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Abstract: The paper is devoted to generalization of the theory of loop groups to the
two-dimensional case. To every complex Riemann surface we assign a central exten-
sion of the group of smooth maps from this surface to a simple complex Lie group
G by the Jacobian of this surface. This extension is topologically nontrivial, as in
the loop group case. Orbits of coadjoint representation of this extension correspond
to equivalence classes of holomorphic principal G-bundles over the surface. When
the surface is the torus (elliptic curve), classification of coadjoint orbits is related to
linear difference equations in one variable, and to classification of conjugacy classes
in the loop group. We study integral orbits, for which the Kirillov-Kostant form is
a curvature form for some principal torus bundle. The number of such orbits for a
given level is finite, as in the loop group case; conjecturedly, they correspond to
analogues of integrable modules occurring in conformal field theory.

Introduction

The theory of loop groups and their representations [13] has recently developed in an
extensive field with deep connections to many areas of mathematics and theoretical
physics. On the other hand, the theory of current groups in higher dimensions
contains rather isolated results which have not revealed so far any deep structure
comparable to the one-dimensional case. In the present paper we investigate the
geometry of current groups in two dimensions and point out several remarkable
similarities with loop groups. We believe that these observations give a few more
hints about the existence of a new vast structure in dimension two.

One of important problems in the theory of loop groups is integration of central
extensions of loop algebras. It is known [13] that the non-trivial one dimensional
central extension of the loop algebra qs of a compact Lie algebra g integrates to
a Lie group, which is a one dimensional central extension of the loop group Gs

for the corresponding compact group G. Topologically this group turns out to be
a nontrivial circle bundle over Gs , which plays a crucial role in the geometric
realization of representations of affine Lie algebras. The study of the coadjoint
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action of this group yields a very simple description of orbits by means of the
theory of ordinary differential equations [5,16], and it turns out that there is a
perfect correspondence between orbits and representations [5].

The Lie algebra of vector fields on the circle Yect(Sι) arises as the Lie algebra
of outer derivations of a loop algebra and has many similarities with loop algebras.
It has a unique nontrivial one-dimensional central extension - the Virasoro algebra.
The structure of coadjoint orbits of the Virasoro algebra can be obtained from the
study of Hill's operator [7,16]. The invariants of the coadjoint action of the complex
Virasoro algebra are essentially the same as those of the extended algebra of loops
in SI2.

In this paper we generalize some of these results for loop algebras and groups
as well as for the Virasoro algebra to the two-dimensional case.

We define and study a class of infinite dimensional complex Lie groups which
are central extensions of the group of smooth maps from a two dimensional ori-
entable surface without boundary to a simple complex Lie group G. These exten-
sions naturally correspond to complex curves. The kernel of such an extension is
the Jacobian of the curve. The study of the coadjoint action shows that its orbits
are labelled by moduli of holomorphic principal G-bundles over the curve and can
be described in the language of partial differential equations.

In genus one it is also possible to describe the orbits as conjugacy classes of
the twisted loop group, which leads to consideration of difference equations for
holomorphic functions. This gives rise to a hope that the described groups should
possess a counterpart of the rich representation theory that has been developed for
loop groups.

We also define a two-dimensional analogue of the Virasoro algebra associated
with a complex curve. In genus one, a study of a complex analogue of Hill's
operator yields a description of invariants of the coadjoint action of this Lie algebra.
The answer turns out to be the same as in dimension one: the invariants coincide
with those for the extended algebra of currents in sl2.

Note that our main constructions are purely two-dimensional. In particular, in
three and more dimensions the space of orbits tends to be infinite-dimensional and
topologically unsatisfactory.

1. Lie Algebra Extensions

Let G be a simply connected simple complex Lie group, and let g be its Lie algebra.
Denote by (, ) a nonzero invariant bilinear form on g . Let Σ be a nonsingular
two-dimensional surface of genus g. Define GΣ as the group of all smooth maps
from Σ to G. Its Lie algebra consists of all smooth maps from Σ to g and will be
denoted by §Σ. These are called the current group and the current algebra.

Now fix a complex structure on the surface Σ. Let HΣ be the space of holomor-
phic differentials on Σ. Its dimension is equal to g. Let ω be the identity element in
HΣ®Hχ. The element ω can be regarded as a holomorphic differential on Σ with
values in H%. Define a 2-cocycle on g z with values in i / | (regarded as a trivial
gΣ-module) by

X,YeQΣ. (1.1)
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This cocycle defines a ^-dimensional central extension of g2'. This extension is non-
trivial for surfaces of positive genus, and it has no nonzero trivial subextensions or
quotient extensions. Denote this new Lie algebra by gΣ'.

If Σ is a complex torus, we can single out a subalgebra cjpθl in gΣ that consists
of all currents realized by trigonometric polynomials. The restriction of the above
central extension to this subalgebra in its natural basis looks very simple. Namely,
let L be a lattice in the complex plane C such that Σ = <C/L. The Lie algebra QΣ

O1

is spanned by elements x(n),x G %n G L, where x(n) depends linearly on x for any
fixed n. These elements satisfy the following commutation relations:

[x(n),y(m)] = [x,y](n + m) + nδn-m(x,y)k , (1.2)

where k is the central element. This extension is a natural two-dimensional coun-
terpart of affine algebras. Similar extensions were considered in [10].

