, . Keeping the latter equations for oLy, [3+ ,
v+, another computatlon based on Lemmas 3.2, (i), and 3.4, (ii), shows that F

a projection if (and only if) o, = Q+s . We fix the constants o, ,f,,7+ by
the preceding. Then F, and G, are projections and im G , nim F, = {0}. The
same computation (based on Lemmas 3.2 and 3.4) just carrled out also shows
that F,((v,);)=@.)—s 1(3,,V+ Hence imF, +imG, ={(v,)}: 1]—
1,. N> =:¥, and F, + G, is a projection of ./, onto 77, . Recall that 77,
ad-invariant and that ad[ 77, is equivalent to ad| ./, = [2, 1” 1@ [0] by (11)
and (i). Therefore, F, and F_ are the projections corresponding to [2, 1¥ 2]
and G, and G_ are the projections for [0]. Consequently, S, =E, — F, — G,
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and S_:=E_ — F_ — G_ are the projections for the Young tableaus [4, 2" 2]
and [2, 2, 147, respectively, in (4.3). One easily checks that S, and S_ have the
form given by (2.4). Using (i) and (i1) once more, it follows that the ad-invariant
subspaces {(I — Po)(v, ) > correspond to the Young tableau [2, 17727 and that
(V. > and (V_) correspond to [0] in (4.3). W

From now on we suppose that # is as in Theorem 2.1, (i). We write a = b for
a,bes/ fa—beA.

Lemma 4.2. (I — Py).o/; "% = {0}. In particular, uj¢% and uj — ul¢ R for i+ j.

Proof. Assume to the contrary that (I — Py).o/;n# + {0}. Recall that
(I — Py).oZ;( < kere) is the representation space for the Young pattern [2, 1V~ 2].
Since this representation is irreducible and £ is ad-invariant, it follows that the
space (I — Py).o/; is in A. Since kere = # + o/, this implies that codim# = 1,
which contradicts (i). W

Lemma 4.3. There are complex numbers A", .7, u* and p~ such that

Ry, =0y, — 'Oy —p Uy@#, @#. @imS, @imS_,
(4.4)

where W, denotes the linear span of elements (v )j — A * l: — 0y MV, — AT U),
i,j=1,...,N,and ¢ is either 0 or 1.

Proof. First note that it follows easily from Lemma 3.2, (i), that imS,, imS_,
W, and #_ are indeed contained in kere. By Lemma 1.4, the mapping
X = X = x — &(x)1 is an isomorphism of .«/; onto .«7; for j = 1, 2 which intertwines
the adjoint representation. Therefore, by Lemma 4.1, (i) and (iii),

adf(%@ﬂfz)%adf(%®&fz)
230]@3[2, 1" 1@ 42" 1@ ([2,2,177 4] (45)

Let #; be an ad-invariant linear subspace of o, @ </, such that #,, ® F, =
safl @ os. Since %, + oA, = o, ® o> by assumption, there is a canonical map-
ping _of o, onto #, belonging to Mor(ad[ oy, ad[ #,). Since
ad[ o/, = [0] @ [2, 1V~ 2], the latter implies that

ad[ 7 = 6,[0]®0,[2,1"?], (4.6)

where ¢, 6; € {0, 1}. Comparing the decomposition .«7; @ ./, = %, ® F, with
(4.5) and (4.6), we conclude that

ad[ 21, =3 —09)[0]@ (B —d)[2, 1" 1@ 42" *]1@ [2,2,1"*]. (47

From Lemma 4.1, the corresponding subspaces of the decomposition (4.5) are
<O, V,, V> for 3[0], {(I — Po)u;», <(I — Po)(v4);» and {(I — Po)(v);> for the
three patterns [2, 1¥72],im S, for [4,2¥ 2] andim S_ for [2,2, 1Y *]. 1f 6, = 0,
then {(I Po)u,> < %y, by (4.7). But this contradicts Lemma 4.2, so that 6, = 1
and {(I — Po)ujy %Ay, = {0}. Hence we can write the two ad-invariant subspaces
of #y, corresponding to [2, 1" ~?] of the form #, and w_ described above. If
Ue%’lz, then A, D oy =Ry, + Ay =R, @ — Po)szil and hence o, =0, so
that <U, V,,V_> < %, can be obviously written as in (4.4) with 6 = 1. If U¢R, s,
then 6, = 1 and the two-dimensional subspace (O, V., V_>n2R, is of the form
Ve —p"U0>@ V. —u~ U) as required in (4.4) with 6 =0. W
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The main purpose of the following is to determine the values of the four
numbers A * and u*. For this we essentially use the fact that the images of S, and
S_ are contained in %, , together with some compatibility conditions. See the proof
of Lemma 4.5 below.

For the following computations it is convenient to work with the numbers
A, and M, defined by A, :=s3'A* and M, :=gq(s,t, )" 'p*. Then, since
Wy S A2 by Lemma 4.3, we have that

(vy)j=s,A,u fori+j and V, =q 's, t, M, U. (4.8)
In Lemma 4.4 and in its proof we shall not sum over repeated indices.
Lemma 4.4.

() ujuf =0ifi+j,i+Lk+jandk=*1
(ii) u,’uk (A++A_)u1‘:ifi#j,i=l=kandk#j.
(i) uju,_u,u, Q+A+u,‘ifi#j.
(iv) uku =(qAy —q A ifi+land k <1,
wu =(q Ay —qA ) ifi+1and k> 1.
(v) uju zj:( AL —qA)i; +(gAs —q T AL
o +S_1((S+M+—SM)-—-Q(A++A))Ulfl<]
i) wiu; = Q2 A0 + Qs s My — QAU + 1.

Proof. Since the setsim S and im S_ belong to %, by Lemma 4.3, we have by the
definition of S,

“;uzk — 0401l = (P4 uxuz);f + (P—lhuz);:c — 0,041

Q*<P+(v+) P~ +&(P (v_)2P_ )"
I g —”‘UP)
s, t, s_t

The lemma will be proved by calculating the right-hand side of the preceding
equation combined with (4.8). As a sample we prove (vi). From (2.1) and (2.2) it
follows that a term (P, ) (P, e is non-zero only ft=+ andk=m=n=1
Slnce (P+)u—1 and (P )”—0 uuz—n—Q+5+ (1-7+)t'_qQ+(5+t ) 1
From (vy)—s 'V = A*(ul “lU)  we derive (0y)i=s,AL i i+
s.s Mgt M, — A, )U Puttmg this into the preceding equation,
we have wjui—1=03A,4/+0Q.5 (¢ 'Qst; M, -0, A,)0 -0, M. U
Since ¢~ 1Q+t+ —s=s5,, (vi follows. We omit the details of the other
computations. W

Lemma 4.5. The numbers A , and M , fulfill the following four equations:

(i) 1=0347(A: +4)V2
(i) 0=(¢"'Ay —qA_)(gA; —q 'A).
(ili) 0= —(Ay + A_)> + Q1A (A + A_ + 1)
+ 0.5 W s My —Q. A )(54A4L +5 A —s)+ 1.
(iv) 0=(¢7 "4+ —qA-)(qQ+As — 1) +(gAd+ —q " A)g Q.+ A+ — 1)
+s Yo My —5s_ M_ — Q. (A —A))(s+ Ay +5_A_ —59).
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Proof. (i): Asusual, weset E't--v:i=(— g)°lv-->Wif iy, . .. iy)isa permutation
of the integers 1,...,N and o(iy,...,iy) denotes its length and Ei" iv=0
otherwise. Usmg the fact that the quantum determinant det,u is one, uy u, =0if
iy >1and uyu; = Q, A, u; by Lemma 4.4, (i) and (iii), we get

__112 i iy o— g, 112 N pliy. .. i
U, = Us Uy Uj, . . u,NEl N=Eupuguj, .. oy BT

- Npliy. ..

