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Abstract: We lift the lattice of translations in the extended affine Weyl group to
a braid group action on the quantum affine algebra. This action fixes the Heisen-
berg subalgebra pointwise. Loop-like generators of the algebra are obtained which
satisfy the relations of DrinfeΓd's new realization. Coproduct formulas are given
and a PBW type basis is constructed.

0. Introduction

The purpose of this paper is to establish explicitly the isomorphism between the
quantum enveloping algebra Uq(§) of DrinfeΓd and Jimbo (g an untwisted affine
Kac-Moody algebra) and the "new realization" [D2] of DrinfeΓd. This is done
using the braid group action defined on Uq($) by Lusztig. In particular, we consider
a group of operators 0> arising from the lattice of translations in the extended affine
Weyl group.

DrinfeΓd found that the study of finite dimensional representations of Uq(q) is
made easier by the use of a "new realization" on a set of loop algebra-like
generators over C[[ft]]. He gives (the proof is unpublished) an isomorphism to the
usual presentation, although from his methods there is no explicit correspondence
between the two sets of generators. Here we find the new DrinfeΓd generators in
Uq(a) and prove a version of [D2] which sits inside the Lusztig form over
Q[#> 4 " 1 ] - We also give formulas for the coproduct of the DrinfeΓd generators.

The method is to show that Uq(§) contains n ( = rank g) "vertex" subalgebras Uh

each isomorphic to Uq(SV2)' Applying work of Damiani [Da], it follows that Uq(§)
contains a Heisenberg subalgebra which is pointwise fixed by the group of transla-
tions &. This subalgebra contains the purely imaginary DrinfeΓd generators. We
find the remaining generators as ^ translations of the usual DrinfeΓd-Jimbo
generators.

Having found expressions for imaginary root vectors in the usual presentation
of Uq(q), it is a straightforward application to define a basis of Poincare-
Birkhoff-Witt type (with the method of [L5]).
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1. Notation

1.1 We review the following standard notation (see [K]). Let {a^X ίje
/ = {0,...,«} bethe(rc-!-l)x(ft+l)Cartanrnatrixofgso t h a t ^ ), l^ίji^nisthe
Cartan matrix of the simple Lie algebra cj. Let ά{ be relatively prime positive
integers such that (^α^) is a symmetric matrix. Let P v be a lattice over TL with basis
ώt, l^i^n. Let α / = ^ " = 1 α ^ , l^j^n and let β v = £ . Z α y c P v . Then
P v , g v are called respectively the coweight and coroot lattices of g. Let

Define the root lattice g = H o m ( P v , Z ) with basis given by αt such that
<α i,ω/> = δ ij. For l ^ i ^ n define the reflection s, acting on P v by
si(x) = x — <αi5 x>αt

y . Additionally, sf acts on β by s£(y) = 3; — <3;, αt

y >α, for yeQ. Let
Wo be the subgroup of Aut(P v ) generated by s 1 ? . . . , sn. Let Π = {ocί, oc2,. . . , απ},
/ 7 v = { α i ,α2, . . ,o#}. Define the root system (resp. coroot system) R = W0Π
(resp. k v = WOΠV), then the correspondence α/^-^α^ extends to R<-+Rv and for

1.2 Using the Wo action on P v define W= Wo x P v , where the product is given
by (5, x)(5r, 3;) = (55', s/~1(x) + y). P v is characterized as the subgroup of W consist-
ing of elements with finitely many conjugates. For seW0 write s for (s, 0). Similarly
for xePv write x for (1, x).

Let θ be the highest root of R. Then writing s0 fc>r (^, β v ), the set {s0,. . . , sn}
generates a normal Coxeter subgroup W of W with defining relations determined
by (ttij). ^~ = W/W is a finite group in correspondence with a certain subgroup of
diagram automorphisms of the Dynkin diagram of g (see [B]). ?Γ acts on W by
TSfT"x = sτ(j), for τe^", 0 ^ i ̂  n. Forming f i x W w e have ^~ x W = W. The length
function of W extends to W by setting lw(τw) = lψ(w), for τe^", weW. The
semigroup P+ has the properties:

Extend Q to the aίfine root lattice Q = Zoto © Q and set δ = α0 + θ. Then W acts
as an aίfine transformation group on Q. In particular, for x e P v , l ^ j ^ n ,
x(α7 ) = ocj — <α7 , x>δ. Introduce the symmetric bilinear form ( | ): Q x Q->Z deter-
mined by (oci I aj) = didij.