Each of the extensions defined above can be obtained as a suitable quotient of
the universal central extension U§Σ of the Lie algebra g27.

Proposition 1.1. ([13, Section 4.2]) The universal central extension UQΣ is an
extension of§Σ by means of the infinite-dimensional space α = Ωι(Σ)/dΩ°(Σ) of
complex-valued l-forms on Σ modulo exact forms. This extension is defined by
the a -valued cocycle

u(ξ,η)=(ξ,dη)moddΩ\Σ), (1.3)

where ξ, η G gΣ.

Note that this construction does not involve the complex structure on the surface.

In order to obtain §Σ for a specific complex structure on the surface Σ as a
quotient of C/g27, one needs to factorize it by the subgroup of all ξ e α such that

JξAω = 0 (1.4)
Σ

for any lifting ξ G Ωι(Σ) of the element ξ.

Proposition 1.2. (i)Let Σ\ and Σ2 be two Riemann surfaces. The Lie algebras gΣl

and a?2 are isomorphic if and only if Σ\ and Σ2 are conformally equivalent.

(ii) If Σ has positive genus then any automorphism f of g1 can be uniquely
represented as a composition: f = h o </>*, where h is a conjugation by an element
of Aut(g)27 and </>* is the direct image map induced by a conformal dijfeomorphism

Proof Let / : gΓ l —> cĵ 2 be any isomorphism. Then the dimensions of the centers
of §Σl and g^2 must coincide, so the genera of Σ\ and Σ2 are the same. Consider
the induced map /o : gΣl —> g^2 of current algebras. Since Σ\ and Σ2 are diffeomor-
phic, we may actually regard this map as an automorphism of the current algebra.
According to [13, Section 3.4], any such map uniquely decomposes as /o = h o φ*,
where h is a conjugation by an element of Aut(g)^1 and φ* is the direct image map
induced by a conformal diffeomorphism φ : Σ\ —>• Σ2. In order for / 0 to extend to
an isomorphism of extensions, φ must take holomorphic differentials to holomor-
phic diflferentials which forces it to be a conformal equivalence. This proves both (i)
and (ii). •
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One can also classify embeddings cf1 <-> QΣI. Indeed, any embedding / : gΓ l c->
gΣ2 is induced by a surjective map φ:Σ2 —• Σ\, and conversely, any such map de-
fines an embedding. In order for this embedding to continue to central extensions,
the map between surfaces must be holomorphic. However, in this case the contin-
uation is not unique. Continuations correspond to monomorphisms χ : // | <-» H%
with the property φ*(χ(v)) = v for all v e H% . Here φ* is the map H$ —> H%
induced by φ.

We have shown that the group of outer automorphisms of the Lie algebra ξΣ is
isomorphic to the group of holomorphic automorphisms of the Riemann surface Σ.
If g > 1, this group is finite, and it is trivial for almost every surface. In spite of
it, gΣ has plenty of outer derivations.

Proposition 1.3. If g > 1, the Lie algebra of outer derivations ofξΣ coincides with
the Lie algebra Vecto,i(£) of all complex-valued vector fields on Σ of type (0,1),

i.e. of the form u(z9z)jr=. for any local complex coordinate z9u being a smooth

function.

If g = 1, the Lie algebra of outer derivations is (jr~) xVecto,i(£).

Proof It is known that outer derivations of §Σ are in one-to-one correspondence
with complex vector fields on the surface Σ. In order for such a derivation to
continue to the central extension g2', the vector field must annihilate holomorphic
differentials. If g > 1, such a field must have type (0,1). If g = 1, any such field

is a linear combination of a (0,l)-field and the constant field 4- •

The Lie algebra Vecto,i(£) should be thought of as an analogue of the Witt
algebra. It has a g-dimensional central extension which is a natural analogue of the
Virasoro algebra. This is the extension by the space HΣ defined by the cocycle

F(X9Y) = JωAdXd2Y, X,YeVectOtι(Σ). (1.5)
Σ

In this expression, dX is a function and d Y is a differential 1-form, since the
operator d maps vector fields to functions and functions to 1-forms. We will denote
this extension by Vir(Z'). For Σ being the torus, the polynomial part Vecto,i(£)poi
of Vecto,i (Σ) is a graded Lie algebra of a very simple structure. Namely, let L be
the lattice in C such that Σ = C/L. The basis of Vecto,i(Γ)poi consists of elements
en,n G L, which satisfy Witt's relations

[en,em] = (m - n)en+m . (1.6)

The one dimensional extension we have described has an additional basis vector
othe central element, and the relations are analogous to Virasoro relations:

[en,em] = (m- n)en+m + m3δm-nc . (1.7)

One can easily show that this is the universal central extension of Vect0,i(£)Poi (i.e.
it is the only possible nontrivial one-dimensional extension up to an isomorphism).
The proof is similar to that for the Witt algebra and is given in [15].
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2. Group Extensions

The following theorem describes the topology of the current group and can be
deduced from the results of [13, Chapter 4].

Theorem 2.1.