=Q+A+u2u,-2...u,-NE 2 N

If =2 for some k=3, then we have u, u,2 T = const.
us uﬁu,i. o, =0 agam by Lemma 4.4, (i). Therefore, by the precedmg and by
using u; u§ Q+/1+ uz, we obtain

1 i i 2 2.1 3 N i
u, = Q+A+u2u2u,~3. ) .u,-NElz'3""N = Q+A+u2u,~3...uiNElz’J"""'

A repeated application of Lemma 44, (i), leads to u; = Qi A2 (AL +
A_YNT2y  E2---N Since u; ¢ # by Lemma 4.2, (i) follows.

In the rest of the proof of Lemma 4.3 we will not sum over repeated 1nd1ces

(n) Suppose that i<j<k By Lemma 44, (iv.l), (gds — q A Yuuf =
ujuku =uf u,uk (gAs —q 4. )uJ uj. Applying now Lemma 4.4, (v), twice and
using that u; — u] ¢.@ by Lemma 4.2, we get (ii).
(iii) and (iv) follow in a similar way. In case of (iii) we begm with u] uju,k = u,kuj’uj’,
i < j <k, and apply Lemma 4.4, (ii) and (vi). Treating u;u/u; = ujuju!, i < j, by
using the assertions (v), (iii) and (i) of Lemma 4.4, (iv) can be proved. We also need
that ul'¢ # for (iii) and that u¢ Z for (iv) by Lemma 4.2. M

Now we solve these four equations. Because of (ii), there are only two possible
cases.

Case 1: q Ay =qA_.

Then, by (i), (4:Q+q )N =¢q 2% ie. there is an N™ root g, of q* such that
A1Qiq ' =q; ' This gives A* =17 , and 1~ = A% . We put 4, =gz 'qQ7"
and A- =g, 'q 'Q3" into the equations (iii) and (iv). If k =r(+,¢q), then
gr 's’. — s = 0and (iv) has no solutions M, , M_. Hence k # r( +, q). But then we
find that u* = ui ,and pu~ = pu3 ;.

Case 2: qA, =q 'A_.

Then we have (45 Q. q)Y = gq? by (i) and there is a ke {1 , N} such that
A+ Q4 q = g, Similarly as in Case 1 it follows that 1% Z e k 4: r(—,q) and
i =ut,.

Finally, we show that 6 = 0 (see Lemma 43 above) Assume to the contrary that
5 =1. Then U e % by (44) so that Ouy = Uu, — su; = (v+)2 (v_)s —su, €R
and hence (A" + A~ — s)u, € # by (4.4). Since u, ¢ #, A+ + A~ — s = 0. Inserting
the above solutions and using k # r( +, g) in Case 1, resp. k & r( —, q) in Case 2,
the Jast equation leads to a contradiction. Thus ¢ = 0. Since § = 0, Lemma 4.3 says
that %, = #(z, k), where t= + in Case 1 and 1= — in Case 2. Since
R =Ry,- 4 by Lemma 1.1 and #%(z, k) = #(z, k)- o/ by definition, # = %(z, k).
This completes the proof of implication (i) — (ii) of Theorem 2.1 for N > 4.

In case N = 3 the representation for the Young pattern [2, 2, 1¥~4] has to be
omitted in the decomposition of ad[ 7, in Lemma 4.1, (iii). But, since also S_ =0
for N = 3, the rest of the proof is still valid.
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Completions of Proofs of Theorems 2.1 and 2.2.

Let ke{l,...,N}and te{+, —} be such that k=0=r(r q). First we study the
pair (I'(1, k), d) in a little more detail. Set w;;:== Qq ' qi ' X (+ , k)" amfor T = +
and w;;i= — Qq N 'q X (—, k)" Num for = —. Since k *r(z, q), X(, k) is
invertible, hence {w;;: i,j=1,...,N} is a basis of the vector space I'(t, k)iny-
Using (2.8), (2.7), (2.5), (2.6) and finally Lemma 3.6, (iii), we obtain for 1 = +

du; = ’7“; - ujrrl = q—zs(r’ssu; - u;'/’ss)
= q‘zs(;flsk([l'")*uf)mm —q Z"u,'nm.
~25

= l (U ) ( )(ujp)r]nm - q ui 5ij5nmy’nm
= ulq o -IRS' Rs; Ham — Ui Knmr,"m

U; (Clk q o2 (R12R23)sl:}n - Kij Mo
U{(Qk_ltrlz(élzﬁzs) — K" Nom

fl

Il

= u;(qk—qu‘ll +( - I)K)lj Nnm
=0q g 'u X (4, k) Nam = ui @5
For 1 = —, a similar reasoning yields

dui = Qq N quui X(— , k) tm = i 0 .

Therefore, we have va(du]) = k(u, )du = w;; in both cases. Further, the latter
implies that [':= (x- du] xed, i,j=1,. N> contains each form w,; and so
each form 1., so that I' = I'(t, k). From the definition (2.8) of d it is obvious that
d satisfies the Leibniz rule, hence (I'(t, k), d) is indeed a first order differential
calculus. Since 7 is both left- and right-invariant, (I'(t, k), d) is bicovariant. By
construction, dim I'(t, k);,, = N 2. The preceding proves the implication (ii) — (i) of
Theorem 2.2.

Next we verify that (I'(t, k), d) has the properties stated in the second half of
Theorem 2.2. Since the set {w;;} is a basis of I'(t, k)i,,, We know from the general
theory in [ Wo2] that there exist linear functionals  f;,, and ;.. on ./ such that
(2.9) is valid. Comparing (2.7) with the first formula in (2.9), we conclude that
; ,,',{, = X (1, k) (X (r, k)~ 1y Lk(;1¥). Combined with (2.5) and (2.6), this gives

(ul) = T(r k)" From the second equation in (2.9) and from Py, (du}) = w;;
we obtain j y,m,(i1;) = & ,(,,,,,(u j) 5,,, 0nmj. Comparing the latter with formula (5.20) in
[Wo2], we get i)wm(ija) =i fum(a), a€.o/. Thus (2.10) holds. Since K e
Mor(u‘ ® u), the formula for Ag(w;;) follows at once from the corresponding
expression for Ag(n;;). From the definitions of X(+,k), o and n we obtain
wa —av = Qq~ g '(na — an + (1 — q,)qQ " 's(na — an)) = (g ‘s’ — s)(na —
an) = 94 da, ae o/, for t = + . Similarly, wa — aw = 9_ ;da for 1= —.

Let # be the ad-invariant right ideal of kere¢ which is associated with the
bicovariant differential calculus (I'(z, k), d). We show that # = %(z, k). Since
codim# = dim I'(t, k);ay and kere = # + o7, by Lemma 1.5, Z satisfies the condi-
tions in Theorem 2.1, (i). Therefore, by the proof in the preceding subsection,
R =Rt k ) for some k'e{l,...,N}, t'e{+, —}, k' +r(t,q). Set vj=

g~ ¥Riiusu?. From (2.10), we have

o (OW)) = 472 (@ u) = 77T (5, K)o = (15 T (5, K))5" (4.9)
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and
}Znm(U7) = 472 R G (5UT) + 0150, 0,
= BT RG T (@, B + g RS,
rHT (1, k)R ) + (tri Ry2),, (4.10)

where we used ¢*?~ 2’R'},-qz' 2R by (2.1). Recall that vi=q(vy); —

g 'v-)jand Uu =(vy); +(v-); by deﬁnmon Suppose that " = + . Then, for
1:0:], the elements a;;= (U+s~qk )u ——(b+) (L )j —(/+ v AT ey
and b= v; — g Mg +q ;= ‘1(’J+); —q o), = (@At —q AT )uj be-
long to # = 2’( +,k"). From (4.9), (4.10), Lemma 3.4, (iv) and (v), and Lemma 3.2,
(1), we get

w2 b)) =@ ' — g )@+ g7 wxlay) = gest — gi sl
and
b)) =alg g N ) =g g+ 977 .

By the general theory([Wo2] pp. 161-162), the elements g;; and b;; are annihilated
by each functional }y,.,. Since ¢ is not a root of unity, we conclude easily from
,ﬁ,{,,(a,j) wii(b ,J)—O that k=k" and 1= + =1" In case "= — we take
a;:= (U + s — qus_)ujand b= v’ — g, (¢! + ¢ 2V~ ')ui and argue in a similar
way. This proves that (I'(t, k), d) is the bicovariant calculus associated with Z(z, k).

