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Abstract: We study the spectrum of random Schrodinger operators acting on
L2(IRd) of the following type H = - A + W + ΣxezdtχVχ τ h e (tχ)χez' a r e i-i-d-
random variables. Under weak assumptions on F, we prove exponential localiza-
tion for H at the lower edge of its spectrum. In order to do this, we give a new proof
of the Wegner estimate that works without sign assumptions on V.

Resume: Dans ce travail, nous etudions le spectre d'operateurs de Schrodinger
aleatoires agissant sur L2(IRd) du type suivant H = — A + W + YJXeΈ^xVx. Les
(tχ)xezd sont des variables aleatoires i.i.d. Sous de faibles hypotheses sur F, nous
demontrons que le bord inferieur du spectre de H n'est compose que de spectre
purement ponctuel et, que les fonctions propres associees sont exponentiellement
decroissantes. Pour ce faire nous donnons une nouvelle preuve de Γestimee de
Wegner valable sans hypotheses de signe sur V.

0. Introduction

The present paper is devoted to the study of the nature of the spectrum of some
random Schrodinger operators.

In the last years, random operators have been studied quite a lot. Many of these
studies have focussed on one of the properties of these objects, namely localization.
Though localization, i.e. the existence of dense pure point spectrum, has been
mostly studied in the discrete case, that is for Schrodinger operators defined on
l2(Zd) (see, e.g. [Ai-Mo, Fr-Sp, vD-K 1], or the monographs [Ca-La] and [Pa-Fi]
for further references), recently people have also been interested in the localization
properties for continuous random Schrodinger operators (see [Ho-Ma, Co-Hi 1,
Co-Hi 2, Kl 1 or Kl 2]). In [Ho-Ma], H. Holden and F. Martinelli studied what
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can be considered as the continuous model closest to the discrete Anderson
model,

H=-Δ+λΣ txχx , (0.1)
xeΈ"

where the (tx)xe%<> are independently identically distributed random variables,
and χx( ) = Xo(- — x) is the characteristic function of a cube of center x and of
sidelength 1. They proved absence of diffusion. Then, using this work, S. Kotani
and B. Simon [Ko-Si] proved localization for this model.

More recently, J.-M. Combes and P. Hislop in [Co-Hi 1] studied more general
operators of the form (0.1) for a larger class of χ0, as well as other types of random
perturbations of the free Laplacian (see also [Co-Hi 2]). They proved localization
in the large coupling constant limit, λ -> + oo .

Nevertheless, the strong restrictions they had to impose on the perturbation
χ0 seem unnecessary. Indeed, it is believed that localization in the large coupling
constant limit or at the edges of the spectrum should occur for almost any function
χ0 such that H makes sense. This is in a way our main result.

The model we study is of the following form:

H = H0+ X txVx .
xeΈd

Here Ho is some self-adjoint perturbation of — A. The main assumption we need
on HQ is that it is lower semi-bounded. The (tx)xeZi are supposed to be independent-
ly identically distributed random variables. And V is a function supposed to
decrease exponentially at infinity.

Let us now sketch the general strategy of our proof. Let A a Zd, be a cube and
consider the following approximation of H,

HΛ = H0+Σ txVx .
xeΛ

Then, for A cz A c TLd, two cubes and Eφσ(HΛ)vjσ(HΛ') (here σ(H) is the spec-
trum of H\ one can write a resolvent formula,

xsΛ'\Λ

Such a resolvent estimate permits then to construct an induction argument "a la
Frohlich-Spencer" (see [Fr-Sp, vD-K 1 or Kl 1]) if we know a Wegner estimate for
HΛ. That is, we must be able to show that the probability of the following event

decreases sufficiently quickly with ε > 0 when ε -> 0.
If E is below σ(H0\ we may write

(HΛ - Ey1 = (Ho ~ £ Γ 1 / 2 ( 1 + ΓΛ(UE)y1(H0 - E

where

ΓΛ(t,E) = Σ ίx(Jf0 - £ Γ 1 / 2 F x ( H 0 - £ Γ 1 / 2

xeΛ

Note that ΓΛ(t,E) is a compact operator.
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Now, to estimate the probability of SΌ(ε), we only need to estimate the
probability of the following event:

But to do this we can use the following property of ΓΛ(t,E):

Σtx-£-ΓΛ(t9E) = ΓΛ(t,E)9 (0.2)
xeΛ O l x

that is, ΓΛ(t, E) is invariant under the flow of the vector field ΣxeΛ ίxj-. So, if we call
this flow φ(u,t) and the eigenvalues of ΓΛ(t,E\ μk(t\ then

— μk(φ(u,t)) = μk(φ(u,t)) .

