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Abstract: We propose a new method of diagonalization of hamiltonians of the
Gaudin model associated to an arbitrary simple Lie algebra, which is based on the
Wakimoto modules over affine algebras at the critical level. We construct eigen-
vectors of these hamiltonians by restricting certain invariant functionals on tensor
products of Wakimoto modules. This gives explicit formulas for the eigenvectors
via bosonic correlation functions. Analogues of the Bethe Ansatz equations naturally
appear as equations on the existence of singular vectors in Wakimoto modules. We
use this construction to explain the connection between Gaudin's model and corre-
lation functions of WZNW models.

1. Introduction

Gaudin's model describes a completely integrable quantum spin chain. Originally [1]
it was formulated as a spin model related to the Lie algebra s!2. Later it was realized,
cf. [2], Sect. 13.2.2 and [3], that one can associate such a model to any semi-simple
complex Lie algebra g and a solution of the corresponding classical Yang-Baxter
equation [4, 5]. In this work we will focus on the models, corresponding to the
rational solutions.

Denote by Vχ the finite-dimensional irreducible representation of g of dominant
integral highest weight λ. Let (λ) := (λ\9 . . . 9 λ^) be a set of dominant integral
weights of g. Consider the tensor product V(λ) := V^ ® <8> V^N and associate with
each factor Vχi of this tensor product a complex number z, . The hamiltonians of
Gaudin's model are mutually commuting operators £/ = £, (zι, . . . ,z#), i — 1, . . . , N,
acting on the space V(β.

Denote by { , ) the invariant scalar product on g, normalized as in [6]. Let
{/α}, a — 1,..., d — dimg, be a basis of g and {/α} be the dual basis. For any
element A e g denote by A^ the operator 1® ®4® ®1, which acts as A

i

on the zth factor of FQ) and as the identity on all other factors. Then

ri V~~^ V^oι = Σ Σ
φί α=l zi ~~ z
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One of the main problems in Gaudin's model is to find the eigenvectors and
the eigenvalues of these operators.

Bethe ansatz method is perhaps the most effective method for solving this prob-
lem for g = sl2 [1]. As general references on Bethe ansatz, cf. [7, 8, 2, 9]. Applied
to Gaudin's model, this method consists of the following. There is an obvious
eigenvector in V(λγ. the tensor product of the highest weight vectors of the F^.'s.
One constructs other eigenvectors by acting on this vector by certain elementary
operators, depending on auxiliary parameters wι,...,ww. The vectors obtained this
way are called Bethe vectors. Such a vector is an eigenvector of the Gaudin hamil-
tonians, if a certain system of algebraic equations, involving the parameters z/'s and
w/s, and the highest weights λ/'s, is satisfied. These equations are called Bethe
ansatz equations.

One usually constructs eigenvectors in statistical models associated to a general
simple Lie algebra g by choosing a sequence of embeddings of Lie algebras of lower
rank into g and inductively solving diagonalization problems for these subalgebras
[15, 16, 3]. This leads to a rather complicated combinatorial algorithm, which very
much depends on the structure of g.

Another method was recently proposed by Babujian and Flume [37]. They con-
sider as analogues of Bethe vectors, the rational FQ)-valued functions, which enter
Schechtman-Varchenko solutions [30, 31] of the Knizhnik-Zamolodchikov (KZ)
equation [27] associated to g, cf. also [36, 38], Varchenko and one of us show else-
where [39] that such a vector can be obtained as a quasi-classical asymptotics of
a solution of the KZ equation. This establishes a remarkable connection between a
model of statistical mechanics and correlation functions of a conformal field theory.

In this work we propose a new method of diagonalization of Gaudin's hamilto-
nians, which is based on Wakimoto modules over the affine algebra g at the critical
level and the concept of invariant functionals (correlation functions) on tensor prod-
ucts of g-modules. This will allow us to treat the diagonalization problem and the
KZ equation on equal footing and thus explain the connection between them.

The critical level is the level k = -/zv, where hy is the dual Coxeter num-
ber of g. The peculiarity of this value of level is that it is only for k = —hy

that the local completion £4(g)ιoc of the universal enveloping algebra of g con-
tains central elements. The center of t/_Av(g)ιoc was described in [10, 11] (cf. also
[12-14]). Elements of the center act on the space of functionals on tensor prod-
ucts of representations of g at the critical level, which are invariant with respect
to a certain Lie algebra. One can interpret the hamiltonian ΞI as the action of a
quadratic central element from t/_/,v(g)ιoc on the zth factor of invariant functional.
Other central elements give rise to other operators, which commute with each other
and with Gaudin's hamiltonians. We call them higher Gaudin's hamiltonians.

Wakimoto modules [17, 18] at the critical level are special bosonic representa-
tions of g, which are essentially parametrized by functions on the circle with values
in the dual space of the Cartan subalgebra f) of g. We will construct eigenvectors of
Gaudin's hamiltonians by restricting certain invariant functionals on tensor products
of Wakimoto modules. In conformal field theory language, those are certain bosonic
correlation functions. Analogues of Bethe ansatz equations will naturally appear as
Kac-Kazhdan type [19] equations on the existence of singular vectors in Wakimoto
modules. The existence of these singular vectors will ensure that the correlation
function constructed this way is an eigenvector of the Gaudin hamiltonians and
their generalizations.
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We will express the eigenvalues of these hamiltonians in terms of the Miura
transformation and show that Bethe ansatz equations appear as certain analytic con-
ditions on the eigenvalues. The formulas we obtain for the eigenvalues generalize
Sklyanin's formula [20] for g — sl2. The appearance of the Miura transformation in
this context is not surprising, because the center of t/_Λv(g)ιoc is isomorphic to the
classical 1^-algebra associated to gv, the Langlands dual Lie algebra to g [10].

The space of invariant functionals makes sense for an arbitrary level k. For non-
critical values of k it coincides with the space of genus 0 correlation functions (or
conformal blocks) of the corresponding Wess-Zumino-Novikov-Witten (WZNW)
model [21-26]. This definition is equivalent to the more common definition of
correlation functions as matrix elements of certain vertex operators, acting between
representations of g. It is known that for non-critical k these functions satisfy the
KZ equation [27-29].

One can obtain solutions of the KZ equation by restricting certain invariant
functionals on tensor products of Wakimoto modules, but those of non-critical
level. The rational function, which enters such a solution [30, 31] (cf. also [32-34,
26]), then appears as a bosonic correlation function, cf. [35], which coincides with
the formula for an eigenvector, obtained from Wakimoto modules at the critical
level. This gives an explanation of the connection between the eigenvectors of the
Gaudin model and solutions of the KZ equation associated to g, which was observed
in [36-39].

Gaudin's hamiltonians can be obtained from the transfer-matrix of a quantum
spin chain related to the affine quantum group Uq(§) in a certain limit, when q —> 1.
A generalization of the results presented here to the case of Uq(§) will be published
separately.

We also want to remark that our construction of eigenvectors naturally fits into
a program of geometric Langlands correspondence proposed by Drinfeld. This cor-
respondence relates equivalence classes of Gv-bundles over a complex algebraic
curve $ with flat connections, and ^-modules on the moduli space of G-bundles
over $.

The paper is organized as follows. In Sect. 2 we recall the definition of Gaudin's
model and Bethe ansatz procedure in the case g = si2- Section 3 contains an in-
terpretation of the model in terms of invariant functionals at the critical level. We
show how singular vectors of imaginary weight give rise to Gaudin's hamiltonians
and their generalizations. In Sect. 4 we recall the definition of Wakimoto modules
and discuss the structure of the center of t/_/jv(g)ioc. We use these results in Sect. 5
to construct eigenvectors of Gaudin's hamiltonians and to compute their eigenval-
ues. In Sect. 6 we derive Schechtman-Varchenko solutions of the KZ equation,
using Wakimoto modules. We show that the rational function entering a solution
coincides with the formula for an eigenvector. In the Appendix we prove some
technical results concerning Wakimoto modules, which are used in the main text.

2. Gaudin's Model

Let g be a simple Lie algebra over (C of rank / and dimension d, and let t/(g) be
its universal enveloping algebra. For a dominant integral weight λ denote by Vχ the
irreducible representation of g of highest weight λ. Denote by { , ) the invariant
scalar product on g, normalized as in [6]. Let Ia,a = l,...,d be a root basis of
g and Ia be the dual basis. Denote by A the quadratic Casimir operator from the
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center of

The operator Δ acts on Vχ by multiplication by a number, which we will denote
by Δ(λ).

Now fix a positive integer N and a set (λ) := (λi, . . . , λ#) of dominant highest
weights. Denote by V(λ) the tensor product Vχλ 0 0 F^.

Let W , Z I , . . . , Z Λ Γ be a set of distinct complex numbers. Introduce linear operator
S(u), which we will call the Gaudin hamiltonian, on FQ) by the formula

where Ξ, is given by formula (1.1).
One can check directly [1, 3] that the operators Sι,...,S# commute with each

other. Therefore the operators S(u) commute with each other for different values of
u. (In the next section we will give a new proof of this fact.)

One of the main problems in Gaudin's model is to diagonalize operators S(u).
This is equivalent to simultaneous diagonalization of the operators Si,...,S#.

For g = s!2 eigenvectors are constructed by algebraic Bethe ansatz method
[1, 2, 20].

Denote by vχ the highest weight vector of the module Vχ. The tensor product
of the highest weight vectors

is an eigenvector of the operators 2, . Indeed, if Ia and Ia are not elements of the

Cartan subalgebra of cj, then the operator I^P^ acts by 0 on |0). If they are, then
this operator multiplies |0) by a certain number.

Therefore |0) is an eigenvector of S(u).
The idea of the Bethe ansatz method is to produce new eigenvectors by applying

certain elementary operators to the "vacuum" |0).
Let {E,H,F} be the standard basis of s!2. Introduce operators F(w) on the

space K(λ) by the formula
N (i)

, (2-2)

where F^ is the operator, which acts as the generator F of s!2 on the rth factor of
V(λ) and as the identify on all other factors. Here w is a complex number, which
is not equal to z\9 . . . ,z# .