In particular, the preceding paragraph implies that Z(t, k) satisfies statement (i)
of Theorem 2.1. Of course, the ad-invariance of #(t, k) follows also from the
ad-invariance of #(z, k) (recall that the groups of elements (1)—(3) generate ad-
invariant subspaces) combined with Lemma 1.7 of [Wo2]. Since
codim Z(t, k) = dim I'(t, k);o, = N2, kere = 2(t, k) @ o/;. Suppose %(t, k) =
Rt k). Smce u,é&?(t k) for i+ j, we see from the group (2) of generators of
AB(z, k) that A7, = A7, which in turn implies that (z, k) = (t/, k'). This completes
the proof of Theorem 2.1.

If two differential calculi (I'(z, k), d) and (I'(t/, k'), d) are isomorphic, then by
the general theory, the corresponding right ideals %(z, k) and Z(z’, k') are equal.
Hence (t, k) = (¢/, k’). Finally, we verify the implication (i) — (ii) of Theorem 2.2. If
(I',d) is as in Theorem 2.2, (i), then the associated right ideal Z is as in Theorem 2.1,
(i). Hence # = #(x, k), so that (I, d) is isomorphic to (I'(z, k), d). The proof of
Theorem 2.2 is complete.

5. The Classical Limits

In the previous sections the value ¢ = 1 is excluded by our standing assumption
that ¢ is not a root of unity. In this section we consider the case ¢ = 1 for N = 3 and
we briefly discuss the limits of our calculi (I'( +, k), d) for ¢ — 1. Since g = 1, the
Hopf algebra .«7 is isomorphlc to the coordinate Hopf algebra of SL(n).
Suppose that { is an N root of unity. Let A7 :=3{(N +2). Set
c N+ D)+ Dif¢ +1and ,llr =N+2if{ =1 Let %’(C) denote the right
ideal RB()- oL of kers whe1e A(() is the lmear subspace of .7, @ ,52/2 generated
by 1mS+, &v — i u,——dN L i_/z U) for ij=1,. and
Ve —uU—3 N—l—l)]l— £ NI
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Next we define a bicovariant differential calculus (I'({), d) over /. First we
enumerate the N' roots of g2 such that g, belongs to the k' branch of the root for
all ¢ and we fix k such that q; ' - ¢ if ¢ — 1. Let T({) denote the limit of the
transformation T ( + , k) for ¢ — 1. From (3.1) we obtain that

T()=(RRys +( + VI, —(( —1)N 'Ky30,, for{+1 and
T(1)=R,R5 +2(N?> —1)"'K,3R;, —2(N® — N) 'K,514,,
i.e. in terms of matrix elements we have
T(©)ijs" = {0in0jmOrs + ({ — 1)6;;0m0ms — (( — )N~ 3;0pmys (5.1)
for {+1 and
T (D" = 0inOjmOps + 2(N2 = 1) 130150y — 2(N> — N) " 16,i0,m0ys . (5.2)

We consider the bicovariant differential calculus (I'( +, k), d) as given in the
second paragraph of Theorem 2.2 (i.e. by the formulas (2.9) and (2.10) therein) and
we take the limit ¢ — 1 by keeping the basis {w;;} of I'( 4+, k), fixed. Then we
obtain a bicovariant differential calculus (I'({), d) over &/ for ¢ =1 which is
described again by the formulas (2.9) and (2.10) if T ( +, k) is replaced by T ({). If
Z»m are the corresponding linear functionals from (2.10), we define V,,,,,(a) = Yum * 4,
ae . Further, we set V,:=V,ii 41— Vi, NVyi=) Vi, @,:=w,, and
w:=Y , Obviously, by (3.2), the limits of T( —, k) and (F( —,k),d)forg—1
are T((™ 1) and (I'({™1), d), respectively.

Let # be the ad-invariant right ideal of ker ¢ associated with the bicovariant
calculus (I"({), d). We verify that Z = Z({). Indeed, the proof in Sect. 4 till Lemma
4.5 goes through also for g = 1 so that # is completely characterized by the values
of the four parameters A%, u*. Since the functlonals x,,,,, annlhllate R, we conclude
from (2.10) and (5.1), resp. (5.2) that 1+ = /1.< and u* = u° , hence # = R().

It is well-known that the classical bicovariant differential calculus (I, d.) over
o is associated with the right ideal (ker €)* of kere. It is not difficult to check that
(ker £)? is not contained in Z({)if { + 1 and that (ker&)® = (1) + (U ». The latter
relation implies that the classical calculus is a quotient of the N? dimensional
bicovariant calculus (I' (1), d). That is, the limit ¢ — 1 (in the sense explained above)
of the bicovariant calculus (I'( +, k), d) contains the classical calculus as a quotient
if and only if g, belongs to the first branch of the N™ root.

From (2.9), (2.10) and (5.1), resp. (5.2), we obtain that

ouj = ujo + ({ — )N du; , (5.3)
Vim(au}) = aVou(u}) + (Vym(@u; ifn+m and (5.4)
V,(auj) = aV, ;) + (Y (@)u; + (C — DN Vy(@)uj(6,+ 1,5 — 5y) (55)

foraeo,i,jnm=1,... , Nandr=1,..., N — 1. If { & 1, then (5.3) implies
that da = (({ — 1)N) ™ }(wa — aw) for a € &, i.e. the bicovariant differential calcu-
lus (I'({), d) is inner. The calculus (I"(1), d) is not inner.

Suppose now that { = 1. Then, by (5.4) and (5.5), V,,, for n + m and V, for
r=1,...,N —1 satisfy the “ordinary” Leibniz rule, so they correspond to left-
invariant vector fields of the Lie group SL(n). Since they are obviously linearly
independent, these vector fields form a basis of the Lie algebra of SL(n). Setting
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Li=x0—w; — - — o, we have for a e o,
da — Vy(a)o = ngm V(@) Dy — —]1—] ; (Vi(a) — V(@) o;
N—;
= n;ﬁ Vim(@) O + r; V.(a)¢
We consider I'y:= {aw,,, aw,: ae L, n+mr=1,..., N — 1) asaleft module of

o/ and define a bimodule structure by #nea=any, noely, acs/. Set
doa:= da — Vy(a)w. From the preceding it follows that (I, d,) is isomorphic to the
classical bicovariant differential calculus (I3, d.) over o7, i.e. we have

da=d.a+ Vy(@)o, ae o .
Moreover, by (5.2),
Oty = Uiy + 2(N? = 1) ulS,; — N7 ufd,m)

That is, if we set w = 0in the calculus (I' (1), d), then the bimodule I" (1) becomes the
commutative bimodule I, of o/ and the mapping d of (I'(1),d) goes into the
classical exterior derivative d, over .«/.

Part II: Classification of Bicovariant Differential Calculi
on (0,(N) and Sp,(N))

6. Definitions and Main Results

Throughout Part II let &/ denote the Hopf algebra of one of the quantum groups
B,, C,, D, as defined in [FRT], Definition 11. Let N = 2n + 1 for B, and N = 2n
for C, and D,. Recall that B,, resp. D, is the quantum group O,(N) and C, is the
quantum group Sp,(N). Let Rand C = (C;j) be the correspondmg matrices and let
P., P_, P, be the three spectral projections of R defined in [FRT], 14. Let
B = (B; )denote the inverse of the matrix C and let K = (K,'f‘,,) where K i m= = C,B}.
SetQ:=q —q ',andi’ —N+ 1 —iLetz:=g" 'forB,, D,andz:= —q"*'for
C,. Note that K,I\\,'ll =q 'z, K|y =qz 'and C* = + I Further, C % Oifand only
if j = i’. By definition (cf. [FRT], (1.9) and (1.13)), we have

Rjn = G8im05x0ux + Sim (1 = ) (1 + (g " — 1)du)

+ Q0(k — j)(8:;0km — Kjj Ot S) (6.1)
for all i,j,k,m=1,..., N except for the element R;’If "tl=1 in case of
B, and

uCu'B = Cu'Bu =1 or equivalently x(u}) = Ciu;' B]" . (6.2)