Hence, if μk{φ(u,ή) is close to - 1, then ^μk(φ(u,ή) is close to - 1 ; this
shows that μk(φ(u, t)) "moves" as u is "moved." Then, using a regularity assumption
on the distribution of the random variables {tx)xeZj, we can show that the probabil-
ity that an eigenvalue μk(t) stays in an ε-neighborhood of — 1, is small with ε.
This, in turn, is the same as to say that the probability of S(ε) has a nice decrease
in ε.

Though the proofs of the Wegner estimate we present in this paper were written
for i.i.d. random variables, we hope that these ideas may be adapted to correlated
potentials under suitable assumptions on the conditional probabilities of the
random variables (see [vD-K 2, Co-Hi 2]).

The main feature of our proof of the Wegner estimate is that no sign assump-
tion on V is needed, as (0.2) does not depend on this sign.

In fact to prove localization, the Wegner estimate is not entirely sufficient. Once
the induction process is constructed, one also needs to show that the first step of the
induction holds. Therefore, instead of using the previous argument in all its
generality, we found it more convenient to apply it to two "concrete" cases. In both
cases, we prove localization at the lower edges of the spectrum.

In our first model, we suppose Ho to be a lower semi-bounded periodic
Schrodinger operator and the random variables {tx)xeZ<> to be unbounded, such that
the almost sure spectrum of H is R (i.e. we work with unbounded random
perturbations). For this model, we prove that, below some energy, the spectrum of
H is almost surely pure point, and that the associated eigenfunctions are exponenti-
ally decreasing.

Our second model is closer to the one studied in [Co-Hi 1]. We assume that
V and the (tx)xeΈ

d are such that the resulting random model is lower semi-bounded.
To ensure the first step of the induction, we assume rapid decay of the density of
states at the edge of the spectrum. Such behaviour is a weaker form of the
celebrated Lifshits behaviour of the density of states, which has been proved for
many models under assumptions compatible with ours (see [Ki, Ca-La or Pa-Fi]
for a review and further references). Under these assumptions, we prove that there
exists some energy strictly larger than the infimum of the almost sure spectrum
below which the spectrum of H is pure point with probability 1, and that the
associated eigenfunctions are exponentially decreasing.
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1. The Main Results

A. For Unbounded Perturbations. Let L = (+)!/= 1 %uj ^ e a lattice of R d (here
{Uj)γ s j s d is a basis of lRd). Denote the unit cell of L by C o = {x = Σi ^j^dχjui>

(Xj)iljldel-τ,τ)d}.
Let W be a real, bounded, L-periodic function. We define the following

Schrodinger operator:

Ho = - A + W .

//0 is self-adjoint on L2(]Rd) with domain ίf2(IRd). Moreover, as W is bounded,
#o is lower semi-bounded. σ(H0) denotes the spectrum of Ho. Let us assume for
convenience that

inf σ(H0) = 0 .

Let V be a real measurable function satisfying

{H.I)

3 C o > 0 and m0 > 0 such that Vxe IRΛ

Let (ty)yeL be a sequence of independent identically distributed random variables
with common distribution density g satisfying

(H.2)

a) 3ε0 > 0 and p0 > 0 such that, Vεe [0,ε 0],

l\g((l+ε)t)-g(t)\dt^(-
R \ε0

b) Let q0 = 4 if d ^ 4 and ^ 0 = 2 if d ^ 3. 3/c > q0 such that

Remark. Assumption (H.2) a) is a regularity assumption on g that is, for example
satisfied if g is derivable and \\x g'(x)\dx < + oo .

Let H(t) be the following operator:

H(t) = H0+ Σ ί y K γ , (1.1)
yeL

where for yeL and x e IRd, Fy(x) = K(x — y).
By Theorem 1 of [Ki-Ma 2] (see also [Ki-Ma 3]), by assumption (H-l) and

(H-2)b), we know that, with probability 1, H(t) is essentially self-adjoint on <#o(]Rd).
As Ho is L-periodic and the {tγ)γeL are i.i.d. random variables, we also know that
H(t) is ergodic (or metrically transitive); so, Theorem 2 of [Ki-Ma 2] (see also
[Ki-Ma]) tells us that:

(i) σ(H(ή), the spectrum oϊH(ή, is a non-random set with probability 1. Let us
call it Σ.

