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Abstract: A flat connection on the trivial bundle over the complement in C" of the
complexification of the system of the reflecting hyperplanes of the B,, D, Coxeter
groups is built from a simple Lie algebra and its representation. The corresponding
monodromy representations of the generalized braid groups XB,, XD, are com-
puted in the simplest case.

0. Introduction

0.1. Let {l;,...,1,} be a hyperplane arrangement in C”, the hyperplane I; be
defined by the equation Li(x,, . . ., x,)=0, X=C"\|Jix, ;. Let Q;, i=1,...,d
be m x m complex matrices; then the 1-forms matrix

Q= 2 QidlogLi
i=1

i=

defines a connection on the trivial bundle X x V' — X where the fiber V' is a n-
dimensional complex vector space. The condition that the connection be flat, that
is QA Q+dQ2=0, reads here as follows:

if hcC" is a subspace of codimension 2 and J,={i<d:h<l;}, then

[Qj, Y Q,]=0 for every jeJy ¢y

ieJy

(see, for example, [5]).

0.2. The flat connection on the bundle gives a monodromy representation of the
fundamental group of the base of the bundle by the action on its fiber. This
monodromy was thoroughly investigated in the case in which the hyperplane
arrangement is the complexification of the system of the reflecting hyperplanes in
R" < C" of the Weyl group of the root system 4,_,, and the fundamental group is
the pure braid group (see [6, 7]). Here L; ;: x;=x; and the conditions (1) of flatness
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of the connection Q=Zl§i<j§n Q; ;dlog L; ; have the form
[Qi;, Qii+Q,]1=0,
[, 2,,,1=0 for distinct i,j, k, | 2)

(we put Q; ;=; ;) and are called “the infinitesimal pure braid relations.”

0.3. A series of solutions of these equations ([1]) is obtained in the following way:

let g be a semisimple finite-dimensional complex Lie algebra, U its universal

enveloping algebra, {I,}1* an orthobasis of g with respect to the Killing form,

T=ZIP®IPEU ® U. Put 11,2=T® 1, T2,3=1 ® T, T1,3=" ® 1 ®R-eURQUR U.
Nt/

Then

[71,2,72,3+71,31=[172,3,T1,2+74,3]=0. (3

Let p:g—End(W) be a finite-dimensional representation of g; put V=Ww®",
12=p; (1), where p; ;=12 D®p@12V"VQp®1®"): g®@g->End(V).
Because of (3), f; satisfy the infinitesimal pure braid relations (2) and define
therefore a flat connection on the trivial bundle with the fiber V. Kohno ([6, 7]) has
found the corresponding monodromy action of the pure braid group (and even of
the braid group) for nonexceptional simple Lie algebras g.

0.4. In this paper we describe an analogous construction for the generalized pure
braid group of type B, and, under certain restrictions, D,, and describe the
corresponding monodromy in the simplest case: g=sl,(C) and p is its standard
2-dimensional representation. The corresponding infinitesimal relations include
those of 4,-, and we start from the same construction.

Analogous problems were solved in [2, 3] in significantly more abstract form;
we have not established whether our constructions are partial cases of those
considered in these papers.

1. Computations in Lie Algebras

1.1. Asin [1, 6, 7], let g be a semisimple finite-dimensional complex Lie algebra,
U its universal enveloping algebra, (,) be the Killing form, A = H* be the system of
the roots of g with respect to a Cartan subalgebra H of g; denote by {e,},.4 a Weyl
system of root vectors (see, for example, [8]): e,€a, (eq, e-,)=1, [e4, e—, 1 =h,eH,
[ea, e,;] =N,,,ﬂea+ﬁ for 0(+ﬁ=‘=0 Wlth Na,ﬂZN_a, _ﬂEC. Let {hi=h¢i}?=1 be a basis
Of H over C, Hi,jz(hi3 hj), G=H~1.

Denote

d
T= Z e,®e_,+ z Gi,jh,-®hj€U®U,

a+0 iL,j=1

d
u= Z e, ®e,— Z G;jh®hieURU ,

ax0 iLj=1

v%( ) eae_a>eU. @

a0 a0
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Let ceAut(U): o(e,)=e—q, 0(hy)= —hy; 1:: U= U®": i(u) =19V @u@ 19"~
Xi,j- UR®U—~ U®n: Xi‘j(u®v)=I®('—1)®u®1®“_i—1)®v®1®(”_”;

=10 B =1, = ()eU®" . (5)

1.2. Proposition. In the above notation,
D) [z tint+1561=0,
2) a) [ty pi+p,6]=0, b) Lpik, 7o j+15,61=0,
3) a) [ty ;+vi+v; i ;1=0b) [p;+vi+v;,1:,;1=0,

c) [t +vi+pi,;v;]1=0,
@) [rij i d=Lri, 5 il =45, vi1=0,

for distinct i, j, k, 1. (6)

Proof.