Let qi = qdi. Introduce the g-integer notation in <C(g) by:

Qi~Cίi k=l

1.3 One defines the quantum affine algebra Uq(§) ( = U^ of Drinfeld and Jimbo
as an algebra over (C(g) on generators E ί ? F, (IG/), Kα (αeβ), C ± 1 / 2 , D^11 subject to
the following relations:

[Ka,D~\=ΰ, K0ίKβ = KOL+β, K0=l ,

C ± ! / 2 is central, ( ^ 1
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1 χ ' J ( - 1) S £P- α '~ s ) £ 7 £} s ) =0, f" (- l ) s FΓ" α ' J - s ) F^ s ) = 0 .
s=0 s=0

Here Ki = Ka. and I^ 5* = £>/[$],!. We have added the square root of the canonical
central element Kδ for later notational convenience.

Introduce the (C-algebra automorphism Φ, and anti-automorphism Ω of Uq,
defined by:

As usual let U* (resp. U~) denote the span of monomials in Et (resp. Ft) and
T the span of monomials in Kα, C 1 1 / 2 and D± x . Then t/e = U~ ® Γ ® U% [L, Ro].
ί/̂  is graded by Q+ in the usual way and £/^ = ®v(Uq )v, where v e β + . An element
xeί/^ is called homogeneous if xe(Uq )v for some v. In this case let [cf. L 1.1.1]
|x| = v. Note that |0 | = v for all v. For iel introduce the twisted derivations rh ^ of
Uq [cf. L 1.2.13] defined uniquely with the properties: r ί(l) = ίr(l) = 0,
^(£^ = ̂ (£,0 = ̂  and ir(xy) = ir(x)y + q^^xir(yl ri(xy) = q^^ri(x)y + xri(y)
for x, y homogeneous.

The Braid group M associated to W is the group on generators Tw(weW) with
the relation TWTW=TWW> if /(w) + /(w') = /(ww'). A reduced presentation of weW is
an expression w = τsI 1 . . .sίn, where /(w) = π, τe^~.

Recall that the braid group associated to W, whose canonical generators one
denotes by Ti = Ts., iel, acts as a group of automorphisms of the algebra Uq ([L]):

TiE^-FtKu TiE^fi-iγ-^qrE^^EjE^ if iφj,
s = O

r ; F ; = -K^E,, TtFj= f ' ( - l)s-a"q!F?)FjF{

i-
a>J~s) if i

Then ΩΓf = 7]ί2, and ΦΓ̂  = Tf1Φ. We extend this action to W by defining Γτ by
) = Eτ(ίhTτ(Fi) = FτiihTτ(Ki) = Kτ{ί). Write τ for Γτ. Denote by 9 the group

generated by the operators Γωv ( i ^ f ^ w ) and their inverses. From now on, for
notational convenience refer to ω t

y by ω t .

2. Some Background Material

2.1 We review the following method (cf. [DC-K, L4, L5]) of recovering the usual
affine algebra through specialization at 1. Let si be the ring (C[g, q~x] localized at
{q— 1). Let ί/af be the sύ subalgebra of UQ generated by the elements E ί 9 Fu K^1,
D±\ C±ι>\ and:

Ki-KΓ1 C-C1 D-D'1
n j — j ? (- _ i ? ^ _ i
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Us* includes the elements: [Ki\diή\=Hiqϊn + Ki\n\i and [_D\ή\=dq~n

Note the identities:

EjH^lKΰ -diaij-]Ej9 FjH^ίKt; d^Fj

Let (g — 1) ί/̂  be the left ideal generated by (q — 1) in U^. Define the algebra Uι, the
specialization of Uq at 1, by Uγ = U^I{q — \)U^. We obtain the following:

Proposition [cf. DC-K 1.5]. U\ is an associative algebra over C on the above
generators with relations:

c is central

lEitFj^δijHt, IHttEj^OtjKiEj, [Hi9 F,] = -a^Fj,

In particular, U1 = Ui/(Ki— 1, D — 1, C 1 / 2 — 1) is isomorphic to the universal
enveloping algebra of the affine Kac-Moody Lie algebra.