(ii) the pure point, the absolutely continuous and the singular continuous part
of σ(H(ή) are non-random sets with probability 1.
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Let us now assume

(H.3)

Remark. Using the work of W. Kirsch and F. Martinelli [Ki-Ma 2], one can show
that assumption (H-3) holds under weak conditions on V and the random variables
(tγ)γeL. Essentially, one needs the range of the random variables to be unbounded
and the potentials V to take the right sign on some set of non-zero Lebesgue
measure, the sign depending on which side the range of the (ty)yeL is unbounded.

Now our main result is

Theorem 1.1. Let H(t) be defined as above and assume (H-l)-(H-3) hold. Then for any
ε > 0, there exists Eε > 0 such that, with probability 1,

ΐ) the spectrum of H(t) in (— GO , — Eε~\ is pure point,
iϊ) if φ is an eigenvector associated to E an eigenvalue of H(t) in ( — GO , — £ ε ] ,

then there exists Cφ > 0, such that, for any x e IRd,

\φ(x)\ύCψe
-mo(l-ε)\x\

Remark. 1) The main novelty here is that we did not assume any sign condition on
V; so the proofs of the Wegner estimate used up to now (see for example [Ho-Ma,
Ko-Si and Co-Hi 1]) break down. Our main point then is to prove a new Wegner
estimate in this case.

2) As will turn out from our proof, we could have considered the following
random Schrodinger operator:

γeL

where Ho, V, and (ty)yeL are as above, and (ξγ)yeL are i.i.d. Revalued random
variables with common support in some compact set. For such operators, Theorem
1.1 still holds.

3) The regularity assumptions on V and W used here to get Theorem 1.1, are
not optimal; we choose them this way for the sake of simplicity. Moreover the
exponential decay assumption on V may certainly be relaxed to some sufficiently
fast polynomial decay though we did not check the computations. In this case, one
may expect that the spectrum stays pure point and that the associated eigenfunc-
tions decrease polynomially at infinity. To prove Theorem 1.1, one constructs an
induction process "a la Frόhlich-Spencer" for our case. Let us just describe the
main ingredients of this induction, the bulk of it being treated in Sect. 2.

Let Λι(0\ be a cube in L, of center 0 and side / (i.e. Λt(0) = {YJ1 ̂ j^d

χjuj e L;

HΛΛO)(t) = Ho+ Σ hVy (1-2)
ye/t,(O)

For any realisation of {ty)yeL, HΛι(0)(t) is a relatively compact perturbation of Ho;
so the negative spectrum of HΛι(0)(t) is discrete.

For Eφσ(HΛι{0)(t)\ we define

G / l i ( 0 )(£) = ( H / I i ( 0 ) ( ί ) - £ ) - 1 .
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Let A a Λ\ be two cubes of L. Then, for Eφσ(HΛ(t))uσ(HΛ>(t)\ we get the
following resolvent formula:

VΛ,Λ' = ΣyeΛ'\ΛtyVΓ

Then, the tool to control the induction process is

Theorem 1.2 (The Wegner Estimate). Under the assumptions of Theorem 1.1, for
any I ̂  2, Eo > 0, p0 > 0, there exists Co > 0 and p'o > 0, such that for any E e
( — oo, — £ 0 ] , ε e [0,ε 0 ] and any I ^ 2,

J5. For Lower Semi-bounded Perturbations. Let Ho be defined as in Subsect. A. Let
Kbea measurable function L 0 0 ^ ) such that

(#7)

V is not identically 0 in L/^-sense and has compact support.
Let (tγ)γeL be a sequence of independent identically distributed random vari-

ables with common distribution density g satisfying

(H.2)

a) Vε e [0,ε 0], i R s u p t t 6 [ _ l f n l ^ ί + εu) - g(t)\dt ^ (ijp\
b) G, the essential support of g, is bounded.

Consider the Schrόdinger operator given by formula (1.1). Then, for any realization
of the random variables (ty)yeL, H(ή is self-adjoint on L2(lRd) with domain H2(Hίd).
H(t) is also lower semi-bounded.

Remark. If we assume that V is non-negative, we may replace the boundedness
assumption on the random variables {ty)γeL by a positivity assumption plus
assumption (H.2) b) of Subsect. A. Then, by [Ki-Ma 2], for almost every realization
of the random variables (ίy)y eL, H(t) is essentially self-adjoint on ^ ( l R d ) . More-
over, it will be lower semi-bounded.

As in Subsect. A, H(t) is ergodic. Let Ein{, be the infimum of Σ, the almost sure
spectrum of H(t). Using the ergodicity of H(t), we can define N(E), the integrated
density of states of H(t) (see for example, [Ki or Pa-Fi]).

