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Abstract: For the g-deformed canonical commutation relations a(f)a^(g) =
(1 —#)</, g} t + qa^(g)a{f) for/, g in some Hubert space Jf we consider repres-
entations generated from a vector Ω satisfying α(/)β = </, φ}Ω, where φeJf. We
show that such a representation exists if and only if \\φ\\ ^ 1. Moreover, for \\φ\\ < 1
these representations are unitarily equivalent to the Fock representation (obtained
for φ = 0). On the other hand representations obtained for different unit vectors
φ are disjoint. We show that the universal C*-algebra for the relations has a largest
proper, closed, two-sided ideal. The quotient by this ideal is a natural g-analogue of
the Cuntz algebra (obtained for q = 0). We discuss the conjecture that, for d< oo,
this analogue should, in fact, be equal to the Cuntz algebra itself. In the limiting
cases q = ± 1 we determine all irreducible representations of the relations, and
characterize those which can be obtained via coherent states.

1. Introduction

In this paper we study some new aspects of a set of commutation relations,
depending on a parameter qe(— 1,1) studied by various authors on quite different
motivations. Greenberg [15] introduced these relations as an interpolation be-
tween Bose (q = 1) and Fermi (q= — 1) statistics. He was particularly interested in
the observable consequences of a hypothetical small deviation from the Pauli
principle. However, due to problems with field theoretical localizability [16] and
thermodynamic stability [34], a naive particle interpretation of systems satisfying
these relations is problematic. Speicher [33] introduced these relations as a new
kind of quantum "noise," which could be used as a driving force in a quantum
stochastic differential equation [23]. From the point of view of C* -algebra theory
the relations became interesting as an example of a C*-algebra defined in terms of
generators and relations. In this context it was observed that the relations reduce
for q = 0 to those studied by Cuntz [9].
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The special case of a single generator, the so-called ^-oscillator, was introduced
by Biedenharn [4] and Macfarlane [27] as a means of constructing representations
of quantum groups. In fact, the ^-oscillator also appears as a subalgebra of the
quantum group SVU(2) [35]. The ^-oscillator can be studied in full detail by
representing the generator as a weighted unilateral shift (in mathematical termino-
logy) or as a Bose creation operator multiplied with a suitable function of the
number operator (in physical terminology). This has been noted in a large number
of papers. We will use this representation in the present paper to obtain informa-
tion about the non-trivial case of several generators.

In this case most early work [15,6,13] focussed on showing that the scalar
product in the ^-analogue of Fock space is positive definite. On the other hand,
from the C*-algebraic point of view the most immediate and natural problem
arising from the relations was to characterize the norm-closed operator algebra
generated by any realization of the relations by bounded operators on a Hubert
space. Here the case q = 0 served as a model: for q = 0 this algebra must be either
isomorphic to the one obtained in the Fock representation, called the Cuntz-
Toeplitz algebra, or a quotient of the Cuntz-Toeplitz algebra by its unique
two-sided ideal (isomorphic to the compact operators), known as the Cuntz
algebra. For q Φ 0 the first important step was made in [18], where we showed that
for \q\<y/2—l&Al the same results hold. In particular, the C*-algebras gener-
ated with q in this range are exactly the same as for q = 0. The condition
\q\ <y/2 — 1 is certainly not optimal, and all the results known to us are compatible
with the conjecture (which we will refer to as "Conjecture C" see Sect. 4) that the
results of [18] hold for all \q\ < 1. However, no decisive progress towards proving
this conjecture has been made since [18]. Based on an improved understanding of
the Fock representation [36], Dykema and Nica [12] managed to extend the
interval for q slightly, but only for the algebra generated in the Fock representation.
More importantly, they established, for the Fock representation only, the existence
of the homomorphism between the algebras for q = 0 and for general — 1 <q< 1,
which according to Conjecture C should be an isomorphism. We will briefly
describe and apply their results in Sect. 4.

The main aim of this paper is to study the ^-analogue of a structure which
is well-known in the limiting cases q = 0, ±1, namely the generalization of the
Fock state to the so-called coherent states. In the case of a single relation such
states appear in [26], although, due to a different choice of generators, their
work makes sense only in the Fock representation, and gives states different
from ours. We will determine all coherent states, and discuss under what circum-
stances they generate the same representation, or are mutually singular. Using
coherent states, we show that the universal C*-algebra generated by the relations
has a unique largest closed two-sided ideal. (If Conjecture C holds this ideal is also
the only proper ideal, and isomorphic to the compact operators). The quotient of
the algebra by this ideal is then simple, and the natural analogue of the Cuntz
algebra for q + 0. Finally, we consider the limiting case q= — 1, and compute all
irreducible representations of the relations with Clifford algebra methods. It turns
out that in this degenerate case the coherent states exhaust only a small subclass of
irreducible representations.

We emphasize that when we talk about representations in the sequel we always
mean ^-representations of some involutive algebra by bounded operators on
a Hubert space. Thus even if the relations may have interesting unbounded
realizations we do not consider them.
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2. ^-Relations and Coherent States

The following Proposition introduces the "g-relations" which are the object of our
study.

