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Abstract: Given two symplectic realizations, a symplectic manifold called the
classical intertwiner space is introduced as a classical analogue of an intertwiner
space of representations of an associative algebra. We describe explicitly how
a quantum data on realizations induces a quantum data on their classical inter-
twiner space.

1. Introduction

Let G be a compact Lie group and X a Hamiltonian G-space. G is thus considered
as a symmetry group of the classical space X. According to the "creed" of geometric
quantization, if the classical space X is quantized to a quantum phase space (i.e.,
a Hubert space), G becomes a symmetry group of the corresponding quantum
space. This idea has in fact inspired many significant results in mathematical
physics, among them orbit method of group representations and theory of geomet-
ric quantization [9,19].

The intertwiner space between two representations p1: G -> E n d ^ ) and
ρ2: G->End(V2) is, by definition, HomG(V2? Vi\ the space of all G-equivariant
linear maps from V2 to Vι. When pγ is irreducible, the dimension of HomG(V2? V\)
is usually called the multiplicity of px in p2, a fundamental concept in representa-
tion theory. The classical counterpart of HomG(y 2 ? VΊ) is closely related to the
so-called Marsden-Weinstein reduction [16]. In fact, the classical intertwiner
space, for any symplectic homogeneous spaces X1 and X2, is defined as the
symplectic (or Marsden-Weinstein) reduced space (X2 x Xι)0. A remarkable result
of Guillemin-Sternberg [5] asserts that for a Kahler manifold, the geometric
quantization of classical intertwiner space is isomorphic to the intertwiner space of
the corresponding representations.
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Recently, more and more interest has been drawn to the so-called hidden
symmetry due to the rapid development of quantum group theory. In this case, on
the quantum level, the quantum symmetry is represented by a representation of
a quantum group, while the classical symmetry is played by a Poisson group
homogeneous space. It is therefore desirable to extend Guillemin-Sternberg theory
to this more general setting.

To approach this, we shall put this problem into a slightly more general
framework. Recall that a Hamiltonian G-space X corresponds to an equivariant
momentum map J: X -• g*. J is in fact a Poisson map if g* is equipped with the
natural Lie-Poisson structure. Moreover, such a Poisson map uniquely determines
the G-action on X. Such a pair (X, J) is also called a symplectic realization of the
Lie-Poisson space g*. For a general Poisson manifold P, a symplectic realization
(X, J) is defined as a symplectic manifold X together with a Poisson map J : X-*P
which is complete in the sense that the pullback to X of every compactly supported
function on P has a complete Hamiltonian vector field1. As described early in this
introduction, a symplectic realization of a Lie-Poisson space g* is the classical
analogue of a representation of the group G or, what is nearly equivalent, of the
universal enveloping algebra ί/(g). Since £/(g) may be thought of as a quantum
deformation of the Poisson algebra of (polynomial) functions on g*, it is a natural
generalization of this situation to consider realizations of a general Poisson
manifold P as the classical analogues of representations of a quantum deformation
of the functions on P.

The following table should be useful for understanding the relationship be-
tween various notions in this general setting:

CLASSICAL QUANTUM

symplectic groupoids of Poisson manifolds -• associative algebras

symplectic realizations of Poisson manifolds -• representations of associative algebras

classical intertwiner space -» intertwiner of representations

The horizontal arrows represent processes generally known as "quantization."
Our purpose is to extend as much as possible the Guillemin-Sternberg theory to
this general non-linear framework. This paper consists of our first attempt toward
this direction.

To any two symplectic realizations J1: X1-^ P and J2: X2 -* P, there associ-
ates in general a symplectic manifold which is a certain quotient space of (X2 *Xi).
This symplectic manifold is called the classical intertwiner space. Here, X2*X\
denotes the inverse image of the diagonal in P x P under the map Jί x J2, and the
bar means reversing the sign of the symplectic structure. This classical intertwiner
space is closely related to the symplectic groupoid Γ of P, and in fact is the quotient
space Γ\(X2 *X\) under the diagonal Γ-action (see Sect. 4 for the precise definition).
When P is the Lie-Poisson g* (or even dual of a general Poisson group G*),
this space reduces to the usual intertwiner space [5]. In this paper, we shall describe
explicitly how a quantum data on the symplectic groupoid and those on the
realizations XUX2 induce a quantum data on the classical intertwiner space

1 Note that in some previous literature [2, 26, 28], they are called complete symplectic
realizations while the terminology of symplectic realizations refers to Poisson maps J: X-+P
without any assumption on completeness.
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Γ\(X2 *Xi) Here, as usual, by a quantum data on a symplectic manifold, we mean
the following two structures: prequantum circle-bundle and polarization.

The paper is organized as follows.
In Sect. 2, we present some basic facts regarding central extensions of Lie

algebroids.
Section 3 concerns central extensions of symplectic groupoids.
Section 4 introduces symplectic realizations and classical intertwiner spaces.
Section 5 is devoted to the discussion on prequantization of symplectic real-

izations. In particular, we prove that the symplectic groupoid central extension
described in Sect. 3 naturally acts on the prequantum bundle of any realization. This
result will be needed for the construction in Sect. 6.

Section 6 contains the main result of this paper, where an explicit construction for
the prequantum bundle of a classical intertwiner space is given.

Section 7 is devoted to the discussion on the aspect of polarizations. Finally,
some discussions are outlined in Sect. 8.

We would like to thank Jiang-hua Lu and Alan Weinstein for their helpful advice
in the course of this work.

2. Central Extensions of a Lie Algebroid

The notion of Lie algebroids is a natural generalization of that of Lie algebras. In
fact, there are many notions and theorems for Lie algebroids which are parallel to
those for Lie algebras. Let us first recall the definition of a Lie algebroid.