Let us assume that the following holds:

(K3)

For any π e N , ( £ - £inf)~" N(E) -• 0 when E -> Ein{ and E > Eiaf.

Remark. 1) If we assume V non-negative and the random variables (ty)yeL also to
be non-negative then, if 0 e G, Ein{ = 0 as can be seen by the results of [Ki-Ma 2]
(see also [Ki]).

2) Assumption (H.3) b) is naturally implied by the celebrated Lifshifts tail
behavior for the density of states at the edges of the spectrum. The Lifshits behavior
has been studied quite extensively and has been proved under various conditions
on the random variables (ίγ)y eL and on the operator Ho (for example, see [Ki,
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Pa-Fi or Ca-La] for a review and further references). Under these assumptions, we
prove

Theorem 1.3. Let H(t) be defined as above. Assume that (HΛ)-(H3) are satisfied.
Then, there exists Eo > Eia{ and y0 > 0 such that, with probability 1,

i) the spectrum of H(t) in \^Em{,E0^ is Pure point,
ii) ifφ is eigenvector associated to E an eigenvalue ofH(t) in [ £ i n f , Eo~], then there

exists Cφ > 0, such that, for any x e IRd,

Remark. 1) This theorem may be considered as an extension of some of the results
obtained by J-M. Combes and P. Hislop in [Co-Hi 1]. We prove that one may
remove the quite restrictive lower bound in their assumption (uA).

2) Assumption (H.3) b) is weaker than the actual Lifshits tail behaviour;
nevertheless, as will be seen from the proof of Theorem 1.3, it is much stronger than
what is actually needed for localization. Let us now sketch the ideas of the proof of
Theorem 1.3. The details are given in Sect. 3. As for Theorem 1.1, the result will be
obtained via an induction process. In this case we will use the induction process
designed in [Co-Hi 1]. Our main goal will then be to get a Wegner estimate in our
case and to prove the initial step of the induction.

For A cz JRd, we denote by HΛ(t), the operator H(t) restricted to A with
Dirichlet boundary conditions. Let us point out the fact that, as V is supported in
some compact ball B, HΛ(t) only depends on finitely many random variables.

We then prove

Theorem 1.4 (The Wegner Estimate). There exists Eo > 0, C o > 0 and q0 > 0 such
that, for any I ̂  2, any ε ^ 0 and any E e [0,£0]>

&{{t\ d(σ(HΛι(t),E) ^ ε)} ^ Coε"Φ° .

Remark. [Co-Hi 1] already obtained a Wegner estimate for more general models,
but only under a much stronger assumption V. On the other hand, their estimate is
more accurate than ours as it permits to get information on the regularity on the
density of states. Let 1 < δ < + GO . As in [Co-Hi 1], for Au a cube of Rd, let
Λι = {x; x + #(0, δ) cz Aι). Then define χt to be a non-negative ^ 2 function that is
1 on At and 0 outside Ah and W(ya) = [ — Δ,χ{\.

Using assumption (H.3), we show

Proposition 1.5. There exists l0 ^ 2 and C o > 0 such that for I ̂  /0 and E e

[0,//],

(\t; sup || [ - Δ,χ{]GΛι{E + iε)χι/31| ^

where: i) y = C0 Γ*,

ii) GΛι(E + is) is the resolvent of HΛι{t) at energy E + ίε.

Then, adapting the induction process of [Co-Hi 1] as is explained in Sect. 3, one
proves Theorem 1.3.
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II. For Unbounded Perturbations: The Proof of Theorem 1.1

A. The Wegner Estimate {Theorem 1.2). Fix Eo > 0 a n d p 0 > 0. For E ̂  — £ 0 , o n e
has

< Γ°

; \\GM0)(E)\\ > ± and

ί?({t',lyeΛι(0)9\t7\>l*>}), (2.1)

where r 0 > 0 is to be chosen later on.

Then by assumption (H.2) b), we know that

0>({t\ 3y eΛ z(0),|ty | > Γ0}) ̂  C-ld.Γr«k ,

so, for some r 0 > 0 large enough,

0>({t;3γeΛι(Ol\ty\>lrή)SΓPo. (2.2)

If we prove

Lemma 2.1. There exists Co > 0 and p'o > 0, such that for any I ̂  2, £ e (— oo,
— £ 0 ] , ε e [0, ε o [ ŵd any I ̂  2,

; \\GΛlW(E)\\ ^

then, using (2.2), we get Theorem 1.3.

