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Abstract: For general compact Kahler manifolds it is shown that both Toeplitz
quantization and geometric quantization lead to a well-defined (by operator norm
estimates) classical limit. This generalizes earlier results of the authors and Klimek and
Lesniewski obtained for the torus and higher genus Riemann surfaces, respectively.
We thereby arrive at an approximation of the Poisson algebra by a sequence of finite-
dimensional matrix algebras gl(N), TV —> oo.

1. Introduction

In a couple of papers titled "Quantum Riemann Surfaces" [24] Klimek and Lesniweski
have recently proved a classical limit theorem for the Poisson algebra of smooth
functions on a compact Riemann surface Σ of genus g > 2 (with Petersson Kahler
structure) using the Toeplitz quantization procedure:

lim

(1.1)

(1.2)

Here, - = 1,2, ... are tensor powers of the quantizing Hermitian line bundle (L, h)

over M, and the Toeplitz operators act on the Hubert space of holomorphic sections
of Lllh as the holomorphic part of the operator that multiplies section with /.

As usual (1.2) gives the connection between the Poisson bracket of functions
and the commutator of the associated operators and (1.1) prevents the theory from
being empty. Compared to Berezin's covariant symbols [3] and to the concept of
star products [2, 6, 9, 11], where the basic idea is the deformation of the algebraic
structure on C°°(M) using h as a formal deformation parameter, the emphasis lies
here more on the approximation of C°°(M) by operator algebras in norm sense.
More generally, the estimates (1.1) and (1.2) above can be seen in the setting of
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approximating an (infinite-dimensional) Lie algebra £ by a family (£α) of metrized
Lie algebras indexed by some parameter a.

This concept does not only apply to the classical limit in quantization procedures,
but also to other physical contexts. An important example is the Lie algebra diffA Σ
of all convergence-free or volume-preserving vector fields which plays a distinguished
role both in two-dimensional hydrodynamics [1, 13] and in the theory of relativistic
membrances [4, 23]. Its relation to the Poisson algebra of Σ is that the Poisson algebra
is isomorphic (modulo the constant functions) to the Lie algebra of Hamiltonian
vector fields on Σ1, which in turn is (up to first deRham cohomology) equal to
diff^ Σ. Originally starting from membrane theory (where this limit occurred in a
phenomenological way as approximation of structure constants, see [23]), an axiomatic
treatment of such an approximation scheme which was called £α-quasilimit was given
in [5]. Roughly speaking, quasilimits can be seen as generalized projective limits
with the homomorphisms £α — > £^ replaced by certain asymptotic conditions. Apart
from several examples the paper [5] also contains the relation to classical limits via
geometric quantization on compact Kahler manifolds and the proof of (1.1) and (1.2)
for the Poisson algebra on the 2n-torus using theta functions (with characteristics).

The above Toeplitz operators TJ were replaced by the operators of geometric

quantization Qj , but the asymptotic results are equivalent according to Tuynman's

relation

The aim of this paper is to generalize the classical limit for Toeplitz quantization
of the above Riemann surfaces to the general compact Kahler case (the "quantum
Kahler manifolds"), i.e. to prove (1.1) and (1.2) in this context and to use them to
show the following theorem (conjectured in [5]):

Theorem. Let (M, ώ) be a quantizable compact Kahler manifold, ω the Kahler form,
3?(M) the Poisson algebra of real valued C°° -functions with respect to ω, L the
quantum line bundle, and Lm its rath tensor power. Let ω be rescaled (by multiplying
it with a positive integer) in such a way that L is very ample. Then, with respect

to the maps f -» imTJ-m) and f -» mQ(

/

m) the Poisson algebra 5^(M} is a

u(dimΓhol(M, L^^quasilίmit (m — > oo) in both cases.

The technical details entering the hypotheses of this theorem will be explained
below. We believe that one can probably dispense with the condition that the bundle
is very ample (i.e. avoid the rescaling).

The proof is largely based on the theory of generalized Toeplitz structures
developed in the mid-seventies by Boutet de Monvel, Guillemin, and Sjδstrand in
the framework of microlocal analysis [7, 8, 18]. In fact, the estimate (1.2) is an easy
consequence of the symbol calculus for generalized Toeplitz operators, whereas the
innocent looking (1.1) requires more efforts.