1) Our 7 coincides with Belavin—Drinfeld’s: if {I,}T is an orthobasis of g, then
T= Z"Ll 1,®1,, and 1) holds. Let us reproduce the proof ([6]):let 6: U-»U ® U:
da= a®1+1®a for aeg, c¢= Z"‘_l I, 2c¢UU be the Casimir element. Then
1=3(d(c)— c®1—1®c); therefore [‘C 5(u)] 0 for every ue U and

Lti, Ti,k+Tj,k]=[Ti,j: Z Xi,j(é(lp))Xk(Ip)]zo

p=1
2) Note that u=(idy ® 0)(t)=(0c ®idy)(z), 0> =idy. Hence,
[7i) Hi,k+/‘j,k]:id((?(k~1)®0'®idg§(n_k)([1i,ja Tik+t75,6])=0,
L, 5 Ti,j+ﬂj,k]=id((?(k~1)®0®id§("_k)([fi,k,Ti,j"'fj,k]):O
3) It is enough to prove that
a) [t+v®1+1®v, u]1=0, b) [u+v®1+1®v,7]=0,
¢)[t+u,v®1]=0, ¢") [v®1,1®v]=0.

¢”) is evident; as a(v)=v, b) follows from a). We need some computations to prove
a) and c¢’). Remember, that [e,, es]=N, se, .y for o, feA, a+ B +0; extend the
range of this formula onto the complete lattice generated by A in H* setting
N, ;=0 if one of o, B or a+f does not belong to A. We will use the following
equalities (see, for example, [8]):

[ea, e—a]=ha, [€a, ha]l=—2€4, ha= —h_,,
(e, ep]=NapeslurptNopeaspe, for f+—a,
[ed, e-ol=e.h,+he,,
Lea md = —(has Ii)eas L€z, ] = —2(ha, hi)es, [eae o, I ]=0,
Nop=—Ngo=—N_y_pp=—Ny—a-p=N_o —p, Noo=0,

d
ha= Z (hwhj)Gi,jhi'

i,j=1
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a) [Z e,Qe_,+ Z G, jh; ®h+ Y e¢®1+ Y e ,®1

a*0 i,j=1 a# 2a#0

1
+ Z 1®ea 2 Z 1®eae._a, Z e/;®e,;— Z Gk'lhk®hl:l

2,50 a0 B+0 ki=1

=Y [enes]@e_,e5+ Y, epe,@[e—,, e5]
a0 a0
p40 B0

d d
+ Z Gi,j[hi> eB]®hje,;+ Z Gi,jephi®[hj, e,;]
li;jq:_ol 1;31*—01

1 1 1
+§ Y [ef,e/x](@eﬁ‘l“i z [ewe—o ep]®€p+§ Y eg®[er, e;]

a0 «+0 «$0
40 B0 B0
1 d
+§ Y es®[ee—neg]l— Y, Gialen, kl®e by
a0 Ki=1
B+0 a+0
1
- Z Gy, 1hee, ®[e—a,h]—— Z GrileZ, h1®h
ki=1 2,12
a¥0 a$0

-3 Z Gy le, e—a,hk]®hl__ Z Gy, lhk®[ea’hl]

kl 1 kl 1
a+0 af 0
1
- Z leh;‘@[eae_a,hk]—— z Na,ﬂea+l;®e_ae‘;
kl 1 a$0
a0 B0 (Sl)
at+p+0
+ Z ha®eza+ Z N_a“gelgea®e_a+p+ Z e,f@h_a
) io (S3) O (Se)
a—pf*0

d d
+ ), Gij(hi, hgleg®@hjeg+ Y Gy ;(hj, hp)esh;@ey

Yo (Ss) b=y (Se)
1 1 1
+§ ZO Na,ﬁeﬁﬂea@eﬂ-f—i Zo haea®e_a+§ Zo N, pese,+s®ep
5o (S7) “*0 (Sg) e (Ss)
at+pF0 a+p+0