Proof of Lemma 2.1. Let Eφσ(HΛιm(t)) and £ ^ — Eo, then

76/1,(0)

) V o - EΓ1'2. (2.3)
Define

Γ ( ί , £ ) = - Σ ty(Wo-£)^ / 2F y(Ho-£)^/ 2.
76/1,(0)

By our assumptions on V and W, Γ(t,E) is compact and uniformly bounded for
E^ —Eo. By (2.3), we see that, as (Ho — E)~1/2 is uniformly bounded for
ES -Eo,

\\GΛιi0)(E)\\SC (
\ ye/l,(0)

Now, if we prove

Lemma 2.2. There exists C > 0 and pΌ > 0> 5 W C ^ that for any I ̂  2, £ e

( — oo , — E o ] , ε e [0, ε o[ and any I ̂  2,

^({ί; dist(l, Γ(t,£)) < ε and Vye yiz(0),|ί7| S lr°}) ύ C o /p«εinf(1'Po) ,

we are done with the proof of the Wegner estimate.
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Proof of Lemma 2.2. Notice that, for λ e IR, Γ(λt,E) = λΓ(t,E). Let us define the
mapping φ: IR x WLΛ>(0) -» WLΛl(0) by φ{u,t) = eu t (here t denotes a vector of the
form (ty)yeΛιio)) φ is the flow of the vector field t Vdefined on IR71'*0). So

~Γ(φ(u,tlE) = Γ(φ(uJlE). (2.4)

Let (μk(t,ιή) (resp. {μk(ή) denote the positive eigenvalues of Γ(φ(u,t),E) (resp.
Γ(ί,£)) ordered in a decreasing way, then μk(t,u) = euμk(t). For ε > 0, define
N(E,ε9t) = #{fc; μΛ(ί) ^ ε}, the cardinal of {fc;μk(ί)^β}. Then N(E,ε,t) < + oo as
Γ{φ{u,t),E) is compact. So N(E9ε,φ{u,ή) = N(E,e~uε,ή and

, 1 - ε, ί) - JV(£, 1 + β, ί) = Jvf £, 1,—^-) - ME, 1,

Let us define / = [ — ί1"0,/1"0]. Then following Wegner ([We]), we get

t; dist(lΓ(t,E)) < ε andVye ΛMlty] Slrή)

S j {N(E, 1 - ε, ί) - JV(£, 1 4- c, ί)) dP
JΛ,W

| \ l ε/ \ l t ε/ Jye/1/(0)

Set Λ = #Λι(0\ dtΛ = Πye^,(θ)Λy a n d &i(0 = Πye/i.ίo)^^ w h e r e 9 = 9 Xι and
χι is the characteristic function of /, then

; dist(l,Γ(ί,£)) < ε and Vye 71,(0),\ty\ ^ Γ0})

[2A-1 / _

k=0 \ A
1 r— ε )t

Taking into account the following lemma:

Lemma 2.3. There exists C > 1 such that, for ES - Eo, ifVy e /ί/(0),\ty\ ^ 2 .
then

N(E, l,ί) ̂  #<|£ ̂  Eo such that E is an eigenvalue of Ho — 2] Uy^v
ye/l,(O)

A V 6/1,(0)
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We get, using (2.5),

5?{{t; dist(l,Γ(ί,£)) < ε and Vye Λ,(O),|ty| ^ I"})

F. Klopp

1

. . A - J k - 1 V
- I 1 : e

λ-k λ-k

x Ί§Λ\v~~rε]t

λ-k-I ,
1 : ε | r

k = O

1 —
λ-fc-1 \

I
λ-k

~Γε I

/ λ-k-1 \
1 : ε

. λ-k ι

ι—ΊΓε I

dtΛ .

(2.6)

/ λ — k — I \f λ — k
Let us call ε t = 1 — I 1 ε 111 — ε ). Reordering the points of Λ;(0)

b y 7 1 , ( 0 ) = {tj , I S j ^ λ ) , w e g e t ,

w

1 Π 9(tn) Π
n=0 n=λ-j+l

n — λ — j

/λ-1 λ-j-1 λ

^ ί ( Σ a - ̂ y π β(t.) π

j) - (1 - sk)g((l - εfc)0)l) Λ ^ λ J \g(t) - (1 -

by a change in the t variables; here we used the semi-group properties of φ, though
we did not use φ explicitly as in [Kl 2]. Using the regularity assumption on g, (H.2)
a), we get

j \g((l + ε)t) - g(t)\dt £ f \Xι((l + ε)ί) - Xl(t)\g(t)dt
R IR

S ί
1 +ε

ε)ί) -

+ ί
+ ε

ε)t) - g(t) dt + [-
βo
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So,

ί \9Λ(t) - (1 - εk)
λgΛ((l - εk)t)\dtλ ^ CAein f ( l l"° )

< cip'°εinf{ί'Po)

for some C independent of /, of 0 5Ξ k S 2λ — 1 and of ε small enough. Plugging this
into (2.6), we get the announced result.