Definition 2.1. A Lie algebroid over a manifold P is a vector bundle π: A -> P together
with a vector bundle map p: A —• TP, called the anchor of A, and a Lie algebra structure
on Γ(A), the space of sections of A, satisfying

2. lXjγ ]=flX9Y]+p{X)(f)Y9X9YeΓ{A),

Let A -• P be a Lie algebroid with anchor p. Suppose that ξ is a Lie algebroid
2-cocycle [14], i.e., a section of the vector bundle Λ 2 A * satisfying the condition that

-ξ{[Y9ZlX) = 09

where A* is the dual bundle of A Let i = . 4 © ( P x ]R), the vector bundle direct sum
of A with the trivial vector bundle P x R -> P. It is clear that any section
of A can be identified with a pair (X,f), where X is a section of A and/a function on
P. Define p:Ά-+TP by p(a9t) = p(a)9 for any aeA and ίeR. Also, we define
the bracket of sections of A by

for any X, YeΓ(A\ and /, geCςχ>(P). It is easy to check that A becomes a Lie
algebroid, which we shall call the central extension of the Lie algebroid A by
the cocycle ξ. In particular, if ξ = 09 then the bracket of A is defined by

Ϊp(X)g-p(Y)f).
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Such an extension is called the trivial extension of A by R. In this case, the natural
embedding i: A-> A given by i(a) = (a, 0) is clearly a Lie algebroid morphism in the
sense of [7] (see [15] also).

The proof of the following proposition is straightforward.

Proposition 2.1. If the 2-cocycle ξ is a coboundary ξ = dσ for some σeΓ(A*\ i.e.,

ξ(X9 Y) = p(X)σ(Y)-p(Y)σ(X)-σ([X, F ] ) ,

the central extension by ξ is then isomorphic to the trivial central extension under the
map:

φ: A->A(B(PxlR), φ(a, t) = (a, t + σ(a)),

where aeA, ίelR.

Remark. It is well-known that the dual bundle of a Lie algebroid naturally carries a
Poisson structure which is called Lie-Poisson structure [2]. The Lie-Poisson struc-
ture of a central extension of a Lie algebra is closely related to affine Poisson
structures. Therefore it should be quite interesting to investigate in detail what kind
of Poisson structures the dual of a central extension of a Lie algebroid corresponds to.

Below is the very example in which we are most interested in this paper.
Let P be a Poisson manifold with Poisson tensor π. The cotangent bundle

T*P -+ P carries a natural Lie algebroid structure [2], which can be described as
follows. Given fe Coo(P), denote the Hamiltonian vector field corresponding to / by
Xf. Then the anchor p = π%\ T*P-+TP is determined by p(fdg)=fXg. Given
ω,θeΩ1(P)9 and writing Xω = pω and Xθ = ρθ, the Lie algebroid bracket is

{ω,θ}=LXωθ-LXθω-d[π(ω,θ) ] . (1)

The Poisson tensor π can be considered as a Lie algebroid 2-cocycle in a natural
way [8,24]. Therefore, there associates a canonical central extension Ά =
Γ * P ® ( P x I R ) . The global object corresponding to A is closely related to the
prequantization of the symplectic groupoid, which is to be described in the
following section.

Remark. Lu has observed that this 2-cocycle is a coboundary iff there is a vector
field V on P such that π = [V, π] =Lvπ. In other words, V is a Liouville vector field
of the Poisson manifold P. Thus according to Proposition 2.1, the existence of
a Liouville vector field is equivalent to saying that A is isomorphic to the trivial
central extension. It is easily seen that any Lie-Poisson space g* possesses such
a property.

3. Symplectic Groupoids and Prequantization

The global objects corresponding to Lie algebroids are the so-called Lie groupoids.
Briefly, a groupoid is a small category whose morphisms are all invertible. Below is
the precise definition. We refer the reader to [14] for more details on Lie groupoid
theory.

Definition 3.1. A Lie groupoid Γ over a manifold P is a pair (Γ, P) equipped with
surjective submersions α, β: Γ -> P (called the source and target maps respectively);
a multiplication map m from Γ2 = {(g,h)eΓ x Γ\β(g) = a(h)} to Γ, an injection
ε: P -> Γ (called the unit map); and an inverse mapping i: Γ -• Γ satisfying (where
m(g,h) is denoted by gh, and i(g) by g~x):
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1. (associativity) g(hk) = (gh)k, which means that if one side is defined, so is the
other and they are equal;

2. (identities) ε(oc(g))g = gε(β(g)); _
3. (inverses) gg 1 = ε(a(g)) and g 1g = ε(β(g)).

We usually use the notation (ΓzJ P, α, β) to denote such a Lie groupoid.
Associated to any Lie groupoid, there is a Lie algebroid as an infinitesimal

invariant. However, conversely, a Lie algebroid may not always be the Lie alge-
broid of a Lie groupoid. In the case that it does arise from a Lie groupoid, one says
that the Lie algebroid is integrable [14].

In particular, a Lie groupoid corresponding to the Lie algebroid arising from
a Poisson manifold as described by Eq. (1) usually carries a symplectic structure,
which is compatible with the groupoid structure in a certain sense. Such a groupoid
is called a symplectic groupoid. More precisely, a symplectic groupoid is a Lie
groupoid (Γ z | P, α, β) with a symplectic structure on Γ such that the graph oί_
multiplication A = {(g, h, gh)\β(g) = ot(h)} is a lagrangian submanifold of Γ x Γ x Γ
(the bar denotes reversing the sign of the symplectic structure). For more details on
symplectic groupoids, see [2, 21].