Let us give a rough outline of the arguments. Denote by U the dual line bundle to
L, along with its Hermitian fibre metric, and by Q the unit disc bundle. Sections of Lm

can be identified with functions on Q satisfying appropriate equivariance conditions.
In this way, the direct sum of the spaces of holomorphic sections of L™ gets identified
with a Hubert subspace of L2(Q), called generalized Hardy space. As shown in [7, 8,
18], the orthogonal projector onto the Hardy space has good microlocal properties, and
renders a ring of generalized Toeplitz operators on L2(Q) having properties similar to
pseudo-differential operators. On the other hand, the spaces of holomorphic sections
of Lm can be recovered using Fourier decomposition with respect to the natural
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circle action on the Hardy space, and the symbol calculus for the generalized Toeplitz
operators gives the desired approximation results for the original problem.

The paper is organized as follows. In Sect. 2 we recall the notion of £Q,-quasilimit
and describe its relation to geometric quantization for the convenience of the reader
and to fix notation. In Sect. 3 we discuss the above theorem for projective Kahler
manifolds and Riemann surfaces. In Sect. 4 we formulate the basic asymptotic results
for partial Toeplitz operators (Eqs. (1.1) and (1.2) above) and explain why this implies
the main theorem. Their proof is given in Sect. 5.

2. £α-Quasilimits and Geometric Quantization

We recall from [5] the definition of an £α-quasilimit. Let (£,[,]) be a real or a
complex Lie algebra and (£α, [ , ]Q,))αe/ a family of real resp. complex Lie algebras
with index set / either N or other suitable subsets of EL Let the Lie algebras £α be
equipped with metrics da (in our cases they are all coming from a norm) and let
(pa :£ — » £a)a£i be a family of linear maps.

Definition 2.1. (£α, [ , ]α))α€/ is called an approximating sequence for (£, [ , ]) and
(£,[,]) is called an £a-quasilimit induced by (pa : £ —» £α)αG/ if
(1) all pa for a > 0 are surjective,

(2) if for all x, y £ £ we have da(pa(x),pa(y)) — •> 0, for a — > oo then x = y,

(3) for all x, y 6 £ we have da(pa([x, y]), [pa(x),Pa(y)]a) -» 0, for a ->oo.

From (2) it follows that an element which is asymptotically zero is already zero
and from (3) it follows that there is only one Lie product on L which is compatible
with a given approximating sequence and a given system of maps (pa\ For examples
we refer to [5, Sect. 3].

As was pointed out to us by Bost this definition is related to the notion of
continuous fields of C* -algebras as introduced in [12].

Let M be a compact Kahler manifold of complex dimension n with Kahler form
ω. In particular, (M, ω) is a symplectic manifold. For every smooth function / on M
the Hamiltonian vector field Xf is defined by ix (ω) = df. Let ̂ (M) be the Lie

algebra of smooth functions on M with the Lie bracket

= ω(X,X). (2.1)

Now let (M,ω) be a quantizable manifold and L be a holomorphic quantum line
bundle with fiber metric h and compatible covariant derivative V. For the explanation
of the above terms we refer to [5, Sect. 4] for a quick review, resp. to [31, 32, 34]
for detailed information.

The condition for L to be a quantum line bundle for (M, ω) says that the curvature
of L is essentially equal to the symplectic form. More precisely for every pair of vector
fields X, Y we have the prequantum condition

F(X, Y) = VXVY - Vy Vx - V[X?y] = -iω(X, Y) . (2.2)

By this definition L is a positive line bundle. According to Kodaira's embedding
theorem some tensor power Lm is "very ample", i.e. one gets a holomorphic
embedding of M into a projective space using the holomorphic sections of Lm.
After the choice of a basis φ§, . . . , φN of /^(M , Lm) this embedding is given as

M -> P^ , x ̂  (φQ(x) : Ψl(x) : . . . : φN(χ)) .
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Chow's theorem says that M is in fact a protective algebraic manifold [29, p. 60].
For every smooth function / on M the following prequantum operator Pf acting

on the complex vector space Γ(M, L) of all smooth global sections of L is formed
Pf := -Vx -f if 1. This defines a map

-)), f » P f .
By the prequantum condition (2.2) the map P is an injective Lie algebra homomor-

phism. Let Ω — — ωn denote the symplectic volume form on M, and define the

prequantum Hubert space L2(M, L) as the completion of Γ(M, L) with respect to the
scalar product

(φ\ψ}:= j h(φ,ψ)Ω. (2.3)

M

With respect to this scalar product Pf becomes an antihermitian operator of
Γ(M, L) for real valued /.