1 1
+= Y eh,®e_,+= Y Nygpegipe—®eg+= Y he_,®e_,

a 2 a o
0 (810 550 (S11) O (S12)
atpB+0
1 1
+5 Z N—a,ﬁeae—a+ﬁ®eﬂ+‘ Z eahﬂa®em
20:4:0 2014:0
p+0 (S13) (S14)

a—f+0
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1 1 1
+= Z Na,ﬂeﬂ®ea+[3ea+§ Z e—a®haea+§ Z Na,ﬁeﬂ®eaea+ﬂ

2
*0 *0 *0
Z*O (SIS) * (SIG) ;#0 (S17)
a+p+0 at+p+0

1 1 1
+3 Z e-a®eaha+_ Z Na,ﬁeﬂ®eac+ﬁe—a+— z e—a®hae—u
2&4:0 2 a+0 2a4=0
(S1s) B0 (S19) (820)
a+p+0
1 1
+3 Z N—a,ﬁeﬂ®eae~a+ﬁ+_ Z ea®eah—a
2 af0 20!*0
B0 (S21) (S22)
a—p+0
d d
+ Z G i(has hi)e,®e—ohy+ Z Gi(h—o, ) ie,@e_,

kl=1 k,l=1
40 (S23) a+0 (S24)

d d
+ Y Guihe h)ea @+ Y, Gii(hy ) ®e;
Yo (529) “ro (520)

1 1 d 1
S5+§S20+5822= Z Gi,j(hi, hﬂ)eﬂ®hje,;+§ Z e_a®hae_a

i,j=1 a%0

B*0
1

+2 Y e,®@ehy=) e@hpes— Y e,@h,e,
2:1*0 B+0 a0
1

+§ Z ea®[eau h—a]= Z e,®e,,

a¥0 a0

1 1 4 1
Se+=S12+=814= Z Gi,j(hj,hﬁ)eﬁhi®eﬂ+§ Z he_®e_,

2 2 ij=1 a0
B+0
1
+2 ) eh_,®e=) eshy®@es— . e,h,Qe,
2:1#0 B+0 a0
1
+5 Z [ha,e—a]®e—a:_ Z e,Qe,,
2a=i:0 af0
S S+IS +lS +S +1S +1S =0
0,5220222 6FT5R12T5914=0
1 1 d 1
S23+=S16+3S18= Y., Gralhe h)e,®@e_h+= Y e ,Qhye,
2 2 k=1 2,50

a0

1
+5 Y e, @eh,=Y e,®e_h,— Y e,Qe_,h,

a0 a0 a0

1
+§ 2 e—a®[ha>ea]= Z e~a®ea>

a¥0 a®0
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1 1 d 1
S24+58s+5S10= Z Gra(h_o e, @e o+ Y he,®e_,
2 2 k,1=1 2a4=0
a0
1
+= z eaha®e—a=— z haea®ea+ Z haea®e—a
2a*0 a0 a0
1
+= Z [emha]@e—a:_ Z e_,®e_,,
2a#=0 a+0

1 1 1 1
So, Sz3+§ S16+§Sx8+S24+§ SB+§ S10=0.

d
Sas+8s= Y, Grilha, h)el @+ Y, e2®@h_,= Y e;®h,— Y, el®h,=0.
kI=1 aF0 a%0 a+0

a0

d
Sz6+S2= Y Gilhuh)m®@eZ+ Y h,®e%,= ) h@eZ—Y h_,®e*,=0.
k=1 a0 a0 aF0

Denote o' =a—f.

Siz= Z N_, pese—oip® ep= z N_y-ppearpe—o Qe

a$0 a’#0
B+0 B+0
a=pf+0 a'+p+0
== 2 Ny peyrpe—o®ep=—Sy; .
a'#0
B+0
a'+B+0

So, 511+S13=0 .

Sa1= ) N_ypes®esenrp= ), N_y_pes®e,ipe o

a0 a’£0
B*0 B+0
a—p+0 a’'+B%0
= Z Ny pes®ey rpe_o=—S819.
a’'+0
B*0
a'+B%0

SO, S19+S21=0 .

Denote f'=a+f,0'=—oa .