The Ad-Invariant Right Ideals R, and R _

In order to define these right ideals, we introduce a number of notations. We
abbreviate Q. :=q+q ', Z==z—z"1,
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s:=1+Z0 !and D:= B'C, ie. D’—D’ B C}. Further, we set
(u);= Bi(P. ) Ciug, (v )j= (P )W Diwu;
(f2)j=Bi(P )i Civ s s (92)j= Bi(P_)"Co(v . )i,
U:=Dju; and V,:=Dwv,);.
With the coefficients

o 003 (4z — 1) L 002

Tz De—q9g>—q 3z T z—alqg PHaz )’

g, = 001 . 00%(z+9)

g WP —q Y =@+ q Nag gz
. 0%0. . Q%0

Y+ = VY-=

Z@z+q)q—q 2zt
we define linear mappings S , : &, — o/, by
St(“}“ﬁ:):: (P “1”2);’;.—O‘J_r(Pir (f+)2Ps );lly‘n

~ B (Pu(92)2Ps)im =72 (Pe)imV s

(The proof of Lemma 8.1 below shows that S, and S_ are well-defined projec-
tions.) We introduce twelve numbers ¢, %, Y+, ¢ *, ui and u* by

Z(z—q g ' +q*z7")’

Yi=—yl=pi-l= -0 —1=0""0 2 —q 2",
pi= —@-=y¢i—1= -y —1=0"103"(q 2 —¢°2""),
pi=1+0"Yg’z—q%z7"), ui=14+0" g ?z2—¢*z"") and
pti= —QZ(QZ +2s) 'uf ifQZ+25+0.

Fort= + andfort= — if QZ = 25 + 0, let Z, denote the right ideal %, - o/ of

ker &, where 43, is the linear subspace of .o7; ® .7, spanned by the following groups
of elements:

(1) Sy (ujup), bjkm=1,...,N.

(2) (f+) (Pt (u+)1a (gi);_wri(u~)}, l,]=1,,N
B Vi —p' U

(Note that the eight groups of elements (1)—(3) generate ad-invariant linear sub-
spaces of kere, see Lemmas 8.1 and 8.2 below.)

Theorem 6.1. The right ideals . and R for QZ + 2s + 0 are the only ad-invariant
right ideals Z of the algebra kere such that kere = 2@ o, .

The Bicovariant Differential Calculi (I'y,d) and (I'-,d)

For 1= + and for 1= — if QZ + 2s + 0, we define linear mappings X, e
L(C"® C") and T, e L(C" ® C" ® C") by

X, =z1-R X_=z—-R+20 'K and
T, = i(Xi){3lﬁ;21ﬁ23(Xt)12
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Note that X3i'=z(Z-O)(z—Q)J+R—0Qz"'Z'K] and X '=
2Z - Q)[z— Q) +R+(Q—032(QZ + 25) H)K]. .

Let L* = (*1;) be the N x N matrix of linear functions */; on <7 defined in
[FRT], Sect. 2, for the quantum groups B,, C,, D,. By the formula (2.1) in [FRT]
we have ' N .

(k) = R and x(" 1) (k) = R (63)

fori,j,k,m=1,..., N. By a similar reasoning as in case of SL,(N), [, := (u, L™°)
and I';:= (u’, L") are bicovariant bimodules of .«Z. We still need another new
bicovariant bimod.ule Iy = (" L) F_or this let L = , (I!) be the N x N matrix of
linear functionals /; on .7 defined by Ij(1):= 6;;and [;(a):= ( — 1)* ( L )( )for a € <,
and k € IN. Since only quadratic relations for the matrlx entries u; are involved in
the definition of the algebra .7, the functionals [; are well- deﬁned Since L* is
a representation of ./ on €V, L is also a representation of /. To verify the
compatibility condition (1.1), we apply Lemma 1.3. If T is the mapping for (u*, L)
occurring therein,. then — T (= R) is the corresponding mapping for the bi-
covariant bimodule I'5= (L"), hence TeMor(u‘®u,u®u°). Thus
I'y = (uf, L) is indeed a bicovariant bimodule.

By Lemma 1.2, I, =T;@Land I'- =T, ® F2 are bicovariant bimodules of
o/ . By definition there is a basxs {n,] i,j=1,...,N} of the vector space (I )in
such that 4x(1;;) = Mm@ (u uS)ful. From (6. 2) we conclude easily that the left-
invariant element #:= Djn,; is also right-invariant. As in case of SL,(N), we set
da =na —naforae .

Theorem 6.2. Up to isomorphism (I'y,d) and (I'-, d) for QZ + 2s % 0 are the only
N? dimensional bicovariant differential calculi (I',d) over </ for which
I'=<a-duj:ae s, i,j=1,...,N).

The structure of (I', d)and of (I, d) for QZ + 2s = 0 is the same as given in the
second part of Theorem 2.2 if the linear mapping T (z, k) is replaced by B5 T, Ci, the
invariant form w by Djw;; and the constant 9., by (QZ)™ ' for (I'y,d) and by
(QZ + 23)~ ! for (-, d). Moreover, the ad-invariant right ideal %, corresponds to
the bicovariant calculus (I'y , d).

The proofs of both theorems are given in Sect. 8. We add a few remarks.

1. Theorem 6.2 corrects an error in the formulation of Theorem 7 in [SS], where
the bicovariant calculus (I'-, d) is missing.

2. If g satisfies the algebraic equation QZ + 2s = 0, only the right ideal %, and the
calculus (I'y , d) appear in Theorems 6.1 and 6.2, respectively. While Z_ and T- are
not defined for QZ + 2s = 0, the pair (I'-, d) is still a well-defined bicovariant
differential calculus, but I'- % (adu;). The condition QZ + 2s #+ 0 excludes pre-
cisely 6 values of g for 0,(3), 8 for 0,(4) and 12 for Sp,(4); none of them is real or
a root of unity.

3. Let Ijand I'j,j = 1, 2, be the bicovariant bimodules of .«Z which are defined as
in the case of SL,(N) by letting p = 1. Then the bicovariant bimodules I'; ® I, and
I'i ® I (which were not isomorphic for SL,(N)!) and hence the corresponding
inner bicovariant calculi are isomorphic for .« = B,, C,, D,,.

4. Our standing assumption N = 3 excludes only the quantum groups 4; = SL,(2)
and C; = Sp,(2). Since the Hopf algebras SL,2(2) and Sp,(2) are isomorphic, it
suffices to discuss the case of SL,(2). Then the 4D, - and 4D _-calculi are the only
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bicovariant differential calculi satisfying condition (ii) of Theorem 2.2, cf. [St].
Their structure is also of the form described in the second half of Theorem 2.2.
We set T, = + (X, )3 R R23(X )12 for the 4D, -calculus, where X, =
(q — Q) +R and X_:=(¢>+ Q)] —R. In particular, both calculi are
inner.

7. Morphisms of Tensor Products

Throughout this section let v and w be representations of the quantum
group /. The following notation is often used in the sequel. Let T be an
intertwiner of two tensor products of representations of .7, where the first one
has u as the m™ factor and the second one has u as the k'™ factor. We
set ¥ T:= B,TC},. Since u¢= B'uC' by (6.2), &, T intertwines the corresponding
tensor products obtained if the m'" factor of the first one and the k™ factor
of the second one are replaced by u‘. In particular, the mapping T — T
1S a bl_]CCthtl of Mor@@u@v,u@u@w) to Mor@*@u@ v, u® u’ ® w)
and T - |T is an algebraic isomorphism of the algebras Mor(u ® v) and
Mor(u® ® v). Similar to the case of SL,(N), we have T e Mor(u* ® u¢) i
T € Mor(u ® u).

Lemma 7.1. Setting D;;:= B/C; and DY:= B{C}, we have Diju,i(uc),{, = Dy, 1 and
u(uc)lk m_ pkmq

Proof. We prove the first equality. Using (6.2), we obtain Diju(u)s =
BiCJui(CulB}) = (u'Bu)kCI' = B¥C"M = D,,1. W

Lemma 7.2. (1) For Se Mor(u ® v, u ®w)and Te Mor(v R u, w® u), we deﬁne
(tr] )k = D”S]'f,, and (tr3 T)k = = D;; T,,,, Then we have tr} S € Mor(v, w) and tr3 T €
Mor (v, w).