A second step in the geometric quantization scheme is the choice of a polarization.
The canonical concept for Kahler manifolds is the separation into holomorphic and
anti-holomorphic directions, called Kahler polarization. The quantum Hubert space is
the subspace Γhol(M, L) of holomorphic sections in L2(M, L). Due to compactness
of M the space Γhol(M, L) is always finite dimensional. The quantum operator Qf

is defined as Qf := 77(1) o Pf o Π(l\ where ZΓ(1) : L2(M, L) -> Γhol(M, L) denotes

orthogonal projection. The map Q : f \—> Q^ is a linear map from ̂ (M) to the finite
dimensinal Lie algebra u(Γhol(M, L)) of antihermitian operators in Γhol(M, L).

In this paper, however, we will be more concerned with Toeplitz quantization,
defined as follows. For / G .̂ (M) the corresponding Toeplitz operator on Γhol(M, L)
is the operator of multiplication Mj by / followed by orthogonal projection back to
/UM.D,

Tf := T(f) := Πw oMfo Πm . (2.4)

According to a result of Tuynman [32] (see also [5, Proposition 4.1]) one has

Qf = iT(f -\Af}. (2.5)

Here A is the Laplacian on functions calculated with respect to the Riemannian metric
g coming from ω.

To obtain a family of finite dimensional Lie algebras associated to ^(M) we
consider everything for the rath tensor power L171 := L®m of the quantum line bundle
for m G N. The quantum Hubert space is thus Γhol(M, Lm), with scalar product

(φ I ψ) := hrn(φ, ψ)Ω, hm := h < 8 > . . . 0 ft (m factors), (2.6)

M

and the prequantum operators Pi define a representation of (^(M), m ω\ In order

to render a representation of (̂ (M), α;) they have to be rescaled to Pi := mF™ =

-V^} + im/. The rescaled quantum operators are given as
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with 77(m) the corresponding projection map. By Eq. (2.5) one has

(2.8)

Note that neither T(m) nor the Laplacian are rescaled.
For the elements in gl(Γhol(M, Lm)) we take the rescaled norm

HAIL :=-ί sup I'M, (2.9)
™v^o IMI

and || . . . || the operator norm.
For φ, ψ 6 ^hoι(

M> ̂ m) we obtain

(^ I T<mV> - (#(mV / #(mV> = (^ I / ^> = / fhm(φ,ψ)Ω. (2.10)

M

The settings for m G N with m — » oo,

J)^(^(Γhol(M,L-)),[,],||...||m), pm:f»&™\ (2.11)

, }) -+ (ιx(Γhol(M, L^)), [ , ], || . . . ||m) , Pm : / ̂  im - T}m) , (2.12)

are exactly the settings examined in the scheme of £α-quasilimits. That m~l is
likely to play the role of h is already indicated by the formula for the dimension of
Γhol(M, Lm). Indeed, the Hirzebruch-Riemann-Roch theorem says that for m large,
this dimension is a polynomial in m with leading term

dimΓhol(M, Lm) = - vol(M) + O(mn~l) , (2.13)

where vol(M) is the symplectic volume. But this is just what is to be expected from
the uncertainty relation.

3. The Approximation Theorem

The following theorem will be proved in the remaining Sects. 4 and 5.

Theorem 3.1. Let (M, ω) be a quantίzable compact Kahler manifold, 3^(M) the
Poisson algebra of real valued C°°-functions with respect to ω, L the quantum line
bundle, and Lm its mth tensor power. Let ω be rescaled (by multiplying it with a
positive integer) in such a way that L is very ample. Then, with respect to both settings
(2.11) and (2.12) ^(M) is a ^(dimΓhol(M, Lmy)-quasilimit (m -> oo).

Let us illustrate the theorem by two important special classes of examples: The
first class consists of the projective Kahler submanifolds. For the TV-dimensional
projective space P^ the Fubini-Study fundamental form CJFS is defined as

TV TV

(1 + \w\2) ̂  dwi Λ dwτ — Σ wΊWjdwi Λ dWj
_ . i=l *,J = 1 (~ ,.

ωps'~ (i + H2)2 '
with respect to the local coordinates wi = zjz^ i = 1, . . . , N on the coordinate
chart where the homogeneous coordinate z0 ^ 0 (see for example [33]). It defines the
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standard Kahler form on P^ and it is up to the scalar factor — i the curvature form
of the hyperplane bundle H. Hence, H is an associated quantum line bundle.