The following is due to Iwahori, Matsumoto and Tits.

Proposition. Let weW and let τs^s^. . .Sin be a reduced expression ofw. Then the
automorphism Tw = τTiιTi2. . . Tin ofUq depends only w and not on the reduced expres-
sion chosen. In particular, one reduced expression can be transformed to another by
a finite sequence of braid relations.

We recall the following from [L]. The notation is adapted to this paper.

Lemma [L 1.2.15]. Let veQ+, vΦO. Let xe(Uq)v:

(a) Ifri(x) = 0for all iel then x = 0.

(b) Ifir(x) = 0for all iel then x = 0.

Proposition [L 3.1.6]. Let xeUq , then:

r^ή^-Ki^r^

Proposition [L 38.1.6].

(a) {xeU+

q \ir(x) = 0} =
{j }
{

(b) {xeU

Proposition [L 40.1.2]. Let weW, iel be such that l(wsϊ) = l(w) + l. If w = sh . . .sir

is a reduced presentation then 7J1. . . Tir(Ei)eUq .

Lemma [L2 2.7]. Let x e P v , i= 1,. . . , n, s^S.

(a) Ifsix = xsii then TiTx = TxTi.
(b) // sixsi~

ί=(xΓ1x = Y[jωj\ then TΓ1TxTΓί = Y\jT^j

j, in particular

Remark.
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3. Subalgebras of Uq($)

In this section we find certain subalgebras of Uq(§) which are isomorphic to Uq(£C2)

3.1 Lemma. Let ω^P^,

(a) Any reduced presentation of ωt starts with τSj where τe?Γ and τSj = soτ.
(b) Any reduced presentation of ωt ends with st.

Proof For jΦ0, l(SjCui) = Z(ωf) H-1 and this implies (a). For (b), if l(cύiSj) < Z(ω, ) then
a>i((Xj)<0 which is only the case when i=j.

Definition. For l^i^n let ω'i = ωisi. Then l(col) = l(coi)— 1.

Remark. Γ^T^Γf1.

Definition. For l^i^n let C/|C Uq{§) be the subalgebra generated over C(gf) by

Ei9 Fh K?1, Tωl(Ei)9 T^iFi), Tω:(K±l\ C±λ'\ D±d>.

It is clear T^EiβUq , TωlFi€U~ since /(ω si) = /(ωi) = /(ω/)+l.

The following is proved as in [L5 1.8]:

3.2 Lemma. Let ijel and let weW be such that w{<xi) = aj. Then Tw(Eί) = Ej.

Corollary. Let l<^iΦj<Ln. Then for xeϋj9 Tω(x) = x.

Proof ωi(θίj) = θίj.

Definition. For 1 ̂  i ή=j ̂  n, atj ̂  0 introduce the elements:

3.3 Lemma. Let l ^ i

(a) TnXFj^T^iFtj),
(b) T^iEj^T^iEij).

Proof For (a) if atj = 0 then both sides of the equation equal 0. Otherwise, since the
statement is symmetric in / and j we may assume an= — 1. Then:

Tωj(Ftj) = Tωj{Ty' Ft) =

which implies (a), (b) follows by applying Ω.

3.4 Lemma. Let l^i^n, [i\ , Γω/(£i)] = 0.

Proof By [L 3.1.6, 38.1.6] it suffices to check that both TiT^
and TΓιTω'{Ei)eUq . Since wtePX, l(siωίsi) = l(ωi)+l = l(siωί)-\-l ' so that

rt;Now ΓΓ 1Γω ;(£ i) = ΓΓ 1Γω iΓΓ 1(£ ί) = 7'ω<

1(£ί) Since φoΩ(χj+) =
Uj and ΦoΩ(T~ι

1(Ei)) = Tω-i(Eί) it is enough to check TωΓι(Ei)eU^ . This follows
because cOiβPX and i(ωi~