Proposition. Let ^ be a Hubert space, and let qeJR, | # | < 1 . Then there is a C*-
algebra $je{q) generated by elements ά*(f)forfeJίf9 such thatf\-> cP(f) is linear, and

a(f)ά*(g) = (l-q)(f9gyt + qa\g)a(f)9 (1)

where a(f):=ά*(f)*. For q = l, and orthogonal unit vectors eu . . . ,eneJtf the
bound

Σ a\ei)a(et)£l (2)

holds.
Moreover, S^(q) is uniquely determined by the following universal property:

whenever $ is a C*-algebra containing elements a*(f) satisfying the above conditions,
there is a unique unίtal homomorphism φ: S^{q) -> $ such that φ(a*(f)) = a\f).

The proof of this result is given in [18]. Note that in comparison with [18, 6] we
have changed the normalization of the operators af(f). This modification makes
no essential difference for | # | < 1 . However, it removes the singularity of the
relations for q —• 1 and simplifies all algebraic expressions. Moreover, it was shown
in [28] that with this normalization the algebras S^{q) form a continuous field of
C*-algebras [10]. We may consider the relations (1) for all geRu{oo}, where for
q = oo we set af(g)a(f) = </, g} 1. The study of the case \q\ ̂  1 is then reduced to the
case \q\^ 1 by the symmetry

) (3)

for some antiunitary operator /ι—>/
The crucial feature of the relations (1) is that they allow us to order any

polynomial in the generators in such a way that in every monomial all operators
a(f) are to the right of every α f(/). This normal ordered, or "Wick ordered" form
of a polynomial is unique [2, 3, 20], hence we can define a linear functional ω on
the polynomial algebra over the relations by choosing an arbitrary multilinear
expression for ω(α t(/i) α t(/n)^(^i)' * * 0(#m)). Since such monomials generate
S^(q) this is also a way to parametrize all states on the C*-algebra $^{q). The
following theorem introduces the coherent states on S^(q) using such a parametri-
zation.

2 Theorem. Let \q\ ̂  1, and φeJtf with \\φ\\ ^ 1. Then there is a unique state ωφ on
$^{q) such that

ωφ(a\f)X) = (φ,f)ωφ(X) (4)

for all feJtif, and all XeS^(q). The state ωφ is pure. For \\φ\\> 1, there is no state
satisfying (4).

We will call ωφ the coherent state associated with φ. This terminology ori-
ginated in quantum optics, where these states are used to describe states of the
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electromagnetic radiation field [22,17]. The special state ω 0 is called the Fock
state. If || φ| | = 1, we will call ωφ a peripheral coherent state. For any φ we will denote
by πφ the GNS-representation associated with ωφ9 and call it the coherent repres-
entation associated with φ. For the special case q = 0, coherent states in this sense
have been studied in [7].

The proof of Theorem 2 is based on an analysis of the case of a single relation.
We summarize the relevant results in the following lemma. The assumption that
a is bounded is essential for this result, i.e. there are also unbounded operators
satisfying the relation, and the conclusion fails for these.

3 Lemma. Let \q\<l9 and let a = a(eγ) with || e± || = 1 be a bounded operator on
a Hilbert space 01 satisfying the relation αα* = ( l — g)l + gα*α.
(1) Then a is reduced by a unique decomposition & = (&0 ® @lf) © 0119 such that

(a) jf^iΦ{0}, a Ϊ ^ i is unitary.
(b) if 8W ή= {0}, a ] &0 ® 0t' acts as a — aQ®% where a0 is given explicitly as the
weighted shift

>, (5)

where \n) for w = 0, 1,. . . is an orthonormal basis of 0to.

(2)

f o r q > % o r a m i t a r y (6)

—q far q<0, and a not unitary .

(3) There are functions β+(q)<oo and β-(q)>0 such that

β-(q)l£(f(a*γ£βΛq)i, (7)

uniformly for neN. In particular, the spectral radius of a is equal to 1.
(4) Let a*ξ = λξfor ξφO. Then ξe»u \λ\ = \, and aξ = λξ.

Proof For (1) see [18]; for (2) see [6, 18].
(3) For the unitary part a \St1 we only need β-(q)^ί <£/?+(#), which will be true for
the β± constructed below. Hence it suffices to take a = a0. Then

where λk = (\—qk). We will take β+ as the supremum (resp. infimum) over all
products Π/ceM f̂c for MczN. Explicitly,

β+(q) =
1

"Z1 (8)
Y\(ί-q2k) q^O

Since these products (related to Theta functions, and to "^-factorials" [1]) are
absolutely convergent, β+(q) is finite and non-zero for all q, \q\ < 1. For computing



Coherent States of ^-Canonical Commutation Relations 459

the spectral radius we let n -> oo in the inequality

(4) Given the decomposition it suffices to show that a%ξ = λξ implies ξ = 0. This
follows immediately from the weighted shift structure (5) of a%, by solving the
recursion for the coefficients ξn in ξ = Yjnξn\n). •

Consider the GNS-representation πφ associated with the coherent state ωφ.
This has a cyclic vector Ωφ, which is a joint eigenvector of the generators, i.e.

a(f)Ωφ = a Ψ>Ωφ. (9)

Conversely, any unit vector satisfying (9) will give the coherent state via
ωφ(X) = (Ωφ, XΩφ}. Therefore, in order to show that ωφ is positive, it is sufficient
to exhibit such a vector in a representation which is known to be positive. Now the
Fock representation π 0 has been proven to be positive [6,13, 36,20]. Hence it
suffices to find such vectors in the Fock representation. The basic construction for
such vectors can be carried out in the case of a single generator. For Boson
commutation relations the operator transforming the vacuum into a coherent state
is well-known to be exp(zα*). For the ^-relations a similar role is played by the
"^-exponential" function Expg, defined by the functional equation [21]

E x p ( z ) - E x p ^ ) . (10))
z — qz

The ^-exponential satisfies no simple addition formula, and therefore the operator
connecting different coherent states can only be expressed as a quotient of two such
exponentials. Rather than defining first the ^-exponential, and then studying its
invertibility, we define, in the following lemma, all these quotients at the same time.
The connection with the ^-exponential is Va0(z) = Expq(ocz/(q — 1)).