Now let i'.M <—> ΨN be a projective Kahler submanifold of dimension n. The
pullback L = i*(H) (resp. the restriction) of the hyperplane bundle H is a quantum
line bundle associated to the pullback i*(α;FS) which is the Kahler form of M. The
space of global holomorphic sections of Lm is generated by the restrictions of the
homogeneous polynomials of degree m in N -f 1 variables. Note that they are in
general not linearly independent when restricted to M. Formula (2.13) is the Hubert

polynomial of M, i.e. n! — - (which is a positive integer) is equal to the degree
(2ττ)n

of M considered as a projective submanifold.
The second class of examples are Riemann surfaces with their "standard" Kahler

forms. For the rest of this section let M be a compact Riemann surface with fixed
complex structure. Depending on the type of the simply connected universal covering

M of M the classes of Riemann surfaces can be divided into three subclasses (see
[15, 29]).

Case L Here M — P1, the projective line over C, resp. the sphere S2. In this case

M = M = P1. This isomorphism like all other isomorphisms appearing in the
following is an analytic isomorphism. We use the standard covering of P1 by the
open sets UQ and Ul,UQ = Ul= C,

U0 := {(ZQ : z{) \ZQ ± 0} , U{ := {(ZQ : z{) \ z{ ^ 0} .

We take z = Z^/ZQ as coordinate for C/0, and w = zQ/zl as coordinate for Ul. The
transition function is given as w(z) = l/z. In the following we will describe every
object by local functions in [70. The Kahler form (3.1) specializes to

ω0(z) = Q -L.z-γ dz Λ d* ' (3 2)

The corresponding quantum line bundle is the hyperplane bundle L0 with transition
function l / z . Its global holomorphic sections are the elements of the vector space
(l,2)c. For the tensor powers L™ :— L®m we obtain (for example by using the
theorem of Riemann Roch [29]) dim Γhol(Pl , L™) = m + 1. A basis is given by
i 1 72 m
1, 2 , 2 , . . . , 2 .

Case 2. M = C. In this case M is a one dimensional complex torus, e.g. M ~ C/Γ9

where Γ — (1, τ)z (Imr > 0) is a two dimensional lattice in C. The genus of M is
equal to 1 and the Kahler form is given by

a;, (z) = -̂ - dz Λ dz . (3.3)
Imr

Here z is the coordinate on the covering. A corresponding quantum line bundle is
the theta line bundle L{ of degree 1. It depends on the complex structure of M, e.g.
on r. Its space of global sections is one dimensional and a basis element is given
by the Riemann theta function (see [5, Sect. 5]). By the Riemann Roch theorem we
get for the tensor powers L™dimΓhol(M, L™) = m. These spaces are generated by
the theta functions with characteristics. Of course, Ll is only ample. But L®3 will be
very ample [17].
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Case 3. M — E with E := {z G C| z\ < 1} the open unit disc. There exists a
Fuchsian group D, i.e. a discrete subgroup satisfying some additional conditions (see
[15]) of

|α|2 - |6|2 -

such that M = E/D (analytically). Here the elements R G 577(1,1) operate by
fractional linear transformations

αz + b

on £7. This situation could equivalently be described by the upper half plane and the
group 5L(2,R). As Kahler form on E we take

dz Λ dz . (3.4)
(1-;

Because R'(z) — (bz + a)~2 we obtain ω(R(z)) = ω(z). Hence (3.4) is invariant under
5[7(1, 1) and defines a Kahler form ωg on M.

An associated quantum line bundle Lg is the canonical line bundle K (i.e. the
line bundle whose local sections are the local holomorphic differentials). Again, K
resp. Lg depends on the complex structure, i.e. on the group D. For generic Riemann

surfaces of genus g > 2 the bundle Lg is already very ample. In any case L®3 will
be very ample [27].

The bundles L™ are the m-canonical bundles. By the theorem of Riemann Roch
we obtain

dimrw(M,Lp = {^_ 1 ) f e _ 1 ) > ™=1

2>

As in the g = I case the sections can be identified with functions on the covering
space E which behave suitably under the operation of the group D. A holomorphic
function / on E is called an automorphic form of weight l 2k for the group D if for

every R=(\ & ) e D,

f(R(z}) = (bz + άfk - f(z) = (R'(z)Tk f(z).

From the definition it is clear that f(z)(dz)k = f (R(z)) (d(R(z)))k. Hence, such
an automorphic form of weight 2k defines a section of Lk. Conversely, every such
section defines by pullback an automorphic form on E.