(ii) Let (trj,S)km:= DUS[E" and (tr,, T)km:= B{ T*"C¥ for Se Mor(u* @ u v,
u@u ®w)andTeMor(u®u®v u®u®w). Then tr{,S e Mor(u‘ ® v, u° ® w)
and try, T e Mor(u ® v, u ® w). Moreover, tri, T = }(trle) if T =:28.

Proof. The proof is similar to the proof of Lemma 3.1 if we replace q- %6y
and ¢*'6;; by DY and Dj;, respectively, and use Lemma 7.1 or (6.2) instead
of (23). W

Now we introduce a twist @ (see Fig. 5 below) of the algebra Mor(u ® u) by
defining @(T)km:= B/ T fC} for T e Mor(u® u). Obv1ously, &(I)=K and
@&(K) = I. From formula (1.10) in [FRT] we obtain #(R) = R~ ". That is, @ maps
the basis {R, I, K } of the vector space Mor(u ® u) on the basis {R™1, K, I}. Hence
@ is a bijective mapping of Mor(u ® u). Since R™! = R — QI + QK (cf. [FRT],
1.4), we conclude that @(®(T)) = T for all T € Mor(u ® u).

Setgq, = —Q(qgz—1)"'and q_:== — Q(q 'z + 1)~ '. Recall that by the for-
mulas in [FRTT, 1.4, we have

P, =Q:'(R+q 'T+q.K), P-=0Qi'(—R+ql+q_K),

Py=s"'K. (7.1)
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The morphisms IT , = @(P(P, )*) e Mor(u ® u), see Fig. 4 below, play an impor-
tant role in the proof of Lemma 8.1. By direct computations based on (7.1) and the
fact that the @ = @~ ! one proves

Lemma 7.3. (i) (I1 . )" = B{(P, ) I Di(P, )" C].
() I, =a'Py + BIP_ +sy3 PO

Lemma 7.4. (i) triR=zI,trjR™' =z 'L tril =sl, tr; K = I
(i1) tr1 = tr] Tfor T € Mor(u ® u).

(iii) tr1P+ =Q7'q s +tz+q, ) and tri(tri P, ) =y3l.
(iv) tr; @(P )= 0.

(v) tf12(1§12R23) = K and tri;(Riy' Ry3) = Qz — QR + K.

(vi) tri,R=z" L tr;,l =1, try, K =sl.

(vii) tri, X, = ZI and tr, X =(Z + 2sQ "Y1

Proof (i) can be verified in a similar way as Lemma 3.2, (1) by dlrect computations
usmg the formula (6.1) for R and the relations Kx; = ¢~ 'z, K,§ = qz~!. We have
trs T = trs ®(P(T)) = B(tr} T)C, hence (i) implies (ii). (iii) and (iv) are immediately
obtained from (i) and (7.1). The first formula of (v) can be derived from the known
relation Ry, R,3K, = K,3K;,. Since R~ =R — oI + QK the second formula

of (v) follows from the first one combined with tr;,Rys = R and (tr, K, R,3)f" =
Bk,(tr1 R)™ = (zI) " by (i). From RK =z~ 'K we get tr;, R = z ™I, the rest of (vi) is
obvious. (vii) follows at once from (vi). W

We introduce six intertwiners & ., &, and $, of Moru®@u®@u) by
=04 (Pr)23P(Py)12(Py)asz, ® 4 =B, (P-)23®P(Py)12(Py )23 and H, =7,
K;3P(P, )12, se Fig. 4 below. Further, we define ¥, (T) = trl(T(D(P )12) for
T € Mor(u ® u ® u). Note that ¥, 4+ (T)eMor(u® u) by Lemma 7.2, (i).

Lemma 7.5. For te{ +, — }, we have:

) T+ K= Fs + 0 F- + VO + 006 + "S5 + e H-.
(i) Vo (T + Kiz) = @ Py " P+ " Po.
(i) try (P (To+ Kp))=uo 1

Proof. All assertions can be verified by direct (lengthy) computations inserting the
definitions of the constants ¢.* , ", u* and using the above formulas for P, and
@(P, ) and of Lemma 7.4. We omit the details. W

The formulas in Lemma 7.5 give important links between the bicovariant
differential calculus (I},d) and its associated ad-invariant right ideal %,: The
structure of the calculus (I, d) is completely described by the linear transformation
T., while the ideal %, is characterized by the six constants ¢, , ., u* as shown by
Lemma 8.2 below.

The linear transformations T, and T_ belong to the algebra Mor(u ® u ® u).
This algebra is isomorphic to the Birman—Wenzl-Murakami algebra (cf. [BW],
[Re]) €5(l, m) with parameters | = — iz 1, =iQ. An 1somorph1sm of €5(l, m)
onto Mor(u ® u ® u) is defined by G; — iR, j+1, E;—» — K; ;4 for j = 1,2. Note
that the vector space dimension of Mor(u Pdu® u) is 15.

Figures 4, 5 and 6 give the graphical representations of some important
intertwiners, operations and identities appearing in Part II.
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l | I B

Pﬂ: P+ P& P

St = ax U , &t = By U/
P:i: Pt
P

(52

C

T

Py

Fig. 4. The graphical representations of some intertwiners for ./ = 0,(N) and .o/ = Sp,(N)

| S

tl‘} (T) = T 1 trye (T) = T ’
1 |
- (|
T
U (T) = T = T
P, i

l

Fig. 5. The graphical representations of some operations with intertwiners for .«7 = 0,(N) and
o = Sp,(N)

Lemma 7.4, (i):

O CA-=1. =] C=- 1
Lemma 7.4, (

F\ Pé\ e X+ % .

Fig. 6. The graphical representations of some identities of intertwiners for .« = 0,(N) and
o/ = Sp,(N)
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8. Proofs of Theorems 6.1 and 6.2

Suppose that # is an ad-invariant right ideal of ker ¢ such that kere = # @ <7, . As
usual, @ = b means that a — b e Z. Our aim is to show that Z =%, or Z# = A _.

Lemma 8.1. Suppose that N = 4. Then we have:

() ad[ o/ ' @uxu@ux[0]®[2]@[1%]

The projections of &7, onto the subspaces for the Young patterns [0], [2] and [1%]
are 1Py, 1P, and }P_, respectively. ' '

(ii) The linear mappings A . defined by A, (uj):=(v.);,i,j=1,..., N, belong to
the space Mor(ad[ 7, ad[_ o).

(iii) ad[ o> x([2,2] @[3, J@ M4 @ (22102, L1]@[1*])®2[2]®
2[1%] @ 3[0].

The mappings S+ and S_ are the projections for the two subrepresentations in
brackets. The mappings F . , G, and H , defined by (8.5)—(8.7) below are projections
for each two subrepresentations [2], [12] and [0], respectively. The third subspace of
o, for the trivial representation [0] is (1.

Proof. (i): Decomposing the tensor product represetation [1]® [1] in case of
B,, C,and D,, we obtain u ® u = [0] @ [2] @ [1?] and the corresponding projec-
tions are the three projections Py, P, P_ of the intertwining space Mor(u ® u).
Since u¢ = B'uC' by (6.2), we have u° ® u = [0] @ [2] ® [1?] and the correspond-
ing projections are {P, = B{P.C} for t =0, +, —. The assertion for ad[ .«
follows by applying the isomorphism I; € Mor(u° ® u, ad| ./;).