S15= Z Na,ﬂeﬂ®ea+ﬂea= Z Na,—a+ﬂ’e—u+ﬁ/®eﬂ/ea
a+0 a+0

B+0 B'*0
a+pf+0 a—p’'%0
= Z Na,—a+ﬂ’e—a+ﬁ’®eaeﬂ'+ Z Na,—a+ﬁ’e——az+ﬁ'®[eﬂ'9 ea]
a*0 . ax0
B'+0 B0

a—B %0 a—B'+0
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=- Z Na,—ﬂ'e—a-l-ﬁ’@eaeﬂ’_ Z Na,*ﬁ’NB'.ae—a+B'®ea+ﬂ’

a0 a0
B'*0 B'+0
a=p'*0 a+B'+0
a—p %0
- Z Na,ae—2a®h—a= - Z Na',p'ea'+p'®e_u'el;:
a0 a'+0
B'+0
atp'+0
+ Y Ney-gNipeoip®eurp,
a0
B'+0
a+p’+0
a=p'+0
Sir7= Y Nypes®esenip= Y No_sipe_nip®emep
af0 a0
B+0 B*0
a+B+0 a—B'+0
=- Z Nopeoip®e_qep .
a+0
B+0
a+B’E0
So,
1 1
Si+=S15+=S
1759155917
1
= 2 Nupeurs®e—sep—s ) Nopears®e—oey
a0 a0
B*0 B+0
a+B+0 a+BE0
1 1
+3 > No,—pNo,pe—arp@eurp—3 Y Nogewrs®e-nep
a%0 a%0
B+0 B+0
atB+0 a+f+0
a=B+0
1 1
=§ Z N~a',—ﬂN—a',pea'+ﬂ®e—a'+ﬁ='2‘ Z Ny gNy —pesrp@e_osp .
a’+0 a'$0
B+0 B+0
o +BEO @ +B+0
a'—B+0 @' =B+0
So= z Ny peseqry®eg= Z No —arpeslp @e_yip
af0 a$0
B*0 B'*0
a+tB+0 @' —B'+0
= Y N, sipepe,®e_pip+ 2 Ny—giplesep]l®e_oip
P P
g0 B'#0
a—f'+0 @~ +0
=- Z Na,—ﬂ’eﬂ’ea®e—a+ﬁ’— Z Na,—li’Na,[K’ea+ﬂ’®e—a+ﬂ’
a$0 a+0
p'+0 B'+0
a=p'+0 a+p'+0

a—p'+0

- Z Na,aha®e—2a H
a0
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Sy= z Ng pearpea®ez= Z No, —sipepe,@e_yip
a0 a0
B*0 B'+0
a+B+0 a—p'+0

=- z N—a,ﬁ'eﬂ'ea®e—a+8' .
a0
B'*0
a—p'+0

So,

1 1
S3+§S7+§SQ

1
= Z N—a,ﬂeﬂea®e-—a+/}_§ Z N—a,ﬂeﬂea®e——a+[]
a0 a*0
B+0 B*0
a=p*0 a=B*0

1 1
—_2' Z N—a,ﬂeﬂea®e~a+ﬁ_§ Z Na,—ﬂNa,ﬂea+ﬁ®e—-a+ﬁ
a$0 a+0
B+0 B+0
a=p+0 atp+0
a—p+0
1

=73 ;0 No,-pNageosp®@e_gip .
o
B*0
a+p+0
a—p*0

Hence, Sl +%S15+%Sl7+S3+%S7+%89=0 .

d
c’) 2[,u+t,v®1]=[ Z e,Qe,+ Z G;,;hi®h;+ 2 e_,®e,

a0 i,j=1 a$0

d
- 2 Gi,jhi®hj’ ( z (E§+eﬂe_ﬂ)>®1:!

iLj=1 B+0
=) [(ea+e_a), Y (e§+e,,e_ﬁ)i|®ea.
a+0 B*0
l:ea'i'e—-w Z (e/§+eﬂe—ﬂ)]= Z ([eaw eﬂ]eﬂ+eﬁ[eaa eﬁ]+[em eﬁ]e—ﬁ
B*0 B*0

teples, e—pl+le-s, egles+esle—n egl+e—n eple-ptegle—n e—4])
= ) Ngpesipesthee_,+ Y N,pegesipte_,h,
0 (S gl (52)
+ Y Nygpesipe_pt+he,+ Y Ny _pepe, s+eh,
froe (S3) il (Sa)
+ Y N_gpe-nipepthge,+ Y N_,zepe_,ipt+eh_,
e (59 e (Se)
+ Y N_gpl-aipepth_je_,+ Y N_, _pege_, p+e_h_,.
b (S9) e (Ss)
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As h,= —h_,, the terms of the forms e, ,h4,, h4,e4, cancel out in the last expres-
sion. Furthermore, putting '=f+«, we have

Si= Y Nugewrpep= ), Noarpepearp=— ) No-pepeorp

B+0 B'*0 B'+0
BE-a B'*a B'*a
= — Z N-a,ﬂ'eﬂre_a+ﬂ'=~S6 .
B'+0
B *a

Similarly, S, = —S5, S3= —S84, Sg= —S+-, and our expression is equal to zero.
4) is evident.