Note that in all the above cases the theorem also holds without the "very ample"
condition, see [5, 24].

4. Approximation and Toeplitz Operators

Let (M,α;) be a quantizable compact Kahler manifold and L some quantum line
bundle with metric h over M. We assume L to be very ample. Let ^(m) =
.Γhol(M, Lm) be the Hubert space of holomorphic sections in Lm, with scalar product

1 The definition of weight varies in literature. Our weight 2k is sometimes called weight k or
dimension — 2 / c , . . .
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(2.6). Recall the relation (2.8) between the quantum operators and the multiplication
(Toeplitz) operators. We will show that Theorem 3.1 will follow from Theorem 4.1
and Theorem 4.2 below. In Sect. 5 we will prove these theorems.

First we will show that the surjectivity (property (1) in Definition 2.1) is always
true, due to the following propositions.

Proposition 4.1. The canonical linear mapping

s(rn} : End(JT(m)) -> C°°(M) defined by s(πι\\φ) (ψ\) := h(πι\φ, ψ) , (4.1)

is an injection.

Proof. Let e t, e2, . . . , ed be a basis for ̂ (m). In a local complex chart (V, z) these
sections are represented by holomoφhic functions eτ(z). In this chart the d2 sections
5(m)(|e l)(eJ|) are given by the d2 functions h ( z ) e i ( z ) 6 j ( z ) where h is some fixed
positive function. Suppose that

for some α G C. After dividing by /ι, this can be analytically extended to V x V:

^ aije^z)ej(w) = 0 ^z,w ^V .

It follows that a = 0. D

Proposition 4.2. The linear mappings T(m) αrcd Q(πι):C°°(M) -> End(,^(m))

/ For all / G C°°(M) and A G End(^(m)), one has for the Hubert-Schmidt
scalar product

(A I T}m)) = tφ4* - T}m)) = f f(x)s(m\A*)(x)Ω(x) = (s(rn\A)J)L2 . (4.2)

M

Suppose that A is orthogonal to the range of T(m). Then both sides of (4.2) vanish for
all /, i.e. s(m\A) = 0. According to Proposition 4.1, this implies A = 0, hence Γ(m) is

surjective. The analogous result for Q(m) follows from Q(m) = mΓ(m) o ( 1 - — - Δ } ,
V 2m J

since [ 1 -- A \ is positive and elliptic. Hence, for every g G C°° there is a
2m y

= (y. D

Theorem 4.1. For every f G 9^(M) there is some c > 0 such that

/- - < P m ) H < l l / l l o o ™ ™->™. (4.3)
777'

Here H/H^ w ίAe sup-norm of f on M and ||Tίm)|| is the operator norm on 3%(rn\ In
particular,

lim ||T<ro)|| = II/IU . (4.4)
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Theorem 4.2. For all /, g G ̂ (M\

| | m [ T j , T^m)] — iTry 11| = O(m-1) as m —•> oo . (4.5)

From both theorems it follows immediately

lim ||[T}m),T<m)]||=0. (4.6)
ra—>oo J u

Proof of Theorem 3.1. The required surjectivity is just Proposition 4.2. Obviously for

the assignment / —>• im T! , by (4.4) and (4.5) the remaining two conditions
are fulfilled. Hence for the setting (2.12) Theorem 3.1 is true. (Note, we use the
rescaled operator norm || . . . ||m.) Using the relations (2.8) which connects the quantum
operator with the Toeplitz operator it is easy to check (using (4.6)) that

m—»oo *

Hence, we obtain Theorem 3.1 also for the setting (2.11). D

Remark. In the case of Riemann surfaces Theorem 4.1 and 4.2 have been already
proved by tedious calculations. Klimek and Lesniewski [24] did the case of genus
g > 2. Our Theorem 4.1 corresponds to [24, II.], Theorem A and Theorem 4.2
corresponds to [24, II.], Corollary to Theorem B. Note that we defined our Poisson
bracket (2.1) with the opposite sign of the bracket used in [24]. The case g — 1 has
been done by the authors in [5] as a special case of n-dimensional complex algebraic
tori. The authors (unpublished) also did the case g = 0 using asymptotics of binomials
(Stirling formula, etc.).