(ii): From P, € Mor(u® ® u‘), (1.2) and Lemma 7.1 we obtain

ad(v, )} = (P, JenDJad(uful")
= (PR DU ul? @ (u)y (u )i wy' u?
= (Pl ulu? @ (u)"(ue)ku) DY)uy
= (P, ), Ditud u? ® (ue)"u?
= (V)5 ® W)"uy”, 8.1)

so that A, € Mor(ad[ </, ad] o) by (1.2).
(i11): First let us note that

Weu)euew=(e2e[I*)e(el2de1’]). @’2)

The projections for the decomposition of u®® u are P,, P,, P_ e Mor(u ® u®),
while the projections for u®u are Py, P.,P-eMor(u®u). The
same reasoning_as in the case of SL,(N) (see the proof of Lemma 4.1, (iii)
shows that im(P, ® P.) c kerl, for 1+ 1,1,7'€{0, +, — }. For B, and D,,
we have d1m1m(P0®P0 + P+ ®P,+P. ®@P )< +(2N(N +1) =1+

(%( (N — 1))2 {(N* — N2 — 2N + 4) = dimad[ .«%,. Similarly, dimim(P, ® P, +
P+®P+ +P.®@P.)= (N4 N2+ 2N +4)=dimad®P- ]’M’z in case of C,. Hence
Po®Py+ P, ®P, +P_ ®P- —P0®P0®P+ ® P, @®P ®P_ and L[ # is
an isomorphism of # = 1m(P(J ® P, ® P, ® P, ®P_ ® P_) onto <Z,. Therefore,
using once more the general rules for decomposing tensor product representations
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([BR, H]), it follows from (8.1) that
ad[ «, = ([0]@ [0D) @ ([21® [2]) @ ([1*1 ® [1%])
= ([0])
@(221e 3 e Mo 21e 1’ ]1a[0]) (8.3)
e(220el2 L 1]Je[1Y]eR2]le[1?]J@[0]). (84

Let Eo, E, and E _ denote the projections corresponding to the subrepresentatlons
of ad[ .o/, in the preceding three lines. By construction, E (u, uk) = (P, u,uz)m for
=0, +, — and i,j,k,m=1,...,N. From (Py)} =1CiB. and (6.2) we get
EO(uJ uk) = (Po)j‘f,,ll We denote by S+ and S_ the projections corresponding to
[2,21®[3,1]1®[4] and [2,2] @D [2,1,1]® [1*] in (8.3) and (8.4), respectively.
Further, we define linear mappings F, , G, , H, : o/, - o/, by

F. (u;u,’;):=ai(Pi(.fi>zPi);f,,, (8.5)
ul)=B o (Pi(g+)2Ps s (8.6)
H, (u;um)—mPt);i;Vi, (8.7)

where the a, , f,,7, are the constants defined in Sect. 6. It is easily seen that
these mappings are well-defined and that imF,, imG,, imH, S imE,. Ap-
plying Lemma 7.3, we get

Fo((f2)) =ae (1POS (P OBEDL PSS )IP L i

= o, (P4 C1)i"(BiDy(P 1 )EW(P 4 )im C)B3(f 1 )
o4 (Py CT L )5B3(f )2 = (1T 4 P (f2 )2
oy (WP )F(f2)]

I

i

Il
K
+
PR
l —
~
+

) (fo) = ()]

x4

Since imF, < {(f. ), by definition, this proves that F, is a projection of
o, onto {(f. )J> The same reasoning shows that G .. is a projection of .7, onto
{(g+);>- By Lemma 7.4, (iii),

H,(V.)=D/DIP . )inH ., wfu")
=y, D/ 'D; (Po) Vi =y, (tritriP, )V, =V

I+

so H, is a projection of </, onto {V, ).
Next we show that F,, G, and H, are mutually orthogonal. (Here we call two
projections E and F orthogonal if EF = FE =0.) We have

Fi((g+))) = (1P_)" (P )X DLF . (ufuy,)
= o, (P_CY) (BiDY(P ) 2u(P )i CX) B3 (f+)}
= o, (P_CH (T 5By (f+ )2
=, (YT PO)F(f)) = (PL I P ), )i =0,
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where the last equality follows from P, P_ = 0. Similarly, G, (( f+); ) 0, so that
F, and G, are orthogonal. Writing H, as H. (ujuk) =7, (P+(hs), P )J,,, with
(hy)j=(1Po)ij(vs ) =716V, the same reasoning shows that F,H, =
G, H, =0. From Lemma 7.4, (iv),

Hi((f+)]) =7+ (AP )" DIP Vs
=y, (1P POLY,
=s APV, =5 Ytr{d(Py))iV, =0,

and similarly H,((9+);) =0, so that H, F, = H, G, =0, ie. F, and H,, resp.
G, and H, are orthogonal. '

By the preceding, 7, := {(v4); is the direct sum of the subspaces im F, ,im G ,
and im H, . From (8.1) we see at once that these three spaces are ad-invariant.
Hence the mapping A . from (ii) is injective and A, gives the equivalence of ad| +/,
and ad[ 77 . Therefore, by (i) and by the definitions of F,, G, and H., the latter
are the projections corresponding to the Young patterns [2], [12] and [0] in (8.3)
and S, = E, — F, — G, — H, has the form given in Sect. 6. A similar reasoning
worksfor F_,G_,H_and S_. N

Lemma 8.2. There exist complex numbers ¢+, @, Yt Y™, u* and = such that

Ry =V, —p' UV —p D@7 07 @Y% ®% ®@imS, ®imS_ ,
(8.8)

where 7, = {(f )i — @ y)ij=1,...,N> and 9, = {(g4)i — ¥ *(u_):
ij=1,..., N>

Prooj First let us assume that N = 4. We take an ad-invariant linear subspace

F of o7, @ % such that Z,, ® 7 = = o/, ® o/,. Since kere = # @ .7, by assump-
tlon Rir @ fy = A, ® o> and hence ad[ F =~ ad[ ./, 2 [0]®[2]D[1%] by
Lemma 8.1, (i). Since le.o/, and 1¢.</, we have ad[ (o, @ o) =
ad[ (o7, ® o/,) ® [0], where the subspace for the trivial representation [0] is (1.
Therefore, from the decompositions of ad[ .7, ad[ o/, and ad[ & it follows that

adl 2, =([22]l@ B 1@ 4D e (22l @2 L1]@[1*])
@2(2]1@2[1*]®2[0].

By Lemma 8.1, (iii), the subspaces for subrepresentations in brackets are im S and
imS_. The two subspaces for [2] are ad-invariant subspaces of <{(f%);» &)
Af-); @ ((uy)}. Since {(uy); SAR = {0} by the assumption kere = Z @ .7, ,
we conclude that there exist numbers ¢ *, ¢ ~ € € such that the subspaces for [2]
are Z, and /_ Similarly, the subspaces for [12] and [0] can be written as 4, , % _
and (V, — pu" U, (V_ — u~ U, respectively. This completes the proof of Lemma
8.2 in case N = 4.

Suppose now that N = 3. Clearly, the assertions (i) and (ii) of Lemma 8.1 remain
valid. For N = 3, the Young patterns [2,2],[2, 1, 1] and [1*] do not occur in the
decompositions of ad[ .e7, in Lemma 8.1, (iii), and of ad[ %,, cf. [H]. Thus we
obtain ad[ Z,, = ([3,1]@[4]) @ 2[2] &) 2[12] @ 2[0] and the corresponding
subspaces are im S, #, , %, and (V, — u* U) similarly as in case N > 4. Since

_ =0 for N = 3, the assertion of Lemma 8.2 is also true if N =3. W
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Our aim is to determine the numbers ¢ *, y * and u*. For these computations
we shall use the abbreviations

ar =09 by =B Y my=y, 07,

vi=(z—q)Qi'(qz—1)""'=03"q " +4q+),

a*=q*'a, —q*la_,b*=q*'hy —qF'b_,

¢+ =(Q+q+ + Day —q %a- —b, +(q > —Qiq-)b-,

co=Q+qs+1+qg*=q%ay, —q’a_ —b, +(q@ > —Qiq-)b_,

di=(Q4+q9+q " +q > +qg ' —qa, —qa_ +qb, +(@Q.+q- —q ")b_,

d-=(Q:+q+q+qar —q 'a-+q b +(q 'Q+q- —q )b .
Throughout Lemma 8.3 and its proof we shall not sum over repeated indices.
Lemma 8.3.

() uul =0ifi+ji+mkEj,k+mi+k andj+m'.

(i) ujus =Q32((ar +a-)u)i+ by +b ) u))ifi+ji+ki+k,j+kand
jEk.