4 Lemma.
(1) Let \q\<l, and α, βelR. Then the functional equation

—pz
(11)

has a unique analytic solution near z = 0, which is analytic for | α z | < l . For
| α z | < l , and \βz\<l, and yeWi we have VaβVβγ = Vaγ.

(2) Let a be a bounded operator on a Hilbert space M with aa* = (1 — q)t + qa*a.
Then, for ΩβeM, and | α | < 1 we have the implication

0, (12)

where the function Vaβ is evaluated on α* in the analytic functional calculus.

Proof Let Vaβ(z) = Σkckz
k. Then Eq. (12) together with the iterated relation

α(α*)k = ̂ (fl*)fcfl + ( l - ^ ) ( α * ) k " 1 (13)

gives a functional equation for the coefficients ck:

_
(14)
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By an elementary computation this is the same recursion which holds for the
coefficients of VΛβ defined through the functional equation. By standard theorems
on power series its radius of convergence is l a p 1 . The chain relation VaβVβy = Vaγ

follows directly from the functional equation. •

Proof of Theorem 2. Let ω be a state satisfying Eq. (4). Then we can compute it on
any polynomial in the generators by Wick ordering the polynomial, and then
applying successively Eq. (4) and its adjoint ω(Xa(g)) = (g, φ}ω(X). Since poly-
nomials are dense in <^(q\ω = ωφ is uniquely determined. It is also clear that
ωφ must be a pure state, since it is the only state on which the positive elements
(fl t (/)-<Φ>/>fl)(α(/)-</ Φ>H) have zero expectation for all/e^f.

If there is a state ωφ we have, for | | / | | = 1: \(φJ}\2 = ωφ(at(f)Na(f)NγINSl
since the spectral radius of a(f) is 1 by Lemma 3(2). Wi th/=φ/ | |φ | | this implies

For φ = 0 we get the Fock functional, which is known to be positive, and leads
to a representation π 0 of the relations by bounded operators πo(α(/))5 as shown by
Eq. (6) in Lemma 3. This is the same as saying that the Fock functional extends to
a state of the C*-algebra 4r(#))• We will show that the coherent states ωφ with
\\φ\\ ^ 1 are, in fact, states on the C*-algebra πo(^(q)), and hence, a fortiori, states
on g#{q).

Let \\φ\\ < 1. We know from [6] that ω0, the Fock state, is positive. By Lemma
3(2), a\φ) has spectral radius < 1. Hence we can apply V10 from Lemma 4 to (^(φ)
in the analytic functional calculus. Let V=V10(a^(φ)) = V\\φ\ιo(a^(φ/\\φ\\). Then
since Vo?||φ||(αt(φ/||φ||)) = y " 1 we have that Ωφ = VΩ0 is non-zero. By Lemma 4 we
have a(φ)Ωφ = (φ,φ}Ωφ. On the other hand, when ψl.φ, we have
a(ψ)a*(φ)nΩo = qnάt(φ)na(\j/)Ωo = 0. With the series expansion for V we find
a(\j/)Ωφ = 0. Combining this with the result for φ = ψ we get a(\j/)Ωφ = (\l/, φ}Ωφ.
Hence ωφ(X) = (Ωφ, πo(X)Ωφ}/\\Ωφ\\2 defines a state on S^{q) with the required
properties.

Finally, for | | φ | | = l5 let ω* be a weak*-cluster point of a sequence of states
ωχφ with \λ\ < 1, and λ -> 1. Then, for Xe$#>(q) and/e J f,

where the limit is along any subsequence of Γs along which ω ^ - > ω * . Hence
ω% satisfies the defining equation (4) of ωφ, and as uniquely determined by it, as
shown above. •

The proof gives more information than just the positivity of ωφ: by composing
the operators ViO(βf(φ)) and Vio^OA))"1 w e S e t the following consequence:

5 Corollary. For \\φ\\, | | i / Ί | ^ 1, the states ωφ and ωφ are connected by an invertible
element vφψe£^(q) via ωφ(X) = ωφ(vlφXvφφ).

The operators vφφ are Araki's Radon-Nikodym derivatives in the sense of [31]
(see also [37].) Since they are defined by norm convergent series, they end up in the
C*-algebra S^{q\ and not merely in some bigger von Neumann algebra.