Now consider Bet he's vector

...F(wm)|0) (2.3)

in V(λ).
Explicit computation [1] shows that

1, . . . ,W W ) = Sm(u)\Wι,...,Wm)
m f

+ ]Γ — |wι,...,w /_ι,w,w / +ι,...,wm) , (2.4)
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where sm(u) is a function in u, and

N J . 9
/• = Σ - v

3 - - '

If all //s vanish, then |wι,...,ww) is an eigenvector of S(ιι). The corresponding
equations

are called Bethe ansatz equations.
The eigenvalue of S(u) on the vector \w\,...,wm) is given by

sm(u) = ^Xm(u)2 - -8uχm(u), (2.6)

where
N 1. m 7

1=Σ^-Σ;rV (2 7)
/=1 W — Wj

There are several approaches to constructing eigenvectors of Gaudin 's hamilto-
nians for general g.

One can construct eigenvectors by choosing a sequence of embeddings of Lie
algebras of lower rank into g and inductively solving the diagonalization problems
for these subalgebras [15, 16, 3]. This leads to a rather complicated combinatorial
algorithm, which very much depends on the type of g.

Another method was proposed by Babujian and Flume in [37]. The eigenvectors
should be constructed by applying to the vacuum |0), the operators

However, since such operators no longer commute with each other, one should also
add some extra terms, which account for the commutators. The right formula can be
extracted from solutions of the KZ equation [30, 31] (and in fact can be obtained
as quasi-classical asymptotics of such solutions [39]):

Here the summation is taken over all ordered partitions 71 U I2 U . . . U IN of the set
{!,..., m}, where P — { i j

l 9 i j

2 , . . . 9 i j

a j } . Note that one can consider vector (2.8) as
an element of the tensor product of Verma modules Mχλ <8> ® MχN with arbitrary
highest weights λ\9 . . . , /W

It was claimed in [37] that the vector \wl{ , . . . ,w1™} satisfies an analogue of
Eq. (2.4). Namely,

(2.9)
7=1 u WJ
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where ^lv..,ίw(w) is a rational function in w,

and Xj is a certain vector in V^. Thus, if the equations fj = 0 are satisfied for all

j = l , . . . ,m, then vector IwΊ1,...,^) is an eigenvector of Gaudin's hamiltonians.

It is natural to call these equations Bethe equations and the vector \ w l f 9 . . . 9 w % ) a
Bethe vector.

The direct proof of formula (2.9) seems rather complicated, and it is not clear
how to generalize it to higher Gaudin's hamiltonians, which we introduce in the
next section.

In this work we propose an alternative approach to the diagonalization of
Gaudin's hamiltonians, which is based on a concept of invariant functionals (cor-
relation functions) on tensor products of representations of affine algebras at the
critical level.

In the next section we will interpret Gaudin's model in terms of such functionals.
We will show that Gaudin's hamiltonians, are members of a family of commuting
linear operators on the invariant functionals, which come from singular vectors of
imaginary weight in the vacuum representation of g at the critical level.

In Sect. 5 we will construct eigenvectors of Gaudin's hamiltonians by restrict-
ing certain invariant functionals on tensor products of Wakimoto modules. This
construction will allow us to prove that if Bethe equations are satisfied, then vec-
tor m1,...,!^) is an eigenvector of the operators S(u) and their generalizations,
defined in the next section. We will also compute the eigenvalues of these opera-
tors. This construction will then be used in Sect. 6 to give an explanation of the
appearance of Bethe vectors in solutions of the KZ equation.

3. Correlation Functions

Let g be the affine algebra, corresponding to g. It is the extension of the Lie
algebra g ® C((0) by one-dimensional center OΓ. Denote by g+ the Lie subalgebra
9 0 <C[[/]] Θ &K of 9. For any finite-dimensional representation Vχ of 9 denote by
Vχ the representation of g+, on which 9 ® /C[[/]] acts trivially and K acts by
multiplication by k G C. Denote by Ψ^ the induced representation of 9 of level k\

Consider the projective line CF1 with a global coordinate t and N distinct fi-
nite points Z I , . . . , Z Λ / G CP1. In the neighbourhood of each point z/ we have the
local coordinate t — z, . Denote 9(z/) = g®(C((f — z/)). Let g^ be the extension

of the Lie algebra φ/=1 Q(ZΪ) by one-dimensional center OT, such that its re-
striction to any summand g(z/) coincides with the standard extension. For f —

( f ι ( t -Zi ),..., fN(t-zN)) and g - (gγ(t - zl ),..., gN(t - ZN)) from φ^ g(zf)
the cocycle ω ,̂ defining this central extension, is given by



Gaudin Model, Bethe Ansatz and Critical Level 33

where f . stands for the integral over a small contour around the point z/.

The Lie algebra g^ naturally acts on the tensor product V* ^ =^k

λ ® ® V* ,
in particular, K acts by multiplication by k. We will say that we have assigned
modules Wk

λ ,..., Wk

λ to the points z\,..., ZN .
Let gz := QZ},...,ZN be the Lie algebra of g-valued regular functions on

<CS*l\{zι9...9ZN} (i.e. rational functions on (DIP1, which may have poles only at
the points zι,...,z#), which vanish at infinity. Clearly, such a function can be ex-
panded into a Laurent power series in the local coordinate t — z, at each point z{.
This gives an element of g(z, ). Thus, we obtain an embedding of gz into the di-
rect sum 0 !̂ Q(ZΪ). The restriction of the central extension to the image of this
embedding is trivial. Indeed, according to formula (3.1), this restriction is given
by the sum of all residues of a certain one-form on CP1 hence it should vanish.
Therefore we can lift the embedding gz —> 0jlt g(z, ) to an embedding gz —> g^.

Denote by H* ^ the space of linear functional on V^)? which are invariant
with respect to the action of the Lie algebra gz. Such a functional is a linear map
μ : V(.) —> (C, which satisfies

By construction, we have a canonical embedding of a finite-dimensional repre-
sentation Vχ into the module VJ:

which commutes with the action of g on both spaces (recall that g is embed-
ded into g as the constant subalgebra). Thus we have an embedding of V^ =

Vχ} ® * ® VλN into ^(λ\ We will keep the same notation V^ for the image of
this embedding.

The restriction of any invariant functional μ G H^ to the subspace V(λ) C Ψ^

defines a linear functional on F(A). Thus we obtain a map εh

N : H^ —> V*^.

Lemma 1. The map s^ : Hfa —>• V*^ is an isomorphism.

Proof. Denote g+(z/) := g 0 CC[[/ — z/]] C g(zί). We have a direct sum decomposi-
tion

N / N

Indeed, for g ( t ) € g 0 C((0) denote by g+(ί) and 0 (f) its regular and singular
parts, respectively. Any element f = ( f \ ( t - z\),..., /jsr(ί — ̂ )) of 0/=1§(z/) can
be uniquely represented as the sum of

/"=Σ/Γ(ί-^)€f lz
/=!

(recall that by definition, elements of gz must vanish at infinity) and
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where (/-)/(* -z, ) denotes the regular part of the expansion of the function
/- at z, .

The g^-module Y^A) is induced from the module K(A) over φJ^g+foOθOΓ,

on which ($=l(t - zfi g+(z, ) acts trivially and ̂  acts by multiplication by k.
Therefore, as a gz-module, V^ is isomoφhic to the free module generated by

K(A). Hence the space of gz-invariant functionals on Yf ^ is isomoφhic to F/*v

D

Lemma 1 shows that an invariant functional is uniquely defined by its restric-
tion to the subspace FQ) C YQ^. Thus, for any η e V^ there exists a gz-in variant

functional ή := (ε^)~lη : Y/ .^ — > C, such that the restriction of 77 to F(A) C Y Q Λ
coincides with η.

Consider the Lie algebra g^ = 9z θ 9 C g^. where g is the constant diagonal
subalgebra of g^. Note that g does not lie in gz, because by definition elements of
gz must vanish at infinity. One can consider the space of g^-invariant functionals on
Y* ). This space is isomoφhic to the space of g-invariants of V*γ In conformal field

theory a g^-invariant functional μ on V^ is called a correlation function (more
precisely, conformal block), and the equation (3.2) is called Ward's identity.

Remark. L Sometimes it is convenient to consider instead of the space of gz-
invariant functionals on V^, the space of coinvariants of Y^ with respect to
gz. These spaces are dual to each other. For a detailed study of the functor of
coinvariants, cf. [25]. D

Let M be a g-module, and let M* be the restricted dual linear space to M. We
can define a structure of g-module on M* as follows:

[0 f}(m) = /«#) Y), / G M * , < / E g , m e M , (3.3)

where i stands for the Cartan anti-involution on g. It is defined on the generators
of g as follows:

This gives a structure of g-module on M*, which is called contragradient to M. It
is known that if the module M belongs to the category & of g-modules, so does
M*. In particular, the module contragradient to an irreducible representation Vχ with
highest weight λ is isomoφhic to itself. Hence as a contragradient module, V* ^ is

isomoφhic to FQ). Therefore H^ ~ V(λ).

Let VQ be the representation of g, which corresponds to the one-dimensional
trivial g-module FQ. We will call it the vacuum module. Denote by VQ the generating
vector of Vj. We assign the vacuum module to a finite point u e CF1, which is
different from zι,...,z#. Denote by #μ0) the space of gz>M -invariant functionals on

V* j ® YQ with respect to the Lie algebra gz>M. Lemma 1 tells us that # 0̂) — ̂ )

Let X be a vector in VQ. For any η € V*.^ consider the corresponding gZjW-

invariant functional ή G #μ>0)
 Its restriction ή( ,X} to the subspace Vλ ®X C

V^0) defines another linear functional, r\'( ), on F(A). Thus, we obtain a linear
operator depending on u,X(u) : V*^ —* F(* )? which sends η to η f . Since V*^ c± F(λ),
we can consider X(u) as an operator acting on F(A).
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For A e g and m 6 Z, denote by A(m) the element A ® ίw G g. Now introduce
the following vector in Vj.

(3.4)

This vector defines a linear operator

S(u): Vω -> Vω .

Proposition 1. The operator S(u) coincides with the Gaudin hamiltonίan.