(i) GΣ is connected.
(ii) πι(GΣ) = Έ.
(iii) π2(GΣ) <g> 1R = H2(GΣ

91R.) = R2*.

It turns out that the Lie algebra g can be integrated to a complex Lie group.

Theorem 2.2. There exists a central extension G of the current group GΣ by

means of the Jacobian variety of Σ whose Lie algebra is §Σ.

Proof This group can be constructed by the procedure described in [13, Chapter
4]. Namely, consider the left invariant holomorphic 2-form on GΣ equal to Ω on
the tangent space at the identity. It shall be denoted by the same letter. Integrals of
Ω over integer 2-cycles in GΣ fill the lattice L = Hχ(Σ,TL) in //£. Therefore, there
exists a holomorphic principal bundle over GΣ with fiber J = H£/L and with a
holomorphic connection θ whose curvature form is 2πΩ. Note that J is the Jacobian

of the surface Σ. Define the group G as the group of all transformations of the
constructed bundle that preserve the connection θ and project to left translations on
the group GΣ. It is a central extension of GΣ by J . One has an exact sequence.

1 -^J-^GΣ-^GΣ^ 1 , (2.1)

and it follows that the Lie algebra of G is isomorphic to §Σ. •

Obviously, this theorem will remain valid if we replace the current group GΣ

with its universal covering G . Denote the extension obtained in this way by G .
The following theorem characterizes the universal central extension of the current

group.

Theorem 2.3. [13, Section 4.10] (i) The universal central extension UGΣ of the

group GΣ is an extension of G by means of the infinite-dimensional abelian group
si of complex-valued l-forms on Σ modulo closed l-forms with integer periods.

(ii) πn(UGΣ) <g> R = 0 for n < 3.
(iii) The group srf is homotopy equivalent to a 2g-dimensional torus. The

natural map K2{GΣ) —•» π\(sί) associated to the fiber bundle UGΣ —> GΣ is an
isomorphism up to torsion.

*Σ

Proposition 2.4. The universal central extension UGΣ is homotopy equivalent to G .

Proof Consider a homomorphism ε : si —»J defined by

e(a) = Jά A ωmod L , (2.2)
Σ

where a is any lifting of a G s/ into the space of l-forms on Σ. It is easy to check
that this map is well defined, i.e. independent of the choice of a. Obviously, ε
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is a homotopy equivalence. This implies that the corresponding map of extensions
~Σ v

έ : UGΣ —» G of the group G is also a homotopy equivalence.

This theorem implies that G is a nontrivial /-bundle on G and represents the
homotopically nontrivial part of the universal central extension.

In fact, the universal extension can be constructed rather explicitly as a central

extension of G by the additive group of a vector space, as follows.

Let K be the maximal compact subgroup of G, and let K be the subgroup of
~Σ ~Σ

all elements in G whose projections to GΣ are AΓ-valued currents. Obviously, K
is a central extension of KΣ by T2g x Z, where T2g is the real 2g -dimensional
torus.

Choose a metric on Σ compatible to the complex structure. A metric induces
an inner product on the space of differential forms. Define d* to be the conjugate
operator to the de Rham differential d. This operator maps 2-forms to 1-forms. Let
a be the space of 1-forms on Σ modulo exact 1-forms, and let W be the image of
the projection p : Imd* —• α .

Lemma 2.5. The subspace W has codimension 2g in a and is complementary to
the subspace Hι{Σ,Wi) c α.

Proof. Let A : Ωι(Σ) —> Ωι(Σ) be the Laplacian associated with the metric: A =
dd*+d*d. Since A is self-adjoint, any form oceΩι(Σ) can be represented in
the form α = αi + 0C2, where a\ G KerZl,α2 G Imzl. Then dcc\ = 0 by Hodge's the-
orem, and 0C2 = Aβ = d*dβ + dd*β = d*β\ + rf/?2 by construction. Thus, /?(α) =
p(oc\) + p(d*β\). Since /?(αi) € Hι(Σ,Έt) and p(d β\) G FT, we have shown that
any vector in a can be written as a sum of a vector in fF and a vector in i/ 1.

Now let us show that W Π Hι(Σ, R ) = 0. Let w be an element of this intersec-
tion. Let w be an inverse image of w in ImJ*. Then cW = 0 and d*w = 0, so w is
harmonic. By Hodge's theorem, harmonic forms are in one-to-one correspondence
with cohomology classes, so any harmonic form in Imd* has to be zero. Thus,

Define a 2-cocycle on K with values in W as follows:

C(a,b) = p(d*(b-ιdb,da a~1)), a,beKΣ , (2.3)

where a,b G KΣ are images of <z, b.
~ Σ

This cocycle defines a central extension of K by FT. Let us show that this new
group is isomorphic to the universal central extension of KΣ.

Since both groups are simply connected, it is enough to establish an isomorphism
between their Lie algebras. Both Lie algebras are central extensions of lΣ, where
ϊ is the Lie algebra of K. The kernels of these extensions are a = W Θ HΣ^ and
a, respectively, and the corresponding cocycles are ύ = C Θ Ω R and u (if V is a
complex vector space then FR denotes the space V regarded as a real vector space).
All we need is to construct an isomorphism p : α —> α such that p(u) = ύ. It is
easy to check that such an isomorphism is provided by Lemma 2.5.