(i) wjuf = (uju] =)Q7 (ar (o) + by (o)) ifij, i) and i 40 (j+)'),
uhul = ulul =va,ul ifi+i
iy = Q31 (q + Di(ge — Q)a up if i <i'
upui = Q7Nq ! + Digi)asup if i <V

(V)ujul = Wiu; =)0 @ (s e + b (u_)y) if i%j, i+j, i+k j+k and
j<k(j<i).

wjuh = wlu; =)Q7a (i +b (o)) i i%j, i%j, itk j+k and
Jj>k(j>i).

Vupu} =@l upy =)073drui + Kiic_ul)ifi+j,j<i' andi+i' (j*j).
uiuf = wlup =)0 d-uj + KivcoulYifi+j,j>i andi+i (j+j').
(iyuiul = Q7N (qs — 0/ — Q)a Kjju| if i), i%j and i 41"
ujuj = QMg — 0(j' — )Q)ar Kjpul if i %j, i +j and i +i'.
Vil) ujui = a, () + b ) +m, U +1ifi+1.

(vidl) wju/ = Q32 (we)] + @™ (ua)i + b W) + b7 (o)) + Q3 (ms —m_)U
fi<jandi=+j'.

Proof. By Lemma 82, we have imS, < #. Since ujuk = Yo (P )isujug, +
Yoo s (P)isujuy, + (Po)jw1, by the definitions of S, this implies that

uiul — 8,0l =(Fy + F- + G, + G- + Hy + H-)(ujuk)~ . (8.9)



Classification of Bicovariant Differential Calculi on Quantum Groups 665

All assertions of Lemma 8.3 are derived from (8.9) by direct computations. For this
we essentially use the explicit formulas (6.1) and (7.1) for R and P , respectively. As
a sample, we carry out the proof of (v.1).

From (6.1) and (7.1) it follows that a term (P, );,,(P, ){"; is non-zero only in the
twocasesk =i,m=i,r=jandk =j,m=j’,r =1 Sincei # i"and i’ ‘>”j,wel},ave
(P )i (P )i QIl( +4 ' +4q,)07"q* " in the first case and (P )i (P
Q+1K” (¢+ F Q)Q3'(+ 1)in the second case. Since (1, )" = ¢ * (uy )/, this gives

Fo(iui)= 3 o (PSP

k,m,r

=0, 0 Q2+ q '+ q)q )+ (g FO(+ DK,
so that
(Fo + F)bul)=07%((a+ (@  +q4)g " +a-(—q ™' +q-)q)(us)]
+(as(gs —0)—a—(qg- + Q)Kii(us)l).
Similarly, we obtain
(Gr + G )uiu) )= Qi H(ba(g ' +q4)q " +b-(—q ' +q-)u-);
+(bs (q+—Q)—b-(q +ONKjiuo ).

Moreover,  we have H,wu)=y,(P)5V, =0 and (u,)k=
07 (qF 'ul + KKy if k' > m and k + m. Combining these formulas with (8.9)
and using the definitions of d, and c¢_, (v.1) follows. W

Lemma 8.4.

i) Qigrard +a'c, =03 —Q(ay +a )

(i) Qi(gr —Qlards +ac =0 —Q.(a; +a )
(i) ¢2Q3va,d_=q(q 'a, +qb)d_ +z 'c_(a, —b,).
(iv) ¢2Q%va,cy =qlq ‘a, +gby)cy +z 'di(a, —b,).
(V) ¢ 20%vard, =q Yqas +q 'bi)ds +zei(ay —by)
(vi) ¢ 2Q%va.co =q '(qas +q 'bi)e +zd_(a. —b.).

Proof. We carry out the proofs of (ii), (iii) and (iv). Since C; = 0 if s &1/, (6.1) and
Lemma 8.3, (i), imply that

Cluy = Zul Cousus = Cujusuz + Ci uyuy uy . (8.10)

Note that (8.10) is also valid for N = 3. Applying Lemma 8.3, (ii), twice (note that
j=i andk k are not excluded therem) and using that (u+)1 =uj and (u_)} =0,
we get ujusu;y = 07*a, + a_)>u}.. Similarly, from Lemma 8. 3 (v.1), (vi.2) and
(iv.2), we have

upuy uy = Q73(duy + Kjy'eoui)uy
=Q:*g+ — Q)diasKayui + Qi%c_a Kylug .

Recall that C{ K35 = C3.. Putting these facts into (8.10) and using that C; +0
and u; ¢ # by assumptlon we obtaln equatlon (i). The proof of (i) is quite similar;
one replaces C;u; in (8.10) by Crul .
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Due to Lemma 8.3, (iii.2) and (v.2), we have
uiur uy = g>vasui us = ¢*Q33vas(d_us + Kt u?). (8.11)

Lemma 8.3, (iii.1) ylelds u1u2 _qQ+2((q a, +qb, )u2 +K22/(a+ by )ui).
Usmg the facts that usu, = qu} u; and uiui =q ‘ul'uj together with the
previous equations and Lemma 8.3, (v.2) and (v.1), we obtain

ujuzu; =q07%{((¢ 'as +qb.)gd- + Ky3/(as —bi)q 'Kyhe yuy
+((q tay + qb+)qK21;C+ + Kzlzl’,(a+ - b+)q~1d+)uf,} . (812

Note that K. KZ 2T K“ =D} = gz~ '. Setting (8.11) and (8. 12) into the equa-
tion uiu} u; =g ‘uju,u; and comparing the coefficients of u; and of u; (both
are linearly independent over # by assumption!), we get (iii) and (iv), respectively.
In order to derive (v) and (vi) we begin with the equation u}. ul uy = qui.uj u}.and
argue in a similar way. M

The equations (i)—(vi) of Lemma 8.4 form a system of quadratic equations for
the numbers ¢ * and  *. Now we solve this system. For this we essentially use our
standing assumption that g is not a root of unity. Throughout this derivation, we
abbreviate b:=b, + (Q+q_ —q *)b_.

First we check that a, # 0. Assume to the contrary that a,. = 0. Then we have

¢y = —q *a_—b and c.= —q*a_—b by  definition and
—q 'a_c, = —qa_c_ =Q} —Q.a? from (i) and (ii). Since @, 0, a_ * 0.
Hence ¢, = g%c_ which gives b= —(q?+ 1+ q *)a_andsoc_. =q 'Q,a_.

Inserting the latterinto —qa_c- = Q7 — Q, a* we get Q, = 0 which is a contra-
diction.

Further, we show that d_ 0 or c_ 0. Assume to the contrary that
d_-=c_=0.Thenwehavec, = —q 'Q.b,dy =Q.b,a_ =a.(Q+q+ +q %)
and ay +a_ = —q 'Q 'h. Since a; + 0, the two latter equations imply that
b * 0. Setting the preceding expressions for ¢, and d. into (i) and (ii) and using
that b+0, we find a- =(Q.q°q+z+q*a,. Compared with a_ =
a(Q+q+ +q ?)and a, + 0, this leads to a contradiction.

If d_-=0 and c¢-+0, then a,=>b, by (i) and hence
(@7 2Q%v —1—q ?)a, =0 by (vi) which is a contradiction, because a, + 0 and
q is not a root of unity. Putting the preceding together, we have proved thatd_ + 0.
By a similar reasoning it follows that ¢ =+ 0.

Next we prove that c_(a+ — by ) + 0. Assume the contrary. If c_ = 0, then (vi)
yields ay = b, since d_ + 0. Hence a, = b, . Inserting a, = b, into (iii) and
using that d_ # 0 and a, + 0, we obtain a contradiction.