This ends the proof of Lemma 2.1 and thus also the proof of the Wegner
estimate.

Proof of Lemma 2.3. Define

| Γ | ( ί , £ ) = Σ \tγ\(H0-E)-^2\Vγ\(H0-Er^2.
γsΛ,(O)

For E S — Eo, we get

\Γ\(t9 -E0)^Γ(t,E)^Γ(t,E),

so, if we define \N\(E,t) to be the number of eigenvalues of \Γ\(t,E) that are larger
than 1, then, by the min-max principle,

\N\(- Eθ9t)^\N\(E9t)^ N(E9l9t) .

By a Birman-Schwinger principle, one sees that

\N\( — E0,t) = %IE ̂  — Eo such that E is an eigenvalue of Ho — ]Γ \tγVy

I 76/1,(0)

Now, to get Lemma 2.3, one just uses the Cwikel-Lieb-Rosenblum bound for the
number of negative bound states for Schrodinger operators (see, e.g. [Re-Si]), and
the assumption that, for γ e At(0), \tγ\ ^ lr°.

B. The Induction Process and the Proof of Theorem 1.1. We will not give the proof of
the induction in all its details as once the main features are explained, the details of
the computations are the same as in [Kl 1].

The main tool of the induction process is the resolvent estimate (1.2). Let us
rewrite it in a different, more manageable form; define, for a e L, Ca a Wid to be the
cube of center a and sidelength 1 (i.e. Ca = {x; x — a = γjl <j<dtjUj, where — 1/
2<,tj< 1/2}). Then for (α,b) e L 2 and Eφσ(HΛ(ή) (here Λ~is~a cube in L),

\G\Λ(E;a,b)= \\χa

Then (1.2) implies, for A a Λ\

\G\AE; a9b) S \G\Λ(E; a9b) + £ \G\Λ(E; a,c)\V \Λ,Λ>(c)\G\AE; c9b) 9 (2.6)
ceL

where | V \Λ,Λ\c) = supxeCc\VΛM'(x)\.
Now, as in [Kl 1], we define the regular and the non-resonant cubes

Definition. Let j 8 e ] 0 , l [ , E e IR, / > 0 and x e L. Λt(x) is (EJ)-N.R (i.e. non-
resonant) if
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Definition. Let β e ] 0 , l [ , E e IR, ε e ]0,1[, / > 0 and x e L. At(x) is (E,m9β,ε)-
regular if

(a) Λι(x)is(E,β)-^.R,
(b) moreover

(Here, for x = Σχjuj e L, \x\ =
Then, as in [Kl 1], we prove

Lemma 2.4. Let p > sup(4,d), β > 0 such that βp < inf(4,d), e e ] 0 , i [ , α e ] l ,
inf( | , I ) [ and 0 < 5 < inf(l -ocβ,ot- 1).

Let H(ί) fee rfe/med fey (1.1), V satisfy (H.I) and ( ί y ) γ e L saίzs/> (H.2).
T/zerc ί/zere exists l0 > 1 swc/i ίfeaί, ϊ//or Lo ^ l0, one has, for some mLo e

]0,m o(l - e ) [ , V(x,y)eLxL 5wc/z ίΛaί |x - y | > L 0 (l + e),

or ALo(y) is (E,mLo,β,ε)-regular}) > 1 — L o

 p ,

% defining the sequence Lk by Lk + 1 = L£, we get for k^.0 and for any (x,y) e
LxL such that \x — y\ > Lfc + 1 ( l + ε),

P({\/E S — Eo, ALk^(x) or ALk+ι(y) is (E,mLk+ι,β,ε) — regular}) > 1 — Lk +
-p

1 5

% ι + 1 = WL, - 2(m 0 4- l)L Λ " a ^ m o ( l - e) .

(P is ί/zβ probability measure defined by the random variables (tx)xeL.)

The proof of this lemma is exactly the same as in [Kl 1]. One can first prove an
exact replica of Lemma 2.2 of [Kl 1] (in the present case, it is even simpler as, if
An A' = 0, HΛ(t) and HΛ(t) are independent (in the probabilistic sense) of each
other). Then the resolvent formula (2.5) being the same as the resolvent formula
(4.4) of [Kl 1], we also get a replica of Lemma 2.3 of [Kl 1]. Putting both of these
arguments together, we get Lemma 2.4. We define

Definition. Let E e ]R. E is a generalized eigenvalue ofH(t) if there exists a general-
ized eίgenfunction i.e. a polynomially bounded solution to the equation.