The universal extension of G can now be obtained from the constructed ex-
tension of KΣ by complexification.
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Remark 2.1. (0,l)-vector fields on the surface are realized as J-invariant holo-

morphic vector fields on G ( = first order differential operators on holomorphic
functions). Any such field v satisfies the condition v(gh) = v(g)h + gv(h) for all

g,heόΣ.

Remark 2.2. A very challenging problem is to obtain a more explicit construction

of G than we have given, by presenting a 2-dimensional counterpart of the famous
Wess-Zumino-Witten construction for loop groups [19,9].

It would also be interesting to obtain a direct construction of the universal central

extension of GΣ from G by an analogue of formula (2.3) without referring to the
maximal compact subgroup.

3. Orbits of the Coadjoint Action

Let η be a holomorphic differential on Σ. Denote by Eη the one-dimensional central

extension of QΣ by means of the cocycle

Ωη(X9Y) = fηA&,dY). (3.1)
Σ

Obviously, Eη is the quotient of g by the kernel of η as a linear function on H£.
Denote by E* the space of all operators D — λd + ξ, where λ G C and ξ is a g-

valued (0,1) form on Σ9 i.e. a 1-form which can be written as u(z,z)dz for any local
complex coordinate z,u being a g-valued smooth function. For any representation
V of g, these operators take F-valued functions on Σ to F-valued (0,l)-forms
according to

Dφ = λdφ + ξψ ,

which allows to define an action of GΣ on E*:

ho(λd + ξ) = λd + h-ιdh + Aά hoξ,heGΣ. (3.2)

Consider a pairing between E* and Eη given by

(λd + ξ,μk+X) = λμ + fηΛ (ξ,X) , (3.3)

Σ

where A: is a fixed central element in Eη and μ G (C.

Proposition 3.1. Pairing (3.3) is GΣ-invariant and nondegenerate.

The proof is straightforward.
The constructed pairing allows us to interpret E* as the smooth part of the dual

Eη to the Lie algebra Eη, i.e. as the proper coadjoint representation.
Our goal now is to study the orbits of the action of GΣ in E*. Hyperplanes

λ = const are invariant under this action. Let us fix a nonzero value of λ and
examine the orbits contained in the corresponding hyperplane

We will use the following classical construction [4].
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To an operator D = λd + ζ one can naturally associate a holomorphic principal
G-bundle on Σ as follows. Let Uu i G /, be a cover of Σ by proper open subsets.
For every / fix a solution φt : Ui —• G of the partial differential equation

λdψi ψΓι+ξ = O (3.4)

(the left-hand side of (3.4) being a g-valued (0,1) form on Ui). Such solutions can
always be found. Now for i9j € / define transition functions φy : Uj dUj -* G by
φij = Ψiιψj. It is easy to see that these functions are holomorphic. Thus they define
a holomorphic principal G-bundle on Σ, which we denote by B(D). Moreover, it
follows that the holomorphic bundles B(D\) and B(D2) associated to two operators
D\ = λd + ξ\ and D2 = λd 4- ξ2 are equivalent if and only if there exists an element
h £ GΣ such that hoD\ = D2. This h will be exactly the gauge transformation
establishing the equivalence between B(D\) and B{D2).

Conversely, for any holomorphic principal G-bundle B on Σ there exists an
operator D = λd + ξ such that B = B(D). Indeed, any principal G-bundle on Σ
is topologically trivial, since G is simply connected. If we choose a global trivial-
ization then the local holomorphic trivializations over open sets Ui will be expressed

by smooth functions φt : Ui —• G. Since the transition functions φij — ΦΓlΦj a r e

holomorphic on Ui Π Uj, we have dψi φ^1 = dφj φjx on Ui Π Uj. Therefore

there exists a g-valued 1-form ξ on Σ such that ξ = —λdφi φ~j~ι on Ui for all

i e I. Let D = λd 4- <*. Then 5 = B(D).

This reasoning proves the following

Proposition 3.2. Orbits of the action ofGΣ in J^χ are in one-to-one correspondence
with equivalence classes of holomorphic principal G-bundles on Σ. The correspon-
dence is D <-* B(D).

Remark 3.1. The relation between differential operators and holomorphic principal
bundles on Σ was used in computations of partition functions of the gauged Wess-
Zumino-Witten model in [6] and [20].

Remark 3.2. Holomorphic sections of the bundle B(D), i.e. solutions of (3.4), are
known as a special case of generalized analytic functions which were introduced
in the fifties by L. Bers and I. Vekua [2,18]. If ξ = 0, they become usual analytic
functions.

Holomorphic principal G-bundles for G = SLn(<E) were classified by Atiyah [1]
for g = 1 and by Narasimhan and Sheshadri [11,12], for g > 1. Their results were
generalized to the case of any simple group G by Ramanathan [14]. We summarize
here some of them.

Let Π be the fundamental group of Σ and AT be a maximal compact subgroup
of G. Let p : Π —> K be any homomorphism. This homomorphism defines a flat
G-bundle Bp over Σ with a canonical holomorphic structure. Bundles coming from
this construction are called unitary. It is known [14] that the conjugacy class of
the representation p is completely determined by the equivalence class of Bp as a
holomorphic principal bundle.