Proof. For any A G g consider the element

A

(t-u]

The expansion of g at z, is equal to

A

Therefore the action of g on the /th factor of the tensor product V^0) is given by

Thus from (3.2) we obtain for any Y e Ί

j g/i—l / N oo
(3.5)

This identity allows to "swap" the operator A(—n) from the module, assigned to
the point u, to the modules, assigned to the points zι,...,z#.

Put n = 1 in (3.5). Since any element of g <8> (t — Zi)<C[[t — z/]] acts trivially on
the subspace V^ of V^ )5 we obtain for any ω G V(λy.

ι =ι
(3.6)

Applying this identity twice to the element S G Vj, we obtain:

ή(ω,S) = ή -ΣΣ
7fl(0

^

U I ^J

Σ-^
2 ί = ι f l = ιM-2, _/ = l a =ι M - Z /

Σ
/=! a=ι M - Z/ /=1 —i U - Zi

(ω),
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by formula (3.3), Hence

N d

~V~' 2,tί£ί («-Z;)2 £}£ («-Z /X«-Zy)

But this coincides with formula (2.1), because

1 1

(U - Zi)(u - Zj) Zi - Zj \U -Zi U-

We can now prove that the operators S(u) commute for different values of u.
In fact, we will prove a more general result.

Let us specialize to the value k = — /zv, where /*v is the dual Coxeter number.
This value of level is called critical. For simplicity in what follows we will omit

, v
the superscript k, when k — — /zv . Thus, we will write ¥0 instead of Y^ , etc.

This value is special, because it is only at the critical level that S € VQ *s

a singular vector of imaginary weight. This means that A X = 0 for any A e

Proposition 2. Let Z\ and Z2 be singular vectors of imaginary weight in V0 Then
for any pair of complex numbers u and υ the corresponding linear operators Z\(u)
and Z2(v) on FQ) commute. In particular, for Gaudirfs hamiltonians we have:

[S(u),S(υ)] = 0.

Proof Consider a generalization of the previous construction, with two auxiliary
points, u and v. We can assign to each of these points the module V0 The space
#(Λ,o,o) is again isomorphic to FQ). Therefore we can define an action of a pair of
elements, X\9X2 G V0, on F(A). Namely, for any η G F(A) we consider the cor-
responding gz wι; -in variant functional ή E #(>ι,o,o) Its restriction ή( ,X\,X-^) to the
subspace F(λ) <8>Zι <S)X2 C Vμ^o) defines another linear functional, η'( ), on F(A).
Thus, we obtain a linear operator depending on u and υ, (X\9X2)(u,υ) : Vfo — > F(*)?

which sends η to η'.
We will show now that if X\ and X2 are singular vectors of imaginary weight,

then (Xι,X2)(u9Ό)=Xι(u)X2(v) and (Xl9X2)(u9v)=X2(Ό)Xι(u). This will prove

Indeed, X\ can be written as a linear combination of monomials A\(— n\)...
Am(-nm)vQ, where Aj G g,wy > 0. We can apply Ward's identity (3.5) to each
summand and inductively "swap" operators AJ(-ΠJ) to the modules assigned to the
points zi, . . . ,ZΛΓ and v. This amounts to acting on them by

ί (zt - υγj (nj - 1)! dunJ~l (u - υ

But the last term of such a sum vanishes if we apply it to X2, by definition
of singular vector of imaginary weight. Therefore this only affects the modules at
the points z/, just as if we had VQ at the point υ instead of X2. After that we can
"swap" X2.

We obtain:
= [Xι(u)X2(υ)
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Hence (X\, X2}(u,v) = Xι(u]X2(v). In the same way we can show that
(Xι9X2)(u9υ) — X2(v)X\(u\ and the proposition follows. D

A description of the space &(§) of singular vectors of imaginary weight in V0

is known [11, 10]. It is related to the structure of the center of the local completion
ί/_Av(g)ιoc of the universal enveloping algebra of g at the critical level [11, 10].
Let us recall this description.

Recall that as a module over g_ = g <8> /~1C[ί~1],V0 is isomorphic to its uni-
versal enveloping algebra t/(g_). Introduce a ^-grading on t/(g_) and on V0

by putting deg^(w) = —m9 degi o = 0. There is an operator of derivative d = L-\
of degree 1 on the module ¥0 and hence on t/(g_), such that [d,A(m)] —
—mA(m — 1), and d VQ = 0.

Denote by d\9...9d\ the exponents of g.

Proposition 3. The space ^(g) of singular vectors of imaginary weight of WQ
coincides with the polynomial algebra in dnSiJ — l , . . . , / , w ^ 0 (applied to vector
t>o), where S/,z — I , . . . , / , are mutually commuting elements of £/(g_) of degrees
<// + ! ,/= I , . . . , / .

A more precise description of the center will be given in the next section. Note
that Si is equal to S.

Proposition 3 and Proposition 2 show that S\(u)9 . . . ,S/(w) constitute a family of
mutually commuting linear operators on the space F^). We call S/(w),/ > 1, higher
Gaudin's hamiltonians. It would be interesting to find explicit formulas for them.

Remark. 2. For Z e &(Q) denote Ξf(Z} = Resw==z/(w -zi)
mZ(u). These operators

generalize the operators Ξt = Ξ?(S), given by (1.1). They all mutually commute.
Alternatively these operators can be defined as follows.

Since ΨQ is a vertex algebra [48], we can associate a local current X(z) to any
X € VQ Denote by X-m-\ the (-m - l)st Fourier component of this current. This
is a central element of C/_/^v(g)ioc [10]. Therefore it acts on the zth component of
the tensor product Ψ^ ® ® V^ . The dual operator gives rise to an operator
on the space of gz-invariant functionals, H(λ) ~ F(A). Using the generalized Ward
identity from Sect. 5, we can show that the corresponding operator on F(A) coincides
with £f(Z). D

Note that we can define the space of gz-invariant functionals in a more general
situation. To any g-module M we can associate the induced g-module of level k,

Fix N representations M\9...9Mχ of g, and let Mι,...,M# be the induced g-
modules. We can define the space of gz-invariant functionals on the tensor product
MI (g) (g) MAT. This space is isomorphic to M* 0 (S) M^9 where M* denotes
the module contragradient to M/. In the same way as above we can associate to a
singular vector of imaginary weight Z G Vo> a family of commuting linear operators
on this space.

It is clear from construction that the operators Z(u) can be viewed as elements of
the Nth tensor power t/(g)®^ of the universal enveloping algebra of g, depending
on Z I , . . . , Z Λ Γ , and u. Therefore they automatically act on any TV-fold tensor product
of g-modules.

Denote by Mχ the Verma module over with highest weight λ G ϊ)* over g, and
by Mχ the contragradient module.
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From now on we will choose as our modules, M*. with arbitrary λ, G ϊ)*,z =
I, . . . , / . Then the space of gz-in variant functional is isomorphic to the tensor pro-
duct of Verma modules, (£)N

i=lMχr

If Vs are integral dominant weights, then there is a surjective gθ7V-

homomoφhism ®jLι Aft/ -»<8d Pi,- The operators Z(w),Z e <2f(g), act on both
spaces and commute with this homomorphism. Thus, the projection of any eigen-

vector of Z(u) from ®ί=1 Mχ. on ®jLι Vλt is again an eigenvector.
Our construction of eigenvectors of Gaudin's hamiltonians in the tensor product

Mχλ <8> 0 MχN will be based on Wakimoto modules.

4. Wakimoto Modules at the Critical Level

In this section we briefly describe important facts about Wakimoto modules [17,
18, 40] (cf. also [41]).

Let us first introduce the Heisenberg Lie algebra Γ(g). It has generators
αα(w),fl*(m),m G Z,α G Δ+, where Δ+ is the set of positive roots of g, and central
element 1. They satisfy the relations:

[aΛ(n),a*β(my\ = 6^n-ml9 [au(n\aft(m)] = 0, [α*(n),αj(w)] = 0 .

Now let M be the irreducible representation of Γ(g), which is generated from the
vacuum vector v, satisfying

aΛ(m)v = 0, m ^ 0, a*(m)υ = 0, m > 0 , (4.1)

for all α G /d+, and li? = u.
Let rjί be the commutative Lie algebra ί) 0 C((z)). It contains elements A, (w) =

.̂ ̂ tn,i — \,...J,n ^ΊL. Any one-form χ(z)dz G ί)* <g) C((z))rfz defines a one-
dimensional representation σχ(Γ) of ί):

where the integral is taken around the origin.
Wakimoto modules constitute a family of representations of the affine algebra g

of the critical level on the space M 0 0χ(z)
In order to define these representations, we should construct a homomorphism

p from g to the local completion of £/ι(Γ(g))(8> £/(fjί). Here t/ι(Γ(g)) stands for
the Heisenberg algebra, which is the quotient of the universal enveloping algebra
of Γ(g) by the ideal generated by (1 — 1). We recall the construction of the homo-
morphism p.

First we have to choose coordinates on the big cell U of the flag manifold
£_\G of g. This big cell is isomorphic to the nilpotent subgroup 7V+ of the Lie
group G of g. Since N+ is isomorphic to its Lie algebra n+ via the exponential
map, U is isomorphic to a linear space with coordinates xα,α G Δ+. We assign to
the coordinate xα the degree α. The right action of G on the flag manifold gives
an embedding of the Lie algebra g into the Lie algebra of vector fields on U. This
embedding can be lifted to a family of embeddings into the Lie algebra of the first
order differential operators, depending on χ € ί)*. Denote these embeddings by pχ.
Explicitly, we have for the generators £/,///, F, , i = 1, . . . , / , of g:
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where P« is a certain polynomial in ;cα of degree β — α, ;

βχ(Hi) = — Σ β(Hΐ)xβ^—

and

where £% is a certain polynomial in xα of degree /? -f α/.