Before we prove these theorems in Sect. 5 for the general setting we will give a
more elementary proof of Theorem 4.1 for the first class of examples, the projective
Kahler manifolds M. Let ί:M c—> PN be a nonsingular projective variety, and
π: U —> M be the restriction of the tautological line bundle of P^ to M with its
induced Hermitian structure k. The bundle U is the dual of L, the pullback of the
hpyerplane bundle H, i.e. U = L* = £*(£/"*). Then L is a quantum bundle of (M, ω\
where ω is the pullback of the Fubini-Study form of P^. Using the scalar product
on C(jv+1) the metric k extends to a function on U x {/, holomorphic in the second
argument and anti-holomorphic in the first. In particular, the Calabi (diastatic) function
[9, 10].

D: M x M -> R>0 U {00} , JD(π(λ), π(μ)) - - log |fc(λ, μ)|2 (4.9)

(where we have to choose λ and μ with fc(λ, λ) — fc(μ, μ) = 1 representing the points
of M) is well-defined and vanishes only along the diagonal.

Proof of Theorem 4.1 for these cases. The second inequality follows directly from
the definition (2.4) of Tf. To proof the first, let x0 G M be a point where |/|

assumes its supremum, and fix a λ0 G π"1^) with fc(λ0,λ0) = 1. Identifying

holomorphic sections Φ(m) of U~m = Lm with holomorphic functions Φ(m):£7 -> C
which are equivariant (i.e. which obey Φ(πι\av) = αmΦ(m)(ι>)), we define a sequence
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Note that hrn(Φ(rn\Φ(rn}}(x) = exp(-mD(x0,x)). (Recall, we chose λ such that
fc(λ,λ) = 1.) Hence, using Cauchy-Schwartz's inequality,

l lτ(m)|l > \\τ(^φ(m)\\ Φ^τΦ^
- ~ lφ(rri)\φ(rn)\

M M

J fem(φ(m), φ(m))

M M

Both integrands vanish exponentially (with respect to m —> oo) outside x = #0.
Moreover, as a function of x the Calabi function has a nondegenerate critical point
at x = xQ, i.e. one can apply the stationary phase theorem [22] to both integrals to
conclude that

). D

5. Proofs of Theorems 4.1 and 4.2

The proofs will follow from the theory of "global" Toeplitz operators as developed by
Boutet de Monvel and Guillemin [7]. Let us review the necessary prerequisites from
their book. Let (M, ώ) be an n-dimensional Kahler manifold, ([/, k) :— (L*, h~l) be
the dual of the quantum line bundle as above, and

fe:t/^M>0, A (λ) = fc(λ, λ) .

Let Q = k~l(l) be the unit circle bundle.
It is known (see e.g. [6]) that the 2-form iddk on U is Kahler off the zero section.

In particular, the unit disc bundle is strictly pseudoconvex.
The natural circle action makes Q into a principal S{ bundle r : Q — » M, and the

tensor powers of U may be viewed as associated bundles. Let Ίa G iΩl(Q) be the
u(l)- valued connection 1-form corresponding to the Hermitian linear connection V on

U. I a is the restriction of the 1-form — (dk — dk) to the circle bundle. 1 According
_

to the prequantum condition, da = τ*ω, and v = — τ * ί ? Λ α i s a volume form
2π

on Q. The generalized Hardy space 3$ is defined as the closure in L2(Q, ̂ ) of the
subspace of all / e COG(Q) that extend to holomorphic functions on the disc bundle.
3$ is preserved under the circle action and thus splits into a completed direct sum

%g = f; M(rn\ where c G Sl acts on ,^(m) by multiplication with cm. Under
m=0

the identification of sections of Lm with functions on Q satisfying the equivariance
condition φ(c\) = cm</>(λ),(c G S*1), the Fourier sectors 3$^ coincide with the
Hubert spaces defined in Sect. 4. The orthogonal projector Π:L2(Q) — > 3$ is called
the generalized Szego projector.

We shall assume that L is very ample, i.e. that M can be embedded into some
project! ve space P^ via the global holomorphic sections of L. In particular, L is
the restriction (pullback) of the hyperplane bundle and U is the restriction of the
tautological bundle. Away from the zero section the latter and hence U can be
embedded into C^+1. The image of U is an affine cone, hence a Stein variety (with
singularity at 0 coming from the collapse of the zero section). Under this condition
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Π defines a Toeplitz structure in the sense of [7, p. 18] (see the remark at the end of
Ref. [8]), with underlying symplectic submanifold of T*Q\0 the positive cone over
the graph of a:

Σ = {to(λ) λ e Q, t > 0} c T*Q\0 . (5.1)