The following theorem shows that almost all holomorphic principal bundles are
flat and unitary.
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Theorem 3.3. [14] Let {Bt}te*r be a holomorphic family of holomorphic principal
G-bundles parametrized by a complex space 3Γ. Then the subset 3Γ0 of such t G F
that the bundle Bt is flat and unitary is Zariski open in ZΓ.

Let us now define an appropriate notion of "almost everywhere."
Let V be any complex topological vector space. We say that a set Z c V is

Zariski open if for any finite dimensional complex manifold 3Γ and any holomorphic
map / : 9~ -> V the set of points t e F such that f(t) G Z is Zariski open in ^ \
Obviously, this defines a topology in V. We will say that some property holds
almost everywhere in V if it holds on a nonempty Zariski open subset of V. Note
that every nonempty Zariski open subset in V is dense, open, and connected in the
usual topology.

It is clear that a flat bundle B can be obtained from an operator D = λd + ξ
with ξ being a g-valued antiholomorphic differential on Σ : B = B(D). Therefore,
the above theorem in fact states that almost every (in Zariski sense) differential
operator of the form λd + ξ can be reduced to an operator with an antiholomorphic
ξ by means of a gauge transformation from GΣ. This implies that the union S of
GΓ-orbits of all operators λd + ξ with ξ being antiholomorphic is a Zariski open
subset of Jί?χ.

Remark 3.3. It is easy to construct an example of a holomorphic bundle which
is not flat and unitary. For instance, take any holomorphic line bundle β on Σ of
degree 1 and form a rank 2 bundle β Θ β*9 where β* is the dual bundle to β. This
bundle has degree 0. Let B = Auto(β Θ β*) be the iSZ,2(C)-bundle of automorphisms
of β 0 β* having determinant one. It is easy to see that this bundle is not flat: the
associated bundle β 0 β* has a nonzero holomorphic section s which vanishes at
a point z € Σ; this section cannot satisfy any equation λds + ξs = 0 with ξ being
antiholomorphic. Another example would be Auto(j/), where srf is the Atiyah's
bundle of rank 2 over a complex torus which is a semidirect sum of two trivial
line bundles. This bundle is flat, but not unitary. However, according to the above
theorem, these bundles are exceptional and can be made flat and unitary by an
arbitrarily small perturbation of transition functions.

The space of equivalence classes of flat and unitary G-bundles is a complex
manifold with singularities. Denote this manifold by Jί. This manifold can be
thought of as the space of coadjoint orbits of generic position.

We can now classify all holomorphic invariants of the action of gΓ in #fχ.
Let b be a complex Lie algebra and V be a topological representation of b .

Define a holomorphic invariant of the action of b in V as a holomorphic map from
a Zariski open subset in V to a fixed finite-dimensional complex manifold which is
invariant under the action of b . The coefficient λ is an example of a holomorphic
invariant of the coadjoint action of gΓ. Another example would be the ^-valued
function b defined on a Zariski open subset in E* which takes an operator D to the
equivalence class of B(D). The orbit classification result implies

Proposition 3.4. Any holomorphic invariant of the action of qΣ in E* is a function
of b and λ.



438 P.I. Etingof, I.B. Frenkel

4. Orbital Structure in Genus 1

In this section we assume the surface Σ to be a complex torus C/X,L = {p +
qτ\ p,q G Z},Imτ > 0. In this case it is possible to give a more explicit description
of the space of orbits.

The coadjoint representation E* of the group G can be identified with the space
of differential operators λ-fL + ξ9 where ξ is a g-valued function on the torus. These
operators act on F-valued functions on the torus for any representation V of G.
According to the previous section, orbits of the coadjoint action of GΣ restricted
to a hyperplane J^χ correspond to equivalence classes of holomorphic principal G-
bundles over the complex torus Σ. Almost every such bundle is flat and unitary, i.e.
comes from a homomorphism from the fundamental group to the maximal compact
subgroup K in G. The fundamental group of the torus is Π = Z 2 , so we may assume
that this homomorphism lands in a maximal torus T C K. Since all maximal tori
are conjugate, we can assume T to be a fixed maximal torus in K. The images of
the two generators of Π can be any two elements in T. Thus, we get a covering
of the set of non-equivalent unitary representations of Π by the product T x Γ.
Two elements of this product correspond to isomorphic representations of Π if and
only if one of them can be obtained from the other by the action of an element
of the Weyl group W of K. Therefore, the set of equivalence classes of unitary
representations of Π is (Γ x T)/W.

Thus, we have found that topologically the space Jί of orbits of generic position
is (T x T)/W. However, this realization does not tell us anything about the complex
structure on M. Therefore let us describe a different realization of Jί.

Let D = λjk + ξ. If the bundle B(D) is flat (which happens, as we know, for
almost every ξ) then the equation Dφ = 0 on a G-valued function φ will have
a solution φ(z) with the properties φ(z + 1) = φ(z),φ(z + τ) = φ(z)A, where A is
a fixed element of G. If the bundle B(D) is also unitary, the element A will be
semisimple. Then we may assume that it belongs to a fixed complex maximal torus
T<c C G.