The homomorphism pχ defines a structure of g-module on the space of algebraic
functions on the big cell, <C[xα]αeJ+ This module is isomorphic to the module M*9

which is contragradient to the Verma module over 9 of highest weight χ.
We also have another map from the Lie algebra n+ to the Lie algebra of vector

fields on U ~ 7V+, which comes from the left infinitesimal action of n+ on its Lie
group. The zth generator of n+ maps to the vector field

where Rln is a certain polynomial in xα of degree j8 — α, . These operators generate

another action of n+, which commutes with the action of n+, defined by p .
Now we can construct the homomoφhism p. Introduce the notation

and

We put

Σ

where c, is a constant. Here Plo(z) and Qlo(z) stand for the expressions, which are

obtained from the polynomials P« and £Λ by inserting a*(z) instead of xΛ9 and dots

denote normal ordering.
We also define operators G, (w),z = !,...,/,« G Z, by the generating functions

: . (4.2)

Theorem 1. TTzere exwί ^wcA c/ /# the formula for p[Fi(z)]9i = I , . . . ,/,
mα/> p defines a homomorphism from the Lie algebra cj to fλe focα/ completion

of t/ι(Γ(g)) <g) t/(^ι), wA/cA sends the central element K € g to — Av.
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This was proved in [17] for g = s!2 and in [18, 40] in general.

Example. We will write down the precise formulas in the case g = s!2 [17]. We
will omit the unnecessary subscripts. We have:

p[E(z)] = a(z) ,

p[H(z)] = -2 : α(z)α*(z) : +λ(z) ,

p[F(z)] = - : α(z)α*(z)α*(z) : +A(z)α*(z) - 2dzα*(z) ,

and
G(z) = -φ) .

For explicit formulas in the case g = sln, cf. [18]. D

For any χ(z)dz G ϊ)* ® C((z))dz, we can consider representation M <8> σχ(z) of

Γ(§)) Θ ϊ). According to Theorem 1, the homomorphism p defines on M ® σχ(z) a
structure of g-module of the critical level, which we denote by Wχ(Z). We call this
module Wakίmoto module with highest weight χ(z).

Remark. 3. The modules, which were originally constructed in [17, 18], only de-
pended on χ G ί)* ~ ί)* dz/z. However, the generalization of that construction to
arbitrary χ(z) is straightforward. D

Remark. 4. The Laurent power series χ(z) should be considered as an element of
the space of — A v -connections on a principal //v-bundle on the (formal) punctured
disc, where Hv is a Lie group of I)*. Locally such a connection can be written
as a first order differential operator —hvdz + χ(z)c/z, where χ(z) is an element of
ί)* ® C((z))rfz. We can view such a connection as a linear functional on ί), which
is equal to — λv on the central element. Here t) is the Heisenberg Lie algebra, which
is the central extension of the Lie algebra of gauge transformations of this bundle.

The space of connections is a torsor over the space of one-forms I)* 0 <C((z))c/z.
If we trivialize the bundle, we can identify this torsor with the space of
one-forms. D

The following result, which is proved in the appendix, will be important in the
next section. Recall that vector x is singular of imaginary weight, if g x = 0, Mg G
of <8><C[[f]:

Lemma 2. Let μ(z) be a highest weight of the form

The vector Gi(—l)v G Wμ^ is a singular vector of imaginary weight, if and only

We can also define another representation of g at the critical level. Let π0 ̂
<C[Λ, (/ι)],z' = I , . . . , / ,Λ > 0, be the ί)-module, on which hi(n\n ^ 0, act by 0 and
A/(Λ), n < 0 act as on the free module with one generator. Then M 0 π0 is a g-
module via the homomorphism p. We denote this module by W0.

One can check directly that the generating vector ΰ = v ® 1 of W0 is annihilated
by A(m\A G g,m ^ 0. Therefore the map p defines a homomorphism p : V0 — »
W0, which sends ι?0 G VQ to # G W0. One can show that p is a embedding. Under
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this homomorphism all singular vectors of imaginary weight from V0 get mapped
into the subspace of W0, which consists of elements of the form v®x, where v is
the vacuum vector of M and x £ π0. We will denote this subspace also by π0 [10].
Thus, we obtain an injective map p% : &(Q) — > πo.

In [10, 11] the image of this map was described. Let us recall this description.
We can consider the algebra πo as the algebra of differential polynomials. The

action of derivative d on π0 is defined by its action on the generators: dhι(n) =
—nhi(n — 1 ), and by the Leibnitz rule. The action of d on <3Γ(g) and on πo commutes
with the map p%. Therefore the image of 2f(g) is a differential subalgebra of πo.

On the other hand, for any g one can define a remarkable differential subalgebra
W(Q) of π0 = πo(g), which consists of "densities" of the corresponding classical
Ί^-algebra, defined by the Drinfeld-Sokolov reduction [42, 43]. For the precise
definition we refer the reader to [44], Sect. 2.4. Here we will only say that i^(g)
can be characterized as the space of invariants of the nilpotent subalgebra n+ of g,
which acts on π0, and it can be considered as a classical limit of the vertex operator
algebra of the quantum 1^-algebra.

Now let gv be the Langlands dual Lie algebra of g. Recall that the Cartan matrix
of gv is the transpose of the Cartan matrix of g. Therefore there is an isomorphism
between the Cartan subalgebras of g and gv, which preserves the scalar products.
This induces an isomorphism between πo(g) and πo(gv). Therefore we can consider

as a differential subalgebra of π0(g).

Theorem 2. [10, 11] The image of $?(§) in πo(g) under the homomorphism
coincides with

Proposition 3 follows from this theorem, because it is known that l^(gv) is
a free commutative subalgebra of π0 generated by dnPι,i = l , . . . , / ,n ^ 0, where
degP/ = di + 1 [43, 44]. The generator P/ is the image of S{ G 3f(§) from Propo-
sition 3.

Example. If g = sI2, then π0 = <C[λ(w )]„<<). The image of ^(g) in π0 consists of
polynomials in dmP,m §: 0, where

This space coincides with ^(s!2), cf. [44], Sect. 2.1. D

The center 3(g) °f tne local completion ί/_/,v(g)ιoc of the universal envelop-
ing algebra of g at the critical level was described in [10]. It consists of "local
expressions" in S\,...,Sι, i.e. Fourier components of all differential polynomials in
S\(z\ . . . , Sv(z)3 where Si(z) is the local current associated to Si in the vertex algebra
V0 Therefore 3(g) is isomorphic to the classical ^-algebra, associated to g by
means of the Drinfeld-Sokolov reduction, cf. [10]. This 1^-algebra is the space of
local functionals on a certain hamiltonian space //(gv) [43].

Now consider the space 3F§ of all Fourier components of differential polynomials
in AI(Z ),..., A/(z), cf. [44]. It is isomorphic to the space of local functionals on
the space Γ(gv) of - h v -connections -hvdz + χ(z)dz [44]. The map p^ : 5T(g) -»

π0 gives us an embedding p^ : 3(g) -+ &o The corresponding map of "spectra"
?X9V) ~^ ̂ (9V) is nothing but the generalized Mi ura transformation [43].

Elements of 3(g) act on Wakimoto modules by multiplication by constants. One
can describe the map p^ in terms of Wakimoto modules as follows: for X G 3(g)>
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the value of p3(X) at -AV5Z + χ(z)dz is equal to the action of X on the Wakimoto
module J^χ(z). This shows that the map p3 is an affine analogue of the Harish-
Chandra homomorphism.

Recall that the Harish-Chandra homomorphism is a map from the center 3(θ)
of the universal enveloping algebra t/(g) of g to the algebra of polynomials on the
dual space t)* of the Cartan subalgebra I) of g. Any element of 3(g) acts on Verma
modules by multiplication by a constant. Harish-Chandra homomorphism maps a
central element X to the polynomial on f)*, whose value at χ is equal to the action
of X on Mχ.

Example. If g = sla, then 3(<ί) consists of all local expressions in the components
Sn of the current

It is therefore sufficient to describe the values of p on Sn. Denote

Then we have according to the previous example,

φ) = l-h(z? - ±dzh(z) .

Therefore the central element sn acts on the module Wχ(Z) by multiplication by

-

where we put χ(z) = Σm£%χ(m^z m l Π

In the next section we will use Wakimoto modules and the description of the
center to construct eigenvectors of the Gaudin hamiltonians and to compute their
spectrum.

5. Bethe Vectors From Wakimoto Modules

We will construct eigenvectors using invariant functionals on tensor products of
Wakimoto modules. We will restrict ourselves with modules W^z^ for which χ(z)
has the form

γ( — 1) OO

z n=Q

In other words, we consider only the modules associated to — Av-connections on
the formal disc, which are regular or have regular singularity at the origin. We will
call such highest weight χ(z) regular.

Slightly abusing notation we will write χ instead of χ(-1) = Resz=0χ(^)
Let us recall the geometric construction of the Heisenberg algebra Γ := Γ(g),

cf., e.g., [45]. Consider the spaces J °̂ = U <g> <C((0) and J^1 = U ® €((t))dt of
functions and one-forms on the formal punctured disc with values in the linear space
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U with coordinates jα,α G Δ+. There is a natural non-degenerate pairing between
them:

( , ) : ̂  x &l -» € ,

which sends (f(t\g(t)dt) to (2πi)~l f ( f ( t ) 9 g ( t ) ) d t . Here ( , ) denotes the
scalar product on the linear space U, with respect to which jtα's are orthonormal.
To the scalar product ( , ) we can associate in the standard way a central exten-
sion of the commutative Lie algebra « °̂ 0 ̂ l. This is our Heisenberg Lie algebra
Γ. The generators aΛ(m)9a*(m) correspond to *α <g> tm G ̂  and jcα <8> ί"1"1^/ e J^1,
respectively.

Let x = jcι,...,x^ be a set of distinct points on the projective line. Consider
Wakimoto modules Wχi(Z) with regular highest weights χ, (z),z = I,...,/?.

Let us choose a global coordinate t on CF1 and the corresponding local co-
ordinates t - xi9 i = 1, . . . , p, at our points. Denote Γ(jc, ) = U ® C((ί - x, •)) Θ U ®
C((/ —Xi))dt. Let Γp be the central extension of the Lie algebra 0 t̂ ΛX) by a
one-dimensional center, which coincides with our standard central extension on each
of the summands. The Lie algebra Γ p acts on M®p in a natural way, in particular,
the central element 1 acts as the identity.