A main result of [24] asserts that the canonical central extension Ά =
T*P © (P x IR) as described at the end of Sect. 2 is integrable (i.e. admits a global
groupoid) provided that the Poisson manifold P admits a symplectic groupoid.

Theorem 3.1 [24].

1. If the symplectic groupoid (Γ z£ P, α0, j80) is a-simply connected, and prequan-
tizable, then there exists a unique prequantίzation E off such that the identity
space P has no holonomy.

2. Let £ Λ f be such a prequantization with connection θ so that E has no
holonomy over εo(P), where ε0: P -> Γ is the unit map. Let ε: εo(P)-> E be any
horizontal section over εo(P); then there exists a canonical groupoid structure
on E over P, with unit map ε o ε0, source α = α0 ° π, and target β = β0 o π, such
that π: E -+ Γ is a groupoid homomorphism.

3. The Lie algebroid of (E zX P, α, β) is isomorphic to the canonical central
extension i = Γ * P φ ( P x ! R ) introduced in Sect. 2.

E is called the canonical central extension of the symplectic groupoid Γ.

4. Symplectic Realizations and Classical Intertwiner Spaces

A symplectic realization (X, J) of a Poisson manifold P is defined as a symplectic
manifold X together with a Poisson map J : X -> P which is complete in the sense
that the pullback to Xof every compactly supported function on P has a complete
Hamiltonian vector field. Symplectic realizations are generally considered as classi-
cal analogue of representations of an associative algebra. Morphisms between
realizations are, by definition, lagrangian submanifolds of X2 x X\ (the bar denotes
reversing the sign of the symplectic structure) contained in the coisotropic sub-
manifold X2 * X\ = (Ji x J\) ~ * (diagonal in P x P). We however note that these do
not form a category because of the usual clean intersection requirements for good
compositions [27, 26].
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Now suppose that P is integrable as a Poisson manifold in the sense that it
admits an α-simply connected symplectic groupoid Γ. Given such a symplectic
groupoid (Γ zj P, α, β\ by a symplectic left Γ-module, we mean a symplectic mani-
fold X together with a smooth map J: X -+ P such that X Λ P admits a symplectic
left Γ-action (see [17, 27] for the definition of symplectic groupoid action). J is
usually called the momentum map of the module X. The symplectic left modules of a
given symplectic groupoid Γ become a "category" ζ(Γ) in the following sense: the
objects of ζ(Γ) are symplectic left Γ-modules, the morphisms are canonical relations
satisfying certain conditions compatible with the groupoid actions, and the composi-
tion of morphisms is the set-theoretic composition of relations. More precisely,
a morphism from a symplectic left Γ-module X2 to a symplectic left Γ-module Xί is
a lagrangian submanifold $£ c X2 * Xx that is invariant under the diagonal action of
Γ. As usual, ζ(Γ) is not a true category and it requires the usual clean intersection
assumption for the composition of morphisms being a morphism.

It is shown [26] that symplectic realizations of a Poisson manifold are in fact in
one-one correspondence with symplectic left-modules of its α-simply connected
symplectic groupoid. For this reason, we will not distinguish these two concepts in
the sequel.

Theorem 4.1 [26]. Let Γ be an ot-sίmply connected symplectic groupoid over P. If
X is a symplectic left Γ-module, then its momentum map p: X —• P is a symplectic
realization. Conversely, any symplectic realization p: X -> P naturally admits a sym-
plectic Γ-action so that it becomes a symplectic left Γ-module.

Let Jγ\ Xι-+ P and J2: %i ~+ P be any two symplectic realizations. For tech-
nical reasons, we always assume that, as symplectic left Γ-modules, Γ acts on Xί

and X2 freely and properly, and that the map J2 x J\'. Xi x l i -* P x P is transver-
sal to the diagonal ΔP c P x P so that Γ\(X2 *X\) is a smooth manifold, where
X2 * Xγ denotes the irfverse image of the diagonal ΔP under the map J2xJ1. It can
be proved that Γ\(X2 * Xx) is a symplectic manifold with the symplectic structure
being naturally induced from that on X1 xX2 (see Prop. 2.1 [27] or Theorem
1 [10]). We shall call this space the classical ίntertwiner space between the realiz-
ations J i : X1-^P and J2: X2 -* P.

Heuristically, as the Poisson manifold P is quantized to an associative algebra
st, the realizations J1: X1 -• P and J2: X2^P are quantized to representations
πγ and π2 of the algebra J/ . Then, the symplectic space Γ\(X2*Xi) expects to
become the intertwiner space of the representations πx and π 2 . According to the
"symplectic creed," a classical "state" is a lagrangian submanifold of the symplectic
manifold. The following proposition shows that classical "states" of the symplectic
manifold Γ \(X2 * Xi) are indeed the same as morphisms of the realizations. Thus,
it gives another rationale for our terminology.

Proposition 4.1. There is a one-one correspondence between morphisms of real-
izations J i. X ί -> P, J 2: X 2 -+ P and lagrangian submanifolds of the classical inter-
twiner space Γ\(X2 * X\).

Proof Let S£ be any morphism of the realizations J1 and J2, i.e., a lagrangian
submanifold of X2*Xχ. By Proposition 3.1 in [26], Jδf is invariant under the
diagonal action of Γ. It is thus simple to see by dimension counting that Γ\£P is
a lagrangian submanifold of Γ\(X 2 *^i) Conversely, the preimage of any
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lagrangian submanifold of the quotient space Γ\(X2*Xi) is easily seen to be

a lagrangian submanifold sitting inside X2 * X\. D

For Poisson groups, classical intertwiner spaces can be expressed in a simpler
term.