2. The Monodromy

2.1. Let W be a finite-dimensional space p:g—End (W) be a representation of g, and
V=W®" The hyperplane arrangement of the root system B, is given by the
equations x;+x;=0, x;=0; define a connection on the trivial bundle C" x V over its
complement X < C” by the 1-form matrix,

Q=/1< Z pul(ti,j)dlog(x;—x)+ Y. palp,;)dlog(x;+x;)

15i<jsn 1Z5i<jsn

+ X pn(vi)dlog(Xz)> , (7)
15isn
where AeC, 1;;, pi,j, vi,; are defined by (4), (5), and pn: US"SEnd(V=wW®")
is the representation of U®" constructed from p:p,(9:® - ®gn)=
P(g)® - @ p(g)- .
Proposition (1.2) says that this connection is flat and, consequently, it defines
a representation of the generalized pure braid group PB,=7(X) in End(¥V).

2.2. In the case when g=sl,,(C) and p is its standard representation, we have also
a flat connection over the complement X' of the hyperplane arrangement
D,:x;+x;=0in C", due to the following fact:

Lemma. In the above assumptions, p(v) is proportional to idy, and, consequently,
Lzij i, j1=0.

Proof. If we put H to be the diagonal matrices in the standard representation of
sl,,(C), then the matrix corresponding to e; ; has a nonzero element only in the (i, j)
place; p(e? 7)=0, p(e;, je;,;) is diagonal, so p(v) is diagonal as well and is invariant
under permutations of the elements of the basis of W¥.

Hence, the matrix

Q’=/1( Y paltidlogxi—x)+ Y pn(ui,j)dlog(xi+xj)) t)

1<i<jsn 1<i<j<n

defines a flat connection on X’ and a monodromy representation of the generalized
pure braid group PD,=n(X").
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2.3. We are going to describe these monodromies in the simplest case: from now on,
g=sl,(C), and p is its standard representation

0 0
sea=(y o)+ sea=(7 o). sm=(5 _Y)

in a basis {e;, e,} of a 2-dimensional vector space W.
Change for this case the definition (4) of v by setting

v=r< Y e+ Y eae_a)+s< ) ea>.

a%0 a0 a0

Lemma. The equalities (6) hold for the new v as well.

Proof. The equalities

|:‘L', Y e®1+ ) 1®e{|=0, [u, Y e,®1+ ) 1®eu:|=0

at0 a0 a0 a0

hold for all semisimple g, it is seen from the proof of Proposition 1.2 a); we have to
check only, that [e; ®e_+e_Re,+e. Re,+e_®e_,(er +e-)®1] is equal to
0.Butitis[e,+e_,e.+e_]®(es+e_)=0.

24. Letay,...,a,-1,cy be the generators of the generalized braid group XB, of
the root system B, and, simultaneously, of the Weyl group WB, corresponding to the
reflections with respect to the hyperplanes {x;=x,},..., {x,-1=x,}, {x;=0}
respectively. X B, is described by the relations

a;aj=a;a; for li—jl22, a;a;410;=0;110:0i11 ,
cia;=a;cy foriz?2, (Clal)z=(0101)2 > ®

WB, has in addition the relations a%=...=a?_,=c3=1. The groups XD, and
WD,, corresponding to the system D,, are generated by the elements a;, ..., a,-1,
b, with the relations

aaj=a;a; for|i—j|=2, a;a;+10i=0a;+10;0:41 ,

blai=aib1 for 1*2, b1a2b1=a2b1a2 . (10)

and WD, has in addition the relations, a?=. .. a>_,=b?}=1.