Consider the commutative Lie algebra J^x := J^x <8> &\, where (̂̂ D is the
space of {/-valued regular functions (one-forms) on (CFe\{xi, . . .9xp}> which vanish
(have regular singularity) at infinity. We have an embedding of J x̂ into φ^ Γ(jt, ),
obtained by expanding a function and a one-form at a given point. The restriction
of the central extension to the image of this embedding is trivial. Therefore we can
lift it to an embedding ^x — > Γp.

We also introduce the commutative Lie algebra ϊ)x of ί)-valued regular func-
tions on <CWl\{xι9...9xp}9 which vanish at infinity. We have an embedding l)x — »
Θtiι ^ ® <C((* - ^ )) Denote χ(z) - Xl(z), . . . , χp(z), where Λ(z) € ί)* 0 C((z»/z
and let σχ(Z) be the one-dimensional representation of φ^Li fyΦ^Xί* ""*/))> on
which ί)0C((f — Xj)) acts according to its character χ, (z). Thus, ί)x also acts on
σχ(^)

The Lie algebra 3fx := J x̂ Θ fyx acts on

Denote by Jχ(Z) the space of J fx-invariant linear functionals on this tensor product.

Proposition 4. Suppose that

/f χ, (ί — Xi) is the expansion of

P

= Σ:

αί the point xiy for all i =!,...,/?, ίAen ί//e j/7ί/c^ Jχ(2) w one-dimensional It is
generated by a functional, whose value on the tensor product of the vacuum vectors
of WXi(Z) is equal to 1.

Otherwise JZ — 0.
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Proof. The space Jχ(Z) is isomoφhic to the tensor product of the dual space of the
space of coin variants of M®p with respect to the action of 3F^ and the space of
^x-invariants of σχ(Z).

Since M is free over the Lie subalgebra of Γ, generated by αα(m),α E A+9

m < 0, and α*(w),α G Δ+,m ^ 0, we can use the same argument as in the proof
of Lemma 1. We conclude that the space of coinvariants of M®p with respect to
the action of IF* is one-dimensional and that the projection of the tensor product
of the vacuum vectors of M on this space is non-trivial. Therefore there exists an
J^x-mvariant functional on M®p, whose value on the tensor product of the vacuum
vectors is equal to 1.

Let f(t) be an element of ί)x. This is a meromorphic ί)-valued function on (CF1,
which may have singularities only at x/'s and which vanishes at infinity. It acts on
the one-dimensional module σχ(Z) by multiplication by

(5.1)

where f. stands for the integral over a small contour around xit This sum vanishes
for any /(ί) G ί)x, if and only if χ/(ί — j/) is the expansion of

at the point *,• for all i = 1,..., p.
To see this, suppose that (5.1) vanishes for f(t) = HJ/(t-xi)

n

ί with fixed
n > 0 and j = I , . . . , / (recall that Hj are basis elements of ί)). These conditions

uniquely determine the values y^~l\Hj] of χ ""0 € I)* (a coefficient in the expan-
sion of χ/(z)) on #/ in terms of the values of &,sφz, on Hj. But this means that

all χf\n ^ 0, can be uniquely determined from χs,s + i. On the other hand, if for
all i — 1,...,/?, ii(t — Xi) is the expansion of

at the point xh then the integral (5.1) automatically vanishes for an arbitrary
/(O £ f)x, because then it is equal to the sum of residues of a rational function on
(DIP1. Hence the vanishing conditions imply that for all i = 1,..., p, Xi(t - jc, ) is the
expansion of

/> Y.

at the point */.
Therefore the space of ^-invariants of σχ(Z) is non-zero, if and only if the

condition of the Proposition is satisfied. D

Now fix highest weights of g, λ\9..., λ#, and a set of simple roots of g, α, j , . . . ,
α lm. Consider the function
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Denote by λt(t — z/) the expansions of λ(t) at the points zi9i = 1,...,7V, and by
μj(t — Wy) the expansions of λ(t) at the points WjJ — l , . . . , / w . We have:

where

We put /> = N -h w, and denote j/ = z/, χ/(z) = A/(z), z — 1, . . . ,7V; XN+J — wy,
χN+j(z) = — μy (z),y — l , . . . ,m. According to Proposition 4, the space Jλ(z\μ(z} of

Jf z w -invariant functionals on the tensor product ®/Lι ,̂00 ®yLι ^μ/(z) *s one~
dimensional. It is generated by a functional T^, whose value on the tensor product
of the vacuum vectors is equal to 1 . This is a linear map

N m

-><£. (5.3)

We will obtain eigenvectors of the operators Z(w),Z e J?(g), by restricting the
functional τ^m to a certain subspace.

According to Lemma 2, the vectors Giy(-l)t; G Wμj(z^j — l , . . . ,m, are singular
of imaginary weight, if and only if the following system of equations is satisfied

^(A/,a/.) (α/,,α/) .
Σ - --Σ - -=0, y = l , . . . , m . (5.4)

- -

These are precisely the Bethe ansatz equations.
Denote by W^ the subspace of a Wakimoto module W^ ), which is generated

from the vector v by the operators α*(0),α e J+. This space is stable under the
action of the constant subalgebra g of g, and is isomorphic to the module M%
contragradient to the Verma module over g with highest weight λ — Resz=0^(^)
Indeed, only the Oth components αα(0) and α*(0) will contribute to the action

of g on Wfa). Our formulas show that if we restrict the homomorphism p to g
and replace α*(0) by xa and αα(0) by d/3xα, we will obtain the formulas for the

homomorphism ρλ, which defines on C[jα]α6^+ c± Wλ(z) & structure of g-module
isomorphic to M%.

The restriction of the homomorphism τ^m (5.3) to the subspace

®Wλi(z} 0 Gti(-l)O (8) - - ® GiM(-l)Ό (5.5)
ί=l

defines a linear functional

The g-module ®/=1 Mj" is graded by the weights of the Cartan subalgebra r^ of g, so
that all homogeneous components are finite-dimensional. We will show in the proof
of Lemma 3 that the functional ψ(w\l , . . . , w^1 ) vanishes on all homogeneous com-

ponents except the one of weight Σ/Li k — ΣyLi αι> Therefore it corresponds to a
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vector ^(wί1 , . . . , wj? ) in the tensor product of the Verma modules over g, (g)̂  Mλi,

of weight Σtι^/-Σ^ι^.
There is a differential algebra homomorphism rN>m from π0 to the algebra of

rational functions in u, having singularities at zι,...,z#,HΊ,...,wm, on which the
derivative acts as du. In order to define it we have to specify the values of this
homomorphism on the elements hs(—l) of π0. We put

->» = ̂ = -
This implies that

M i s~nk~l

rN,m(hSλ (m)... hSM(nM)} = ΓJ (_^ _ i)t fo-nt-iM")

Theorem 3. If Bethe ansatz equations (5.4) are satisfied, then vector φ(w\l, . . . , w^1)
w α# eigenvector of the operator Z(u) for any Z G <2?(g) wzϊ/z ί/ze eigenvalue

In order to prove the theorem, we will need some properties of the vertex
algebra W0, cf. [10, 11]. Each vector A G W0 defines a formal power series A(z\
whose coefficients are linear operators acting on representations of Γ(g) <8> ίj. We
call these formal power series local currents (note that they were called fields in
[10, 11]). They satisfy all axioms of vertex operator algebras [46, 47], except for
the existence of the Virasoro element; that is why we call W0 a vertex algebra.

The local current, corresponding to a monomial basis element A\(n\)...
Am(nm}v G W0, where A\ stands for a^a*, or A/, is given by

~—» —Ίf*^ - ' \ ^-nm-d(Am) A / _ \ .

(-nl-d(Al))\ (-nm

Here we put d(aoί) — d(hι) = l,J(α*) = 0. This current does not depend on the
order in which we apply normal ordering. In general one should use normal ordering
nested from right to left.

The space VQ is also a vertex algebra (but not a vertex operator algebra) [10,
48], and the homomorphism p defines an embedding of this vertex algebra into W0.

Let us assign representations Lt of Γ(g)Θt) to the points xi9i — 1,...,p, of
(CF1. Denote by J(L\,...,Lp) the space of J"fx-invariant functionals on φ^i^ί

Introduce a ^-grading d on W0 by putting d(aa(n)) = d(a*(n)) = d(ht(n)) =
—n. Let 7(z) be the local current corresponding to an element Y G W0 of degree
d(Y). We will identify the (1 - rf(7))-differential (/ - Xjγ-d(Y)+\dt\-d(Y) e ̂ t _

Xi))dtl~dm with the operator 7(«)(y) acting on the module ®zCι^/ Consider the

space 2F\^d^Ύ^ of regular (1 — d( 7) ̂ differentials on <dPl\{xι9...,xp}, which have
zero of order at least 2d(Y) — 1 at infinity. Any element ^(t) of this space can be
expanded in powers of t - jc, at each point #/. The corresponding formal power series
&W(t — Xi) can then be viewed as an infinite sum of operators Σw>_ί/(y)^m^(^)^)

on the space <3)Lι ί̂ Denote
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Proposition 5. For any τ G J(L{,...,LP),Y G W0, and X G (g)?=l Liy we have:
τ(<3t X} = 0 .

In the case when 7(z) is one of the elementary currents: αα(z),α*(z), or Λ/(z),
this follows from the definition of the space of invariant functionals. The general
result follows by induction on the power of 7. By linearity, it is sufficient to
prove the statement in the case when <3f(t) = (t -Xj)n+d(γ}-ldtl~d(γ\n ^ -rf(7).
Proposition 5 is equivalent in this case to the statement that

(5.7)

This is a generalization of the Ward identity (3.5). Note that this identity and
Proposition 5 hold for arbitrary vertex algebras.

Since each of the modules Lt is automatically a g-module, the Lie algebra gx,
which was introduced in Sect. 3, acts on the tensor product 0-Lι^/

Corollary 1. For any τ eJ(Lι,...,Lp),g G gx, and Xe®?=lLi9 we have:
τ(g - X} = 0.