We close this section with a brief discussion of the coherent states for certain
variations of the ^-relations found in the literature. Most of the literature is
concerned with the Fock representation of the relations with a single generator,
and the relations are frequently written in a form explicitly involving the number
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operator N of the Fock representation. This operator is defined by
exp(iίiV)αt(/)exp(-ίίΛΓ) = α t(exp(iί)/)? and NΩo = 0, where Ωo is the Fock
vacuum. We will continue to denote by af(f) the generators with the conventions
fixed in Proposition 1. Then the generators found elsewhere are b*(f) with

(15)

The normalization used in this paper agrees with [28], implicitly with [35], and
with one of the versions introduced by [27] (written with a different parameter
q = q~ιi2). In most of the papers in the bibliography we have the convention
β = (l—q)~1/2, oc = O. The existence of a vector ΨΦO in Fock space with

b(f)ψ=aφ>Ψ (16)

is then equivalent to | | φ | | ^ ( l — g)~1 / 2, and the joint eigenvectors of the b(f) are
precisely those of the a{f).

On the other hand, when α>0, the series for Ψ satisfying (16) diverges for all
/ φ 0, and no joint eigenvectors can be found. The interesting cases are for α < 0. The
coefficients of the power series then decrease more rapidly, and the series defines an
entire function. Hence no constraint is placed on || φ\\, and the notion of peripheral
coherent states makes no sense. This is related to the fact that the relations then
explicitly involve the operator N, and hence make sense only in the Fock repres-
entation. The relations appeared for the first time (for a single generator, a so-called
^-oscillator) in [4] with α = -1/4, | β | 2 = g 1 / 2 ( l - g Γ 1 / 2 , and in [27] with the same
constants, but using q = q~1/2. Of potential interest is also the case α=—1/4,
\β\2 = q(l—q)~1 in which the relations can be expressed by an ordinary commuta-
tor, i.e. la(f\H N

3. Peripheral Coherent States

A remarkable fact about the peripheral coherent states, i.e. the coherent states
ωφ with || φ| | = 1, is the following: if J f ' c / , there is a canonical embedding

q: $tf{q). With respect to this embedding a peripheral coherent state on
has a unique extension to S^(q), which is also a peripheral coherernt state.

This follows readily from the first item of the following proposition.

7 Proposition. Let φetf, with ||<p|| = l. Then

(1) ωφ is the uniquely characterized by the condition ωφ((a1'(φ) — ίL)(a(φ) — t)) = 0.
(2) For dim 2tf>\ the kernel of the GNS-representation πφ contains every closed

two-sided ideal of

Proof. We set a = a(φ), for short.
(1) Let Ω denote the GNS-vector of a state ω with ω ( ( α * - l ) ( α - l ) ) = 0. Then we
have aΩ = Ω, and since on the subspace generated by the (α*)πΩ, a is unitary, we
also have a*Ω = Ω. Then for any vector ij/eJ^, we get
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Since ||(α*)w|| is uniformly bounded we can take the limit π->ooon the right-hand
side, and obtain a(φ)Ω = (φ, φ}Ω. Hence Ω implements ωφ.
(2) Let #c:$tf{q) be a closed two-sided ideal, and consider the algebra $•=
S^(q)lf with quotient mapping η: $j?(q)-*$. Since dimJf >1 we know from
Proposition 4 in [18] that r\(a)eS cannot be unitary, and consequently that the
spectrum of η(μ) contains the spectrum of α0, the generator in the Fock representa-
tion. This is the unit disk, and hence the spectrum of η(a) includes 1. It follows (by
compactness of the state space of a C*-algebra) that there is a representation
π: $ -• $(β) in which 1 is an eigenvalue of π(η(a)). But then by part (1) we have

where ξ is the corresponding normalized eigenvector. The kernel of πφ is the set of
Yei^(q) such that ωφ(X*YZ) = 0 for all X, ZeS^{q). By equation (*) it is now
plain that β = kerηakerπ°ηczkerπ φ . •

The second part of this proposition suggests the following terminology:

8 Definition. Let ^ be a Hilbert space with dim Jtf > 1. Then the q-Cxmtz algebra
Θj?(q) over 2tf is the quotient of $#>(q) by its unique largest ideal. Equivalently,

) = πφ(($3#p(cύ)for any peripheral coherent representation.

Of course, for ^ = 0 the g-Cuntz algebra is just the usual Cuntz algebra Θdim^.
For din Jf < oo Conjecture C says that Θ^(q)^Θj^(0\ and this is proven [18] for
\q\<y/2—l. We will further extend this interval in Sect. 4, using the results of [12].
When dim Jf = oo, one can show that the Fock representation of S^(q) is simple
[24]. Hence in that case, Θ^>(G) is isomorphic to the Fock representation of S^(q).

From the Corollary 6 we know that the non-peripheral coherent representa-
tions are all equivalent. For the peripheral coherent representations we know that
the C*-algebras nφ{Sj^(q)) are all equal. However, the von Neumann algebras
πφ{$3tf>{q))" are not: in the following proposition we show that all peripheral
coherent representations are disjoint.

9 Proposition. Let φ, ψeJίf, with ||<p|| = | | ^ | | = l, and let π: δ#(q) -> 0l{β) be any

representation.

(1) The strong operator limit

P(φ)=lim-fjΦ
1(ψ))k (15)

n^oo nk=l

exists, and is a self-adjoint projection.
(2) For χesf: π(a(χ))P(p) = <χ, Ψ>P(ψ)-
(3) Let P(0) denote the orthogonal projection onto the space

': π(a(φ))Ω = O}

of Fock vectors. Then, for φ, φ unit vectors in Jf, or zero, and for

ωφ(X)P(φ) φ = φ

0 φ*φ .