(H(ί) - E)φ = 0 .

Using again our resolvent formula, we prove

Lemma 2.5. Lei p>sup(4,d), l < α < ^ , ε e ] 0 , ^ [ et m e ]0,mo(l - ε)[. Let
Lo > 0. Define the sequence Lk by Lk+1 = LI for k ^ 0.

Let H(t) be defined by (1.1), V satisfy (HA) and (tγ)γeL satisfy (H.2).
Assume, for k ^ 0 and for any (x,y) e L2 such that \x — y\ > Lk(l + ε), one has

P({V£ SE0, ΛLk(x) or ALk(y) is {E,m,β,ε) - regular}) > 1 - Lk

p .

Then, with probability 1, if φ is a generalized eigenfunction of H(t) associated to
E ^ Eo, one has

log|φ(x)|
hm sup — — — <Ξ - m(l - ε) .

+ \X\
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The proof of this lemma is the same as the one of Lemma 2.6 of [Kl 1]. The only
difference is that one first proves that the generalized eigenfunction φ satisfies:
II φ IIL2(C) ^ Ce~m{1~ε)ly] for any y e L (here Cγ is the unit cell of L centered in 7).
Then, one proves the above announced exponential decrease using a subsolution
estimate (cf. Theorem C.1.2 of [Si]) and noticing that by our assumptions on V and
on (ty)yeL, with probability 1, X y e ί ί y F y is polynomially bounded.

Now, using [Ki-Ma 3] and [Si], we know that, under our assumption on V and
the random variables (tγ)yeL, with probability 1, almost every energy in the
spectrum of H(t) is a generalized eigenvalue. Combining this with Lemmas 2.3 and
2.4, to end the proof of Theorem 1.1, it is sufficient to show that, for any L o > 0,
there exists Eo > 0, such that,

P({V£ ^ - Eo, ΛLo{x) or ΛLo(y) is (£,mo(l - ε),β,ε) - regular}) > 1 - Lo~
p

By a Combes-Thomas argument,

^ — Eo, ΛLo(x) and ΛLo(y) are not (£,mo(l — ε),/?,ε) — regular})

S ~ Eo + 2m0; E e σ(HΛJx))})

for Eo > 0 large enough using our assumptions on the probability distribution of
the random variable ί0.

III. For Lower Semi-Bounded Perturbations

A. Proof of Theorem 1.3. Let us assume that Theorem 1.4 and Proposition 1.5 are
proved. Then we may use the induction process designed in [Co-Hi 1]. More
precisely, we see that Lemma A.2 [Co-Hi 1] still holds under our assumptions. Let
us now define the sequences (yk)k>o as in Lemma A.3 [Co-Hi 1], where
7o = C0IQ 1 / 4 (see Proposition 1.5). By (A. 17) of [Co-Hi 1] and the subsequent
commentary, for some Ko > 0, Kί > 0, K2 > 0 (independent of l0),

where

Cj SK2(j +

But lj+1 = l]12 so, for l0 large enough,
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By (3.1), there exists K3 > 0, K4 > 0 (independent of l0),

/ \ ^ /
ί o \ j=oh

%

for /0 large enough.
Then, applying Theorem 2.3 of [Co-Hi 1] and following their argument, we get

Theorem 1.3.

B. Proof of Theorem 1.4 (the Wegner Estimate). Consider V = ΣyeLVγ and the
L-periodic Schrodinger operator Hτ = Ho + T-V. Let E0(T) be the infimum of
the spectrum of Hτ.

Lemma 3.1. For some To e G, E0(T0) > Einf.

Proof. Using the Floquet reduction for periodic Schrodinger operators (see [Bi or
Ki-Si]), we know that E0(T) is simple; moreover as it can be expressed as a Floquet
eigenvalue, it is analytic in T for T e IR. Let us recall that G is the essential support
of g, the common density of the random variables (tγ)γeL and, that it is not empty
and cannot have isolated points (by the regularity assumption on g).