Proof. We have to apply Proposition 5.7 in the case when 7(z) = p\A(z}},A G g.
D

Corollary 1 means that any Jf7

x -invariant functional is gx-invariant. This will allow
us to prove Theorem 3.

Proof of Theorem 3. Let λf(z) and μj(t) be the expansions of (5.2). We assign
the modules W^ to the points z, ,z = 1,...,7V, the modules Wμj(Z ) to the points

Wj,j •= l,...,m, and the module Wo to the point u of (DIP1.

The module Wo is free over the Lie subalgebra of Γ Θ ϊ), generated by
aa(m), α G J+, m < 0; a^(m\ oc G A+9 m ^ 0; Λ, (m), / = 1,..., /, m < 0. In the same
way as in the proof of Lemma 1, we can show that the space of J"f z>W)W-invariant
functionals is one-dimensional and is generated by a functional τ, whose value on
the tensor product of the vacuum vectors is equal to 1. It clearly has the property:

τ(X9ΰ) = τNjn(X) for any X G ̂ =l #%(*)®JLι Wμ.(Z), where v is the generating
vector of W0 and TΛΓW is the generator of the space J^(Z\μ(Z}, cf. (5.3).

Recall that we have an embedding p : V0 —> W0 of g-modules. Now let Z G
•2̂ (9) c vo and consider τ^,w(ω, Gi}(-1X..., G/w(-1 )r, p(Z)), where ω G

®/lι ^z(^) c ®/l=ι ί̂(^) Tnis is a linear functional of ω.
We can express this linear functional in two different ways. On the one hand,

we can represent Z as an element of t/(g_), i.e. in terms of p[A(m)],A G g,
m < 0. By Corollary 1 the functional τ is invariant with respect to the Lie alge-
bra gz,WjM. So, we can use formula (3.5) to "swap" Z. Since .̂(—1)1; G Wμ.(Z)J =
l , . . . ,m, are singular vectors of imaginary weight, A(m) G, .(—l)t; = 0 for any
m jg 0. Therefore the action of the corresponding elements of the Lie algebra gz>w>M

on these vectors is equal to 0. So, we obtain, in the same way as in the proof of
Proposition 2,

<0](ω). (5.8)
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On the other hand, we know that p(Z) lies in πo C W0. According to (5.7),

, Gh(- 1 K . . . , Gim(- 1 X hi(n)

By applying this formula several times to p(Z), we obtain

τN,m(ω,Gi}(-\)v,...,Gim(-l)v,p(Z)) = [r^p^(Z)]^(w^...,<)(ω) . (5.9)

From (5.8) and (5.9) we obtain

Z(u) - φ(^ί ,...,<) = [rN»pχ(Z)}φ(rf{ ,...,<),

and the theorem follows. D

Example. For the element S given by (3.4), we have

Here h*9...9h*9 is the basis of ί), which is dual to the basis hi,..., hi with respect
to the scalar product ( , ) on ί) ~ I)* and p e ϊ) is such that oc/(p) = (α/,α,)/2.
Therefore the eigenvalue of the element S(w) on the vector φ(wιl , . . . , wjj1) is equal
to

2

ΛΓ ^ m

For g = s!2 this formula coincides with (2.6). It was written in [20] (cf. for-
mula (1.24)). Using this formula we can find the eigenvalues s/Cw1/, . . . , wjj1) of the

operators Et given by (1.1) on the vector φ(w\l , . . . , wl™ ). Since Si =Resu=ZiS(u),
this eigenvalue is equal to Resw==z.^lv..5//M(t/). Thus, we obtain:

Lemma 3. The vector (^(wj1 , . . . , wjp ) coincides up to a sign with the Bethe vector

K,...,<) given by (2S).

Proof. We will find an explicit formula for

(5.11)

and compare it with formula (2.8) for \wlf , . . . 9w%) .
This computation is essentially equivalent to the computation of a bosonic corre-

lation function from [35]. For X e M* denote by Px the corresponding polynomial
in ;cα's. Let Pχ(z) be the local current, which is obtained from PX by replacing XΛ

with a*(z). In conformal field theory language,
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τNjn(Xl9...9XN9Gil(-l)Ό9...9Gim(-l)υ)9

where Xt G M*., is the bosonic βy correlation function

IN m
) - (5.12)

=ι 7=ι /

GP.
We will use the generalized Ward identity (5.7) in the case when ®/ — t _ ^ ,

where Gβ. is a root generator of the left nilpotent subalgebra n+ of g.
This identity reads

τN*(ω,Gβl(-l)v9...9Gβj(-l)υ9...9Gβm(-l)v)
j

βj+βsC r> o

s=l Wj — y J

(5.13)

where ω G 0/Lι ^%(z) — ®/lι ̂ £ anc^ c/ίy are ̂ e structure constants in the nilpo-
tent subalgebra n+ of g.

By successive use of this identity, we obtain:

for some ω' G ®ϋι ^Γ
Recall that there is a linear pairing ( , } : Mχ x Mχ* -> C, such that

(F/r,^) - (Y,EiX),i = I, . . . ,/, cf. (3.3). Denote by j : M; -> (C the pairing with
the highest weight vector jcχ of Mχ : j ( X ) — (xχ9X)>

When ^ = Λ*, the Ward identity (5.7) reads as follows:

tt, t;, . . . , t;) = 0, α G Δ+ .

Therefore

If ω is homogeneous of weight γ9 then ω7 is also homogeneous of weight y -f
£J=1 α/r But j(ωx) = 0, if the weight of ω' is not equal to Σf=l λt. Therefore

ψ(wl{9. . . , wj»)(ω) = 0, if the weight of ω is not equal to Σ^=l λ, - J^JLi α//
Following [35], we obtain by induction the following formula:

γ> -pr M "j

=(Il ,...,IN) j— 1 v /•( ϊ V ' " ̂  /i. -̂  ̂
1 2 «/

where we used (5.11) and notation from Sect. 2 (the notation Px is defined above
after (5.11)).
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But

(cf. Lemma 3.3 from [35]). Therefore we have:

ί{ ...EfJPXj)

On the other hand, the pairing of a monomial basis element Fi} . . . FijXχ and
X G M* is equal to

(Xλ,Eij...EllX)=j(Eij...EiίPx).

Thus, we see that the vector IwJ1,...,!^} 6 ^=lMχt given by (2.8) defines a

linear functional on (S^Mj*, which coincides with the functional (— l)"1^^1,...,

wj»). Therefore ^wj1,...,^) = (-1ΓK1, ...,<). D

There is an interesting "analytic" interpretation of Bethe ansatz equations (5.4).

Proposition 6. The Bethe ansatz equations (5.4) are satisfied if and only if for
any Z G ̂ (§) the eigenvalue [tNjnP%\(Z} of Z(ύ) on the vector φ(w^9...9 w^) is
non-singular at the points wi, . . . , wm.

Proof. Denote by t)/- the orthogonal complement to the one-dimensional subspace
of I) generated by /// G ί). Polynomials in hi(n\n < 0, form a subspace πo,/ of UQ.
Polynomials in h(n\h G ί)-1,^ < 0, form a subspace π^ of πo. We have: π0(g) =

π0,ί ® π ,̂
The space π0>ί is isomorphic to π0(sI2). Denote by Wi C πo,, the subspace cor-

responding to if(*\2) C πo(sl2).
Now fix y = l,. . .,m. The image of <2f(g) in πo is contained in the tensor

product π^ 0 a^ij [10]. Therefore p%(Z) can be decomposed as ΣmXmYm, where
χm £ πoli , γm € ̂ . Then we have:

because r^m is a ring homomorphism. From the definition of r^,m it is clear that
rN)m(Xm) is non-singular at u = Wj. We will show now that rN>m(Y} is non-singular
&tu = ~Wj for any Y G W^ if and only if the Bethe ansatz equation (5.4) is satisfied.

We know that ̂  . is the space of differential polynomials in

cf. Example after theorem 2. Since r^m is a homomorphism of differential algebras,
it is sufficient to check that ^m(P{7) is non-singular at u = wy, if and only if the
Bethe ansatz equation is satisfied. Applying formula (5.6) we obtain that
is equal to
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λi(Hίi} _ f ί^W V _
"2 tt «-z, ί M - w ΐ «-*/

The possible singular terms at w — vvy are

which vanishes because α/;(///;.) = 2, and

4 / " (Afrα,;,.) + „ («!„«(,

- u-ws

(note that λί/fy) = 2(λ,αI /.)/(α//,α;/.)). The latter is non-singular at u = wJ9 if and
only if the Bethe ansatz equation (5.4) is satisfied. D

Remark. 5. Proposition 6 can be considered as a guiding principle for finding eigen-
values of Gaudin's hamiltonians. This analytic Bethe ansatz has been successfully
applied to various models of statistical mechanics, cf, e.g., [49]. D

In conclusion of this section, let us remark that the Gaudin model can be gene-
ralized to an arbitrary Kac-Moody Lie algebra g associated to a symmetrizable
Cartan matrix.

Indeed, for such g we can choose the bases {Ia} and {/"}, which are orthogonal
to each other with respect to the invariant scalar product, cf. [6]. Then the operators
Ξi given by (1.1) will be well-defined on the N-fold tensor product of g-modules
from the category 0. For instance, we can take the tensor product of integrable
representations Vχλ ® - - (8) VχN, or Verma modules M^ <8> - (g) MχN.

Moreover, formula (2.8) for the Bethe vector and Bethe ansatz equations make
perfect sense in this general context. So does formula (5.10). This leads us to the
following conjecture.

Conjecture. For an arbitrary symmetrizable Kac-Moody algebra g, the vector
Iw^. . jW^ 1 ) G Mχv 0 ®MιN given by (2.8) is an eigenvector of the operators

8i,i= 19...,N, with the eigenvalues ^-(wj1 , . . . , w^1 ) given by (5.10), if the Bethe
ansatz equations (5.4) are satisfied.

This conjecture can be proved directly using methods of [31], Sect. 7.4-7.8
(note that the proof in [31] works for an arbitrary Kac-Moody algebra). One may
also hope to prove this conjecture by developing the theory of Wakimoto modules
for general Kac-Moody algebras.