Proof. In the proof we will suppress the representation of π for notational conveni-
ence. The existence of the limit (1) follows from the Mean Ergodic Theorem (e.g.
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Corollary VIII, 5.4 in [11], and the fact that the powers at(φ)k are uniformly norm
bounded by Lemma 3.(3). Let χeJf . Then

1 " 1 n

a(χ)-ΣaHφ)n=-Σ {(!-«*)

1 A
nk=l

with the estimate

and β+(q) from Eq. (8). Taking the strong limit n -» oo we find (2). In particular,
we have a(φ)P(φ) = P(φ\ which implies P(φ)*P(φ) = weak — lim(l/n)
ΎJl = ίa(φ)kP(φ) = P(φ), and hence that P(φ) is an orthogonal projection.

To prove (3), let X be a polynomial in the generators, which we may assume to
be Wick ordered. Then after finitely many applications of (2) we find that
P(φ)XP(ιl/) is equal to some factors times P(φ)P(ψ). If φ = ̂ (possibly φ = ψ = 0),
the factors add up to ωφ{X\ and the result follows because P(φ) is a projection.

It remains to show that P(φ)P(φ) = 0, when φφψ, and φ φ 0. Since P(φ) is also
the weak limit of (l/n)Yj

n

k=1a(φf this follows from (2) and the observation that
limn_+oo(l/n)Σfc=i <φ> ψ}k vanishes, unless φ = φ. •

We can use the universal representation for π. Then the projections P(φ) are
interpreted as projections in the universal enveloping algebra δ%>(q)**. By (4) their
central supports in $# (q)** are mutually disjoint. Hence, the projections P(φ) with
| | φ | | = 1, and the single projection P(0) (for all the non-peripheral coherent repres-
entations) precisely label the quasi-equivalence classes of coherent representations.

From (3) one readily concludes that any representation space M can be split
into a direct sum 0t = 3tφ@Stφ9 where 01 φ is the cyclic subspace containing P(φ)@.
Then the representation restricted to the first summand is a direct multiple of
πφ with multiplicity dim P(φ)£%. The decomposition into a Fock and a non-Fock
sector (of which Lemma 3 is a special case) is obtained for φ = 0. It is especially
useful because the orthogonal complement J?o has an interesting description
[19, 20]: it consists of all vectors with an "infinite iteration history" with respect to
the operators α f (/) , i.e. it is the intersection over n e N of the closed subspaces
generated by all vectors of the form ^ ( / i ) - a\fn)Φ with fί9. . . Jne&, and
ΦeM. This decomposition can be viewed as an analogue of the "Word decomposi-
tion" of a contraction operator in Hubert space [29].

4. Conjecture C and the Fock Representation

We begin by making precise the Conjecture C mentioned in the introduction. We
present it here, not because we are completely convinced of its truth, but because
we believe that it presents an excellent target for future research.

10 Conjecture C. Let — 1 < q < 1, and let J f be a Hilbert space with dim J f = d < oo.
Let $#>(q), and <^V(0) denote the universal algebras introduced in Proposition 1, and
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denote the respective generators by af(f)eS^(q), and v^(f)e£^(ϋ). Let

d \ l / 2

for some (or any) orthogonal basis e l 5 . . . ,
Then there is a C*-isomorphism η: Sjf (0) -> $j?(q) such that

(f) pη(Hf))
Moreover, 0 is an isolated point in the spectrum of p, and the eigenprojection

corresponding to this eigenvalue is η (t — Yj

d

i = 1v^(eί)v(ei)).

Note that this conjecture can only be formulated for finite d, since the sum
defining p cannot converge in norm (even though it converges strongly in every
representation). For this reason the universal C*-algebras for the case of infinitely
many generators have to be treated separately. For q = 0, d = oo it is well known
that $jr(0) = &jr{0) is simple, whereas it has an ideal isomorphic to the compact
operators for d<co. Analogous phenomena occur for gφO, at least in the Fock
representation [24]. There are a number of interesting equivalent reformulations of
the conjecture. The following one is of the form in which this conjecture was proven
[18] for all finite d, and the restricted range \q\<^/2— 1.

11 Proposition. Let —l<q<l, and let Jf be a Hubert space with dim Jf = d<oo,
and let ei,. . . , ede#? be an orthonormal basis. Then Conjecture C is equivalent to
the conjunction of the following two statements:

(A) In the C*'-algebra Mά(β^(q)) ofdx d-matrices with entries in $^{q\ the matrix
Xij = a(ei)a^(ej) is strictly positive.

(B) Let M be a Hubert space, and let vh i=l,...,d be bounded operators on
M satisfying the relations ViV* = δijt. Then there is a unique positive semidefinite
bounded operator p on & such that a^(ei) = pvf: satisfies relations (1), and such
that t — ̂ vfvi projects onto the kernel of p. Moreover, this unique p necessarily
lies in the C*-algebra generated by the operators Vi.