Suppose that G is a complete simply-connected Poisson group with sim-
ply-connected dual G* [3, 13]. Let m: G* xG* -^> G* denote the group multiplica-
tion. Analogous to the tensor product of representations of a Hopf algebra, there is
an operation among symplectic realizations of G*, called the "tensor product"
[25], which is described as follows. Let Jt: X1-+ G* and J2: X2-+G* be symplec-
tic realizations of G*. Then Jt x J2: Xγ x X2 -» G* x G* is a symplectic realization
of G* x G*. Since the group multiplication m: G* xG* -+ G* is a Poisson map,
X χ x X 2

 m°( J i χ J*>>G* is thus a symplectic realization of G*. We write this
realization as X x ® X 2 , and the realization map m°(Jγ x J2) as Jx ® J 2 . In this
way, we obtain an associative product on the set of all realizations of G*5 which is
called the "tensor product."

The α-simply connected symplectic groupoid D of the Poisson group G* is
diffeomorphic, as a differential manifold, to GxG*, and the groupoid structure is
defined in terms of dressing actions [12]. Given a symplectic realization
J: X -> G*5 there is a symplectic groupoid D-action on X as discussed above, as
well as a Poisson group G-action as introduced by Lu [11] by considering J as the
momentum mapping. It was shown [25] that these two actions are in fact equiva-
lent in the sense that one action can be expressed naturally in terms of the other. In
particular, the Poisson manifold resulting from the groupoid reduction D\X
[27, 29, 25] is Poisson diffeomorphic to the Poisson group reduction X/G as
defined by Semenov-Tian-Shansky [18]. The following proposition can also be
easily verified.

Proposition 4.2. Let J x: X1 -* G* and J2: X2 -> G* be symplectic realizations of

G*. Then, the classical intertwiner space D\(X2 *X±) is symplectic diffeomorphic to

the symplectic reduction (J2 (x) Jx)~ 1(1G*)/G {see [ l l ]/or symplectic reduction in the

context of Poisson group actions), where J2: X2 -> G* denotes the inverse realization

defined by J2(x) = (J2(x))~1, and 1G* is the unit ofG*.

As a consequence, we conclude that to study classical intertwiner spaces for
Poisson groups, it suffices to confine one's attention to the symplectic reduction
J~1(IG*)/G for a certain symplectic realization J: X -+ G*.

As an immediate consequence of Proposition 4.1, we have the following result
generalizing Theorem 2.6 in [5].

Corollary 4.1. Let G be a simply connected Poisson Lie group with G* being its
simply connected dual group. Let X be a symplectic manifold with a Poisson group
G-action and J: X -» G* its corresponding momentum mapping [11]. There is a one-
one correspondence between G-invariant lagrangian submanifolds of X and lagran-
gian submanifolds of the reduced space J~i(ίG*)/G, where 1G* is the unit of G*.

5. Prequantization of Symplectic Realizations

This section can be considered as a continuation of Sect. 2, aimed at the global
feature. Since we are mostly interested in the case of symplectic groupoids in the
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present paper, we shall concentrate on the particular example of the central
extension arising from Poisson manifolds as described at the end of Sect. 2.

Let P be a Poisson manifold with Poisson tensor π, and (Γ zχP,a0, β0) an
α-simply connected symplectic groupoid. Let J: X -> P be a symplectic realization.
Suppose that X is prequantizable and φ: L -• X is a prequantum circle-bundle of
X with connection 0L.

To describe our construction, we first proceed at the level of Lie algebroids. As
in Sect. 2, let A —A © (P x 1R) be the canonical central extension of T*P corres-
ponding to the Poisson manifold P. The connection ΘL thus induces a Lie algebroid
action [7] of A on the prequantum circle-bundle L, as described by the following:

Proposition 5.1. Let J = J°φ: L -+ P be the composition of φ: L -> X with
J:X-+P. Then,

(ω9f)eΓ{Ά)->Xj.ω-(J*f)ζeSΪ(L)

defines a Lie algebroid action, where ωeΩί(P\feCco(P), Xj*ω is the horizontal lift
of the vector field Xj*ω, and ζ is the Euler vector field on L generating the circle
action.

The proof is straightforward and is left to the reader.
As in the case of Lie algebras, one expects to integrate a Lie algebroid action to

a Lie groupoid action. This can be done under certain mild conditions. Below, we
shall outline this result briefly.

There are in fact two obstructions to such an integration: a dynamical one and
a topological one. The dynamical obstruction is, roughly speaking, that certain
vector fields involved need to be complete. More precisely, we say that a Lie
algebroid action on a manifold M: Γ(^)->^(M), η->Xηe&(M), VηeΓ(A), is
complete iϊXη is complete whenever η, considered as a left invariant vector field on
Γ, is complete. The topological condition requires a certain assumption on sim-
ply-connectivity, which in our case, means that Γ is α-simply connected.

Proposition 5.2. Let (Γ zj P, α, β) be an oc-connected and simply connected Lie
groupoid with Lie algebroid A-> P. Then a Lie groupoid Γ-action on J: S -> P
corresponds to a complete Lie algebroid action. Conversely, any complete Lie
algebroid action on J: S -> P can be integrated to a Lie groupoid Γ-action.

This proposition can be proved by imitating the proof of Theorem 3.1 in [26],
which is left to the reader.