(Here and in the following T*Q\0 denotes the total space T*Q with the zero section
removed.) Let TΣ : Σ — » M denote the natural projection. A (global) Toeplitz operator
of order k associated to (Σ1, 77) is by definition an operator A:,^ — » 3$ of the form
A = ΠRΠ, where R is a pseudo-differential operator of order k. The principal
symbol of A is the restriction of the principal symbol of R (which is a function on
T*Q) to Σ. It was shown in [7] that Toeplitz operators form a ring, and that the
principal symbol of Toeplitz operators is well defined and obeys the same rules as
for pseudo-differential operators:

σ(AlA2) = σ ( A l ) σ ( A 2 ) , σ ( [ A l , A 2 \ ) = i{σ(Al),σ(A2)} ,

where the Poisson brackets are computed with respect to the symplectic structure
on Σ.

The generator of the circle action - — gives a first order Toeplitz operator D
i σφ ψ

with symbol σ(Dφ) (ία(λ)) = t. Dψ operates on J?f(m) as multiplication by m. For

/ G £P(M) let Mf be the multiplication operator on L2(Q) and Tf = ΠMfΠ. The
symbol of Tf is the pullback of / to Σ. Being invariant under the circle action,

oo

Tf splits into a direct sum Tf = 0 T^m). Identifying ^(m) with the space of
ra=0

holomorphic sections, the operator T! on j?f(m) is just the Toeplitz quantization
(multiplication) corresponding to / considered in the previous section.

Proof of Theorem 4. 2. The commutator [Tf,Tg] is a Toeplitz operator of order -1

with principal symbol i {τ£/, τΣg}Σ (ta(X)) = Ί t ~ l { f , g}M (r(λ)). It follows that the
S ^invariant, first order Toeplitz operator

A:=&φ\Tf,Tg]-iDφT{/ιg}

has vanishing principal symbol, i.e. is in fact zeroth order. But zeroth order pseudo-
differential operators on compact manifolds are bounded (see e.g. [16, p. 29], or [22]),
and since Π is bounded, as an operator on L2(Q, z/), it follows that A is bounded.
Since ||A(m>|| < ||A|| and

A(m) = A I JT(m) = m2

we are done. D

Remark. In a similar fashion, the theory in [7] leads to

(1) Let / G &>(M\ U(rn\t) = exp(-imtT)m)) the corresponding time evolution

operator, and g e C°°(M). If Ft denotes the Hamiltonian flow for /, one has

\\U(m\t}T(^U(m\~t) - T^g II - 0(m~1} (for m -+ oo) .

This follows from the Egorov theorem for Toeplitz operators, see [7, p. 100].

(2) Foral l/L/2, ...,/ reC°°(M),

||T™./r - 1™ ...T^\\ = 0(m~l) (for m -+ oo) .
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(3) Forall/,./j, . . . , / r e C

For the proof, see Guillemin [18].

Proof of Theorem 4.1. The second inequality is obvious. To prove the first, we have
to construct a sequence Φ(m} G j${nl} such that

(5.2)

The idea is to regard the Φ(m) as Fourier modes (with respect to the S1 action) of
a single distribution Φ G &'(Q). Let x0 G M be a point where |/(x0)| = I l / H o o , and
let λ0 G T^OEQ) be fixed. For λ G Q, let

Ξλ := {ία(λ) G T*Q ί > 0} (5.3)

be the ray through α(λ).
We will look for a suitable Φ among those distributions which have a singularity

at λ0 in the direction of α(λ0), i.e. whose wave front set [21] is contained in Ξχ

for λ = λ0. A class of distributions having this property is the space Ir(Q, Ξ) of
"Hermite distributions" studied in [7, 19]: Choose local coordinates y = (y^ . . . , yq),
q = άimQ around λ such that, in the corresponding cotangent coordinates (y,η\ the
ray Ξχ is given by the equations y{ = . . . = yq = 0, η2 — . . . = ηq — 0, ηv > 0. Let

us write y' = (y2, . . . , yq\ ηf = (r?2, . . . , ηq\ Then the space Γ(Q, Ξχ) consists of
distributions Φ that can be written, modC°°(Q), as oscillatory integrals

Φ(y) = (2πΓq eiyηaηι, -== dqη . (5.4)

Here the amplitude a(ηλ,η') is smooth, vanishes for η{ < ε for some ε > 0, and
admits an asymptotic expansion

oo

0?ι j V) j (5 5)