The element A completely determines the bundle B{D). Indeed, let a G g satisfy

A — exp(α), and set F(z) = ^(z)exp f — az ~z-\. Obviously F is doubly periodic,

i.e. F e GΣ, and we have

(4 Λ 4 ? (4.1)
_

τ — τ
Moreover, different elements of Γc may correspond to equivalent bundles.

Let r be the rank of G and t be the Lie algebra of T. If hj G it, l^j^r de-
note the standard basis of the Cartan subalgebra of g then exp (Iπihj) = 1, and
the solution φ(z) of the equation Dφ = 0 can be replaced by another solution
φn(z) = φ(z)exp(2πiz(Σr.λnjhj)), where ΠjEΈ. This solution satisfies φn(z +
1) = φn(z), φn{z + τ) = φ(z)An, where An = A exp(2πiτ(Σr

J=ιnjhj)). Obviously, An

corresponds to the same bundle as A. Furthermore, if we conjugate A by any ele-
ment of the Weyl group W, we will obtain an element A' of 7c that corresponds
to the same bundle as A.

Let Qv be the lattice generated by hj (the dual weight lattice of G). We have
shown that the bundle B(D) is completely determined by the projection of A into the
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complex space T<ε/(WxGxρ(2πiτQv)) = t<c/(Wx(Qv Θ τ g v ) ) . It is easy to see
that different points of this space correspond to non-isomorphic bundles. Therefore,
we have

Proposition 4.1. The space Jί of equivalence classes of flat and unitary holomor-
phic G-bundles over the complex torus is isomorphic to t(c/(Wx(Qv θ τ β v ) ) .

y

An alternative way to obtain the classification of generic coadjoint orbits of G
is based on a study of conjugacy classes of the twisted loop group. Let us give a
brief description of this method.

By a loop group Gf we mean the group of holomorphic maps from the cylinder

C/Z to G. The abelian group C/Z acts by automorphisms on Gf through trans-

lations of the argument. From the semidirect product G% = C/Z x Gf associated

to this action. Let us analyze the conjugacy classes of Gs

h . For (z, / ) , (τ, g) G Gs

h

we have

( z , / Γ 1 ( τ , ^ ) ( z , / ) = (τ,A), h(u) = f(u - τ)-{g(u -z)f{u\ u G <C/Z . (4.2)

This implies that τ is preserved under conjugations, so we may assume that it is

fixed, and study conjugacy classes inside the coset Cτ = {(τ,g)\g G Gs

h }. We will
treat the case τ ^ R/Z. In this case we may assume, without loss of generality, that
Imτ > 0.

Let ξ be a smooth function on the torus Στ. Consider the differential equation

λ^ + ξψ = 0 (4.3)
όz

with respect to a G-valued function φ on the cylinder C/Z.
Let ΨQ(Z) be a solution of Eq. (4.3). Then ψo(z + τ) is also a solution, since the

equation is invariant under a translation by τ. Therefore, vo(z) = ψo(z)~ιψo(z + τ)
is a holomorphic G-valued function on the cylinder. If we choose another solution
of (4.3), say, φ\, it will have the form φ\(z) = ψ^(z)μ(z), where μ is holomor-
phic. Therefore, the function vi(z) = ψι(z)~ιψι(z + τ) can be expressed as follows:
vi(z) = μ(z)~ιvo(z)μ(z + τ). This implies that the conjugacy class of the element
(τ,vo) is independent on the choice of the solution ψo of (4.3). Thus we have

canonically associated a conjugacy class of Gs

h to any equation of form (4.3). It
is clear that every conjugacy class in Cτ comes from a certain equation. Thus we
have established a one-to-one correspondence between orbits of the action of GΣ

in J^λ and conjugacy classes of Gf in Cτ.

Now the result that generic orbits of GΣ in J^χ are parametrized by points of
the space Jί can be deduced from the classical theory of difference equations. This
theory was developed in the beginning of the twentieth century, by G.D. Birkhoff,
R.D. Carmichael, C.R. Adams, WJ. Trjitinsky and others [3,17].

Consider the equation

F(z + τ)=A(z)F(z), (4.4)

where A(z) is an entire periodic G-valued function with period 1.

Proposition 4.2. For almost every A(z) (i.e. for A(z) belonging to a Zariski open

subset in G | ) there exists a solution of (4.4) of the form
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F(z) = Φ(z)exp(Pz), (4.5)

where P 6 g and Φ is an entire G-υalued function with period 1.

This proposition, for G = SLm can be deduced from the Fundamental Existence
Theorem in the theory of linear difference equations [17].

Clearly, Proposition 4.2 implies the classification result for generic orbits.

Despite we did not use the notion of a vector bundle in this argument, it was
implicitly present in our considerations. Indeed, E. Looijenga [8] observed that the

conjugacy classes of Gf which lie inside Cτ are in one-to-one correspondence with
equivalence classes of holomorphic principal G-bundles over the complex torus
Στ = C/(2£ 0 τΈ). This correspondence is constructed as follows.