1Si) = ' ( ω Γ 1 ) + l

3.5 Lemma. Let 1 ̂  i ̂  n, j Φ i, 0, [F, , Γω;(£,)] = - CKΓx Γω/F l7).
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Proof. IFJ9 Tω:(Ein = LFj, Ί{-K^F^ = -Tωι(lFJ9 K^F^)= -Tωι(KΓι)Tωι

(toWFFFF) C ^ ^ C ' ^ ) )

3.6 Lemma. Let l ^ i ^ n , i/gΦsζ then ro(Tω'i(Ei)) = 0.

Proof. Since Z(ωf)>l and Tω:{Ei)eU+ it follows ΓQ %

3.7 Proposition. Let l^i^n.

(a) E^T^Ei)-E^T^E^E, + E{Γω.{Ei)E?)- T^E^E^ = 0,
(b) ^ ( E ^ ί i ϊ ί ) - ^ ^ ^

Proo/. (b) follows from (a) by applying Γω;. Denote the expression in (a) by xt. To
check Xι = 0 it suffices [L 1.2.15] to check rJ (xi) = 0 ϊorjel. For j = 0 this is by the
preceding lemma. Since for xeUq [Fj9 x ] = 0 for xeUq implies rJ (x) = 0, we can
check \_Fj, xt~\ =0. This is straightforward using the expressions for [Fb Tω'(Ei)'] in
3.4 and 3.5.

3.8 Proposition. For each l^ί^n there is an algebra isomorphism ht: Uq(£C2)-+Ui
given by h^E^Eu ± 1 ± 1 ί 1 ± 1

Proof Consider the defining relations of Uq(ύ2). By the previous proposition and
some simple checks they hold in Uh where q is replaced by q{. Therefore ht is
surjective. For veQ(g), let U^v = UinU^, then hmj- is homogeneous with respect
to this grading. Therefore if xeKer ht | υ-, writing x = ]Γ . bjXj in terms of homogene-
ous components hi\U-(xj) = 0 for each;. Fix some x7 . By [L4 Prop. 2.6] (see also
Remark 4.14) for βeQ there is a unique irreducible highest weight module M of
Uq(£V2) with highest weight vector υ such that Ktv = q^^v for ί = 0,1 and
Dv = qdβv. Further we can pick β so that Xj acts non-trivially on M. The root system
of Uq($l2) imbeds into that of Uq(q) via ht and we can fix a β'eQ(g) so that pulling
back the highest weight module M' with weight β' through ht we have K0,Kl9 and
D acting as on M. Now as a Uq(ύ2) module M' has an irreducible quotient which is
isomorphic to M. In particular, xy must act non-trivially in M' which is a contradic-
tion. Therefore Ker h^u- =0. Since multiplication induces a vector space isomor-
phism U~ ® T® U+J$U both in t/f and t/g(sζ) it follows that Λj factors through
this decomposition. Therefore Ker ht — 0.

Corollary. For l^i^n,

(a) T J Ϊ ^ Λ J O T Ί O Λ Γ Λ

(b) Z" \τr = h °T °/ι ~1

Proof. Let M be an integrable C/€ module. Decompose M into weight spaces with
respect to the action of Kt, M= φ 7 - Mj. Let weί//, meMn for a particular π. From
the defining properties of the braid group action it follows:

TΛKHu))- Σ {-l)bq-ac + bE^F^Efm
Λ,b,c\ — a ~\~b — c = n

= Σ (-1)'
a,b,c

= /ίΓ1f Σ ( -

= hΓ1(τi(u) Σ
a,b,c
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This implies (a). TZt

1(Ei) = TΓ1Tωl(Ei) = qΓ2EJ2)Tω;(Et)-qΓ1EtTa)l(Et)Ei +
Tωί(Ei)E-2) and T~ι

1Tωί(Ei)= - X f 1 ^ so that Tω.]U: acts on the generators of t/,- as
does hi ° Tωi ° Λfι .'(b) follows.

3.9 Definition. For l ^ i g n , fc>0, teί φik = C'k'2(qFzEiTi(KΓιFi)-
T^iKΓ^ύE,). Note that ψΆeUt.

Versions of the next two propositions appear in the work of [Da Sect. 4] for
t/,(βΓ2).