7 ~h Q'
where α^ is positively homogeneous of degree r -- - — in ηl for ηλ > 0 and a

Schwartz function in 77'. It can be shown that this definition does not depend on the

particular choice of coordinates. In particular, we can assume that — — = -— .
dyi dψ

From [7], Theorem 11.1 and 9.4, Γ(Q, Ξχ) is invariant under the Szegδ projector
Π and under zeroth order pseudo-differential operators. In particular, it is invariant
under M^ hence also under the Toeplitz operator Ty. Using that / has a critical point
at x0, the transport equation ([7], Theorem 10.2) shows that

(f-f(x0y)Φer~}(Q,Ξ) for ΦeΓ(Q,Ξ). (5.6)

We will need the following lemma:



Toeplitz Quantization of Kahler Manifolds 293

Lemma I. For all Φ e Ir(Q, Ξχ\ the Fourier modes Φ(m) have finite norm admitting
an asymptotic expansion

z^bjm 2 (5 7)
j=0

for m —> co and vanish faster than any power for m —* — oo. Moreover, the leading
_ι

term b0 depends only on the equivalence class in /r(Q, Ξχ)/I 2(Q, Ξχ), i.e. on its
"principal symbol."

Let us postpone the proof of Lemma 1 for a moment, and explain how to make a
particularly nice choice for Φ(πι\

Let TχQ be the cotangent fiber. Since TχQ Π Σ = Ξλ, Theorem9.4 from [7]
shows that Π maps the space Γ(Q,T*Q - {0}) of Fourier integrals into the space

Γ(Q, Ξχ). Applying this to the delta function δχ e Iq/2(Q, TχQ - {0}), we get some

eχ = Πδχ <G /9//2(Q, Ξχ). The Fourier modes e(^ of eχ have finite norm according

to Lemma 1, so they are in j^(m), and they satisfy for all l^(m) e J^(m),

where again we have identified sections of Lm with equi variant functions. On the

other hand, (5.8) characterizes the e(^ by Riesz' Lemma, and in fact (5.8) is used as
by Rawnsley [28] as the defining property of his "coherent states."

Lemma 2. For all λ £ Q,

Proof. According to Lemma 1 , the leading term depends only on the principal symbol
of eλ. As for any statement concerning principal symbol, it is therefore admissable
to check the claim in a "model situation." Model Q as the unit circle bundle in the
tautological line bundle over Pn. In this model, the coherent states are explicitly
known, and their squared norm is ||e^||2 = (2τr)~n(ra + n)!/n! (see e.g. [28]), in
accordance with the statement of the lemma. D

Let us now choose Φn = e^ . The two lemmas (together with (5.6)) show that

But this clearly gives (5.2) by the triangle inquality. D

Remark. The fact that the coherent states e(

λ

m) are Fourier modes of a Hermite
distribution, together with Lemma 1, may be used to derive a number of their
asymptotic properties by microanalytic means. For example:

(1) If r(λ) + r(μ\ then

i.e. the coherent states are "peaked" at their base point.
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(2) Let / G &*(M) and U(rn\t) = exp(-imtTJ m)) the corresponding time evolution

operator. If Ft denotes the Hamiltonian flow for /, one has

i.e. the coherent states move according to the laws of classical mechanics.

Proof of Lemma 1. Consider the following distribution on Sl:

oo

w(φ)= Y" eim*Ί|Φ(m)||2 = (Φ\eiφD*\Φ). (5.9)

Since the singular support of Φ is λ0 and the singular support of eιφD^Φ is e1(/?λ0,
the distribution w is well-defined and smooth away from ψ G 2πZ. Let us study
the singularity at φ — 0. (We may disregard the smooth part because the Fourier
components of a smooth function on Sl go to zero faster than any power.) Using the
above local coordinates, one computes (mod smooth terms), using ParsevaΓs identiy

w(φ) = I Φ(\)Φ(elφX)dv(\) = (2π)

Q

= (2πΓq

Since

-q. ί eιφηι n
α l 77!

2

dη

is a classical symbol of order h 21 r ) = 2r H l i n the sense of
2 \ 4/ 2

Hormander, this is a classical Fourier integral of order 2r+ - — -. The full distribution

is mod C°°

w(φ) =

With Poisson's summation formula, this can be rewritten as a sum over the Fourier
transforms:

w(φ)=

This shows that ||Φ(m)||2 = g(m)modra~°°. The lemma now follows using the
asymptotic expansion of the symbol g. D
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