Proof. Assume (A). Consider in the universal representation π: $#>(q) -> M(β) the
operators

Λf: J f (x) 01 -> 3t ,

Then p2 = A^A, and X = AA^. The polar decomposition of A^ takes the form
^ = pyΐ = V^X 1 ^ Since X > 0 , the components^ o / V 1 : / ® ^ =Ydi(eijyvi\lt
are in the C*-algebra π(S^(q)), and W t ==lljf ®«#. The latter relation translates
into Op* = δijt. With v*(f) := £• (ei9f}v?9 these are the ^-relations for v with q = 0.
Hence by the universal property there is a homeomorphism η: S^(0) -> $#>(q)
with the required property. Since <§f(0) has only one proper two-sided ideal,
and this ideal is clearly not annihilated by η (consider the Fock representation of
$jtf>{q)\ η is injective. It remains to be shown that η is onto. This readily follows from
condition (B).
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Conversely, assume that Conjecture C holds. Then in the universal representation
of $#>(q) the isomorphism η provides a polar decomposition of the operator A\
Since the polar isometry in this case is an isometry, we must have that AΛf has no
kernel. If the spectrum of ΛΛ^ in Jίd(S^{q)) had an accumulation point at zero, zero
would also have to be an eigenvalue by compactness of the state space, and the
universality of the representation. Hence the spectrum must be bounded away from
zero (A). Suppose that vt and p are as in (B). Then by the universality of $# (q) there
is a unique ^-representation Φ:S^(q) -» J^Jf) such that Φ(a1[(ei)) = pvf. The polar
decomposition of A* in this representation is given by p and vt. On the other hand,
by the isomorphism with <ξr(0) we know that ρ = Φ(Yjia

1f(ei)a(ei)) is in the C*-
algebra generated by the υf = Φ(i;t(eί)). •

Some consequences of Conjecture C would be the following: (1) The Fock
representation of S^{q) is faithful for all q. (2) Sπ(q) has only one proper ideal,
isomorphic to the compact operators. (3) the resulting quotient is isomorphic to
the Cuntz algebra 6^(0). Statement (3) may be extended to a version of Conjecture
C on the level of the g-Cuntz algebras &#>(q). Since Θ^(q) can be obtained as
a quotient of any other representation of $#>(q), we can utilise specific information
about the Fock representation in approaching this problem.

Dykema and Nica [12], building on results of Zagier [36], were able to verify
parts of Conjecture in the Fock representation π 0 . For example, they verified
statement (A) of Proposition 11 for that representation, by unitary implementation
of a homomorphism

i7o:πo(«r(0))^πo(«rte)) (16)

satisfying the properties required in Conjecture C, except surjectivity. Their results
imply a lower bound

for XsJίd($#>(q)\ Xij = a(ei)a^(ej). (We remind the reader of the difference in
normalization between [12], and this paper.) Moreover, they showed surjectivity of
η0 for

q2<ε(\q\)

i.e. |<? |<^0.44. (18)

We can immediately translate these results into a partial verification Conjecture
C on the Cuntz algebra level:

12 Theorem. Let — 1 < q < 1, and let Jf be a Hubert space with dim J/ίf = d < oo. Let
Θy?(q\ and Θj?(0) = Θd denote the q-Cuntz algebra, and the Cuntz algebra, as in
Definition 8, and denote by π1\$tf(q)-*Θ#>(q) {or $&(0) -> $r(0)) the respective
quotient maps. Let peS^(q) be as in Conjecture C.
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(1) Then there is a (not necessarily surjective) C*-homomorphίsm Y\:ΘJ?(Q>)
such that πί(H \

(2)

(3) Let ωφ be a peripheral coherent state on Θ^(q). Then ωφ°ή is the peripheral
coherent state on Θjp(O) associated with φ.

(4) When q2<ε(\q\), ή is onto, and hence an isomorphism.

Proof. The eigenprojection onto the kernel of πo(p) is P0 = η0(t — πo(Σvf Vi))e
πo($Άq)). Consider a peripheral coherent representation πφ of no(S^(q)). Since
peripheral coherent states are pure, this representation is irreducible. On the other
hand, πφ(P0) projects onto the set of Fock vectors in that representation. The
invariant subspace generated from a Fock vector is a copy of Fock space, on which
the projection P(φ), as in Proposition 9, vanishes. On the other hand, P(φ)φO, so
the Fock sector cannot be the whole space, and must be zero by irreducibility.
Hence πφ(Po) = 0, and π φ (p)>0. The bound (2) then follows from Eq. (17). More-
over, under the map

g#(0) J5U πo(«r(0))_!ίU π o («r (<?))-?** πφ(^(q)) = OAΦ

t — Y^iυ^(e{)υ(ei) becomes πφ(Po) = 0. Hence it lifts to the quotient as
ή: Θtf (0) -> $Ά0). The properties (1), (4) of this map are readily verified from those
proven for the Fock representation.

To see (3), recall from Lemma 3 that the eigenvalue equation πφ(a(φ) — l)ωφ — 0
can only be satisfied when we also have πφ{a^(φ)—l)ωφ = 0. Hence with a basis
eι=φ,e2,. . . , ede34? we get

i

Since π φ (p)>0, this entails

πφή(V(f))Ωφ = πφ(p)~ 1 πφ(a(f))^φ = (f> φ ) πφ(p)~ * Ωφ = (/> ψ} Ωφ

Therefore, for X e ^ ( O ) , ωφ(^(Xi;(/))) = </, φ>ωφW(X)), which proves (3). •

5. The Boundary Points q = ± 1

Apart from Conjecture C and its special cases, an interesting problem concerning
the ^-relations (1) is to show that they define a continuous field of C*-algebras
S'jfiq) in the parameter q in the sense of Dixmier [10]. If Conjecture C holds, i.e. an
isomorphism ηq:$&{<!) -*<Sr(0) exists, this problem amounts, for qή= ±1, to the
question whether the element η~1(p)e^(0) depends continuously on q. (For
\q\<y/2 — l, this continuity is easily verified from the argument in [18]). The
interesting questions arise at the boundaries q= ± 1.