We now turn to the particular case as in Proposition 5.1. The groupoid
corresponding to A is the central extension groupoid (£ ij P, α, jS) as described in
Theorem 3.1. Certainly, we expect that this Lie algebroid action extends to
a groupoid £-action. However, one cannot simply apply Proposition 5.2, since the
groupoid (E i j P, α, β) is generally not α-simply connected. In fact, we have the
following

Proposition 5.3. The central extension groupoid (E zt P, α, β) is ot-simply connected
iff the cohomology class of Ω\a~^u) does not vanish in H2((XQ 1(U\ JR) for any ueP,
where Q\a-i(u) denotes the restriction of the symplectic form Ω ofΓ on the fiber OCQ 1{U).

Proof. For any ueP, α~ 1(w) is a principal Γ1-bundle over α^ 1(w), with Ω|α-i(M) being
the curvature. The conclusion thus follows immediately by applying Gysin se-
quence [1]. •
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Below, we shall get around this difficulty using the method adopted from [24].
Our main result is the following:

Theorem 5.1. The central extension groupoίd (E z% P, a, β\ naturally acts on J =
J°φ: L -+ P, lifting the Lie algebroid action of A on L as defined in Proposition 5.1.

Let 9 be the distribution on ExLxL defined by @ = {{aω (f)ξ,9

Xj*ω-(J*f)ζ)\ωeΩί(P)JeCGC(P)}. Here ξ and £, respectively, denote the vector
fields on E and L generating their circle actions. Let / be the submanifold of
ExLxL consisting of all elements of the form (J(/), /, /) for any leL, where P is
considered as a submanifold of E via the embedding ε o ε0. / is clearly transversal to
the distribution @. Let Ξ be the minimal ^-invariant submanifold containing / and
immersed in ExLxL obtained by the method of characteristics.

It suffices to show that Ξ is a graph over the submanifold E2 = {(κ, l)eEx
L Iβ(κ) = J(l)}. Obviously, the image of Ξ under the natural projection p: ExLx
L -> ExL given by p(κ91, m) = (κ, I), is E2. To prove the other half, we note that the
two-torus T2 naturally acts on ExLxL by

(s, t)'(κ91, m) = (S'K9tΊ, (sH-f) m), for any (TC, /, mjeExLxL and s, teT1 .

Thus, (ExLxL )/T2 -^ΓxXxX with p([κ9 /, m]) = (π(4 φ(l\ φ(m)) is a_circle
bundle, which is in fact a prequantization of Γ x X x X, with connection Θ. The
latter is the one-form on (ExLxL )/T2 naturally induced from Θ = (θ,θL, — θL)e
Ωι(ExLxL).

Below, we shall characterize some basic properties of the manifold Ξ in the
following series of lemmas.

Lemma 5.1. The T2-action leaves Ξ invariant.

Proof Since (ξ, 0, ζ)e9f9 then (κ91, m)eΞ iff (t κ, I, t m)eΞ for any teT1. For the
action of the other generator of Γ2, we note that, by definition, (κ9 l,m)eΞ iff
κ = Φ*(u)9 and m = ΦJ(l)9 where u = β(κ) = J(l)eP, Φα is a product of flows on
E generated by vector fields of the form XΛ*ω-(aι*f)ξ for ωeΩ^P) and /eC°°(P),
and Φ^is the corresponding product of flows on L, in the same order, generated by
Xj*ω — (J*f)ζ- Since Xj*ω — (J*f)ζ commutes with the Euler vector field ζ for any
(ωJ)eΓ(Άl it follows that t-m = t ΦJ(l) = ΦJ(t-l) for any teT1. Therefore,
(κ9tΊ9t' m)eΞ iff (κ9 /, m)eΞ.

Lemma 5.2. The pull back of Θ on Ξ is zero.

Proof. We denote by λ the natural projection Ex LxL -> Γ xX xX, and write
A=λ~ί(A), where A a Γ x X x X is the graph of the groupoid action. Let i be the
natural inclusion from A to Ex LxL. It is easy to check that d(i*Θ) = 0 and i * Θ is
nowhere zero in A. Hence, the equation i*<9 = 0 defines a codimension one
foliation #" on A.

Any tangent vector to / has the form ((TJ)v, v9 υ)9 where v is a tangent vector
ofL. Now,

((TJ)v, υ, v) J i*Θ = (TJ)v J θ + v J θL-v J ΘL

= (TJ)vjθ

- 0 ,

where the last step follows from the fact that the image of the unit map ε ° ε0 P -+E
is a horizontal section. Therefore,
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Obviously, / is connected if P is (otherwise, we simply consider P component by
component). Let J£ be the maximal integral submanifold of J^ containing /. In
order to prove the lemma, it suffices to show that

For this, we only need to show that 2 c #" as a distribution. This, however, easily
follows from the following computation:

, 0, Xj.ω-(J*f)ζ) J (0, ΘL, -ΘL)

= - α * / + J * /

= 0,

where the last step uses the fact that J(m) = θί(κ) for any (/c, /, m)eΞ. •

We can now turn to the proof of Theorem 5.1.