6. Connection with KZ Equation

We fix A Φ -βv. Let ω := ω(zι,...,z#) be a function with values in Fω. The
KZ equation is the system of partial differential equations with regular singularities
on ω:

(* + λv)^=S, ω, i =!,...,#, (6.1)
OZ(

where ΞΪ is given by formula (1.1).
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This equation can be considered as the equation on the space //? )? which was
defined in Sect. 3 (for more details, cf. [25]).

Consider the local current S(z), corresponding to the element S of the vertex
operator algebra Vξ given by (3.4),

az) := (k + A

It is known that the operators Ln generate an action of the Virasoro algebra on any
representation of g of level k. They have the following commutation relations with
generators of g:

[Ln,A(m)] = -mA(n + m), A G g . (6.3)

Let CN be the space <C^ with coordinates zι,...,z# without the diagonals and
C'N be the space <CN x (CF1 with coordinates zι,...,z#,f without the diagonals.
Denote by 38 the algebra of regular functions on CN. Denote by J" the algebra of
regular functions on C'N, which vanish when t — oo.

Introduce the J^-modules Vj^z) = HomcίV^J^g^z) = g^ ®c #, and g£ =

g 0<c "̂ The Lie algebra g#(z) naturally acts on V^(z). The Lie algebra g£ em-
beds into g#(z) in the same way as the Lie algebra gz embeds into g^, cf. Sect. 3.
Hence, g£ acts on ¥^(z). The space of invariants of this action, //"^(z), is a

^-module. By Lemma 1, we can identify H^(τ) with Homc(^Q),^).
Since d/dz^ί = 1,...,7V, are derivations of J>, they act on the ^-modules

βjvίzλfli, and¥f*}(z).

Denote by L^\* the operator on V^(z), which acts as the operator dual to L-\
on the zth factor and as the identity on all other factors.

Lemma 4. The operators

acting on the space VQ\(Z), commute with each other and normalize the action

of the Lie algebra g£.

Proof. We have:

The first two terms in this commutator vanish, because the operators Z/l\* do not

depend on zy , and the last term vanishes, because the operators I_* and L^\* act

on different factors of VQJ(Z).
To prove the second statement, consider

A = f l ί , ^ e g . (6.4)

We have to show that the commutator of this element with V/, i — 1,..., N, is again
an element of g£. This will prove the lemma, because such elements generate g£.
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The action of the element (6.4) on ̂  ̂ (z) is given by

(cf. (3.5)). Straightforward computation using (6.3) gives:

dZi n> -I i, n+

Then for the dual operators, acting on Ψ**^(z), we obtain

" d r(0*
— -L^^A_dzt

and the lemma follows. D

Lemma 4 means that the operators V, define a flat connection on the trivial
bundle over CN with the fiber H^ c± V*λγ Recall that we consider on V*^ the
contragradient structure of g-module, with respect to which it is isomoφhic to FQ).

In order to find an explicit formula for this connection, consider for any η G V*^

the corresponding gz-invariant functional ή G H*.γ By definition, [L_* ή](co) =

n(L(-\ ' ω) for any ω G Fω C V^}.

Using the fact that A(n)(i} ε^(ω) = 0 for n > 0 we obtain

W -ω- 1 f
-i ω-k + K<hΛ^ \ - ω = Γ^Σ/α(-l)(0nθ)(0-

The Ward identity (3.5) gives:

Σ̂ Σ
y φ / f l = l

Thus, the action of V/ on the bundle of invariants is given by

1 dzt k + Av '

Therefore the flat sections of this bundle are solutions of the KZ equation (6.1).
Note that this construction can be carried out for arbitrary representations of g

instead of F^.'s. In particular, we can take the contragradient Verma modules M£,
with arbitrary highest weights λ/, i — l...9N. Then the flat sections of the bundle of
invariants will be solutions of the KZ equation with values in ®i=lM^. A similar
analysis of the KZ equation and its generalizations can be found in [26].

Schechtman and Varchenko [30, 31] have found integral solutions of the KZ
equation with values in ®/=1M^ and §Qi=lM%.
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We will now derive the first Schechtman-Varchenko solution using Wakimoto
modules of non-critical level. Essentially this has been done by Awata, Tsuchiya
and Yamada in [35]. This derivation provides a clear demonstration of how Bethe
vectors appear in solutions of the KZ equation.

The construction of the Wakimoto modules from the previous section can be
generalized to an arbitrary level k [17, 18]. Introduce the Heisenberg Lie alge-
bra f) with generators bi(n\ί = !,...,/,« G Z, and the central element 1, with the
commutation relations

[bi(n)9bj(my\ = (k + hv}n(HhHj)δn,-ml .

For χ e f)* denote by πχ the Fock representation of I), which is generated by the
operators bi(n\n < 0 from the vacuum vector vχ, which satisfies

bi(n)Όχ = 0, n > 0, bi(0)υχ = x(Ht)vx

for all i = 1, . . . , /, and lvχ — vχ.
We define a homomorphism pk from g to the local completion of t/ι(Γ)(8)

£/(!)) by replacing /^(z) with bi(z) in the formulas for the homomorphism p from
Sect. 4 and shifting by (k + /zv) the constant c, in the formula for p[F, (z)]. Under
the homomoφhism p^ the central element ^ e g maps to k [17, 18]. Denote the
corresponding representation of g in M ® πχ by TΓ^*.

Let Cp be the space <EP with coordinates x\9...9xp without the diagonals and Cf

p

be the space <CP x (DP1 with coordinates x\9...9xp9t without the diagonals. Denote
by si the algebra of regular functions on Cp. Denote by si1 the algebra of regular
functions on Cp9 which vanish when t = oo.

Put W*>k(\) - Honi(c((8)f=1 W^Λ^Γ/x) = Γp ®c ̂  and Jfx = (£/ ®

j/OΦ^Φ^'^OΦft®^')' The Lie algebra Γp(x) acts on W*k(\)ιJ«fx is a

Lie subalgebra of Γp(\)9 hence it also acts on W^k(\). Denote by Jp(x) the space
of invariants of this action. This space is a free module over j/, which is gener-
ated by the J f x-invariant ^-valued functional ϋp on 0^ Wχi,k> whose value on
yp :~ vx\ ® " ' ® ^xp is e^al to 1.

On the module W*fk(x), we have a natural action of the operators

In the same way as in the proof of Lemma 4 we can show that these operators
commute with each other and normalize the action of the Lie algebra ffl x. Thus,
these operators act on the space of invariants Jp(x).

In order to find an explicit formula for the action of the operators (6.5) on ΰp9

we have to compute the action of the operator L-\ on υχ G πχ C W^.
It is known [40] that the action of L_ι on π^ C W^ coincides with the action

of the operator

K + " «€Z r=l

where br(n) are the dual generators to br(—n):
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Applying this operator to υχ G π^ we obtain

By Ward identity (5.7),

lίv) - * (L(i) . v) - 0 -i-F f ^J v y j - tf/Λ^-i y) - Vp I r , T v 2-f 2^
/C -f- A2 φir=l

Consider the following system of equations:

J V^ \ Λ . l 5 / v J / r ( s Si\—— — — 2_^ / . w-6)

The unique up to a constant factor solution of this system is

Put τ*(x) = / ϋp. This is an J^x-invariant element of fF^x), which satis-

fies:

(6.7)

Now put p=N + m , X i = Z i 9 χ i = λi9i=l9...9N, and XN+J = wJ9

—oίij — I9...,m. Then we have:

> S , (6.8)
i<7

where

^ = Πte - w,)-w'^)/(*+*V) Π K - w,)(β*^)/(*+*V) .
*V ί<y

Denote by ̂  the subspace of ^ ,̂ which is generated from vector vχ by the

operators α*(0). As a module over the constant subalgebra g of 9, Wχ is isomoφhic
to M;, cf. Sect. 5.

The restriction of τ^m (z, w) to the subspace

defines a linear functional

ι=l

According to Lemma 3, this functional vanishes on all homogeneous components
except the one of weight Y^=l A/ - ΣJ=1 α/y.. Therefore it corresponds to a vector
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ι=l

of weight Σ*=l λi - Σ"=ι «ι> depending on z1,...,z j v,wι,...,wm.
Using the Ward identity (3.5) in the same way as in the proof of Proposition

3, we obtain:

by (6.8). Hence, by Lemma 3,

Φ*(z,wi',...,vC) - (-ir n> -z,)W/(*+*V)^,...,wSr> . (6.9)
*</'

Denote by Cw>2 the space (Cm with coordinates wι,...,ww without all diagonals
Wj = Wi and all hypeφlanes of the form wy = z/. The multi- valued function / defines
a one-dimensional local system 5? on the space Cm>z. It is clear that for fixed z the

value of τk

N^ (z, w) on any vector of the tensor product 0/Lι ^λt,k ®yLι ^-α/ ,*

is a product of £ and a rational function on Cw>z.
Denote by Ω(JS?) = φ.^0 Ωf(&) the twisted de Rham complex of <g. It consists

of differential forms on Cw>z with differential d' acting on a form ω by the formula

d' ω = d ω + d log ̂  .

It is therefore convenient to represent an element ω of the twisted de Rham complex
by a multivalued differential form / ω. The action of d' on ω coincides with the
action of d on ( ω.

If / is a holomorphic function on CWjZ, consider the m-form £fdw\ . . . dwm G
Ωm(J£). Since it is holomorphic, it defines an element of the mth cohomology group
Hm(Cm,τ, &) of the de Rham complex.

There is a natural pairing between this group and the mth homology group
Hm(CmyZ,£?*) of CW)Z with coefficients in the dual local system. This pairing is
given by integration over cycles:

ωxz!-»/ω, ω G Hm(Cm^ <g\ ΔzHm(Cm^<e*)
A

(about different choices of cycles and convergence of the corresponding integrals,
cf. [51]). This pairing has the following property for any differential form ω on
ĉ

m,z

fd Sω = 0, VA e #w(Cm,z, JT) . (6.10)
A

We can now reproduce the Schechtman-Varchenko integral formula.