The role of the coherent states is that of a continuous field of states in the
following sense: for any polynomial X in the variables α f (/) , a(g), and q (with
/, ge Jf), and for every fixed φe2/f, the coherent expectation ωφ(X) is a continuous
function of q. The continuity of the field q i—• $#($) i s related to the existence of
sufficiently many such continuous fields of states.
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As a first step towards understanding the continuity at q = + 1, we compute the
algebras $#>(+1), and their coherent states. Recall that for q = 1 we have imposed,
in Proposition 1, the bound ]Γ £ α

t(βί)α(βI ) ̂  11 for any family of orthogonal vectors.

13 Proposition. Let J^ bea Hilbert space. Then S^{ +1) is ίsomorphίc to the algebra
of weakly continuous functions on the unit ball of Jtf. A state on this algebra is
coherent if and only if it is pure.

Proof We have to show that <£r(+l) is abelian. Clearly, [af(f\a(g)']=0 for all
/, g. In particular, each α f (/) is a bounded normal operator. By Fuglede's Theorem
[14, 30], a\f) and a\g) also commute, and <ξr(l) is abelian. A pure state ω must
be multiplicative, and is hence determined by its value ω(α f(/)) on the generators.
Since α1" is linear, and since α t ( / ) α ( / ) ^ | | / | | 2 l , this expression must be a bounded
linear functional, and hence of the form ω(α f(/)) = <φ,/> with φeJf, \\φ\\<*l.
Hence ω = ωφ is coherent, and any coherent state is obtained in this way. Note that,
for all polynomials X in the generators α f (/) , «(/), the function φ\-^ωφ(X) is
weakly continuous on the unit ball. On the other hand, the algebra of such
polynomials is dense in the algebra of all weakly continuous functions by the
Stone-Weierstrass Theorem. •

Note that by this proposition the set of coherent states is faithful at q = + 1 . This
suggests that they may be useful for proving the continuity at q = 1, provided one
can show that collection of coherent representations is also faithful for q < 1. In the
following proposition we see that faithfulness does not hold at the other limit point
q=—l9 where the relations become

a{f)a\g) + a\g)a{f) = 2(fgyt . (21)

The proposition is based on well-known results in the theory of Clifford algebras
[5, 32, 25], which arise from these relations either by taking/, g to be in a real
Hilbert space, and setting a\f) = a(f). In even dimensions this is equivalent to
taking (21), and adding the relation that the α f (/) anti-commute with each other.
The algebra arising in this way is the Fock representation of (21), and we will refer
to it as the CAR-algebra [8]. The point of the following proposition is that no
anti-commutation relation is added, but that such a relation automatically holds in
every irreducible representation.

14 Proposition. Let J f be a Hilbert space, and consider the C*-algebra S#{ — X) as
defined in Proposition 1. Then

(1) The elements

forf geJF generate the center of
(2) The center of S^{—\) is isomorphic to #(S), where S is the set of all symmetric

bilinear forms θ:J>FχJί? -• C such that

\θ(fg)\s\\f\\\\g\\

for all f geJ^, with the coarsest topology making the functions θ\->θ(fg)
continuous.

(3) Let θ be a symmetric bilinear form satisfying the above bound, and let Jfiβ)
denote the real subspace oj vectors/e J f such that #(/,/) = | | / | | 2 Let r(θ) denote
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the dimension of the complement of Jί(θ) in Jf, taken as a real Hubert space. Let
- 1 , θ) denote the quotient ofS^(-l) by the relations θ(f g) = θ(f g)l. Then

(a) Ifr(θ) is finite and even, $%>(—l, θ) is isomorphic to the algebra of2r^/2-di-
mensional matrices.
(b) Ifr(θ) is finite and odd, $%>( —1,0) is isomorphic to the direct sum of two copies

of the algebra of 2^®~ ̂ -dimensional matrices.
(c) Ifr(θ) is infinite, S^>{ — \, θ) is isomorphic to the CAR-algebra on an infinite
dimensional Hίlbert space.

Proof. (1) By an elementary computation one verifies that θ(f g) commutes with
all a(h). Hence U(f g) is normal, and by Fuglede's Theorem [30] it must also
commute with af(h). Hence θ(f g) is the center for all/, getf. Let ̂ (S)cκ^(-1)
denote the C*-algebra generated by the U(f g). Its spectrum space S is the set of
those symmetric bilinear forms θ, which may arise in an irreducible representation
of <5̂ (— 1), i.e. those θ for which the relations

have a solution by a bounded linear operator α1' \2tf-» ${β) for some Hubert space
^ . The rest of the proof depends on the analysis of this set of relations.