Proof of Theorem 5.1. It suffices to show that Ξ is a graph over E2 = {(κ, l)eE x
L I β(κ) = J(l)}. Obviously, the image of Ξ under the projection p: ExLxL -•
£xL, p(κ, /, m) = (κ, /), is E2. To prove the other half, for any xeX, we let
Ax = {(r, x, r-x)\\/reΓ such that βo(r) = J(x)} a A. Then, τlx is diίfeomorphic to
βo1{J(x))9 hence is simply connected. Therefore, it is clear that p~1(Ax)-*Ax is
a flat bundle without holonomy. On the other hand, it follows from Lemma 5.1 and
5̂ 2 that p~1(Ax)n(Ξ/T2) is a connected submanifold on which the restriction of
Θ vanishes. Hence, p~ λ(Ax)r\{E/T2) is a horizontal section over AX9 and therefore
is diίfeomorphic to Ax. Suppose that (K, /, m^ and (K, /, m2)eΞ. Since [TC, /, m^ and
[K:, /, m2~]ep~ί(Aφ(η)n(Ξ/T2) and have the same image under the map p, then
[K, /, πiγ] = [K:, /, m2]. It thus follows that (K, /, m!) = (s, ί) (K, /, m2) for some (s, ί ) e

Γ2, which immediately implies that m1=m2. This completes the proof. •

Remark. (1) It is easy to see that Ξ/T2 is in fact a horizontal section over the graph
of groupoid action A. In other words, A has no holonomy under the circle bundle
p:(ExLxL)/T2->ΓxXxX.

(2) It is worth noting that the symplectic groupoid Γ itself does not act on the
circle-bundle L in general. In fact, on the Lie algebroid level, whether an action
exists depends on whether the Lie algebroid A = T*P can be embedded as a sub-
algebroid of the canonical central extension A = T*P ©(PxR). The latter is,
however, related to the existence of a Liouville vector field on the Poisson manifold
P, as pointed out by Lu (see the remark at the end of Sect. 2).

6. Prequantization of the Classical Intertwiner Space

The purpose of this section is to give an explicit construction of the prequantum
bundle for the classical intertwiner space, using the prequantum bundles of the
realizations and the symplectic groupoid.

First, we need a couple of lemmas. The first one is a direct consequence of
Theorem 5.1.

Lemma 6.1. Under the same assumption as in Theorem 5.1, then

(1) the projection λ = (π, φ, φ): ExLxL -^ Γ xXxX maps the graph of groupoid
action Ξ a ExLxL to the graph of groupoid action A cz A x X x X. I.e.,/or any τeE
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and weL such that β(τ) = J{w\ we have

φ(τ w) = π(τ)*φ(w)

(2) on L, the groupoid E-action commutes with the circle-action.

Proof. To prove (1), let Q) be the distribution in ExLxL as defined in the previous
section. It is simple to note that λ pushes down any vector in 2 to a vector tangent
to the graph A. Also, it is trivial to see that λ sends / to a submanifold of A. The
conclusion thus follows immediately from the construction of Ξ.

For (2), we note that infinitesimally the groupoid E-action on L is generated by
vector fields of the form Xj*ω-(J*f)ζ for ωeΩ^P) and/eC°°(P) (cf. Proposition
5.1). It is easy to check that any vector field of this form commutes with ζ. This
concludes the proof of the lemma. •

Lemma 6.2. Under the same assumption as in Theorem 5A,ΘL is invariant under the
groupoid E-action. I.e., for any τeE such that β(τ) = u and oc(τ) = v,

ΦΪ{ΘL\U) = ΘL\V,

where ΘL\U and ΘL\V are the restrictions of ΘL on the fibers φ~ι{u) and φ'1^)
respectively, and Φτ: φ~1(u)-+φ~1(v) denotes the diffeomorphism of φ-fibers
multiplying by the groupoid element τ.

Proof For any (ω,f)eΓ(A\ we have

£;W(^AH*J*ω~μ*/)O J dθL + dt(Xj*ω-(J*f)ζ) J 0L]

= {Xj.ω-(J*f)ζ) J φ*Ωx + d(-J*f)

= Xj*ωJφ*Ωx-d(J*f)

where Ωx is the symplectic form on X.
It thus follows that Lχj,ω_{j*f)ζθL = 0, iff ω = df Therefore, the flow of the vector

field Xj*df—(J*f)ζ preserves the connection form ΘL. Since any point τeE can be
reached by a product of flows generated by such vector fields, it thus follows that

* I « ) = ΘLL where u = β(τ) and v = φ). •

Let Jx: Xx-+ P and J 2 Xi -+ P be any two symplectic realizations of P, on
which the symplectic groupoid (Γ z£ P, α 0, βo) acts freely and properly. Suppose
that φ1\L1-^X1 and φ2: L2->Xi are prequantum bundles with connection
forms θLχ and θLl, respectively. It follows from Lemma 6.1 that E\(L2*L1\ where
the groupoid E acts on (L2 *Li) diagonally, is a circle bundle over Γ\(X2 *Xi).

Theorem 6.1. The one-form ( — ΘL2, θLι) descends to a connection form on the circle
bundle

E\{Γ2*L1)^Γ\(1Γ2*X1)9

which is in fact a prequantum bundle.

Proof According to Lemma 6.2, both θLι and — θLz are invariant under the
groupoid £-action. To show that ( — θL2,θLl) descends to the quotient space
£ \ ( L 2 *Li), it suffices to show that the restriction of ( —0L 2 , θLί) to any diagonal
£-orbit is zero.

Let Ji=Jι° φι and J2 = J2° φ2, and let d and ζ2 denote the Euler vector fields
on Li and L 2 , respectively. We note that the tangent space to the diagonal £-orbit
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at any (z2, z^eJ^iiήxJϊ1^) is spanned by vectors of the form
(2jfθ{z2)-f(u)ζ2, ^jf ^i)-/(w)Ciλ where θeΩ\P) and/eC°°(P). It is simple to
see that

(Xj?θ(z2)-f(u)ζ2,Xjrθ(z1)-f(u)ζ1)_A(-θL2,θLι)

=f(u)-f(u)

= 0 .