2.5. Denote g=e~ ™/~ 144,

Theorem. The monodromy 0,: PB,—~End(V') defined by the connection (7) is, up to
conjugation, the restriction of the representation 0 of the group XB, given by the
matrices

1 0 0 0
~ ) 00 q )
6 )= —1/21@(1—1) 1®(n—t—1)’
(a)=4 ®, ¢ 1-q? 0 ®
00 0 1
et —r 0 1 n—
b(c1)=4 (1 q_ZS_q2s>®1®‘ v, (11)
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where the matrices singled out are given in the basis {e;®e;, Qe e;®ey,

e;®e,} of W Wand {ey, e, } of Wrespectively. The monodromy 6p: PD,—End(V)

defined by the connection (8) is, up to conjugation, the restriction of

the representation 8" of the group X B, given by the matrices

0 00
10

0 01

g 0 0 1—¢g2

S O

6'(a)=0(a,), 6'(b)=q" 1" 19072, (12)

Proof is modification of that of Theorem 3.2.3 of [6].

Define an action of the Weyl group WB, on V= W®" simultaneously with its
action on X so that the connection be invariant under the product action on X x V.
Namely, put

a1 ® - QUi®V;11® V)=, ® - RV QV;® - vy,
c1(e®@v2® -+ - Quy)=e34,®v,® - v, , k=1,2. (13)

Indeed, in terms of the action of U®" on V, cilp,ci=p,°(c®1®"~ 1) and,
therefore, ¢3? p,(t1,2)c1 = pa(t1,2)- After we quotient X x ¥ by this action, we will
obtain a (non-trivial) bundle over X/WB, having V as a fiber and endowed with
a flat connection. The fundamental group of X/WB,, is the generalized braid group
XB,, hence the monodromy of the flat connection yields a representation 6 of
X/WB, in End(V'), whose restriction 0|pp on pure braids is 0p. It depends of the
parameter 4; when A=0 the action of XB, on V coincides with the action (13) of
WB,.

The monodromy action on ¥ of the simple loop half bypassing the hyperplane
{x;=x;} in X, that is 6(a;), is defined by the residue of Q2 along this hyperplane
Apn(7:,:+1) and coincides, up to conjugation, with the composition of the exponent of

this matrix e™/ ~1#:(.i+1) and the action (13) of a;. The matrix has the form
8 0 0 0
0 —18 14 0
0 14 —18 0
o 0 0 18

1®(i—1)® ®1®(n"i—1);

it is semisimple with the set of eigenvalues {1/8, —3/8}, the eigenvectors corres-
ponding to the second one lying in the subspace W®( V®(e;®@e,—
e, ®e )@ W®r=i=1 of | Its exponent is semisimple with the set of eigenvalues

{e™ T1H8 ony/ ~1A(=3/8)} ‘and q, from (13) acts as —1 on the subspace correspond-
ing to the second eigenvalue and as 1 on the subspace corresponding to the

first one. Hence, 0(a;) is semisimple with the eigenvalues {q~ !/?=¢™/ ~14(1/8)
—q3? = — ™/ 12738} and satisfies the quadratic equation

(0(a)—q~ ") (0(a) +q¥*)=0. (14)
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In the same way, the residue of 2 along the hyperplane {x, =0} is given by the

matrix
r/d4  s/2 _
1®®-1)
(s/z r/4> ®
with the eigenvalues #/4+5s/2, r/4—s/2 and 6(c,) satisfy the equation

(Oc)—a™"">)(0(cy)+q~""*)=0. (15)

Let AB, be the maximal algebra over C generated by the elements
ai, ..., a,-1,Cy in which the relations (9) and, in addition, the following relations
coming from (14), (15) hold:

al=q""*(1—q¥a;+q, ci=q""2(1—q%)c;+q7 . (16)

This algebra is obtained by a deformation with parameter g from the group algebra
CWB,, which corresponds to g=1 (that is, to 1=0), and has the same dimension:
there exists a natural way to reduce the elements of CWB, to a natural form without
augmentation of their lengths computed in the alphabet {a;, . . ., a,-1, ¢; }; we can
use the same process to reduce the elements of 4B, to the same form if we replace the
relations a? =c3 =1 of CWB, by (16). Hence, the algebra 4B, is semisimple for small
A and the decomposition of any of its representation into irreducible ones depends
continuously on 4 if 4 is small enough (see [4]).

The representations 6, § satisfy Egs. (14), (15) and factorize through 4B, (for § this
is verified directly). When 1=0, both of them coincide with (13). Hence, these
representations are equivalent for small A. But they depend on A analytically and,
therefore, 6 is equivalent to 6 for any A.

The second part of the theorem, dealing with the representation of XD,, is
proved in the same way.
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