The complex torus Στ can be obtained from the annulus {z € C / Z | 0 ^ I m z ^
Imτ} by gluing together the boundary components according to the rule z <-* z + τ.
In order to define a holomorphic bundle on the torus, it is enough to present a G-
valued holomorphic transition function A(z) in a neighborhood of the seam Imz = 0.
Therefore, we can naturally associate a holomorphic G-bundle to every element
(τ,g) € Cτ by setting A(z) = g(z). Now observe that Eq (4.2) expresses exactly the
fact that the equivalence class of this bundle does not depend on the choice of the
element inside the conjugacy class, and that different conjugacy classes give rise to
non-equivalent bundles. It remains to make sure that every holomorphic G-bundle
over Στ comes from a certain conjugacy class in Cτ. To see this, let us pick a bundle
B over Στ, and pull it back to the cylinder <C/Z. Of course, the obtained bundle B
will be trivial. Let us pick a global holomorphic section χ(z) of B. Then χ(z + τ)
is another holomorphic section. Therefore, g(z) = χ(z)~ιχ(z + τ) is a holomorphic
function. Evidently, the bundle B is associated to the conjugacy class of (τ, g).

To conclude this section, let us discuss the coadjoint action of Vir(Z") in the
case when Σ is a complex torus. Obviously, this Lie algebra cannot be integrated
to a Lie group—this is impossible even in the one-dimensional case as long as we
work over <C. Therefore, we cannot define orbits of the coadjoint action in the usual
way. What we can do, though, is define and fully describe holomorphic invariants
of the coadjoint action.

Coadjoint orbits of the real Virasoro algebra have been described in [7,16]. The
smooth part of the coadjoint representation can be interpreted as the space of Hill's

operators λ-^-% + q(x) taking densities of weight —1/2 to densities of weight 3/2

on the circle. The coefficient λ is invariant under the coadjoint action, so we may
restrict this action to the hyperplane J^χ of operators with a fixed value of this
coefficient. Orbits of the group Diff+ (Sι) lying in this hyperplane for ΛφO are
labelled by conjugacy classes of the universal covering of the group SZ2(1R).

For the complex Virasoro algebra, orbits are not defined since the algebra does
not integrate to a Lie group. However, one can study holomorphic invariants of the
coadjoint action which carry the same information as orbits. Repeating the above
argument with obvious modifications, one finds that besides λ there is essentially
a unique holomorphic invariant of the coadjoint action—the monodromy of the
corresponding Hill's operator. This invariant takes values in the space of conju-
gacy classes of SL2((E). Since almost every element in SL2(<£) is diagonalizable,
we may assume that the monodromy invariant takes values in (C*/ ~ where ~ is
the equivalence relation that identifies z with z" 1 . Any holomorphic invariant of the
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coadjoint action will then be a function of the coefficient λ and the monodromy
invariant.

It is surprising that the same procedure works in two dimensions. Define a
density of weight μ € (C on the torus I as a formal expression u(dz)μ where u is
a smooth function on Σ. The action of (0,l)-vector fields on densities is given by

υ^z o u(dzY = (v% + μu~\ (dzf . (4.6)
oz \ oz oz)

The smooth part of the coadjoint representation of Vir(Γ) can now be identified with

the space of two-dimensional Hill's operators H = λj^ -\-q(z,z) taking densities

of weight — 1/2 to densities of weight 3/2 on the torus.
The monodromy of such an operator can be defined as follows. Assume λφO.

Consider the differential equation

Hu = 0 . (4.7)

This equation is equivalent to the system

This system, as we know, defines a holomoφhic 5Z2((C)-bundle on the torus, which
is almost always flat and unitary. Therefore, for almost every H there is a point on
Jέ corresponding to this bundle. Let us call this point the monodromy of H.

Proposition 4.3. The monodromy is a holomorphίc invariant of the coadjoint
action ofYiv(Σ).

Proof The proof is by giving another definition of the monodromy. Let £f{H) be
the set of all s E C such that there exist two linearly independent solutions u\,U2
of (4.7) which are functions on the cylinder C/Z and satisfy the conditions

ux(z + τ) = suY(z), u2(z + τ) = s~lu2(z) . (4.9)

^(H) is non-empty whenever the bundle associated to H is flat and unitary, i.e. for
almost every H. Also, if s e &(H) then for any n e Έsin) = sexρ(2πinτ) e Sf{H\
Indeed, if we consider new solutions u^ = u\exp(2πinz),u2

n^ = u2Qxp(—2πinz) of
(4.8), they will satisfy (4.9) with s replaced by s(n\ Finally, if s € £?(H) then
s~ι E &*(H). Moreover, it is easy to check that conversely, if s\,s2 € £f(H) then
either s2 = s^ for some integer n or 52~

! = s^\
Define s as the projection of s into the space C*/ ~ where ~ is the equivalence

relation that identifies s with s^ for any π, and s with s~ι. If s E &*(H) then
s depends only on H. It is obvious from the definition that s is a holomorphic
invariant. It remains to observe that <C*/ ~ is isomorphic to Jί, and that s is
nothing else but the monodromy of H.

Remark 4.1. 1. A little more extra work is needed to prove the following:
Any holomoφhic invariant of the coadjoint action of Vir(Σ) is a function of λ

and the monodromy.
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This statement motivates a definition of coadjoint orbits for Viτ(Σ) as level sets
of the monodromy inside hyperplanes λ = const in the space of two-dimensional
Hill's operators.