Thus, ( — θLl, θLl) descends to a well defined one-form on the quotient space. It
is simple to see that it is indeed a connection form defining a prequantum
bundle. •

As discussed in Sect. 4, if the Poisson manifold P is a Poisson group G*, any
classical intertwiner space would reduce to the Poisson group reduction
J~1(1G*)/G for a certain symplectic realization J:X-^G*. In this case, the
prequantum bundle can also be described in a simpler form.

Let C be the level set J~ 1 (1G*) Suppose that φ: L —• X is a prequantum bundle
with connection ΘL. Then, the map

ξeβ-+Xξ\ceSr(φ-1(C)) (2)

is indeed a Lie algebra homomorphism since the intersection of C with any G-orbit
is isotropic. Here Xξ\c denotes the horizontal lift on φ~1(C) of the infinitesimal
generator Xξ of the Lie algebra g-action. Therefore, Eq. (2) also defines a Lie group
G-action on φ~x(C) if G is simply connected. However, we should note that, in
general, it is impossible to lift the G-action to the entire bundle L.

Proposition 6.1. The pull back of the connection form ΘL on φ~ι(C) descends to

a one-form on the quotient space φ~1(C)/G, which defines a prequantum connection

on the circle bundle φ 1 1

Proof Let E A D be a prequantum bundle of the symplectic groupoid (D z£ G*
, α 0, β0), and l e £ a n y element over the point {1G} x {lG*}eD( = Gx G*). Since the
identity space G*, considered as a lagrangian submanifold of D (i.e., being identified
with {1Q} X G * <=D)5is simply connected, it possesses a horizontal lift through the
point leE. Thus, according to Theorem 3.1, E possesses a groupoid structure
which is a central extension of D. Since βo 1 (1G*) = ^ X {1G*} is a simply connected
lagrangian submanifold, the restriction of £ on )So" 1 (1G*) c a n t>e naturally identified
with the trivial bundle G x {1G*} x T1.

The following lemma, which can be easily verified, describes explicitly how
E acts on φ~ι(C) under this trivialization.

Lemma 6.3. Under the isomorphism ^ |^-i(iG*) = G x {1G*} xT1 as described above,
the groupoid E-action on φ'1^) is given by

(g,ίG*,ή l = t(gl), VgeG, teT\ leφ~ι{C),

where, on the right-hand side, gl denotes the group G-action on φ~ 1(C) as defined by
Eq. (2).

According to Theorem 6.1, the prequantum bundle over J ~ 1 ( 1 G * ) / G is
E\{Tι xφ~ί(Q), which is isomorphic to φ~1(C)/G according to Lemma 6.3.
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Under such an isomorphism, the connection form on E \(Γ* x φ~ 1(C)) goes to the
natural one-form on φ'^iQ/G induced from the one on φ'1^) obtained by
pulling back ΘL. •

Remark. (1) When G is a usual Lie group equipped with the zero Poisson struc-
ture, the dual group G* is the usual Lie-Poisson space g*. Proposition 6.1 thus
reduces to Theorem 3.2 in [5].

(2) The prequantum bundle E has a double groupoid structure, corresponding
to the double groupoid structure on D. In the meantime, D has a group structure
known as a double group. It would be quite interesting to know if this double
groupoid structure on E is related to some central extension of D considered as
a double group.

7. Polarization

A polarization on a symplectic manifold S is an integrable lagrangian subbundle
of T^S, the complexification of the tangent bundle TS. A polarization is real if it is
contained in the real tangent bundle TS. In other words, a real polarization is
a lagrangian foliation of the symplectic manifold S, i.e., a foliation in which each
leaf is a lagrangian submanifold. Usually, polarization is the difficult part in
carrying out a geometric quantization. This section is devoted to the problem
of investigating what geometric data will naturally induce a polarization on
the classical intertwiner space. For simplicity, we shall confine our attention
to real polarizations. Nevertheless, we wish that our idea could be generalized
to other types of polarizations as well.

We first start from the following:

Definition 7.1. Let (Γ zj P, α, β) be a symplectic groupoid and J: X -* P a symplectic
realization. Suppose that Γ has a polarization ^p A polarization 3FX on X is said to
be compatible with # r iff the restriction of the foliation ̂ τx^xx^xto the graph of
the action y i c Γ x I x I induces a foliation 3FA on A, and the derivative ofp2 {which
is the projection to the second factor) at any zeΛ maps ^Ά\z surjectively onto &χ\P2(Z)-

The following proposition gives a useful criterion for determining a compatible
polarization.

Proposition 7.1. Let (Γ it P, α, β) be a symplectic groupoid with a polarization JV.
Let J: X—>P be a symplectic realization with a polarization 3FX such that the
restriction oftFΓ x^xx^Fxto the graph of action ΛaΓxXxXis a foliation on A.
3FX is a compatible polarization if for any (r, x)eΓ x X such that β(r) = J(x), we have

1. TJ&xlx^Tβ&Γlr; and
2. Tm(T(r,x)(Γ*X)n(^Γx^x))^^r

x, where m\Γ*X-^X denotes the
groupoid action.

Proof Let z = (r, x, y) be any point in A. For any vxe^χ\X9 there is vre^Γ\r such
that TJvx = Tβvr. Hence, (vr9vx)eTirtX)(r*X). By assumption, vy = Tm(vr,vx)e
&x\y. Therefore, (vr, vx, vy)e^Γ\z. So Tp2\ ̂ γ\z-^^x\x is surjective. •

The symplectic groupoid for a Lie-Poisson space g* is (Γ*G zj g*, α, β). There
is a natural polarization on T*G, namely, the one by cotangent fibers. It is easy to
see that a polarization on a realization J: X -* g*, or equivalently a Hamiltonian
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G-space, is compatible in the sense of definition above is equivalent to saying that
the polarization is G-invariant. Therefore, it is natural to consider our definition as
a generalization of G-invariant polarizations in the groupoid setting.