3.10 Proposition 1. Let c = (q] Cm), d = (q\ C~m), r > 0, me Z then:

.» Γ<ϋ

m(fi)]= - C 1 / 2 [ 2 ] ; f ϊ c*

Proposition 2. L^ί r > 0, 1 ̂  z ̂  w.

(a) lΨnJirl=0,
(b) Tωι(ψir) = ψir.

Proof. It is sufficient to prove the previous two statements for ί/g(Sί^). Here i= 1
and ωi = τsi, where τ is the non-trivial Dynkin diagram automorphism. This follows
because I(ω1)=l, l{s1ω1) = l(ω1) + l and ω x has only finitely many conjugates in W.

For the sake of exposition, we sketch a proof by induction on r which appears
in [Da Sect. 4]. For r= 1 the statements are readily checked. A direct calculation
shows O n , lAir] = [2] ( ( τ Γ 1 ) " 1 ( ^ i , r + i) — φί,r+1) This implies that 2a)r is equiva-
lent to 2b) r + 1 . Here we denote by 2a)r' the statement 2a) for all r^rf.

Proposition 2b)r implies l) r. This follows from an inductive calculation using
the identities:

To show 2a) it is sufficient to show o ( C ( r + 1 ) / 2 [ ^ 1 1 ? ^ i r ] ) = 0 for j = 0, 1, r > 0 .
For j = 0 this is straightforward. F o r j ^ l this follows from llφlu ψir],F1]=0.
This is shown by induction on r. Assuming 2a)r_ x , 2b)r, and l) r, a direct calculation
gives

[ [ ^ u , Ψirl Fi~]= - C 1 / 2 [ 2 ] Γ χ rf(1-fc)[^n, ΨislTk

ωiFΛ=0 .
s = l

This implies 2a)r. As noted this now implies 2b), + 1 and l)r+1. This completes the
proof of Propositions 1 and 2.

Remark: Much of the calculation through the end of §3 is inspired by the work of
[Da] for Uq(SΓ2)' The statements of Proposition 2 also appear for Uq(SC2) i

n [LSS].

3.11 Define φik = Ω(ιj/ίk). Applying the anti-automorphism Ω to the above
propositions gives similar identities with ψik replaced by φik and Ff (resp. £,)
replaced by Et (resp. Fi). Here and in the future we omit writing these identities
down although we implicitly assume them.
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Let H be the subalgebra of Uq generated by φik9 φikfor 1 rgjrgrc, then we have
shown:

3.12 Proposition. The group of translations P fixes H pointwise.

3.13 Proposition. Let l^i^n.reZ.

TLi(Fi)Fί-qr2FiTZ)i(Fi) = qΓ2Tλ7\Fi)Tωi(Fi)-^^^

Proof. This is checked in t/^sζ) directly.

3.14 Lemma. Let α l 7 ^0, meΈ.

(a) lψn, Γ-(FJ )] =
(b) [φiu T™(EJn=-

Proof We check (a) for a^^O. Note that by previous lemmas [Tω (Xf 1 F i ), F, ] =
- KΓ' CTωi{Fn) and Tωi{Fn) = Tωj(Ftj). Then:

Ut^F^C-^ίq^E^K^FάFΛ-l^

Now (a) follows by applying T™. to the above equality. Using ψn = Tΰi

1ψa=z

^^q^T-^EdiKΓ'F^-iK^F^T^HEi) (b) follows similarly.

3.15 Lemma. Let α = α o ^ 0 , r > 0 ,

fc=l

, r-(£J ) ] = -

Proo/ We check the second equation.

since: Γ^f x(KΓ 1 Ft)Ej=qΓ'EjTi;x{KΓx Ft)

now use:
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Now the second statement follows by induction and applying T™. The first
statement follows by a similar calculation.

3.16 Lemma. Let reΈ, ( o ^ α ^ O ,

~ ι ω ι

r i r j^H Γjίω^i — Q I ωt

 ri1ωj^j~Iωj

rj1ωι

 r i

Proof. The left-hand side equals T^iFβ). The right-hand side equals:

4. The Relations in DrinfeΓd's Realization

Let Γ be the Dynkin diagram of 9. Orient the vertices of Γ by defining o: V->{ ± 1}
so that for i and j adjacent in Γ, o(ί)= —o(j). Now define fω. = o(i)Tωι, and
modify all the definitions by replacing Γω with fω..