We claim, that, for some T e G, E0(T) > Ein{. Indeed, assume the contrary; by
[Ki-Ma 2], we know that, for all T e G, E0(T)^Einί. So, for all T e G,
E0{T) = Einf. Hence, for all T e IR, E0{T) = Einf by analyticity oϊE0{T). But this is
impossible; indeed, as V is not equal to 0 almost-everywhere, there exists some
φe^o such that < F φ , φ > > 0 or (Vφ,φ} < 0, then <#Γ(φ),φ> -> —. oo as
T -> — oo or + oo. Hence, the infimum of the spectrum of Hτ, E0(T) tend also to
— oo which contradicts our assumption. So for some T e G, E0(T0) > E i n f .

Let us rewrite H(ή,

H(t) = H(T0) + X tyVyVy

where tγ = tγ — To.

By Lemma 3.1, for some δ > 0,

H(T0) - £ i n f > δ .

Taking the restriction to Λh a cube of side / (with Dirichlet boundary conditions),
we get,

HD

Λι(t) = HD

Λι(T0) + X tγVyκΛl,

as suppF c: B(0, R) (here κΛι is the characteristic function of Λt).
Then, for E < Ein{ + δ,

(Hl(t) - E)-1 = (HD

Λι(T0) - E)~1/2(l + ΓAl(t9E))-HHl(T0) - E)~112 ,

where

ΓΛt(t,E) = Σ ty(Hl(T0) - Eyll2VyκΛι(Hl(T0) - £)~ 1 / 2 .
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Hence, for E < E lίi{ + δ/2,

P({t;dist(£>σ(Hj1(t)))^ε}) = p({ί; | |(<(ί) - E)"11| £ - 1

>δ
2ί

Λ' = 4 ε

= p(\t; dist( - l,σ(Γ^(ί,£))) ^ ε ^

The last term may now be estimated by the method used in Sect. 2 to prove
Theorem 1.2; this gives us the Wegner estimate in this case.

C. Proof of Proposition 1.5. The idea of the proof is to use the rapid decrease of the
density of states N(E) at the lower edge of the spectrum to show that the
probability that H%,(t) has a small eigenvalue, is small. This idea is the heuristical
argument used by E. Lifshits [Li] to prove physically localization in disordered
media. This technique has also proven to be quite efficient mathematically (see, e.g.
[Ho-Ma] or [Sp]).

Denote by N^ffi, t\ the number of eigenvalues of H^(t) smaller than E. Then, it
is well known (see [Ki-Ma 3]) that, for / ̂  1,

here IE denotes the expectation taken with respect to the random variables (ty)yeL.
If AQ (ή denotes the lowest eigenvalue for H%,(t), then

; λ%(t) ̂  E}) £ E(Λtf,(£,ί)) ^ *ΛrN(E) .

If we now choose E = Ein{ + 4/^//, then, by assumption (H.3) b), for some / large
enough, we get,

Hence, with probability at least 1 - Γ{2d + 1\ σ{H^(t))n{ - oo ,£ i n f + 4/yfl) = 0

that is, for E e [Einί,Einf + 2jJ\\ dist(£,σ(<(ί)j) ^ 2///.

Using a Combes-Thomas argument (see, for example, [Si] Sect. B.7, or [Ho-

Ma]), we get, for ε > 0 and |x — y\ ^ y/l,

\(HD

Λι(t) -(E + iε)y1(x,y)\ S e'1'1^-^ . (3.2)

This gives Proposition 1.5. Indeed, define

(H^(t)-(E-hiε)yι = GΛι(E + iε).

Then

[ - V, GΛl(E + iε)] = GAί(E + iε)[Hj,(ί), F ] GΛl(E + is)
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where VΛι(t) = ΣγeΛMJγVγκΛι. One computes

{.- Δ, χ,] GΛι(E + iε)χlβ

= Vχ,GΛι{E + iε)Vχlβ + Vχ,\_ - V,GΛl{E + iε)]χ,/3

= Vχ,Gλβ + iε)Vχ,,3 + Vχ,Gλl(E + iε)VVΛι(t)GΛι(E + iε)χI/3

.= Vχ,GΛι{E + ie)Vχll3 + Vχ,GΛι(E + iε)χlrVVΛι(t)GΛι(E + iε)χlβ

+ Vχ,GΛι(E + iε)VVΛι(t)(l - Z / ,)G^,(£ + «0&/3 , (3-3)

for some 0 < r which will be chosen later on.
As χ, = 1 in |x | ^ /(I - <5) and χ, Ξ 0 if |x | ^ / and by (3.2), we get

and
\\VXlGAi(E + iε)VXlβ\\ ίe^

Now, choosing δ < 2/3 and r < 1/3, we get, for some C o > 0 and / large enough,

i
ε > 0

where y = C0Γ
1/4.

This ends the proof of Proposition 1.5.
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