Remark 4.2. Observe that the space of "orbits" for Vir(Γ) is the same as for
SL2((E)Σ. A similar coincidence takes place also in the one-dimensional theory,
where it reflects the deep relationship between the representation theories of Vir<c
and sζ((C).

5. Geometry of Orbits

Define an analogue of Kirillov-Kostant structure on orbits of the coadjoint action
of the group GΣ. We will assume that Σ is a complex torus. The construction is
the same as for classical Lie groups.

Let X\,X2 be tangent vectors to an orbit G in E* at a point / . Then there exist
elements X\,X2 G qΣ such that

(eof)=Xj. (5.1)

Set
K(XUX2) = f([XuX2]) • (5.2)

Despite the liftings X\,X2 are not unique, Eq. (5.2) presents a well defined anti-
symmetric bilinear form on the tangent space to G at / for every / e G. Thus, K
is a holomorphic differential 2-form on G.

The following properties of K are proved similarly to the classical orbit method.

Proposition 5.1.

(i) K is closed.
(ii) K is nondegenerate.
(iii) K is invariant under the action of GΣ.

Let us now define and classify integral orbits, by analogy with the theory of
loop groups [13],[5]. For loop groups, an integral orbit is defined as an orbit on
which the form K/2π has integral periods. A theorem in [13, Section 4.5] states
that an orbit is integral if and only if there exists a circle bundle on it with
curvature K.

Definition 5.1. Let us say that an orbit G c 2tfχ is integral if for any C G H2(G),

λjKeL. (5.3)

Proposition 5.2,

(i) An orbit G is integral if and only if there exists a holomorphic principal
Σ-bundle $ over G with a connection θ whose curvature is K.

(ii) If G is an integral orbit and $ is the corresponding principal bundle then

the action of GΣ on G can be uniquely lifted to an action of G on $ preserving
the connection θ.
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The proof is similar to that for loop groups.

Classification of integral orbits is similar to the loop group case.

Denote by Θ(λ,m) the orbit in Jfχ corresponding to the point m G Jί. We
assume that λ + 0. Let us call λ the level and m the weight of the orbit, by analogy
with loop groups.

We also assume that τ is generic, i.e. that Σ has exactly two holomorphic
automorphisms modulo translations.

Denote by Z the center of G. Let λ e <C*,m e Jί, and let m e T x T be a
lifting of m.

Proposition 5.3. An orbit Θ(λ,m) is integral if and only if λ is an integer, and
λrheZxZcTxT. Thus, the number of integral orbits at each level is finite.

This statement follows immediately from the two previous propositions.

The number of integral orbits at each level can be easily calculated for any
particular group. For instance, if G = SL2 then it is equal to 2λ2 + 2.

Conclusion

We would like to conclude our paper with a few remarks about the relation of
geometry of orbits and representation theory. This relation was very fruitful in
the case of compact simple Lie groups and the corresponding loop groups (see
[5]). Thus one should expect that the integral orbits of the two-dimensional current
groups (see Sect. 5) give rise to certain (projective) representations of this group.
In spite of the strong similarity, the orbital theory of the two-dimensional current
group is different from the finite-dimensional groups in one important aspect: the
target group G has to be complex rather than compact. In order to pursue the
analogy, one has to recall that the orbits for the complex finite-dimensional groups
G correspond in general to Harish-Chandra modules rather than to highest weight
modules. Therefore, the general philosophy of orbital theory asserts that the class
of (projective) representations of 2-dimensional current groups associated to the
orbits studied in this paper should generalize to Harish-^Chandra modules. We note
however that the appropriate class of representations is not well understood even in
the case of loop groups, and it is an interesting direction for future research.

Coming back to integrable highest weight modules, one can ask if there is a way
to construct them by quantizing the orbits of complex rather than compact groups. In
fact there is a special subset of complex orbits corresponding to spherical modules,
which can be viewed as a counterpart of the class of highest weight representations.
Spherical modules are characterized by the property that they contain a vector in-
variant with respect to the diagonal subgroup. This vector is an analogue of the
highest weight vector. The duality between spherical and highest weight modules
suggest that the orbits of the complex group G might be used for the latter class of
representations. Since the orbits have dimension twice bigger than in the compact
case, one needs to define a proper counterpart of Kahler structure on the orbits. The
natural candidate is the hyperkahler structure that is known to exist on orbits of
complex finite dimensional simple groups and complex loop groups [21]. We con-
jecture that this structure can also be defined on orbits of two-dimensional current
groups, and that it is a key to their quantization.
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Note added in proof. The subject of this paper was developed further in a recent paper [EK],
where the two-dimensional version of the Gelfand-Dickey Poisson structure was introduced, and it
was demonstrated that the local structure of its symplectic leaves is the same as that for coadjoint
orbits of the central extension of the two-dimensional current group.

It was also shown there that the codimension of a coadjoint orbit corresponding to a holo-
morphic principal G-bundle B (see Proposition 3.2) is equal to the dimension of the space of
holomorphic global sections of its adjoint bundle, ad(B), whose fiber is the Lie algebra of G.
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