4.1 Lemma. Let a = atj, r > 0 , meZ, c = (q?c1/2),d = (q?C~ί/2),

/ This follows directly from Sect. 3.

Now for k>0 introduce generators hikeH by the change of variables (cf.
[D2,G]):

te-^r1) Σ Λfc^iogfi+to-fc-1) Σ hk
/c>0 V fc'>0

Differentiating both sides and considering the coefficient of zr gives:
i - l _

(*) rhίr = r\j/ir-(qi-qι~
ί) Σ kψitr-khik .

k = l

Similarly introduce hif -k = Ω(hik) so that:
r - l

(**) rhU-r = rφir-{qΓ1-qi) Σ ^K-kΦur-k-
k=l

4.2 Lemma. Lei li^Uj^n, k>0.

(a) [ftΛ, f-F,] = - 1 f

(b) [Λa, f »£,.] = 1

Froo/. Part (b) is an induction on fc using the following identities:

[&*,f<?A ] = c ~ 1 / 2 ( - ^ ^

^7^h where Λ'<fc,

and (a) is similar.
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Remark. As before, we omit the identities obtained by applying Ω.
For l^ί^n, r > 0 , introduce the elements \l/ir = (qi — q[~1)Kiψir, φir = Ω(ιj/ir).

Then:

4.3 Lemma. Let k, / ^ 1. Ώien [Λik, ̂  z] =0.

Proof.

= C" 2 [[Λtt, Ejl f i / j ] + [£,-, [Λtt,

since f-^lEj, f^Fβ = C[Ej, U/β .

Similarly:

4.4 Lemma. Let k,r>0. Then

0 if lor .

Rewriting (**) in terms of the φir we have:

r - l

(***) φ Γ 1 -qdh-^rKiψir + iqi-q ^Ki ^ kφUr-khit -k .
k=ί

4.5 Lemma. Let kJ>0. Then

Ih h] δ U^Ihik, hjt] = δk, -irUca^i — .
K qj—qj

Proof. Induction using (***).

4.6 Definition. For l^i^n, keΈ define xΰ=f*ι(Fίl x^k=f~i

k(Ei).

We can now prove:

4.7 Theorem [cf. D2]. Uq(Q) is generated over (£(q) by the elements xfj, h^, Kf ,
± 1 / 2 ±ι {} dfi l

[ ] q(Q) g (q) y fj^
C ± 1 / 2 , D±ι, where l^i^nJeZ, and keΈ\{0}. The following are defining relations

for Uq(β):

(1) [C± 1 / 2 , hik] = [C± 1 / 2 , 4 ] = [K;, ΛΛ] = [K,., K J = 0 ,

K^KΓ^q^^xfu, DxfkD-γ=qkx%, Dh^D'1 = qkhik ,
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(2) [hik9 hj{] =δkt-ιγ[kcii^i — ,
K Qj ~~ Qj

(3) [ Λ t t ί \ W ®

( 4 ) xf;k

(5)

For i+j, n=l-aij9

(6)
' - " — • ' - — - • r

Sym denotes symmetrization with respect to the indices kγ, k2,..., kn. Here ψik and
φik are defined by the following functional equations:

i xexp
fc=l

Proo/ Relations (l)-(5) follow from the previous calculations. Relation (6) is
obtained by applying Tω., ΐ = 1,. . . , n to the Chevalley relations and an induction
on max{|fcir —fcjj}. Let R be the algebra over (C(q) on the above generators with
defining relations (l)-(6). By the previous consideration there exists an algebra
surjection F: R->Uq. To check that F is an isomorphism we specialize at 1 as in
Sect. 2. Let R^ be the sd subalgebra of R generated by:

K ± 1 C ± 1 / 2 D ± ι h - K K ^

C " ^ - ^ - 1 ? ά~~ q-q-^ Hik> Xίk '

Define R1=R^/(q — l)R^. Then R1 is an associative algebra over C on the above
generators with the defining relations:

(1) [K i ,K J ] = [D,K i ]=0, C2 = D2 = K? = l,

[d, hik] = khik, id, x% ] = kDx% ,

(2) [Λ t t,/i J. I] = ^ . - ^ τ k 1 1 k

d

(3) fe,xjί]-±

(Λ\ ± ± ± ± _ ± ± ± ±
I T ) ^Ci, fc + l Xj/ ~ Xjl xi, k+ί= xik xj, l+l~xj,l+l xik

= 0 ' π=l-α y .