The unique feature of the relations (1) at q = — 1 is the symmetry with respect to
exchange of a and a? (up to questions of linearity/antilinearity). Therefore we will
consider Jf now as a real Hilbert space of dimension dim^ (if) = 2dim<c (Jf), and
introduce the hermitian generators

which are real linear in/eJf. From s(f) and the complex structure on Jf7 we can
recover the original generators by the formula ά*(f) = s(f) — is(if). In terms of the
new generators we get the relations

s(f)s(g) + s(g)s(f) = 9it{<f9g> + θ(f9g)}:=2θ(f,g)l. (**)

Clearly, Θ is a symmetric, real-valued form on the real Hilbert space Jf. Since
Θ(ff) = s(f)2^0, the positivity of Θ is necessary for the existence of a representa-
tion, and hence for θeS.

We claim that the positivity of <9 is equivalent to the inequality in item (2) of the
proposition. Clearly, \θ(ff)\ ?g | ( / | | 2 is sufficient for Θ(/,/)^0. Conversely, assume
2Θ(fif) = \\f\\2 + $izθ(fif)^0. Substituting fv-+if in this inequality we get that
15Reθ(/,/) I = | | / | | 2 . Hence by the Schwarz inequality in the real Hilbert space J f we
have |9te0(/,0)| = | | / | | | |#| |, and the result follows by replacing/in this inequality
by a complex multiple of/ It is also easy to see that the rank of Θ is equal to r(0), as
defined in term (3).

In order to prove the characterization of S, the joint spectrum of the central
elements θ(fig), it remains to be shown that for every (9^0 there is some
representation of (*). We will simultaneously prove (3) by constructing all such
representations (assuming Θ ̂ 0), and showing that they have the form given in (3)
with r(0) = rank Θ.
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We can find an orthonormal basis {e^ajf such that Θ(ehej) = Θiδij. The
generators s(ej) with Θi = 0 have to be zero, and the remaining ones can be
multiplied by Θ[1/2, so that (**) becomes equivalent to the relations

SiSj + SjSi = 2δijt , (***)

where the st = sf, and i= 1,. . . , rank Θ. Hence the isomorphism type of S^( — 1, 0)
depends only on rank (9. One readily verifies that rank(9 = r(0), as defined in (3).

For finite r(θ), (3) follows from the standard results of the representation theory
of Clifford algebras (see e.g. Theorems 2 and 3 in Sect. 9, No. 4 of [5]). The
CAR-algebras are a special case of these arguments with 0 = 0. For infinitely many
generators st we therefore get an inductive limit which we can take along the simple
algebras of even numbers of generators [32], and which is identical with the
inductive limit defining the CAR-algebra over an infinite dimensional Hubert
space. We note that in the case (3b) the center is generated by the odd element

which is unitary and satisfies s 2 = ± 1 , depending on r(0) modulo 4 [25]. In any
case, 5 has two eigenvalues ± 1 or + /, which label the two irreducible repre-
sentations with given 0, and are exchanged by the parity automorphism defined by
a\f)^-a\f).

We have shown that the algebra generated by the elements 0 is isomorphic to
^(S) with S as described in item (2). It remains to be shown that this algebra
coincides with the center of ̂ ( — 1 ) . Let the center of S^(~\) be ^(S) for some
compact space S. Since #(S) is a subalgebra, we have a canonical continuous
surjection p:S -> S. Whenever r(0) is even the relations (*) have only one irredu-
cible representation, which implies that p~1({0}) is a single point. Otherwise,
p~ 1({0}) may consist of at most two points, corresponding to the two irreducible
representations of (*). The parity automorphism induces a homeomorphism
F: S -> S which leaves all points with even or infinite r(0) fixed. Whenever r(0) is
odd, and p - 1({0}) consists of two points, these two points are exchanged by F.

Since Jtif has even or infinite real dimension, r(0) is odd or infinite for a dense
subset of 0eS. Now consider some 0 with odd r(0), and let 0αeS be a net with
0α -• 0, and r(0α) even for all α. Let 0α be the net S uniquely defined by p(θ(X) = θa.
Since F is continuous, and F0α = Sa any cluster point 0 of this net must also be fixed
under F, and since p is continuous, we must have p(θ) = θ. But the only way
θep~1({θ}) can be fixed by F is that p~1{{θ}) is a single point. It follows that
p: § -• S is a bijection, and the center of <ξ^(— 1) coincides with the algebra
generated by the θ(f, g).

It is clear that the coherent representations of $#(— 1) are precisely those for
which

= <φ,f><φ,g> (22)

is a rank one operator. The set ^V(θ) of vectors with | | / | | 2 = 0(/>/) is either null,
when | | φ | | < 1, or is the one-dimensional real subspace spanned by φ when \\φ\\ = 1.
Hence for the peripheral coherent states on S^{—\) with dim 2tf < oo, r(0) is odd.

When dim Jf = 1, all symmetric bilinear forms on ffl are of the form (21). Hence
in this case the set of coherent states provides an everywhere faithful family of
continuous fields of states. Accordingly, qy-^S^{q) is a continuous field of C*-
algebras [28]. For dim j f > 1 an interesting problem arises here: since the rank one
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bilinear forms are a low dimensional subset of S it is clear that many irreducible
representations oϊS^(—l) are not coherent representations. It is possible to embed
states on such non-coherent representations of S^(—l) into a continuous field of
states for the field
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