This viewpoint can also be justified by the following:

Proposition 7.2. A compatible polarization on X naturally induces a foliation (which
could be singular in general) on the quotient space Γ\X.

Proof. Let Q = Γ \X, and p be the natural projection from X to Q. For any qeQ, let
xeX be any point over q and ^Q\q = Tp(^x\x). Suppose that y is another point in
the same fiber. Then, there is an element reΓ such that (r, x, y)eA, where A is the
graph of the groupoid action. For any vxe^x\X9 by Definition 7.1, there is υre!FΓ\r

and vyeίFχ\y such that (vr, vx, vy) is tangent to the submanifold A. On the other
hand, it is simple to see that p°P2 = P°P3 holds on A, where p2 and p3 are
projections from A to X defined by p2{r, x,y) = x and p3(r, x,y) = y respectively.
Therefore, Tρvx = Tpvy. This shows that Tp!Fx\x c Tp2Fx\y. Reversing the order of
x and y, it follows that Ίp3Fχ \x = Tp^x \y. In other words, J^Q \q does not depend on
the choice of elements in the fiber p~ι(q). Thus this gives rise to a well-defined
subbundle J ^ of TQ (the dimension of J ^ may not be constant). To prove that ^Q

is integrable, let E1,E2 be any its smooth sections. We take Ξ1 and Ξ2 to be
any sections of 3FX lifting E± and E2 respectively, i.e., E1 = TpΞί and E2 = TpΞ2.
Then, [Eu E2~\ = Tρ[Ξu S 2 ] is also a section of this subbundle. Therefore, J ^ *s

integrable. •

Theorem 7.1. Suppose that (Γ zX P, α, β) is a symplectic groupoid and ^Γ a polariza-

tion off. Let Jx: Xί-+ P and J2: X2^P be realizations with compatible polariza-

tions # Ί and #2, respectively. Assume that the restriction of ^2x^ι on (X2 * X±) is

a well-defined foliation. Then, Γ\(X2*Xι) has an induced polarization.

Proof It can be proved by the same argument as in the proof of Proposition 7.2
that the foliation <F2 x # i on (X2*Xt) passes to a foliation J ^ on the quotient
space Q = Γ\(X2 * Xi). Let p be the projection from X2 * Xx to Q. To show that it
is a polarization, we note that for any q = p(x2, Xι), as a symplectic vector space the
tangent space TqQ can be naturally identified with the quotient space R/R1, where
R is the coisotropic subspace T(X2>Xl)(X2 * X±) and R1 its symplectic complement.
Under such an identification, J^Q \q is then equal to (L n R)/(L n Rλ), where L is the
lagrangian subspace 3F2\%2 x «^Ί|Xl. It is known that (LnR)/(L nR1) is a lagran-
gian subspace of R/R1, according to Sect. 3, Ch. 4 of [6]. This shows that J ^ is
indeed a polarization. •

8. Discussion

As we know, what makes Guillemin-Sternberg theory so interesting is essentially
the fact that the geometric quantization procedure commutes with the reduction
procedure. This fact enables us to relate various notions in representation theory
with those in symplectic geometry [5]. A natural extension of this fact in our
context should read as:

Vt) , (3)
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where si is an associative algebra quantizing the symplectic groupoid Γ, while
Pi', s/ -+ End(V1) and p2: ^ -* End(V2) are the representations obtained by quan-
tizing the symplectic realizations Jx\ X^-^P and J2: Xi~+ P respectively. How-
ever, in practice, due to the lack of a general machinery, it is difficult to quantize
a symplectic groupoid to an associative algebra except for some examples
[22,23, 20]. We note that when the symplectic groupoid Γ is (T*G i j g*, α, β\ the
universal enveloping algebra U% or the convolution algebra of G, can be con-
sidered as the corresponding quantized associative algebra si, so the right-hand
side of Eq. (3) essentially becomes HomG(V2> V\) and therefore Guillemin-Stern-
berg theory is indeed a special case of Eq. (3).

Although it seems unlikely that there exists a general method producing
associative algebras out of symplectic groupoids, there is a large class of interesting
algebras which is believed to be produced in such a way. Those are, namely,
quantum groups as mentioned in the introduction. A basic example is the symplec-
tic groupoid over the dual Poisson Lie group G* of a Bruhat Poisson Lie group
[13] G. There are however at least two major difficulties in order to carry this out.
While the symplectic groupoid (Γ*G=Jg*, α, β) has a canonical polarization,
namely, the foliation by cotangent fibers, which is in fact the key ingredient that
makes Guillemin-Sternberg theory much simpler, it is not clear if there exists
a natural polarization for the symplectic groupoid (D zX G*, α, β) of G* (see [12]
for more detail on this groupoid). On the other hand, quantizing a realization needs
a polarization on X and for compact X the polarization is usually taken to be
positive-definite, i.e., a Kahler structure on X. For a Bruhat Poisson group G, basic
elements of realizations are those symplectic leaves of G*, which are the so-called
dressing orbits. However, it is not known if a dressing orbit of G* admits a natural
Kahler structure. Of course, abstractly such a Kahler structure always exists as
a consequence of recent work of Ginzburg and Weinstein [4]. The problem is
whether there is a natural way of describing this Kahler structure, and perhaps
more importantly, whether such a Kahler polarization is compatible with the
polarization on the groupoid D itself. Whether we can extend Guillemin-Sternberg
theory successfully to this general context highly depends on to what extent these
difficulties could be solved.
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