Theorem 4. Let A be an m-dίmensional cycle on Cw?z with coefficients in the dual

local system &*. The $$=1M ̂ -valued function

//K\...,w^}^ ...dwm

ι<7 A
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where \wlf 9...9w%) is the Bethe vector, is a solution of the KZ equation.

Proof. To avoid confusion, we will denote by A(ZI} or A(WJ^ the operator, which acts

as A on the factor WλiJc or W-u..tk of the tensor product (g)̂  Wλ.tk <g)J=1 W-^,

and as the identity on all other factors.
From formula (6.7) we obtain:

By restricting this equation, we have:

—4>m(z, w)(ω, GJJ (-1 >_α / 1,..., Gim(-1 )v-Λim)

= 4^(7, wXL^ ω^^-l) .̂ ,...,0^-1)1;^), (6.11)

where ω G ®ι=ι^ί
Using the Ward identity, we can rewrite the right-hand side of Eq. (6.11) as

1 d 1V^ V^ ~k (Ύ ^.,\(T(zi)Ta(zj} ft / ι \ ft / ι \ \
, T y / v / ^ LN,m\£'>"'"a 2 ^j^iv 1/ι;—«;, > ? ^/nV" 1/ ί ;—α/w 7

1 d m oo 1

/"(«) G^-IK^,...^,^-!)^^). (6.12)

To compute the last term of this formula, we have to compute I"(n)
Gίs(-l>_αiί e W-^k forn ^ 0.

Lemma 5. For any a = l , . . . , d , and ί = 1, . . . , / ,

/"(«)• G,(- !)»_«, =0, n > l ,

α«ί/ ///ere exists such Ya G W-^ that

/ f l(l) Gί(-l)ι;-αί =(* + Av)7 f l, /fl(0) . G, (-l)ι;_αι - (A + hv}L.λYa .

This lemma will be proved in the Appendix. It gives for the sth summand of
the second term of formula (6.12):

τJUz,w)(έ#'>ω,^^ > (6 13)
\α=l s /

where
γs = a

a

According to (6.7), the action of L^* on τ^m(z,w) coincides with the action
of d/dws. Therefore we can replace Y% by
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g Ya

dws Zi — Wy

Then formula (6.13) can be rewritten as

For any z and ω, the term in brackets, K, is a product of the multivalued
function f and a rational function on Cw>z. Consider F Jwi . . . wm as an element of

. Then we have

- — V } dwi ...dwm = d(V dw\ ...rfw,...ί/ww) .
dws )

Therefore if A is an w-dimensional cycle on Cm>z with coefficients in JSf *, we have,
by formula (6.10):

A

Thus we see that the second term of formula (6.12) will disappear after integration
over A.

But the first term coincides with the action of the operator Ξιl(k -f hy ). So, we
obtain

}v- -

Hence, by (6.11),

>w(z, w)(ω, Gi, (- 1 )ι;_αzι , . . . , Gim(- 1 K^

for an arbitrary co G <S)/Lι ^Γ
The last formula can be rewritten as

(t + *v)^/y*(zχs...,Ή#^
•̂j j

Therefore we obtain

The theorem now follows from formula (6.9). D

Theorem 4 shows that Bethe vectors enter solutions of the KZ equation. This
has been observed in [36-39]. Wakimoto modules provide a tool for constructing
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eigenvectors in Gaudin's model and for solving the KZ equation, thus giving a
natural interpretation of this phenomenon.

7. Appendix

In this appendix we give the proof of Lemma 5 and Lemma 2, following [11],
Appendix B.

First we prove Lemma 5 in the case g = sl2. This is a direct computation, using
the explicit formulas for the homomorphism p (and hence pk} given in Sect. 4.

We have G(z) = — a(z) — —E(z). From the commutation relations of s!2 we
obtain

[£(/ι), G(-l)] = 0, [H(n\G(-l)] = 2G(n - 1) ,

[F(n\G(-l)]=H(n-l)-kδn)l.

Since

E(n)v-Λ = G(n)v-a - 0, n ̂  0, H(n)Ό-Λ = F(w)t>-a - 0, Λ > 0 ,

and //(0)ι>_α = — 2u_α, we conclude that

£(/ι) G(-l)iλ-« - H(ή) G(-l)t>-« - 0, i ^ 0 ,

and
F(/z) G(-l)υ_« = 0, n > I .

We also have:

and
F(0) G(-l)t>-« - G(-l)F(0)t;_α

= (2α(-lK(0) - 2α(-lK(0) -f ft(-l))t>_«

= -(fc + 2)L_ιi;_α .

This proves Lemma 5 in the case g = s!2.
Recall that in [40], Sect. 5.2, generalized Wakimoto modules over g, associated

to an arbitrary parabolic subalgebra of g, were defined. Denote by pl the parabolic
subalgebra of g, which is obtained by adjoining the generator F, of g to the Borel
subalgebra of g. Denote by s!2 the Lie subalgebra of g generated by Ei9Hi9 and
Ff. We have an orthogonal decomposition of p* into its semi-simple part $V2 and
abelian part ί)-1-.

Denote by F the Heisenberg Lie algebra with generators αα(w),α*(w),αφα/,Λ G
Z, and the same commutation relations as in Γ(g), cf. Sect. 4. Denote by Ml the
Fock representation of F, which is generated by a vacuum vector v9 satisfying
conditions (4.1).

The Wakimoto modules over g of level k associated to p' are realized in the
tensor product Ml 0 πl

χ (8) L. Here π^ is the Fock representation of the Heisenberg

Lie algebra associated to fyf- and L is a representation of s!2 of level k' such that

Remark. 6. We would like to take this opportunity to correct some errors in [40],
Sect. 5.2.
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First, in the exact sequences on p. 179 the module End^ should be replaced by
A°P

Second, in formula (4) on p. 180 one should take into account the difference
in normalization of the invariant scalar product ( , } for a Lie algebra and its
subalgebra. Let <5/ be the ratio between the scalar product on the Lie algebra g and

its Lie subalgebra g^ (we use the notation from [40]). Then formula (4) should
be rewritten as

kP+C^^δik'p.

Since k'p — k -f- cg, this gives the following condition on levels of representations

of g(p and g:

In particular, in our case p = p', so δ = 2/(α/,α, ), and we obtain formula
(7.1). D

Let us choose as L over slj,, the module Wy.^.^,y G <C. This is a module over
the Heisenberg algebra generated by a^(n\a^.(n\bi(n\n e 7L. It is clear that the
resulting module over g is isomorphic to the standard Wakimoto module Wy^^, on
which the operators G(n) act as — αα.(«). In other words, we choose such coordinates
;cα on the big cell U of the flag manifold of g in which G, = —d/dxχr In particular,
we see that the action of the operators £,-(«),//,•(«), and Fι(n) with n ^ 0 on the
subspace Wy.^kι C Wy.^k is the same as the action of the operators E(n),H(n\
and F(n) on the si 2 -module Wy.^kt.

Hence the action of the operators £/(w ),//,-(«), and Fi(n) on G/(— l)ι?_α/ coin-
cides with that in the case of s!2. Thus, we obtain:

Et(ή) - Gi(-l >-«, - Hi(ή) Gi(-l)v^ = 0, n ^ 0 ,

Ft(n) G/(-l)ι;_α, = 0, n > I ,

and

GK-l)^ = ---(k + hv)v^ , (7.2)

F,(0) G,.(-l>_α,. = --—.(k + Av)Z-iy-«, (7.3)
v^/j Mi)

Now consider the operators Ej(ή),Hj(ri), and Fy(/z) with j ή = ί . We first com-
pute the finite-dimensional commutation relations of the differential operators ρχ[Ej]9

pχ[Hj], and ρχ[Fj], with the vector field G, (cf. Sect. 4). These commutation rela-
tions read (cf, e.g., [50], Sect. 3):

Pχ[Ej], Gt] = 0, [pJHj], Gf] - ̂ (HjϊGi ,

and
\pJiF jlGΛ^^Hj^Gi.

Using these formulas, we can find the commutation relations of Ej(n\Hj(n),
Fj(n)J^i9 with G/(m), using the Wick theorem. Since G, (z) = -ααf(z), there can
be no "double contractions," and there is no contribution from the "coboundary
term" Cjda*.(z). Therefore this computation amounts to the computation of all
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"single contractions." But those are uniquely defined by the finite-dimensional com-
mutation relations above. So we obtain:

[Ej(n), G,(z)] = 0,

and
[Fj(n\ G,(z)] = z-ttu,(Hj) : <,.(z)G,.(z) : .

These formulas immediately give:

Ej(n) GK-lXc, = G,(-l)£»»_ai = 0, n ̂  0 ,

Hj(n) G,(-l)»-«, = G, ( -!)#/«>_«, + «ι(Hj)Gi(n - !)»_«, = 0 ,

Fj(n) G,(- !)!>_«, = GK-l^/ φ-c, + tt,(Hj) Σ <,(r)G, (s)ι>-αί = 0 .

The last two formulas clearly hold for n > 0, and also for n — 0, because
ί//(0)ϋ_α. - -αj(ίO)t?-αί and F, (0)ϋ_α. - -a^K/O)^.

We can compute the action of any other element of cj of the form Ia(n),
n ^ 0, on GI(— l)υ_α /, using its presentation as a commutator of £/(w)'s or F, (w)'s,
depending on whether 7α belongs to the upper or lower nilpotent subalgebra of g,
respectively (if Ia G t), then it is a linear combination of H^s and there is nothing
to prove). Clearly, in the first case we obtain 0. In the second case, we can realize
la(n) as a successive commutator of Eι(n\n ^ 0, and £}(0),jΦz. The statement of
Lemma 5 then follows from formulas (7.2), (7.3), and the relation [L_ι,^4(0)] = 0
for any A E cj.

Lemma 2 can be proved along the same lines. We find:

and
F/n) G/(-l)» = 0, n>Q, Fj(0) G,(-l)» = διjμ< °\Ht)v

for any y = 1, . . . , / and n ^ 0. Therefore G, ( — 1 ) is a singular vector of imaginary
degree, if and only if /x<°>(#,) = 2(^°>,α,)/(α/,αl ) = 0.
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