Let x:=c_d-" and y:=QQ,a,(a, —b,)'. Dividing (iv) by ¢, and (iii) by
d_, we conclude that x = d, ¢ !. Therefore, by (iii) and (v), x = ¢2z0 *(yq, + Q)
and x ' =¢q" %2710 '(¢qq. zy + Q). Multiplying both equations, we get a quad-
ratic equation for y which has the solutions y =0 and y = (qgz — 1)(1 + ¢~ 'z~ 1).
Since a; £0, y+0. The second solution for y yields x = —¢q. Hence
d, +qc, =0, s0 that a_ =(qg *z—q*)(qgz—1)"'a,, a* = —Q,q,za, and
a = —0Q4 qq+a+ by the definitions of d+ and c. . Setting these formulas into (i)
and (ii) and using that ¢c_ + gd_ = 0, we finally get (a, + a_)> = Q%.
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First we suppose that a, +a_ = Qi. Inserting the above expressions for
a_and y,weobtaina, =qQ,(z—q )z—q La-=q'0:(z—q¥z—¢q) !
and by, = Q.(qz +q H)(z + q‘l)‘ so that p* = (p+ and Yyt = l//+ From (i)
and c_ + qd_ =0 it follows that b=003% (¢ 'z+ 1)(z +q‘1) 1 and
b_.=0Q.(q 'z+ )(z+q‘1) 1 ;50 thatl// =1 ;. Obviously,if (™, @, ¥ ",y 7)

is a solution of (i)~(vi), sois (— @™, —@~, —y*, —yY 7). Therefore, the second
possrble case a, +a. = — Q+ gives ¢@f= —¢f=¢* and
t= - l//+ = W—

Next we compute the numbers u* and p~. For this we need the following

Lemma 8.5. (i) (1 +qq+)(a+ +q b Yay +q g+ +z N ay —by)a, +
Q:lgyas +4-bo)e" +o” g I +me(e" +9 —9)=q*(q" ' +q4)%a
(ii) Q+qzva+(q‘1 " +gb” )+Q+q *vz7lag(a” —b” —qQa” +qQb") +
(@ +a )q 'a* +qb*)+q*z @ — b )as +a )+ Qi (gslat +a )+
-0 +b )N+ )+ 0im, —m )" + ¢~ —9)=

Proof. To prove (i), we use the relation uiulul = q “utuiug. Byl definition, we
have (W) —Q YqFlur £z ul 4+ g, U) D{ —q‘lz, D1 =¢qz"! and
U“r =y +v_ )r —(f++g++f—+g 1—‘(f++f )1 =(@" +¢" )“1 Us-
ing these facts and applying Lemma 8.3, (vii), (iii.3), (ii1.4), we get

utuiuy = {07°[(q "ar +gba)q(l +qq.)as + (. — b))z (g™ +q 'zq.)a.
+(geas +q-b )@ + 9 )0 T+ mi(e* + 9~ —s) + Lui .

By Lemma 8.3, (iii.2), uj uju; =v 242 ui.. Comparing the coefficients of ui., (i)
follows.

From uzu} =0 by Lemma 8.3, (i), and ui ul = quiu? we find uyuiul = 0.
Srnce D3 =q%z" ' for N >4 and D;= 1 for =3, we have
(u,); —Qﬂ(qJr1 S +q%z ud +q+U+qu Yuil) for all N = 3. Using the
latter expression, we treat the relation uyusu; =0 ﬁrst by Lemma 8.3, (v1n) and
then by Lemma 8.3, (ii), (iii.3), (iii.4). Equating finally the coefficients of u;., we
obtain (i). M

Now we insert the above two solutions for ¢ * and y * into equations (i) and (ii)
of Lemma 8.5. Note that ¢, + 97 —s=0Z and ¢* + ¢~ —s= — QZ — 2s.
One computes that u* = u7 in the first case, and that u* = u= in the second case
if QZ + 25 £ 0. If QZ + 25 = 0, the equations (i) and (ii)) have no solution in the
second case. Note that except for the last summand on the left-hand side all terms
in (i) and (ii) have the same values for both solutions. Therefore,
Ui QZ = u*(— QZ — 2s) for QZ + 2s + 0, so it suffices to compute u from (i)
and (i1).

By Lemma 8.2 and Lemma 1.1, we have thus proved that %, = %, and so
R=R,orthat B, =AB_andso R =R_if QZ + 25 £ 0.

Next we show that the pair (I',,d) has the properties asserted in the
second paragraph of Theorem 6.2. As always in case of (I'-,d) we assume
that QZ + 25 + 0. It has been already noted in Sect. 6 that in this case the hnear
mappings X, and X_ are invertible. Hence {w;= +Q(iX, ) e
i,j=1,...,N} is a basis of the vector space (I'y)in- Using  (6.3),
the formula (R™1)P¢ = &(R)?¢ = C} R B! and finally Lemma 7.4, (v), we obtain
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for (I'y, d)

dujl = D.;(’?rsu; - u;nrs)
Dy up(* B @) L") (45 o = DYt

inprpre pxm i Nk
upDS kast Nem — upoépjrlkm

It

= ul(BY(R™ ) CERS" — DS pi)iem
= “;(}(trlzRI;Rzz) - }K)ﬁ;”nkm
= ub (O X ) Miom = U,

In case of (F_, ) we have to replace Th(ug) by (i) = — R!? and the above
reasoning gives duj = uy( — 01X ),, Niem = Up@;, SO that va(du ) = ®;; in both
cases. Further, by the deﬁmtlons of w and 1 and by Lemma 7.4, (vii), we have
o = D; iWij = QD( X+ )u Him = QD (tr12X+) Hem = QZDmrIkm an and hence
da = (QZ) Ywa —aw), ae.o/, for the calculus (I',,d). Similarly,
da =(QZ + 2s)”" Ywa — aw), ae o/, for (I'_, d).

The rest of the proofs of Theorems 6.1 and 6.2 is similar to the case of SL,(N).
We only carry out the proof that the rlght ideal Z, is associated w1th the
bicovariant calculus (I}, d). From (f,); — . (u ) € %, and the definitions of
F, and §, we compute that F, (u us) qor (1%_ )iis uy € A.. Similarly,
G, wud)—y (16, +)isuy € and H . (u)us) (19, )W uk € R,. Therefore,
by (8.9) and Lemma 7.5, (@), (ujus)~ — (( K, + I"F,),’J’;’u;‘) € A,, so these ele-
ments are annihilated by the functionals y, of the corresponding bicovariant
calculus. But, by (2 10), each functional yy, of (I}, d) annihilates u;ui — d;;u —
(B5T.C)iXur = ujuf — (1K1, + 1 T)5Pur. Since #.n.o/; = {0}, we conclude
from the precedmg that %, corresponds to (I3, d).

9. The Classical Limits

In this section we briefly consider the case ¢ = 1 and the limits of the calculi (I, , d)
for ¢ — 1. Let G denote the corresponding classical simple Lie group B,, C, or D,,.
We set 6 = 1 for B,, D, and ¢ = — 1 for C,.

Let Z, =%, - be the right ideal of kers as defined in Sect. 6, where the
constants o , , /3+ Vs o, 0*, (//+ R w_ , Ui, pn* are replaced by their limits for
g—1. That is, we have —20(N+3—q) 07 =%0(N -3 —0) and
ui =a(N +2). Let T, denote the limits of the linear mappings T, from Sect. 6 as
g — 1. From Lemma 7.5, (i), it follows that

T, =R3Ry5 +2(No —2) 1 (N — 0) '(6K,3 — K33R,,)
+(No —2) '[Ry3R, + Ri;K 3R, — I — KK

+ U(ﬁn +Ki5Ry5 — ﬁzs - ﬁ12K23)]
and

T = — T, —2K,5+ 20N 'K,3K;, + 2(N> —6N) " "(6K,3R;, — K;3) .
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As in Sect. 5, we obtain a bicovariant differential calculus (I',. , d) over .o/ for g = 1
if we replace the transformation T, in Theorem 6.2 by their limit as ¢ — 1. The
same reasoning as in Sect. 5 shows that the right ideal £, is
associated with the bicovariant calculus (I, ,d). Lemmas 8.1 and 8.2 remain
valid also for g = 1. Arguing similarly to the proof of Lemma 8.2 we derive
the decomposition of adr((kere) )1, into irreducible components In fact,
we obtain that im S , , im H, , im ‘PO < (kere¢)? for B,, C, and D,, im 1P, im F.,
%, < (kere)? for B,,D, and im{P_,imG,, #, < (kerg)2 for C,. From this
we conclude easily that (kere)>2#_ and that (kere)®> = %, for all three
series B,,C, and D,. Therefore, in the limit ¢— 1 only the bicovariant
calculus (I'y, d) contains the classical differential calculus on the Lie group G as
a quotient.
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