(5) ίxLxβ1=δijKiC^

(6) [xul>u [̂ u X
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It follows from the Gabber-Kac theorem [G-K] (see [G] for the relations in
Ri below) that:

Now specialize Uq(§) to £/i(g) as in Sect. 2. Then F induces the isomorphism:

Since specialization doesn't change the root multiplicities, F: R-+Uq is an isomor-
phism.

Remark: Let sθ.eW0 so that sθι(θLi) = θ. By Lemma 3.2 it follows
Tθ.Tω.( — K^ίFi) = E0. This gives the inverse to the isomorphism F:R->Uq. In
particular, F~1(E0)= - o ^

5. The Coproduct

Since the Drinfeld generators are now expressed in terms of the braid group,
calculating their coproduct depends on how the coproduct commutes with the
braid group.

Define for l^i^n:
-fc(fc-l)

Ri= Σ ( - i f ί Γ ^ t a r ί i ^ f W ^ ^
/c^O

/c^O

The following proposition is due in the finite type case to [K-R], [L-S]. The
Kac-Moody case is due to [L 37.3.2].

5.1 Proposition. Let Si = Ti® 7}. Let ί^i^n, xeUq.

(a)
(b)

Let τs/j. . . sίr be a reduced presentation of w. Define

Rw = (Sίr Si2 (RiJ . Sir (Rir_1)Rir

5.2 Lemma. Let weW, Rw, Rw are well defined.

Proof. If W is the affine Weyl group of Sϊ̂  any reduced presentation is unique.
Otherwise, since any two reduced presentations differ by a finite sequence of braid
relations it is enough to check the statement for the rank two case. Consider RSiSjSi,
RSjSiSj ώ the simply laced case. They are certainly equal since both (up to a torus
element) are expressions for the rank 2 universal ^-matrix (see [K-R], [L-S]).

5.3 Proposition. Let l ^ z ^ n , /c^O. Let w = kωt.

(a) A(xκ) = R~1(xκ ®K_a

(b) A(χr-k) = R-1(xΰ-k®

Proof. This follows inductively from the above formulas.
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To obtain the coproduct on xfk note that Ω(x^-k) = x& and use
A°Ω = Ω®Ω°σ° A to the above formulas.

6. A PBW basis of Uq

For 1 ̂  i' rg n the elements Ck/2 \j/ike U%. On specialization to q = 1 they form a basis
of the root space kδ of §. This follows from the previous section since
ψik = hik mod (q — 1), which implies their linear independence on specialization.
Note that if w((Xi) = β {θLt simple, β positive, weW) then Tw(Ei) specializes to a root
vector of § of root β.

For βeAr+(Q) choose WβeW so that Wβ((xiβ) = β for some iβel. Define

Eβ = TWβ(Eiβ). For K: Jr+->]N, i: {1,. . . , n} x ^ ί % N define

where the product is in a predetermined total order over the positive roots counted
with multiplicity.

6.1 Proposition. The Eκ>ι form a basis ofUq (g) as a <E(q)-vector space. The elements
Eκ>>ι'KκCΎ'+λllΌrEκ>1 (aeβ, r, r'eΈ, K, I as above) form a basis ofUq{§) as a <C(q)-
vector space.

Proof The proof can be repeated almost word for word as found in [L5 Sect. 1]. In
the proof of linear independence of the Eκ'\ a dominant integral highest weight
should be chosen so that for κ9 le© (in the notation found there) the Eκa form
a linearly independent set in M.

Remark. The above basis is called of Poincare-Birkhoff-Witt type because on
specialization to 1 it degenerates to a PBW basis of the enveloping algebra ί/(g).

Acknowledgements. I would like to thank Ian Grojnowski, Victor Kac and George Lusztig for
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